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Impact of WMSDs

Work-related musculoskeletal disorders (WMSDs)

account 130 million total health care encounters annually

(CDC) – with an annual economic cost of WMSDs to

between $45 and $54 billion. In addition to the remarkable

financial burden these injuries inflict upon industry and the

healthcare system, WMSDs affect workers’ physical and

mental health for the duration of their lives.

WMSD Detection Tools

• Ergonomics Methods

• Rapid Entire Body Assessment (REBA)

• Rapid Upper Limb Assessment (RULA)

• NIOSH Lifting Equation

• Hazard Analysis Tool (Snook Tables)

• Medical Methods

• Medical History & Physical Examination

• Electromyography (EMG)

• Imagery (e.g., X-Ray, CT, MRI, Ultrasound)

• Pedobarography

• Motion Capture

Few options for accurate, portable, and affordable

WMSD detection and therapy exist. The closest

commercial application – Lumo Lift – provides only upper-

body posture data. For full-body WMSD detection,

analysis, and therapy – a new device must be designed.

Method

Consequently, our team is developing a

bioinstrumentation system that consists of pressure

(piezoelectric) sensors attached to the bottom sole (plantar

region) of the feet, and inertial measurement unit (IMU)

sensors at the shoulders, hips, and knees; all connected to

an Arduino microcontroller that algorithmically calculates

the individual’s deviation from healthy standing posture

and provide biofeedback via haptic vibrations in offending

areas of the body – to assist as a corrective behavioral

treatment in prevention or therapy for work-related

musculoskeletal disorders (WMSDs) relating to posture.

Our team first developed anthropometric mannequin

models in CATIA in order to determine load forces and

moments of the human body at work and rest. Single joint

biomechanical analyses were conducted to determine both

proximal and distal forces and moments for the legs, feet,

thighs, arms, forearms, neck, and trunk of the human body

in flexion, extension, pronation, supination, abduction,

adduction, elevation, depression, and rotation as

applicable. Data concerning joint sheer and compression

loads involving forward acceleration, as well as horizontal,

vertical, and lateral forces were also calculated.

The data derived from these models were inputs for a

Multivariate Gaussian Analysis serving as the machine

learning technique. This model was trained to calculate

postural deviation values based on iterations of the

simulation data. The primary output of this machine vision

included a confusion matrix of predicted and tested class

states, signifying the accuracy by which the algorithm is

able to detect ideal and deviant posture and plantar

pressure for both at work and rest. An application for

mobile devices (Android) was then developed to display

the certainty matrix as a precursor for future biofeedback

and mobile development.

Results

Our results demonstrate the viability of this device as 

well as the method of  in vivo data collection. The 

algorithm was likewise successful, in that accuracy for 

detection of states / classes as identified in the certainty 

matrix range between .70 and 1.00 accuracy in pilot tests 

dependent on the complexity of the mannequin movement 

and position.

Discussion

Our initial development of the reference model, posture

deviance detection algorithm, machine learning process,

and mobile application prove the feasibility of this device.

However, significant improvements to our system are

needed in preparation for the first device prototype.

Foremost, our analyses signify a lack of sensitivity and a

high margin for error in the current commercial inertial

measurement units (IMUs) and plantar pressure sensors

used for this device. Upgrades are required. Second,

neural network analyses will replace the MGA used for the

rapid prototype current machine learning process. Next,

user data will be integrated into the models as a wider

range of motions and body positions are understood by the

system and addressed by the posture deviance detection

algorithm. Incorporation of the non-intrusive haptic

biofeedback will follow. Lastly, app data will be customized

to the needs of users following a series of usability tests

using human factors and ergonomics methods to be

conducted throughout the iterative product design process.
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