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Low frequency electromagnetic radiation from gravitational waves

generated by neutron stars
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Abstract

We investigate the possibility of observing very low frequency (VLF) electromagnetic radia-

tion produced from the vacuum by gravitational waves. We review the calculations leading to

the possibility of vacuum conversion of gravitational waves into electromagnetic waves and show

how this process evades the well-known prohibition against particle production from gravitational

waves. Using Newman-Penrose scalars, we estimate the luminosity of this proposed electromag-

netic counterpart radiation coming from gravitational waves produced by neutron star oscillations.

The detection of electromagnetic counterpart radiation would provide an indirect way of observing

gravitational radiation with future spacecraft missions, especially lunar orbiting probes.
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I. INTRODUCTION

Investigations of electromagnetic radiation associated with gravitational waves usually

focus on coincident production at the source where the electromagnetic radiation is of much

higher frequency than the gravitational radiation [1]. It is also possible to generate electro-

magnetic radiation directly from gravitational waves if the gravitational wave passes through

a thin plasma or magnetic field [2–4]. The plasma/magnetic field acts as a “seed” of electro-

magnetic fields which when acted on by the passing gravitational wave generates additional

electromagnetic radiation. The electromagnetic radiation generated in this way has a fre-

quency that is equal to the frequency of the gravitational wave although the generation of

higher harmonic frequencies is also possible [3].

Here we consider a different process: the direct generation of electromagnetic radiation

from gravitational waves traveling in the vacuum. This direct, vacuum conversion process

does not require a seed plasma or electromagnetic field although one could consider the

vacuum fluctuations of the electromagnetic field as the seed field. This vacuum process can

be compared to the phenomenon of Hawking radiation where a gravitational background

(i.e. a black hole) can produce quanta of the electromagnetic field (i.e. photons) from the

vacuum. We find that the electromagnetic radiation from this vacuum production occurs at

twice the gravitational wave frequency.

Unfortunately, electromagnetic radiation generated from a gravitational wave background

is expected to have frequencies below the 10 MHz cutoff imposed by the Earth’s ionosphere;

therefore such low frequency electromagnetic signals are only detectable in space. The Ex-

plorer 49 mission [5] in 1973 and the previous IMP-6 and RAE-1 missions ([6] and references

therein) demonstrated the feasibility of detecting very low frequency (VLF) radiation in a

lunar orbit. There is now a resurgence of international interest in missions to lunar orbit

as evident by the Indian Chandrayaan-2 and Japanese Selene-2 planned for 2018 and the

NASA EM-1 in 2019. Interest in a new lunar mission for low frequency radio astronomy

has been growing ([7] and references therein). A new mission to lunar orbit with the ca-

pability of receiving VLF in the tens of kHz may allow for detection of the hypothesized

electromagnetic counterpart radiation discussed in this paper.

In the next section, we review the relevant theory for vacuum production as presented

in previous papers [8, 9]. We include a discussion of how this process evades the usual pro-
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hibition against particle production from gravitational waves [10]. In Sec. III, we estimate

the relative electromagnetic and gravitational wave luminosities which allows us to estimate,

in Sec. IV, the luminosity of the electromagnetic counterpart radiation generated by grav-

itational waves from neutron star w-modes. In Sec. V, we discuss the detectability of this

electromagnetic radiation and argue that it is not likely to have been detected by current or

previous instruments.1

II. VACUUM PRODUCTION OF ELECTROMAGNETIC RADIATION FROM A

GRAVITATIONAL WAVE BACKGROUND

The Lagrangian density for the electromagnetic field in curved space-time and including

source terms is

Lem = −1

4
(∂νAµ − ∂µAν) (∂νAµ − ∂µAν) + JµA

µ. (1)

This can be simplified using the Lorenz gauge [14], ∂µA
µ = 0, so that for a source free

Lagrangian one has

Lem = −1

2
∂µAν∂

µAν . (2)

Assuming a plane wave solution for the electromagnetic field, the massless vector field can

be expressed in terms of a mode expansion [14]

Aµ (κ, λ, x) = ε(λ)µ φ(λ) (κ, x) , (3)

where ε
(λ)
µ is the polarization four-vector; the label λ = 0, 1, 2, 3 gives the possible polar-

ization state; and κ represents the field momentum of Aµ. The polarization four-vector

satisfies the condition ε
(λ)
µ εµ(λ

′) = ηλλ
′
. Considering only the two, transverse propagating

polarizations [ for example λ = 1, 2 with plane polarization vectors ε
(1)
µ = (0, 1, 0, 0) and

ε
(2)
µ = (0, 0, 1, 0) ] the Lagrangian density (1) can then be simplified,

1 The detection of such radiation would require ongoing VLF monitoring capability in space. Of past

missions, the Voyager missions had some capability to detect VLF electromagnetic radiation consistent

with production from neutron star oscillations and Voyager did in fact detect signals in the relevant

band [11]. However, those signals were probably produced by interaction of the solar wind with ions in

the outer heliosphere during times of intense solar activity [12, 13].
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Lem = −∂µϕ∗∂µϕ, (4)

where ϕ = 1√
2
(φ(1) + iφ(2)) is a complex field that is a combination of the two transverse

scalar fields φ(1,2). The Lagrangian in (4) is a massless, complex scalar field in Minkowski

space-time. We embed this complex scalar field in a general curved background with a

metric gµν . The curved spacetime version of the Lagrangian in (4) then yields the equations

of motion for ϕ,

1√
−g

∂µ
√
−ggµν∂νϕ = 0, (5)

where g = det[gµν ] is the determinant of the metric. We then take the metric to be a

gravitational wave background characterized by

ds2 = −dt2 + dz2 + a(u)2dx2 + b(u)2dy2. (6)

For simplicity we have assumed only a “plus” polarization for the gravitational wave. The

variable, u, in the metric is one of the usual light front coordinates: u = z− t and v = z+ t.

The metric components a(u) and b(u) will be taken as oscillatory functions of u and the

determinant of the metric in (6) is
√
−g = ab. Using the metric (6) in the field equations

(5) yields

(
b2∂2x + a2∂2y + ab∂z (ab) ∂z + a2b2∂2z − a2b2∂2t − ab∂t (ab) ∂t

)
ϕ = 0. (7)

We take the metric functions of the form a = 1 + ε (ku) and b = 1− ε (ku) where ε = heiku

and h is some dimensionless amplitude. Near the source of gravitational wave generation we

would need to use “exact solution” for the metric components a(u), b(u) which would require

that they satisfy the condition ä/a + b̈/b = 0 [15] with the dots indicating derivatives with

respect to u. In this strong field/near zone the use of the plane wave form is questionable.

However, in the “weak field near zone” and “wave generation region” [16] where h � 1 is

satisfied, one can find an approximate solution to order h2 [9] which represents a vacuum

state for the scalar field – the momenta of the field are taken to zero (i.e. κ → 0) yet one

still finds a traveling wave solution for the field ϕ(u) and thus the vector field Aµ. The

parameters of this solution depend only on the parameters h, k of the gravitational wave
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background; (recall that the ϕ field momenta have been set to zero). The solution for the

scalar field equation of motion (7) with vanishing field momenta κ→ 0 is

ϕ (t, z) = A
(
1− h2e2ik(z−t)

)− 1
2 ≈ A

[
1 +

1

2
h2e2ik(z−t)

]
. (8)

One can determine by direct substitution that ϕ from (8) solves (7) to order h2. The

electromagnetic field solution given in (8) has twice the frequency of the gravitational wave,

which implies that the electromagnetic counterpart radiation will have twice the frequency

of the gravitational wave which generated it. A is a normalization constant which in Ref.

[9] was set to A = 1√
V

1√
2k

in order to calculate the production rate of field quanta. In the

next section we use the result in (8) and the Newman-Penrose formalism [17] (as laid out in

[18]) to calculate the ratio of vacuum produced electromagnetic flux to gravitational wave

flux. In [18] the normalization of ϕ in (8) was taken as A = 1 which is the normalization we

take here.

We now address the apparent conflict between the above result, which in [9] was used

to argue that electromagnetic radiation was produced, in vacuum, by a gravitational plane

wave, and earlier work [10, 19, 20] which indicates that particle/field production via gravita-

tional plane waves in vacuum should be prohibited. As mentioned in [10] there are caveats to

this prohibition: the fields produced should not be massless and the produced fields should

not be moving in the same direction as the incident gravitational wave. The vacuum “out”

solution of (8) violates both these conditions since the field is massless and since it depends

only on u = z − t, it moves in the same +z direction as the gravitational wave. However

simply showing that the present case violates the caveats used to obtain the “no produc-

tion” result does not mean there is particle/field production. To this end we turn to the

Bogoliubov β coefficients which are indicators of whether or not particle/field production

occurs. The β coefficients for the present case were calculated in [19] and found to be

βij = 〈uouti |uin ∗j 〉 ∝ δ(k− + l−) , (9)

where k− = ω−kz
2

and l− = ω−lz
2

are the light front momenta of the scalar field before and

after2; ω =
√
k2 +m2 or ω =

√
l2 +m2 respectively; and the indices i, j label the momenta

2 In [10] and [19] a sandwich gravitational wave background was used. The plane wave background of

(6) was sandwiched between flat space-times. The functions uout
i and uin

j are the solutions in the two
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of the outgoing and ingoing scalar field quanta. If m 6= 0, it is easy to see that k− + l−

cannot vanish. If however, as is true in the case considered here, m = 0 and k, l → kz, lz

(i.e. the before and after momenta of the scalar field are purely along the +z direction)

then k− + l− vanishes and the Bogoliubov β coefficient is nonzero indicating particle/field

production. The conclusion is that the process we describe evades the restriction against

particle/field production from a gravitational plane wave by virtue of being massless and

having the produced particles/fields traveling in the same direction as the gravitational wave.

III. LUMINOSITY CALCULATIONS VIA NEWMAN-PENROSE SCALARS

The emitted electromagnetic and gravitational wave powers per unit solid angle of emis-

sion, are associated with the projection of invariants onto a null tetrad. These projections

are identified as the Newman-Penrose scalars [17] for the electromagnetic radiation and the

gravitational radiation respectively. The power per unit solid angle of emission for electro-

magnetic radiation in general is [18, 21]

dEem
dtdΩ

= lim
r→∞

r2

4π
|Φ2|2 , (10)

where the Newman-Penrose electromagnetic scalar [17, 18, 21, 22] is, Φ2 = Fµνm̄
µnν and

the null tetrads can be identified as [23]

lµ = 1√
2

(1, 0, 0, 1) , nµ = 1√
2

(1, 0, 0,−1) ,

mµ = 1√
2

(0, 1, i, 0) , m̄µ = 1√
2

(0, 1,−i, 0) ,
(11)

where

l · n = −1, m · m̄ = 1, l · l = n · n = m ·m = m̄ · m̄ = 0. (12)

The electromagnetic tensor can be written as Fµν = ∂µAν − ∂νAµ where from before, the

four-vector potential can be written as Aµ = ε
(λ)
µ φ(λ) (t, z), again assuming plane polarization

ε
(1)
µ = (0, 1, 0, 0) , ε

(2)
µ = (0, 0, 1, 0) . The vector field and subsequent electric and magnetic

fields in the electromagnetic tensor are found from the derivatives of the scalar field given

asymptotic flat regions that are connected to each other through the intermediate plane wave background

(6).
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in Eq. (8): ∂tϕ = −ikh2e2ik(z−t) and ∂zϕ = ikh2e2ik(z−t). Putting all this together, the

Newman-Penrose scalar for outgoing electromagnetic radiation connected with the “out”

state from (8) is [23]

Φ2 = Fµνm̄
µnν =

1√
2
e−i

π
4 (∂zϕ− ∂tϕ) = ie−i

π
4

√
2kh2e2ik(z−t), (13)

and the square amplitude is

|Φ2|2 = 2k2h4. (14)

We now calculate the power per unit solid angle of emission [18, 21] of the outgoing

gravitational radiation which is proportional to the Newman-Penrose scalar Ψ4:

dEgw
dtdΩ

= lim
r→∞

r2

16πk2
|Ψ4|2 . (15)

Using (6) the outgoing gravitation plane wave radiation Newman-Penrose scalar in vacuum

is [18]

Ψ4 = −Rαβγδn
αm̄βnγm̄δ = a∂2ua− b∂2ub, (16)

where the partial derivatives are with respect to the light cone coordinate, u. Using the

weak field limit metric where ε = heiku we find

Ψ4 = −2hk2eik(z−t) → |Ψ4|2 = 4h2k4. (17)

From equations (10) and (15) we obtain the ratio of the electromagnetic and gravitational

wave powers emitted into some particular direction per unit solid angle as

dEem
dEgw

=

(
1
4π
|Φ2|2

)(
1

16πk2
|Ψ4|2

) → Fem = 4k2
|Φ2|2

|Ψ4|2
Fgw . (18)

The first term in (18) is the ratio of differential energies. These are used to obtain the fluxes

(i.e. power per unit area) Fem and Fgw of the electromagnetic radiation and gravitational

radiation respectively. Finally, substituting the Newman-Penrose scalars from (14) and (17)

we obtain a relationship between these fluxes,

Fem = 2h2Fgw , (19)

7



where h2 is the amplitude of the gravitational wave at the point of production. Note that

since Fgw ∼ h2, the overall dependence is Fem ∼ h4 in the generation zone.

IV. FLUX ESTIMATES FOR NEUTRON STAR OSCILLATIONS

In this section we will give a rough estimate for the flux, Fem, of electromagnetic coun-

terpart radiation received at Earth from gravitational waves produced by neutron star os-

cillations within the Milky Way Galaxy. We will be concerned mainly with neutron star

w-mode oscillations [24, 25]. Gravitational radiation from w-modes is at least an order of

magnitude weaker than from f -modes but is at a sufficiently high frequency to propagate in

the interstellar medium and within our solar system. (w-modes span the range 8− 16 kHz

while f -modes span the range 1− 3 kHz.)

We use (19) to estimate the electromagnetic flux, Fem, from a given gravitational wave

flux, Fgw, generated by a neutron star w-mode. Since the production of electromagnetic

counterpart radiation is determined by the gravitational wave amplitude h at the point of

production, we first quote estimates for this quantity at a characteristic distance from the

source. We will choose a relatively large characteristic distance so that our estimate for the

intensity of the electromagnetic counterpart radiation is conservative. In [16], a breakdown

is given of different regions around the source (see Fig. 1 of that paper): (i) strong field

zone, (ii) weak field near zone, (iii) wave generation zone (this is a combination of strong

field zone plus weak field near zone), (iv) local wave zone and (v) distant wave zone. We will

take as our characteristic distance, r = r(0), at which to find the characteristic gravitational

wave strain, h = h(0), as the edge of the weak field near zone. In terms of the wavelength

of the gravitational wave, r(0) ∼ λ = c
f
≈ 30 km, where in the last step we have inserted

f ≈ 10 kHz.

Recent searches for the gravitational waves produced by neutron star glitches estimate

gravitational wave amplitudes at Earth for f -modes on the order of h ∼ 10−23 at 1 kpc

[Eq. (6) [25]] in and the w-mode amplitude is expected to be at least an order of magni-

tude smaller. Assuming a maximum amplitude for w-modes of 10−24 at 1 kpc, the strain

amplitude as a function of distance, r, from the source is

h ∼ 10−24
(

1 kpc

r

)
. (20)
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Inserting r(0) into (20), we get the specific value of the dimensionless amplitude h(0)

h(0) ∼ 10−24
(

3× 1019 m

3× 104 m

)
= 10−9. (21)

As noted above, we intentionally choose a conservatively large distance from the source at

which to estimate the characteristic strain amplitude and the value of the amplitude in (21)

is indeed considerably smaller than the estimate found in [9] using a different method. [In

Ref. [9] the estimate of h(0) was made by requiring the production rate of electromagnetic

counterpart radiation to be “small” which gave h(0) ∼ 10−5 − 10−6.]

The gravitational wave flux near the source can be approximated in terms of h as [26]

F (0)
gw =

c3

16πG
|ε̇|2 =

(
3× 1035 Ws2

m2

)
h2f 2 ∼ 3× 1025 W

m2
, (22)

where we have ε = heiku as in (7), and in the last step we have used f ∼ 10 kHz and

h ∼ 10−9 from (21). Combining the result from (22) with Eq. (19) we obtain

F (0)
em = 2×

(
10−9

)2 × 3× 1025 W

m2
∼ 6× 107 W

m2
. (23)

Both F
(0)
gw from (22) and F

(0)
em from (23) are large, consistent with the small characteristic

distance from the source r(0) at which most of the production is occurring. Note also that

F
(0)
gw � F

(0)
em . In other words, the production of counterpart electromagnetic radiation is a

very small effect.

If we assume that the neutron star source is at a distance of 1 kpc from Earth, the typical

distance scale used in (20), then the electromagnetic flux seen in the Solar System would be

Fem = F (0)
em

(
r

1 kpc

)2

∼ 6× 10−23
W

m2
. (24)

In the last step we have used F
(0)
em from (23) and r(0) = 3× 104 m for the distance associated

with F
(0)
em . The signal strength in (24) is comparable to the strongest pulsar signals, about

6 Jy, assuming a 1 kHz signal bandwidth. We discuss the detectability of such a signal

below.
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V. DETECTABILITY

The window of observation for potential conversion of gravitational waves to electromag-

netic radiation is greatly restricted by the ionized gases in space [4, 27], which leads to a

range of different plasma cutoff frequencies for different regions. These regions are summa-

rized in Table I. The Earth’s ionosphere has a plasma cutoff on the order of 10 MHz so that

ground-based observation of extraterrestrial electromagnetic radiation with frequencies less

than 10 MHz is not possible. In the interplanetary reaches of the Solar System there is a

plasma cutoff frequency due to the solar wind that decreases with distance from the Sun.

At the distance of Earth’s orbit, this cutoff is in the range of 20-30 kHz [4, 27] so that in

interplanetary space near Earth’s orbit one cannot detect Galactic signals below 20-30 kHz.

At the edge of the Solar System, one reaches the interstellar medium (ISM) which has a

plasma cutoff of approximately 2 kHz [11, 27]. Electromagnetic radiation below about 2 kHz

cannot propagate through the ISM. There is also attenuation below about 3 MHz due to

the Galactic warm ionized medium (WIM) which would prevent the detection of all but the

strongest extragalactic or distant Galactic sources below this frequency [4].

Region Observable frequency range

On Earth >∼ 10 MHz

Interplanetary space (near Earth’s orbit) > 20 kHz− 30 kHz

Interstellar space (outside the heliosphere) >∼ 2 kHz

TABLE I: The observable frequency ranges for different regions. These restrictions provide a tight

window on where one could potentially observe very low frequency electromagnetic radiation.

It may be possible to detect a VLF electromagnetic counterpart signal with a flux given

by (24) via a probe in lunar orbit whose orbit is such that it is periodically occulted from

the Sun by the Moon. Such occultation would be required so that VLF noise from of the

Sun is blocked. The old Explorer 49 satellite from the 1970s had the ability to collect data

below 200 kHz but the lunar orbit was too high to allow complete occultation. At these

frequencies, the apparent source size would exceed the size of the lunar disk [28]. A new

satellite similar to Explorer 49, in a lower orbit, with an improved antenna and receiver

system may be able to see a VLF electromagnetic signal of the kind proposed here. The
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signal flux density would be of a similar order of magnitude as the Galactic background

radiation [29] and also about the same as the flux density of white noise generated by a

modern low-noise RF amplifier at room temperature.

Ideally, one would like to detect the gravitational waves and the counterpart electromag-

netic radiation in coincidence. The electromagnetic counterpart radiation to gravitational

waves from w-modes is possibly the best candidate for the direct detection of the electro-

magnetic radiation near Earth. Unfortunately, direct detection of the corresponding w-mode

gravitational waves themselves is unlikely with the current generation of interferometric

gravitational wave detectors. Improved sensitivity to w-modes or their harmonics might

be present at the free spectral range frequency of the arm cavities (37.5 kHz for Advanced

LIGO) [30] but detection will most likely require a major upgrade [31].

Gravitational waves from f -modes are more easily detected with gravitational interfer-

ometers due to their lower frequency and higher amplitude[32–34]. However, the electro-

magnetic counterpart radiation could not reach Earth due to the plasma cutoffs in Table V.

This leaves us with the possibility of using a detection of w-modes via their hypothesized

VLF electromagnetic counterpart as a trigger for coincidental detection of associated f -

mode gravitational radiation [25, 35]. Any process which excites both f and w modes is a

potential candidate for coincident detection between these bands. The most common such

process is probably a neutron star quake.

An inherently much “louder” signal in both gravitational and electromagnetic radiation

is given by a neutron star-neutron star merger such as the recent observation by the LIGO

Collaboration [36]. However, that source was at a distance of about 40 Mpc and any VLF

signals at Earth would have been reduced in power by 9 orders of magnitude compared to the

source we consider above at 1 kpc. Given attenuation by the warm interstellar medium, it

seems unlikely that even merger-phase counterpart radiation above 10 kHz could be detected

despite the much larger source amplitude as compared to a star-quake-induced w-mode. By

virtue of their ubiquity, neutron stars experiencing quakes within a few kiloparsecs of Earth

are likely to be a more promising source of VLF counterpart radiation.

Similarly, it would not have been possible to observe any VLF from the black hole merger

signals seen by LIGO [37]. Each of the detections were from black hole mergers with gravita-

tional wave frequencies below a few hundred Hz. Even with the frequency doubling between

gravitational waves and the electromagnetic counterpart radiation, the counterpart radiation
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frequencies would still be well below the interstellar cutoff frequency.

So, while prospects for detection of electromagnetic counterpart radiation from w-modes

generated in star quakes are promising, there is also the possibility of detecting signals

due to gravitational waves of unexpected origin. Current gravitational wave detectors are

insensitive to any sources radiating above a few kilohertz. Reception of the electromagnetic

counterpart to such sources may be the best way to detect them.

VI. DISCUSSION AND CONCLUSIONS

The recent detection [36] of electromagnetic radiation emitted in conjunction with gravi-

tational waves from a neutron star-neutron star merger has led to excitement at the prospect

of “multimessenger” astrophysics where one gets information from different types of radiation

– gravitational and electromagnetic. In this article we have proposed a potentially new type

of joint gravitational wave/electromagnetic wave signal based on the vacuum production of

electromagnetic waves from a gravitational wave background. This type of joint signal is

similar to the seeded production of electromagnetic waves where a gravitational wave creates

electromagnetic radiation by passing through a region containing a plasma/magnetic field.

In the Appendix we review some estimates for the strength of the electromagnetic waves

from seeded production and compare this with our proposed vacuum production. The

general conclusion is that seeded production would give a stronger signal of VLF electro-

magnetic radiation but the systems that could produce a substantial electromagnetic signal

via seeded production are much less common than systems that could produce vacuum pro-

duction. Prohibitions on particle production by gravitational waves [10] and the subsequent

attenuation of gravitational plane waves [20] in vacuum do not apply to the production of

electromagnetic radiation from the gravitational waves described here. The production of

massless particles/fields from gravitational radiation is consistent with kinematic restrictions

[38] as well as quantum effects restrictions [10].

Coincident detection of gravitational wave f -modes and vacuum produced VLF elec-

tromagnetic radiation coming from w-modes is possible. Sensitivities for detection of the

gravitational wave f -modes are near the limit of current detectors and require only small im-

provements for future detection. Detection of the VLF electromagnetic radiation produced

by w-modes depends on the instrumentation and orbits of future lunar orbiters. Instrumen-
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tation similar to Explorer 49 and possibly lower orbits for improved occultation could allow

coincident detection of gravitational waves from f -modes and vacuum production electro-

magnetic radiation from w-modes.

Finally, we note that rough estimates of electromagnetic counterpart radiation from grav-

itational waves emitted during core-collapse supernovae should be much higher than those

presented here due to neutron star quakes or glitches. At the appropriate distance from a

core-collapse supernova (i.e. in the near field weak zone), the gravitational wave strain from

core collapse [24] is almost 5 orders of magnitude greater than the gravitational wave strain

from glitch-induced w-modes. Since we are still in the weak field regime, h � 1, vacuum

production of electromagnetic radiation from gravitational waves goes like h4, leading to

the counterpart electromagnetic flux at Earth from a supernova at 50 kpc about 15 orders

higher than from w-modes at 1 kpc, or about 1016 Jy (0.1 nWm−2Hz−1) assuming similar

bandwidths. Indeed, given such large flux one might also expect to see extragalactic (local

cluster) supernovae with GJy-scale flux at Earth. However, as mentioned earlier, the Galac-

tic WIM attenuates extragalactic and distant Galactic signals at frequencies below about

3 MHz. Yet, given the fluxes involved, it seems possible that electromagnetic counterpart ra-

diation from a Galactic supernova at 50 kpc would be visible, despite the attenuation. Also,

any processes that enable upconversion of these low frequency photons to higher frequencies

that can travel unhindered are a potentially interesting avenue of study. All electromagnetic

counterpart radiation from supernovae would be expected to be “prompt” – it would reach

Earth on a similar time frame as the gravitational wave emission itself. There is no time

delay in the creation of the VLF electromagnetic radiation since it occurs in vacuum and

once created there should be no delay assuming the electromagnetic radiation is above the

relevant cutoffs of the intervening space.Core-collapse supernovae in our Galaxy are rare

(∼ 1 per century) but the possibility of detecting all the radiation types emitted [gravita-

tional waves, prompt electromagnetic counterpart radiation (if present), neutrinos, and the

traditional light curve] is an exciting prospect.

Appendix: Seeded production versus vacuum production

We now compare the postulated vacuum production of electromagnetic counterpart radi-

ation to the production from a preexisting seed magnetic field. While we have not found any
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calculation in the literature of “seeded” production of electromagnetic counterpart radiation

from an isolated neutron star undergoing a star quake, Marklund et al. [3] considered the

closely related case of a binary neutron star merger in the presence of a strong magnetic field.

The neutron stars were each taken to have one solar mass and were separated by 20 times

the Schwarzschild radius of the Sun (≈ 60 km). For such a binary system the frequency of

the gravitational waves emitted was ∼ 102 Hz. It was then assumed that the generation

of electromagnetic counterpart radiation from the emitted gravitational wave started at a

distance of about 60 times the Schwarzschild radius (≈ 120 km). This was because at closer

distances the approximations used by Marklund et al. did not apply. With this setup it was

found that the maximum electric field was proportional to the product of the gravitational

wave amplitude and the surface magnetic field of the neutron stars

Emax ∝ h0 Bsurface
V

m
, (A.1)

where h0 is the gravitational wave amplitude at the distance of 60 Schwarzschild radii and

Bsurface is the magnetic field strength at the surface of the neutron stars. Taking h0 ∼

0.001, Bsurface ∼ 108 T and using (A.1) it was found that at a distance of 120 times the

Schwarzschild radius (≈ 360 km) the maximum electric field and the associated flux of

electromagnetic counterpart radiation for this example system were

Emax = 50
MV

m
→ S =

1

2cµ0

E2
max ∼ 1012 W

m2
. (A.2)

Comparing the flux from the seeded production example given in (A.2) with the flux from

the vacuum production example given in (23) one finds that seeded production in this case is

104−105 larger than vacuum production. This makes sense since one would expect that the

flux would be larger when one has a preexisting field to work with. However by lowering the

value of Bsurface the two fluxes of electromagnetic radiation from seeded production versus

vacuum production would move closer together in magnitude.

Despite the lower flux of the hypothesized vacuum production of electromagnetic radiation

from gravitational waves we argued in Sec. V that such a vacuum flux would nevertheless

be detectable if the source is close enough. The scenario of production of electromagnetic

waves from the vacuum by gravitational waves associated with neutron star quakes has the

advantage that it would be much more common as compared to seeded production from a
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binary neutron star system with a strong magnetic field.
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