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Nongauge bright soliton of the nonlinear Schrödinger (NLS) equation and a family of
generalized NLS equations
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S. C. Mancas
Department of Mathematics,

Embry-Riddle Aeronautical University,

Daytona Beach, FL. 32114-3900, U.S.A.

H. C. Rosu∗

IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica,
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We present an approach to the bright soliton solution of the NLS equation from the standpoint
of introducing a constant potential term in the equation. We discuss a ‘nongauge’ bright soliton for
which both the envelope and the phase depend only on the traveling variable. We also construct
a family of generalized NLS equations with solitonic sechp solutions in the traveling variable
and find an exact equivalence with other nonlinear equations, such as the Korteveg-de Vries and
Benjamin-Bona-Mahony equations when p = 2.
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1. Introduction

For about fifty years now, the one-dimensional cubic
NLS equation has been overwhelmingly used for the de-
scription of wave propagation in nonlinear optics, fluids,
and plasmas [1] and arguably it is the best studied nonlin-
ear equation. On the other hand, linearly-extended forms
of NLS equations are used by the majority of authors to
describe the Bose-Einstein condensates [2]. Perhaps the
simplest form of the latter class is [3]

i~
dq

dt
= − ~

2

2m

d2q

dx2
− γ

(

|q|2 − q20
)

q , (1)

where q0 = constant, γ > 0 is the nonlinear strength
parameter, and ~ and m are the Planck constant divided
by 2π and the mass of the condensate, respectively. The
standard NLS equation is obtained from (1) through the
trivial change of dependent variable (gauge)

q(x, t) = eiγq
2

0
t/~ ψ(x, t) . (2)

In this work, we have two goals. The first one is
concerned with the localized solutions of standard and
linearly-extended NLS equations. These localized solu-
tions, of which solitons are a subset, have zero boundary
conditions as x → ±∞. The NLS soliton solutions are
of course well known but we will point here to what we
think to be a rather ignored feature of these solutions,
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namely that there exist a bright soliton of equations of
type (1) which cannot be obtained from the standard
bright soliton by the gauging (2). Secondly, we construct
a family of generalized NLS equations with soliton so-
lutions and find that it is possible to obtain an exact
equivalence of these equations with the Korteveg-deVries
(KdV) and Benjamin-Bona-Mahony (BBM) equations.

2. The nongauge bright soliton

By applying (2) to (1), we obtain the standard NLS
equation with no potential

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂x2
− γ|ψ|2ψ , (3)

The localized solution of this standard NLS equation is
given by

ψ(x, t) =

√

2A
γ

sech

[

√

2mA
~2

(z + z0)

]

ei[
mv

~
z+φ0+αt] .

(4)
This solution has been derived by Remoissenet in a dif-
ferent context and notation [4], see also below, and can
be obtained as a particular case from the solution given
by Katyshev et al [5] for NLS equations with arbitrary
power nonlinearities of the type |ψ|νψ, ν > 1. In (4), A
is an energy-like quantity given by

A = ~α− mv2

2
,

z = x− vt is the traveling variable with speed v, z0 and
φ0 are real integration constants, while α is an angular
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frequency parameter used to obtain the localized solu-
tion. Since γ > 0, and for A > 0, (4) can be identified
with a bright soliton solution [6]. Soliton (4) is plotted
in Fig. 1 for the values of the parameters given in the
caption, where the oscillatory real and imaginary parts
are displayed as well as its squared amplitude.

By including a constant potential V0, equation (3)
changes to

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂x2
− γ|ψ|2ψ + V0ψ , (5)

whose solution can be obtained by using the ansatz

ψ(x, t) = A(z)ei[φ(z)+αt] , (6)

where A and φ are functions only of the traveling variable
z. Using (6) in (5) and separating the real and imaginary
parts we obtain the system of equations

d2A

dz2
−A

(

dφ

dz

)2

−2m(~α+ V0)

~2
A+

2mγ

~2
A3+

2mv

~
A
dφ

dz
= 0 ,

(7)

A
d2φ

dz2
+ 2

dA

dz

(

dφ

dz
− mv

~

)

= 0 . (8)

Employing a linear phase φ(z) = mv
~
z+φ0, which satisfies

(8) identically, the amplitude equation (7) becomes

d2A

dz2
− 2mB

~2
A+

2mγ

~2
A3 = 0 . (9)

This elliptic equation is easily integrated by assuming
zero boundary conditions to obtain

ψ(x, t) =

√

2B
γ

sech

[

√

2mB
~2

(z + z0)

]

ei[
mv

~
z+φ0+αt] ,

(10)
where

B = ~α+∆Q , ∆Q = V0 −
1

2
mv2 .

From (10), one can see that setting V0 = 0 leads to solu-
tion (4).
We stress that traveling soliton wave solutions without

phase factors that depend only on x or t, cannot occur for
(3), while in the constant potential case this is possible.
Indeed, one can see that setting α = 0 in the solution (4)
destroys the solitonic feature of the amplitude by turning
it into a secant function, while this is possible in the case
of the solution (10) because the potential V0 maintains
the solitonic profile of the amplitude.

In other words, only linearly-extended NLS equations
can have traveling soliton solutions of the form

ψ(x, t) =

√

2∆Q

γ
sech

[

√

2m∆Q

~2
(z + z0)

]

ei[
mv

~
z+φ0] .

(11)

FIG. 1: (Color online) Plots of the oscillatory real and imag-
inary parts of the wave function for α = 2, for the case of
dimensionless variables, with z0 = φ0 = 0, and ~ = γ = m =
1, v = ∓1 , and its squared modulus. For v = −1, the wave
is traveling to the left, and for v = 1 to the right.

This solution, which is plotted in Fig. (2), has an inter-
esting particular feature that does not occur in the case
of the standard solution. It is the solution for a non
zero potential which depends exclusively on the traveling
variable in both amplitude and phase and in this sense
it is also different from the solution (2) since it cannot
be obtained from the standard solution by applying the
gauge. Therefore we call (11) a nongauge bright soliton.
Both its amplitude and wave width depend on the excess
potential energy ∆Q with respect to the kinetic energy
which keeps into motion a classical particle of mass m at
constant speed v.

3. One-parameter family of generalized NLS

equations

We turn now to the second goal of this work, and show
that there exists a one-parameter family of generalized
NLS equations with solitonic solutions, where the param-
eter of the family is the exponent of the nonlinear term.
The NLS equations we consider are linearly extended by
a constant potential as previously but the nonlinearity is
expressed as an arbitrary function f(|ψ|)

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂x2
− γf(|ψ|)ψ + V0ψ . (12)
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FIG. 2: (Color online) Plots of the real and imaginary parts
as well as the squared modulus of the traveling soliton solu-
tion (11) for the case of dimensionless variables and the same
parameters as in the previous figure and V0 = 1. In this solu-
tion, the real and imaginary parts of the wave function have
almost fixed shapes during the propagation.

We pose the same problem of whether the constant po-
tential term allows us to find soliton solutions. Let us fix
the phase as before, φ(z) = mv

~
z + φ0, and assume that

the amplitude has the form

A(z) = c1 sech
p(c2z) , (13)

where c1 and c2 are real constants, and p is a strictly pos-
itive integer or rational number. Recently, this type of
ansatz has been used in an alternative form of the varia-
tional approximation for solitons of equations with higher
degree of polynomial nonlinearities [7, 8]. Differentiating
twice, one can find that A(z) satisfies

d2A

dz2
− p2c22A+ p(p+ 1)

(

c2

c
1/p
1

)2

A
2

pA = 0 . (14)

On the other hand, if we insert the ansatz (6) together
with the linear phase φ(z), into (12), we find that the

amplitude also satisfies

d2A

dz2
− 2mB

~2
A+

2m

~2
γf(A)A = 0 . (15)

Clearly, if we want to relate equations (14) and (15),
we must have that

c2 =

√

2mB
p2~2

(16)

and

f(|ψ|) ≡ f(A) =
p+ 1

p

B
γ

(

A

c1

)
2

p

. (17)

Since p is arbitrary, we have constructed an infinite
number of generalized NLS equations with soliton solu-
tions. This family includes the NLS equation of constant
potential for p = 1 and other nonlinear equations with
soliton solutions for other values of p, as we shall show
next for the case p = 2.

4. The p = 2 generalized NLS equation: Connec-

tion with KdV and BBM equations

A lot of work has been developed in order to find con-
nections between the standard NLS equation and other
nonlinear differential equations that possess solitonic so-
lutions. That is the case of the KdV [9] and the related
BBM equation [10], which are well-established mathe-
matical models of waves on shallow water surfaces and
known to be connected to the standard NLS equation
only by approximations [11–14]. Here, we show that
there exists an exact relationship between these equations
and the equation of parameter p = 2 from the family of
generalized NLS equations

d2A

dz2
− 4c22A+ 6

(

c2√
c1

)2

A2 = 0 . (18)

For the KdV equation

Bt + 6BBx +Bxxx = 0 , (19)

which, additionally to shallow water waves, is used in
electric transmission lines, optical fibers, and other fields
[4], we use the traveling wave ansatz (6) with zero phase
and integrate once to find

d2B

dz2
+ 3B2 − vB = 0 , (20)

where the integration constant has been taken as zero.
Assuming B and Bz both going to zero when z → ±∞,

one can get the well-known soliton

B(x, t) =
v

2
sech2

[√
v

2
(x− vt)

]

, (21)

which is plotted in Fig. 3 (top).
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Equations (20) and (18) are the same when

c1 ≡ v
2 c2 ≡

√
v
2

~
2

2m ≡ 1 , (22)

which exactly match the solution (13) with (10) if further
(16) and (17) are taken into account.

Finally, we refer to the regularized long wave regime
of the KdV equation, or the BBM equation. It can be
viewed as an alternative to KdV by replacing the dis-
persion term Bxxx with −Bxxt to reflect a bounded dis-
persion relation, see [10, 15]. Thus, we write the BBM
equation as follows

Ct + 6CCx − Cxxt = 0 . (23)

FIG. 3: (Color online) Plots of KdV (top) and BBM (bottom)
solutions, for v = 2. The width of the soliton is bigger by

√
2

in the BBM case.

Changing again to the traveling variable, the solution

is found from the elliptic equation

d2C

dz2
− 3

v
C2 + C = 0 , (24)

where again the integration constant is zero. Then via
the identifications

c1 ≡ v
2 c2 ≡ 1

2
~
2

2m ≡ −1 (25)

in (13) and (18), and zero boundary conditions as above,
we obtain the known soliton

C(x, t) =
v

2
sech2

[

1

2
(x− vt)

]

, (26)

see Fig. 3 (bottom).
For complicated cases of the BBM equation modified

by viscosity, where the modified elliptic equation (20) is
solved via the Weierstrass ℘ functions, see [16] together
with the references cited therein.

5. Conclusion

We have discussed the ‘nongauge’ bright soliton of a
NLS equation extended by a constant potential that can-
not occur for the standard NLS equation (3). A one-
parameter family of generalized NLS equations with con-
stant potential having the family parameter determined
by the order of nonlinearity is also introduced in this
work. Furthermore, it is shown that the KdV and BBM
solutions represent the amplitude of the solution of gen-
eralized NLS equation with nonlinearity f(|ψ|) ≡ f(A).
This points to the possibility of finding relationships be-
tween these generalized NLS equations and other nonlin-
ear equations with soliton solutions.
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