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INTRODUCTION 

 Aluminum has been used as a fuel additive in rocket propellants since the 

1950s. Its use as a fuel is widespread ranging from large scale solid rocket 

boosters to hobbyist rocket motors. Aluminum powder raises the specific impulse 

(Isp) through the product molecular weights and increased flame temperature 

(Bucher, Ernst, & Dryer, 2000). It also suppresses high-frequency combustion 

instabilities through viscous particle damping (Price, 1965). Aluminized 

ammonium perchlorate composite propellants (APCPs) form large molten 

aluminum (Al) agglomerates leading to incomplete combustion and two-phase 

flow losses (Beckstead, 2004; Hermsen, 1999; Price & Sigman, 1999). These 

large molten droplets (LMD) result from the coalescence of multiple Al particles 

and they are often an order of magnitude larger than the initial constituent particle 

size (Price & Sigman, 1999; Sippel, Son, & Groven, 2013). The mechanism of 

aluminum agglomeration and combustion has studied before to understand the 

particle dynamics and phenomena in the gas phase (Cheung & Cohen, 1964; 

Churchill, Fleming, & Cohen, 1974; Hermsen, 1999; Povinelli & Rosenstein, 

1964; Sambamurthi, Price, & Sigman, 1984; Sippel, Son, Groven, Zhang, & 

Dreizin, 2014). Currently, techniques for sizing Al agglomerations in APCPs 

include phase Doppler anemometry (Laredo & Netzer, 1993), laser diffraction 

(Laredo, McCrorie, Vaughn, & Netzer, 1994), particle collection (Laredo et al, 

1994; Price & Sigman, 1999; Sippel et al. 2014), videography (Bucher et al., 

2000; Karasev et al., 2004), schlieren (Cauty, Erades, & Desse, 2011), 

shadowgraphy (Karasev et al., 2004), holography (Butler & Netzer, 1988; Faber 

& Netzer, 1983; Powers & Netzer, 1992; Walker &Netzer, 1987), and digital 

inline holography (DIH) (Guildenbecher et al., 2014). 

 According to the literature (Babuk, 1998; Babuk, Vasilyev, & Malakhov, 

1999; De Luca, 2007; Glotov, 2000; Price, Sigman, Sambamurthi, & Park, 1982), 

the aggregation process for micrometric aluminium powder inside a solid 

propellant comprises several steps: first is a pre-aggregation within the space left 

free by the larger oxidizer particle, called “pocket” and “bridge.” The pockets are 

connected together by the bridges as shown in Figure 1. 
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Figure 1. Structure of Pocket. Adapted from “Condensed Combustion Products at 

the Burning Surface of Aluminized Solid Propellant” by V A. Babuk, V. A. 

Vasilyev, and M. S. Malakhov, 1999, Journal of Propulsion and Power, 15, 783-

793. 

 

 The second step begins when the burning surface reaches these pockets. 

Babuk et al (1999) called this structure the skeleton layer. Then, this structure 

collapses into a bigger metal sphere, the agglomerates. Most of the emerged 

aggregates are in liquid state, and the aggregates continue their growth attaching 

themselves to other neighboring pockets. As a third step the aggregates (that are 

not yet spherical, but like a coral), reach the temperature of ignition, showing the 

first inflammation and conclude the transition between aggregate and agglomerate 

(exhibiting the typical structure represented in Figure 2). 
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[γ1and γ2 are angles of wetting, for 6MPa, γ1= 26 deg and γ2 = 41 deg] 

 

Figure 2. Structure of agglomerate. Adapted from “Condensed Combustion 

Products at the Burning Surface of Aluminized Solid Propellant” by V A. Babuk, 

V. A. Vasilyev, and M. S. Malakhov, 1999, Journal of Propulsion and Power, 15, 

783-793. 

 

 Then they can detach, or begin moving on the burning surface where they 

collide with other agglomerates. Collisions between agglomerates can be 

considered as the main growth factor. In general, the agglomeration effect 

depends on the pressure (Dossi, 2010) (higher pressure means smaller 

agglomerates), the temperature, the oxygen balance of the propellant (which 

influences the burning), the type of burning surface--a liquid layer impedes the 

detachment with the consequence of further growing of the agglomerate (DeLuca, 

2013), the mean size of the original metal particles, the size of the oxidizer prills--

which directly influences the size of the pockets, and the residence time on the 

burning surface before the detachment (De Luca, 2007). When the agglomerates 

detach the determination of the maximum diameter is possible. A number of 

theoretical models have been developed to predict the agglomerate size in solid 

composite propellants. Salita (1994), Beckstead (1977), Willoughby, Baker, and 

Hermsen (1971), and Liu (2005) have proposed an empirical model of aluminum 

agglomeration with characteristic parameters linked to propellant formulation or 

burning rate. This empirical model is based completely on experimental data and 

the extrapolation to other propellants is certainly questionable. Cohen (1983) and 

Grigorev et al. (1981) have given a pocket model of aluminum agglomeration in 

relation to the size of the region between adjacent coarse oxidizer particles in the 

propellant microstructure. According to this model, all aluminum particles located 

inside a pocket area form only a single agglomerate. Gallier (2009) has also 
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proposed a pocket model essentially relaxing simple assumptions of previous 

pocket models on propellant structure by accounting for an actual random 

structure obtained by packing. Jackson, Najjar, and Buckmaster (2005) have used 

a computer-generated 3D pack of particles to simulate the propellant 

microstructure, and giving agglomerate size distribution on burning surface. Little 

literature is available on the study of the aluminum agglomeration of aluminized 

propellants under operation pressure, previous studies (Babuk et al., 2005; Liu, 

2005; Sambamurthi et al., 1984) have not stripped the influence of quench 

distances and pressure on agglomeration. 

 Artificial Neural Networks (ANN) can be deemed as powerful tools for 

modeling complex systems. Unlike the more commonly used analytical methods, 

the ANN is not dependent on particular functional relationships, requiring no 

assumptions regarding the distributional properties of the data and no a priori 

understanding of variable relationships. This independence makes the Artificial 

Neural Networks (ANN) a potentially powerful modeling tool for exploring 

nonlinear complex problems. Neural networks (NNs) are non-linear mapping 

structures inspired by the function of the human brain. They are considered 

powerful modeling tools especially for data with unknown underlying 

relationships. NNs consist of computational elements called “neurons,” operating 

in parallel, connected by links with variable weights which are typically adapted 

during the learning process (Mitchell, 1997; Patterson, 1996). The number of 

neurons and the scheme of connection with each other can vary. ANN can be 

presented often as neurons formed in layers. The neurons in a layer are not 

connected with each other, but they are connected with neurons of the previous 

and next layers by the principle "each with each." Haykin (1999) defined neural 

network as a massively parallel distributed processor that has a natural propensity 

for storing experiential knowledge and making it available for use. It resembles 

the brain in two respects - knowledge is acquired by the network through a 

learning process, and - interneuron connection strengths known as synaptic 

weights are used to store the knowledge. The neural network approach is a branch 

of artificial intelligence. The ANN is based on a model of the human neurological 

system that consists of basic computing elements (neurons) interconnected 

together (Figure 3). 
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Figure 3.A neural networks (ANN is an interconnected group of nodes). Adapted 

from “Neural Networks: A Comprehensive Foundation” by S. Haykin, 1999, 

Upper Saddle River, NJ: Prentice Hall. 

 

 

 The used model was a standard, five-layer, back propagation, neural 

network with input nodes (N), hidden nodes(L), and output node(I). The neurons 

layer is determined by its weight matrix, a bias vector and a transfer function. The 

trial and error method is used to determine actual number of hidden neurons. The 

propagation of information flows through hidden layer from the input layer to the 

outer layer. During ANN training, a training tool compares the output signals to 

known aimed values, calculates the error, modifies the weights of synapses by 

means of the algorithm “back propagation of errors” and iterates the training cycle 

persistently till a suitable target values is achieved. A usual range of training 

cycles may be quite a thousand. The back propagation (BP) algorithm is one of 

the most preeminent training algorithms for multilayer neural networks. BP is a 

parentage technique to minimize the error E for a particular training pattern. 

 In this work, a feed forward back propagation neural network is used to 

predict the agglomerate diameter based on the input parameters such as Quench 

Distance (QD) and Pressure (P). 

MATERIALS AND METHODS 

 This section is divided into two subsections: First, the propellant samples, 

set-up, collection and measurement of agglomerates are presented and finally the 

modeling with artificial neural network was explained. 

Samples, quench set-up, agglomerate collection and measurement  

 The propellant samples formulations include ammonium perchlorate (AP, 

NH4ClO4) as an oxidizer, aluminum particles (micrometric aluminium for P1 to 
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P5 propellants & ultra-fine aluminium for P6 propellant) as a metal fuel, a binder 

(HTPB) and the additives. Table 1 presents the sample propellant compositions. 

 

Table 1 

Propellant Compositions 

Propellant 

Identity 
Aluminium 

Binder/Curing 

Agent 

 
Size 

(µm) 
%  

P1 

18.0 

 

 

 

 

1

8 

 

HTPB/TDI 

P2 

P3 

P4 4 

P5 
1

5 

P6 0.44 
1

8 
HTPB/TDI+IPDI 

 

 Propellant samples (cylindrical discs) of 25mm diameter and 5mm 

thickness are prepared after mixing and curing at 50°C for 7 days for six 

propellants respectively. Propellant samples are tested in a quench set up to 

collect the aluminium agglomerates. The experiment includes six propellants at 

four different pressures and six different distances. The collected aluminum 

agglomerates are more than the parent aluminium size. The particles are identified 

digitally and their edges are detected using computer software. The pixels 

contained within the detected edges are used to find an equivalent diameter of a 

circular projection of each particle, to obtain its size for a given magnification 

using the pixel distances. Figure 4 shows particles labeled as part of analysis of 

P6 propellant. These identified agglomerate images are analyzed using ImageJ (a 

particle and image analysis tool) software to determine agglomerate diameter 

followed by arithmetic mean diameter (AMD) based on the following definition:  

10 idi) / ( i)   (1) 

Where ni refers to number of particles with diameter di and di is nominal diameter 

of ith particle. 
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Figure 4. Particles counted as part of analysis of P6 Propellant. 

 

Modeling with Artificial Neural Network 

 Combustion of aluminized solid propellants introduces the well-known 

undesirable agglomeration development. A significant attempt has been dedicated 

to assessing and predicting the size of agglomerates ejected from the burning 

surface. A comprehensive overview of agglomeration modeling was presented by 

Beckstead (2004/2005). The main aim of the neural network is to convert 

different data inputs toget significant outputs. The various types of neural network 

approaches are present, in which Multilayer Perception (MLP); a feed forward 

back propagation neural network is the mostcommonly used ANN approach. 

Back propagation is an algorithm which is commonly applied for training. During 

training the data, the weights are adjusted to decree empirical correlation between 

input and output variables in the system. Neuron models with some inputs should 

be coupled with weights ‘w’ in a multilayer neural network. The sum of these 

weighted inputs andthe bias forms the input to the transfer function ‘F’ which is 

as shown in Eqn. (1) 

Y = F (x, w)(1) 

where Y is output, F is transfer function, x is input, and w is the weight. Sigmoid 

transfer function is preferably used by neuron to generate the output. Feed 

forward networks have one input layer, one or multiple hidden layers of neurons 

followed by an output layer. The outcome of performance analysis for feed 

forward network is based on the estimation of Mean Square Error (MSE); which 

is the average of the squared error between the network outputs ‘a’ and the target 

outputs ‘t’, in which suffixes indicate the number of observations, defined by Eqn. 

(2) given below. Schematic flow diagram of the artificial neural network 

developed is shown Figure 5.  
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(2)                                      MSE 1/N ti – ai)
2  

i=1 to n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. A typical representation of ANN structure. 

 

 The Multilayer Perception (MLP) architecture, thus obtained has one input 

layer with three input node values, one hidden layer with three hidden node values 

or neurons, and one output layer with one output node values. All neurons are 

associated with different weights. ANN model has been developed using a total of 

144 experimental data. Out of these 144 experiments, 84% data were used for 

training of the model; 16% was used for testing of the model. 

 The start of the training phase includes neural networks activation with 

multiple input vectors and the output was calculated. The error values are 

produced after comparing calculated outputs to the target values. Each weight was 

adjusted according to the magnitude of the error to reduce the total error. The new 

sets of outputs are obtained after re-calculation using the adjusted weights. These 

successively were compared with the targets, and the weights were adjusted 

again. This method was repeated until an appropriate criterion was reached. The 

criteria used in this paper is the total error, (i.e. error based on the mean squared 

error (MSE) between the networkoutput and target), to terminate the training 
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session. The resultant model at the end of the training phase was used in the 

testing phase. 

RESULTS AND DISCUSSION 

ANN modeling 

In the present work, a 5-layer feed forward neural network (3-5-10-5-1) is 

intended by changing the two different operational process variables to obtain 

agglomerate diameter, viz, Quench distance, and Pressure, and the results were 

evaluated. The Multilayer Perception (MLP) has one input layer associated with 

three nodes, three hidden layers associated with first layer having 5 neurons, the 

2nd layer having 10 neurons, the 3rd having 5 neurons, and one output layer with 

one output node value. All these neurons/nodes were coupled with different 

weights. In the present study, ANN model has been planned by carrying a total 

number of 24 runs for each label propellant used for training the network. The 

ANN has been implemented using Matlab script. All the input variable and output 

variable were normalized in the range of (0, 1) before starting the training of data. 

A multilayer feed forward, back propagation neural network was used with 

sigmoid as a transfer function at learning rate of 0.5, momentum rate of 0.25, and 

1000 epochs. The ANN design was trained exploitation stopping criterion as one 

thousand iterations. Tables 2 to 7 gives experimental data and predicted data from 

ANN for P1 to P6 propellants. 

Performance measurement of Neural Network for Experimental Data 

 To determine the optimal architecture, 6 different networks with different 

number of layers and neurons in the hidden layer were designed and tested for 

determination of agglomerate diameter. The performance capabilities of each 

network were examined based on the mean squared error between the network 

predictions and the experimental values using the test and the entire dataset. From 

Tables 2 to 7, it was identified that the network with three hidden layers and 5 - 

10 - 5 neurons in each layer (3-5-10-5-5) produced the best performance for each 

of the output parameters. Further, the average percentage error was also less than 

±3% which means the ANN predicted results were very much closer to the 

experimental (actual) results shown in Figures 6 - 11. It revealed that the 

prediction of ANN model was found to be in good agreement with experimental 

data.  

Effect of quench distance on agglomerate diameter 

 The distance between the propellant and the surface of quench liquid is the 

quench distance. The particles from the burning propellant travel this distance 

before being quenched in the liquid. The results showed the dependence of 

agglomerate size on quench distance. At lesser quench distance, the unburned 

aluminium content was significantly higher which indicates additional 

combustion is occurring and hence formation of larger agglomerates as shown in 

Figure 6 – 11. Similar observation was observed when unburned aluminium 
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content was found to be significantly decrease as the operating pressure was 

increased, quench distance is increased; hence the reduction in accumulation and 

agglomerate size. 

Effect of pressure on agglomerate diameter 

 The results show the dependence of agglomerate size on pressure.  

1) At low pressure, the fine AP particles of the pocket propellant fail to be 

established near the surface flamelets, resulting in unfavorable conditions for the 

ignition of the accumulating aluminum and hence formation of large 

agglomerates. 

2) As pressure increased the fine AP particles would establish individual flamelets 

conducive to aluminum ignition, with a corresponding reduction in accumulation 

and agglomerate size. This trend in agglomerate size with pressure is conspicuous 

in Figure 6 - 11. 

 

  

10

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 7

https://commons.erau.edu/ijaaa/vol5/iss5/7
DOI: https://doi.org/10.15394/ijaaa.2018.1296



Table 2 

Experimental data and Predicted data from ANN for P1 Propellant 

Pressure, 

MPa 

Quench Distance, 

mm 

Experimental 

Agglomerate 

Diameter, 

µm 

Predicted 

Agglomerate 

Diameter, 

µm 

Percentage 

error 

Training Set 

2 5 114.8 112.84 1.70644599 

2 23 102.7 104.38 -1.6338851 

2 35 90.2 92.02 -2.01330377 

2 47 77.1 77.04 0.0843061 

2 71 55.2 54.62 1.05978261 

4 5 100.5 101.29 -0.78706468 

4 23 92.6 92.71 -0.11663067 

4 35 82.6 80.44 2.61501211 

4 47 68.2 68.31 -0.1627566 

4 71 46.2 47.25 -2.27705628 

6 5 89.7 90.72 -1.1393534 

6 23 85.1 82.92 2.5640423 

6 35 71.3 71.46 -0.22720898 

6 47 62.6 61.76 1.34345048 

6 71 41.8 41.20 1.42822967 

8 5 81.9 82.55 -0.78998779 

8 23 76.5 75.61 1.1620915 

8 35 63.2 65.07 -2.95411392 

8 47 56.7 56.60 0.17989418 

8 71 31.8 32.04 -0.76100629 

Testing Set 

2 59 67.3 67.89 -0.87964339 

4 59 59.7 59.43 0.45226131 

6 59 51.4 52.34 -1.82490272 

8 59 45.8 45.15 1.42139738 
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Table 3 

Experimental data and Predicted data from ANN for P2 Propellant 

Pressure, 

MPa 

Quench Distance, 

mm 

Experimental 

Agglomerate 

Diameter, µm 

Predicted 

Agglomerate 

Diameter, 

µm 

Percentage 

Error 

Training Set 

2 5 136.1 134.97 0.83027186  

2 23 127.6 126.565 0.81112853 

2 35 119.9 117.681 1.85070892 

2 59 97.7 96.094 1.64380757 

2 71 83.8 85.438 -1.9546539 

4 5 118.8 121.998 -2.6919192 

4 23 106.4 106.694 -0.2763158 

4 35 97.9 96.671 1.25536261 

4 59 80.6 77.76 3.5235732 

4 71 70.9 64.73 8.70239774 

6 5 102.9 101.37 1.48688047 

6 23 89.2 89.337 -0.1535874 

6 35 73.8 81.381 -10.272358 

6 59 54.6 59.548 -9.0622711 

6 71 46.1 47.767 -3.6160521 

8 5 91 87.326 4.03736264 

8 23 77 74.716 2.96623377 

8 35 64.9 63.859 1.60400616 

8 59 47.8 47.261 1.12761506 

8 71 37.9 37.837 0.16622691 

Testing Set 

2 47 106.6 106.921 -0.3011257 

4 47 90.3 87.856 2.70653378 

6 47 65.2 70.389 -7.958589 

8 47 57.6 56.535 1.84895833 
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Table 4 

Experimental data and Predicted data from ANN for P3 Propellant 

Pressure, MPa 
Quench Distance, 

mm 

Experimental 

Agglomerate 

Diameter, 

µm 

Predicted 

Agglomerate 

Diameter, µm 

Percentage 

error 

Training Set 

2 23 78.1 77.2526 1.085019206 

2 35 71.5 72.3513 -1.190629371 

2 47 65.7 65.4332 0.40608828 

2 59 56.8 58.4969 -2.9875 

2 71 48.9 50.2393 -2.738854806 

4 23 71.7 70.2152 2.070850767 

4 35 63.1 64.4562 -2.149286846 

4 47 54.9 57.5277 -4.786338798 

4 59 49 49.315 -0.642857143 

4 71 42.5 41.5174 2.312 

6 23 65.8 63.5636 3.398784195 

6 35 57.7 56.618 1.875216638 

6 47 48.7 48.4479 0.517659138 

6 59 42.5 40.8402 3.905411765 

6 71 36.4 35.1528 3.426373626 

8 23 57.8 55.7579 3.533044983 

8 35 48.9 47.6308 2.595501022 

8 47 41.3 40.2088 2.642130751 

8 59 35 34.7309 0.768857143 

8 71 30.6 31.117 -1.689542484 

Testing Set 

2 5 85.1 85.2814 -0.213160987 

4 5 78.5 78.7529 -0.322165605 

6 5 70.5 71.9004 -1.986382979 

8 5 65.5 65.6354 -0.206717557 
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Table 5 

Experimental data and Predicted data from ANN for P4 Propellant 

Pressure, 

MPa 

Quench Distance, 

mm 

Experimental 

Agglomerate 

Diameter, µm 

Predicted 

Agglomerate 

Diameter, µm 

Percentage 

Error 

Training Set 

2 5 67 66.2411 1.132687 

2 23 62.1 62.447 -0.55878 

2 47 50.2 50.603 -0.80279 

2 59 46.1 45.686 0.898048 

2 71 41.7 42.0275 -0.78537 

4 5 62.4 62.8876 -0.78141 

4 23 56.4 57.5202 -1.98617 

4 47 45.9 45.8319 0.148366 

4 59 41.5 41.4826 0.041928 

4 71 37.5 37.0193 1.281867 

6 5 57.6 57.2297 0.642882 

6 23 51.5 51.2148 0.553786 

6 47 40.7 41.2163 -1.26855 

6 59 36 36.7122 -1.97833 

6 71 31.7 31.6994 0.001893 

8 5 51.8 51.8362 -0.06988 

8 23 46.1 46.2632 -0.35401 

8 47 37.2 36.731 1.260753 

8 59 31.9 31.7812 0.372414 

8 71 28.1 28.2659 -0.59039 

Testing Set 

2 35 57.8 57.0844 1.238062 

4 35 51.1 51.5624 -0.90489 

6 35 47.2 45.9355 2.679025 

8 35 41 41.5381 -1.31244 
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Table 6 

Experimental data and Predicted data from ANN for P5 Propellant 

Pressure, 

MPa 

Quench Distance, 

mm 

Experimental 

Agglomerate 

Diameter, µm 

Predicted 

Agglomerate 

Diameter, 

µm 

Percentage 

error 

Training Set 

2 5 77.5 77.549 -0.06323 

2 35 62.3 62.7043 -0.64896 

2 47 56.2 56.1226 0.137722 

2 59 50.4 49.4414 1.901984 

2 71 42.7 43.7155 -2.37822 

4 5 70.7 70.6693 0.043423 

4 35 55.9 55.5076 0.701968 

4 47 46.9 47.9385 -2.21429 

4 59 44.4 43.1075 2.911036 

4 71 38.4 39.2598 -2.23906 

6 5 65 64.8941 0.162923 

6 35 48.1 48.2105 -0.22973 

6 47 42.3 42.8399 -1.27636 

6 59 40.3 39.5834 1.778164 

6 71 35.6 35.0404 1.57191 

8 5 60.1 60.126 -0.04326 

8 35 44.8 44.604 0.4375 

8 47 40.4 40.107 0.725248 

8 59 35.5 35.8426 -0.96507 

8 71 30.6 30.547 0.173203 

Testing Set 

2 23 70.5 70.1652 0.474894 

4 23 63.4 63.9337 -0.8418 

6 23 58.4 58.1434 0.439384 

8 23 52.9 52.8296 0.133081 
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Table 7 

Experimental data and Predicted data from ANN for P6 Propellant 

Pressure, 

MPa 

Quench Distance, 

mm 

Experimental 

Agglomerate 

Diameter, µm 

Predicted 

Agglomerate 

Diameter, 

µm 

Percentage 

error 

Training Set 

2 5 20.8 20.6568 0.688462 

2 23 19.3 19.4955 -1.01295 

2 35 18.7 18.4163 1.517112 

2 47 17 17.2689 -1.58176 

2 59 16.4 16.2438 0.952439 

4 5 20.1 20.2393 -0.69303 

4 23 18.5 18.7469 -1.33459 

4 35 17.5 17.3774 0.700571 

4 47 16 15.938 0.3875 

4 59 14.9 14.6722 1.528859 

6 5 18.6 18.5841 0.085484 

6 23 16.9 16.5795 1.89645 

6 35 14.8 15.1262 -2.20405 

6 47 13.8 13.8523 -0.37899 

6 59 12.6 12.8602 -2.06508 

8 5 16.1 16.2392 -0.8646 

8 23 14.9 14.6775 1.493289 

8 35 13.6 13.5461 0.396324 

8 47 12.4 12.4982 -0.79194 

8 59 11.7 11.665 0.299145 

Testing Set 

2 71 15.4 15.4069 -0.04481 

4 71 13.5 13.663 -1.20741 

6 71 12.3 12.0921 1.690244 

8 71 11.1 11.1417 -0.37568 

 

 

 Figure 6 shows the experimental versus predicted agglomerate diameter of 

P1 propellant. This trained network had a maximum error of less than 3%. From 

Figure 6, it is seen that it is possible to extrapolate for any quench distance up to 

100mm and predict the agglomerate diameter for different values of operating 
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pressure. The maximum percentage error in testing set data for P1 propellant is 

1.82 which is lesser than 2%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Experimental versus ANN Predicted Agglomerate diameter of P1 

propellant. 

 

 Figure 7 shows the experimental versus predicted agglomerate diameter of 

P2 propellant. This trained network had a maximum error of 8.7% of one value 

and two values of above 3% and rest below 3%. This may be due to the 

experimental error. The maximum percentage error in testing set data for P2 

propellant is 2.7 which is lesser than 3%. 
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Figure 7. Experimental versus ANN Predicted Agglomerate diameter of P2 

propellant. 

 

 

 Figure 8 shows the experimental versus predicted agglomerate diameter of 

P3 propellant. This trained network had a maximum error of 3.9% of four values 

and rest below 3%. This may be due to the experimental error.  The maximum 

percentage error in testing set data for label 3 propellants is 1.98 which is lesser 

than 2%. 
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Figure 8. Experimental versus ANN Predicted Agglomerate Diameter of P3 

propellant. 

 

 Figure 9 shows the experimental versus predicted agglomerate diameter of 

P4 propellant. This trained network had a maximum error of 1.28%.The 

maximum percentage error in testing set data for label 4 propellant is 2.67 which 

is lesser than 3%. 

  

19

K et al.: APP. OF ANN FOR THE PRED. OF AL AGGL. PROCESSES

Published by Scholarly Commons, 2018



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Experimental versus ANN Predicted Agglomerate Diameter of P4 

propellant. 

 

 Figure 10 shows the experimental versus predicted agglomerate diameter 

of P5 propellant. This trained network had a maximum error of 2.91%. The 

maximum percentage error in testing set data for label 5 propellant is 1.82 which 

is lesser than 0.5%. 
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Figure 10. Experimental versus ANN Predicted Agglomerate Diameter of P5 

propellant. 

 

 Figure 11 shows the experimental versus predicted agglomerate diameter 

of P6 propellant. This trained network had a maximum error of 1.89%.The 

maximum percentage error in testing set data for label 6 propellant is 1.69 which 

is lesser than 2%. 
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Figure 11. Experimental versus ANN Predicted Agglomerate Diameter of P6 

Propellant. 
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CONCLUSIONS 

 A feasible ANN model has been developed to predict the agglomerate size 

which is produced by burning of aluminized composite propellants. The 

agglomerate diameters are evaluated for four different pressures and six quench 

distances for six propellant formulations. The results show remarkable decrease in 

agglomerate diameter with increase in pressure and quench distance. Six (6) back 

propagation neural network architectures are trained and tested based upon mean 

error percentage until an optimum architecture is identified for each propellant. 

 The following are evident from this model: 

(i) Based on the number architectures that are used to train the ANN 

model using BP algorithm, the architecture (3-5-10-5-1) was in good 

agreement to that of the experimental values with the mean squared 

error less than 3% for each propellant. 

(ii) The developed model can provide beneficial data that can be predicted 

from the wide range of experimental database. Therefore, time 

consuming experiments can be reduced and hence considerable 

savings in terms of cost and time could be obtained by using 

developed neural network model which serves as a boon for aerospace 

industry. 
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