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Abstract

In the Earth’s magnetosphere, the magnetotail plasma sheet ions are much hotter than

in the shocked solar wind. On the dawn-sector, the cold-component ions are more abundant

and hotter by 30-40 percent when compared to the dusk sector. Recent statistical studies

of the flank magnetopause and magnetosheath have shown that the level of temperature

asymmetry of the magnetosheath is unable to account for this (Dimmock et al., 2015), so

additional physical mechanisms must be at play, either at the magnetopause or plasma

sheet, that contribute to this asymmetry. This thesis focuses on ion heating across the

magnetopause boundary separating the magnetosheath and the magnetospheric plasmas,

which is driven by mechanisms operating on fluid, ion and electron scales. One of the

pending problems in collisionless astrophysical plasmas is to understand the plasma heating

and transport across three fundamental scales: fluid, ion and electron. Presented here is

evidence of the energy transport between the fluid and ion scales: energy is provided by

a velocity shear at the magnetopause generating fluid-scale Kelvin-Helmholtz Instability

and their rolled-up vortices, where an ion-scale fast magnetosonic wave packet located in

the center of a Kelvin-Helmholtz vortex has sufficient energy to account for observed cold-

component ion heating. In addition, a statistical analysis is performed on the ion-scale wave

properties in the three main plasma regimes common to flank magnetopause boundary

crossings when the boundary is unstable to KHI: hot and tenuous magnetospheric, cold

and dense magnetosheath and mixed (H. Hasegawa, Fujimoto, Phan, et al., 2004). The

statistical analysis shows that during KH events there is enhanced non-adiabatic heating

calculated during ion scale wave intervals when compared to non-KH events. This suggests

that during KH events there is more free energy for ion-scale wave generation, which in turn

can heat ions more effectively when compared to cases when KH waves are absent. This

1



may contribute to the dawn favored temperature asymmetry of the plasma sheet, because

KH waves are statistically more abundant on the dawn sector. Furthermore, the present

findings have universal consequences in understanding cross-scale energy transport from

fluid to ion-scales, applicable to a variety of environments experiencing velocity shears with

comparable plasma regimes.
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Chapter 1

Introduction

The face of the sun is not without expression, but it tells us precious little

of what is in its heart. – Armin J. Deutsch, Scientific American magazine,

November 1948

The solar wind is a supermagnetosonic magnetized plasma streaming far into the helio-

sphere. Although cooling as it flows, it is rapidly heated upon encountering planetary

obstacles. At Earth, this interaction forms the magnetosphere and its sub-regions. The

goal of this present research is to explore particle heating across the boundary separating

the shocked solar wind and magnetospheric plasma, which is driven by mechanisms operat-

ing on fluid, ion and electron scales Moore et al. (2016). To accomplish this, the following

thesis will be structured as follows: (1) Introduction of the Sun, solar wind, near-Earth

space system, magnetopause processes and associated asymmetries; (2) Formulation and

derivation of the tools and physics used to conduct this research; (3) present the results

of the case study and statistical study; and (4) summarize the results by discussing the

relevance, impact and future work.
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1.1. THE SUN AND SOLAR WIND

1.1 The Sun and Solar Wind

As its name might suggest, the “solar” system is dominated by processes at the Sun. The

Earth and other celestial bodies are coupled to the Sun by fields and the interplanetary

medium, plasma – no, space is not a vacuum. Sitting at the center of the heliosphere,

the Sun is the powerhouse of the solar system. Fueled by fusion reactions, energy gener-

ated at its core is delivered to its surface via radiative diffusion and convection. Energy

then leaves the Sun as radiation from the visible photosphere and via solar wind from the

outermost layer, the corona. At around 1 million Kelvin, the solar corona is in a state of

steady expansion (Parker, 1958). Because it is not in hydrostatic equilibrium with the local

interstellar medium (LISM), the corona “evaporates” as a steady state release of plasma

into the heliosphere known as the solar wind.

The solar wind comprises magnetic streams of hot tenuous plasma, and cools as it

expands away from the corona (Bittencourt, 2004). Intermittent bouts of coronal mass

ejections (CMEs) also contribute to the solar wind. Although the solar wind has a ra-

dial trajectory, Archimedean spirals in IMF are formed due to the Sun’s rotation. The

solar wind is a well-behaved MHD plasma (more on this in § 2.3.2) and as such, it carries

portions of the Sun’s magnetic field into the heliosphere, forming the IMF. The IMF is

predominantly comprised of open field lines, which is a convenient description for field lines

are not locally “closed”. The Archimedean spirals of solar wind carrying IMF intercept the

Earth’s magnetic field at a 45◦ angle in the orbital plane. However, this is not always the

case; there exists a differential rotation in the Sun (the poles maintain a smaller rotational

period than the equator) causing the Sun’s magnetic fields to become twisted. This twisting

of field lines along with disturbances from CMEs can cause relatively small deformations

in the standard IMF configuration resulting in a broad spectrum of IMF orientations in-

tercepted by Earth’s orbit. IMF orientation is often categorized with respect to Earth’s
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1.1. THE SUN AND SOLAR WIND

bow shock geometry – a region upstream of Earth’s magnetic field. The relative motion of

the Earth into the solar wind is faster than the speed at which information travels (e.g the

magnetosonic speed) in the local medium (the solar wind plasma). Because the solar wind

is super-magnetosonic, information about the solar wind cannot reach the magnetopause

before the solar wind plasma, and as a result a standing shock wave is formed. There are

five main IMF orientations mentioned in the literature: Parker-Spiral (PS), Ortho-Parker-

Spiral (OPS), radial, northward and southward. The IMF can never be purely in any one of

these directions, rather it typically assumes a superposition of one two or more orientations.

Common practice is to denote the IMF orientation with which configuration the IMF most

strongly aligns with; for example strongly northward IMF would be used to designate an

IMF orientation that has a mostly northward component.

The preceding nomenclature is best understood in the context of the Geocentric Solar

Magnetic (GSM) coordinate system. Let us first introduce the Geocentric Solar Ecliptic

(GSE) coordinate system, in which x̂GSE is pointing sunward in the Sun-Earth line, ẑGSE

points in the direction perpendicular to the ecliptic plane and ŷGSE completes the system

(Russell, 1971). In the GSM coordinate system x̂GSM = x̂GSE , ẑGSM is in the direction

of Earth’s magnetic dipole axis (positive towards geographic north), and ŷGSM completes

the system (Russell, 1971). When the IMF is exactly in PS orientation it makes a 45◦

angle between the sun-Earth line (x-axis in GSE and GSM coordinates); from segment I of

Figure 1.1 the IMF is parallel to the shock normal at the dawn flank. Because there is small

variation about the about exact parallel alignment, the term ”quasi-parallel” is preferred.

Similarly, in OPS orientation, the IMF is ”quasi-perpendicular” to the dawn flank shock

normal (see segment II of Figure 1.1).

For strongly northward (southward) IMF, the magnetic field lies predominantly in the

positive (negative) z direction. Radial IMF orientation has a magnetic field predominantly

in the x direction. IMF orientation is stressed in this chapter because it has been shown

5



1.1. THE SUN AND SOLAR WIND

B
IMF

Shock
Normal

x

y -y

III
B

IMF

Figure 1.1: IMF orientation relative to shock normal in the x-y plane (GSE) for PS
(segment I) and OPS (segment II).
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1.2. THE NEAR-EARTH SYSTEM

to have a crucial effect on the onset of the two major physical mechanisms, the Kelvin-

Helmholtz instability and magnetic reconnection, occurring at Earth’s magnetopause (see

§ 1.3).

1.2 The Near-Earth System

Radially inward from the bow shock is the magnetosheath which consists of shocked solar

wind plasma, followed by the Earth’s magnetosphere – separated from the magnetosheath

by the magnetopause (see Figure 1.2). For the purpose of this thesis, we will focus on the

sections pertinent to the mechanisms discussed in § 1.3.

Figure 1.2 depicts the entirety of Earth’s magnetosphere including the sheath (magne-

tosheath) and bow shock.

1.2.1 Magnetosheath

From Figure 1.2, the magnetosheath is located between the magnetopause (the farthest

extent of Earth’s magnetic field) and the bow shock.

Air Force Pioneer I was the first spacecraft to observe the magnetosheath, first launched

in 1958 to explore plasma regions between the Earth and Moon (Sonett et al., 1960),

shortly followed by IMP 1 (Ness & Wilcox, 1965), Ogo 1 (Holzer et al., 1966), Mariner

4 (Siscoe et al., 1967) and IMP 2 (Fairfield, 1967).

Plasma in the magnetosheath is cold (hotter than solar wind, colder than magneto-

sphere) and dense, with typical ion number densities of about 10 cm−3, and temperatures of

a few million Kelvin. The cold dense plasma in the magnetosheath is supplied by shocked so-

lar wind plasma, where solar wind plasma undergoes compression and heating at the shock,

as well as a decrease in the flow speed following the continuity equation. This shocked solar

7



1.2. THE NEAR-EARTH SYSTEM

Solar Wind

Shocked
Solar Wind

Cusp
Bow Shock

Magnetosheath

Figure 1.2: The Earth’s magnetosphere, magnetosheath and bow shock. Image cour-
tesy of Imperial College London (London, 2009).
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1.2. THE NEAR-EARTH SYSTEM

wind plasma populating the magnetosheath carries with it the IMF, however the component

of the magnetic field tangential to the magnetopause is increased across the shock due to a

“draping effect”. The bow shock is technically speaking, a fast-shock, because the upstream

solar wind speed is super magnetosonic; magnetosonic waves are commonly referred to as

fast-mode waves. A fast-shock mode causes the downstream magnetic field to bend away

from the shock normal (Kivelson & Russell, 1995) (Please see Figure 1.3); kinetic energy is

converted to magnetic and thermal energy, increasing the total downstream magnetic field

strength.

1.2.2 Magnetosphere

The magnetosphere, lying just within the magnetosheath separated by current sheets, is

a dynamic system influenced by solar wind input. As briefly mentioned in § 1.2.1, the

magnetopause represents the location of the farthest extent of Earth’s magnetic field, a

boundary separating magnetosheath and magnetospheric plasmas. It’s location is governed

by a pressure balance between the magnetosphere and shocked solar wind plasmas. The

stand-off distance of the magnetopause is defined by the radial distance from Earth at

which the total pressure of the magnetospheric plasma (dominated by magnetic pressure)

and the total pressure of the magnetosheath plasma (dominated by the dynamic pressure

at the subsolar point) are in equilibrium. The stand-off distance is dynamic and varies with

changing solar wind conditions.

Approximately 99% of Earth’s magnetic field is generated by a hydromagnetic dynamo in

the outer core (2900 - 5100 km depth) (Juusola, 2015). Other influences include magnetized

rock in the lithosphere (< 50 km depth) and solar activity driving currents in the ionosphere

(Juusola, 2015). Collectively this forms a complex magnetic field structure.

Assuming a superposition of fields created by multipole magnets, multipole expansion

9



1.2. THE NEAR-EARTH SYSTEM

Shock
Normal

u
u
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d

upstreamdownstream

B
d

B
u

fast-shock

Figure 1.3: Fast-shock mode. The magnetic field lines bend away from the shock
normal on the downstream of the shock (left side).
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1.2. THE NEAR-EARTH SYSTEM

is used to describe Earth’s complex magnetic field structure (Juusola, 2015). From the

first order approximation is the dipole field (Juusola, 2015). The nth order approximation

includes the dipole field n = 1, anomalous effects 2 ≤ n < 14 and crustal anomalies n ≤ 14

(Juusola, 2015). Because the dipole nature of Earth’s magnetic field is the main contributor,

it is often generalized as dipole-like.

The dipole-like nature of the magnetic field diverges near the dayside-nightside termi-

nator, where “open” field lines trail behind the Earth. The term open is a commonly used

expression in space physics however it is a misnomer as the existence of magnetic monopoles

have not been observed (but still theoretically possible) and all field lines must close, so

“locally open” is more appropriate. Due to the interaction of the solar wind at the dayside

magnetopause, magnetic reconnection can occur, breaking Earth’s field and connecting it

with the solar wind IMF. These reconnected, or open field lines (with one footprint in the

ionosphere, and the other in the solar wind IMF) are then transported tailward by the

solar wind to the tail of the magnetosphere, where they can reconnect again forming newly

closed (to Earth’s ionosphere) field lines which are then transported back to the dayside in

a process known as the Dungey Cycle (Dungey, 1961; University, 2017). Footprints of the

open and closed field lines originate in the ionosphere, forming the magnetic cusps. The

open field lines form the northern and southern tail lobes and nestled between them is the

plasma sheet, comprising closed field lines.

The plasma sheet, lying near the equatorial plane, is located just inside the mag-

netopause separated by the Low-Latitude Boundary Layer (LLBL) and separated from

the plasmasphere by the plasmapause. This region is populated by hot tenuous plasma

(Baumjohann et al., 1989) which has a much lower ion number density (≈ 1 cm−3) and

approximately 50 times hotter than its neighboring magnetosheath plasma. However, un-

der extended periods of northward IMF the plasma sheet has been shown to become cold

and dense (Terasawa et al., 1997; Fujimoto et al., 1998; Stenuit et al., 2002; Øieroset et al.,

11



1.2. THE NEAR-EARTH SYSTEM

2005).

In a statistical survey of GEOTAIL observations in the near-Earth plasma sheet

(−15RE < XGSM < −50RE), Terasawa et al. (1997) showed that the plasma sheet be-

came “significantly” colder and denser. Terasawa et al. (1997) suggested that “cold” ions

of MSH origin were being transported across the magnetopause because colder and denser

ions were observed near the dawn and dusk flanks compared to the central region of the

plasma sheet.

In a later study, ion temperatures and number densities in the equatorial plasma sheet –

inferred from ionospheric data using the Defense Meteorological Satellite Program (DMSP)

– were analyzed on much smaller spatial scales as a function of BZ ; it was shown that

these plasma properties differ from northward to southward IMF (Wing & Newell, 2002)

(see Figure 1.4). Even though cold and dense ions were shown to be present under both

northward and southward IMF, the dusk flank ion number density profiles suggest that far

more MSH ions enter from the dusk LLBL under northward IMF (Wing & Newell, 2002)

(see Panel (b) of Figure 1.4). The plasma sheet temperatures were also shown to be much

hotter under Southward IMF. Periods of southward IMF solar wind are known to trigger

substorms (McPherron, 1991), which have been associated with ion energization in the

plasma sheet (Hones et al., 1976).

Geotail crossings of the flank LLBL have shown evidence of a ”stagnant” ion popula-

tion inside the plasma sheet at the dawn and dusk flanks (Fujimoto et al., 1998); omni-

directional ion spectrograms show that the stagnant ion population is composed of hot

(> 1 keV ) and cold (< 1 keV ) ions at the dusk flank, referred to as a ”mixing effect”. In

fact, there exist two distinct ion populations in the plasma sheet, hot component ions of mag-

netospheric origin and cold component ions of magnetosheath origin (H. Hasegawa et al.,

2003; H. Hasegawa, Fujimoto, Phan, et al., 2004). Furthermore, omni-directional ion spec-

trograms from Geotail show a distinct dawn-dusk asymmetry among the dense ions in

12



1.2. THE NEAR-EARTH SYSTEM

Figure 1.4: BZ IMF dependance on plasma sheet ion number density (Left Panels) and
ion temperature (Right Panels) for northward (Top Panels) and southward (Bottom
Panels) IMF (Wing & Newell, 2002).
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1.2. THE NEAR-EARTH SYSTEM

the mixing region where these dense ions at the dawn side have a higher average energy

(H. Hasegawa et al., 2003). Using DMSP ionospheric data, inferred plasma sheet ion tem-

peratures show a hotter cold component population on the dawn flank compared to the

dusk flank (Wing et al., 2005).

In a case study combining data from the solar wind (Ace and Wind spacecraft) and

plasma sheet (Geotail spacecraft), Wing et al. (2006) calculated the timescale for which

the plasma sheet becomes cold and dense. Approximately a few hours after the solar wind

IMF turned northward, ion temperatures dropped below 2 keV and the ion densities were

observed to raise up to 1 cm−3 after ≈ 8 hours; these observations were consistent with

their previous statistical study (Wing et al., 2005).

1.2.3 Low-Latitude Boundary Layer

Eastman & Hones (1979) confirmed the existence of a boundary layer at the dayside mag-

netosphere with observations from the IMP 6 spacecraft. IMP 6 observations of the dawn

and dusk flanks of the dayside magnetosphere unveiled a region wherein the local plasma

parameters (e.g. ion number density, bulk flow and energy) and magnetic field are mixed

between that typical of the magnetosheath and magnetosphere. For all IMP 6 crossings

of the magnetopause, the boundary layer was ”nearly always present at all latitudes and

longitudes”. The boundary layer thickness ranges from about 100 km at the dayside mag-

netosphere to several Earth radii tailward of the dawn-dusk terminator (Eastman & Hones,

1979). This boundary layer is known today as the LLBL.

The low-latitude boundary layer (LLBL) is a region of mixed plasma located in the

low latitude magnetospheric flanks. The LLBL begins as a very thin layer at the dayside

magnetosphere, expanding tailward and is most pronounced in the equatorial plane. For-

mation of the LLBL is a result of double high-latitude reconnection (Lavraud et al., 2005;

14



1.3. PHYSICAL PROCESSES AT THE MAGNETOPAUSE

Li et al., 2005), reconnection in Kelvin-Helmholtz (KH) vortices (Nykyri & Otto, 2001),

ion diffusion in KH vortices (Fujimoto & Terasawa, 1994, 1995) and Kinetic Alfvén waves

(KAW) (Johnson & Cheng, 1997; Johnson et al., 2001) which are discussed in greater detail

in § 1.3. These processes are responsible for mass and energy transport across the mag-

netopause boundary, capable of injecting cold and dense magnetosheath plasma into the

magnetosphere. As a result, the LLBL is comprised of plasma with mixed magnetosheath

and magnetospheric typical number densities and temperatures. The LLBL acts as a buffer

between the magnetopause and the plasma sheet such that the processes that occur at the

magnetopause are coupled to the plasma sheet.

1.3 Physical Processes at the Magnetopause

The two main processes at the magnetopause that can produce the transport of mass, mo-

mentum and energy are magnetic reconnection and viscous interaction. Axford & Hines

(1961) first proposed that a“viscous-like” interaction between Earth’s outer magnetosphere

and the solar wind drives convection in the magnetosphere, a process that could also account

for the auroral “spiral” motion. In a later study using Explorer 18 data to analyze the mag-

netopause stability to KHI, Boller & Stolov (1973) claimed that KHI might be the “viscous

interaction” proposed by Axford & Hines (1961). In the same year that Axford & Hines

(1961) published their convection model, Dungey (1961) proposed that ionospheric convec-

tion was driven by a cycle of magnetic reconnection.

As discussed mentioned briefly in § 1.2.3, magnetic reconnection, KHI and KAWs play

an important role in the formation of the LLBL. In this section, we will discuss the two

main physical processes which occur at the magnetopause that can produce the transport

of mass, momentum and energy: magnetic reconnection and KHI, as well as offer a brief

overview of important plasma wave modes and their basic properties.
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1.3.1 Magnetic Reconnection

Theory

Magnetic reconnection occurs in a plasma when anti-parallel magnetic field components

(carried by charged particles) converge to very small spatial scales, where diffusion can

occur. The ion and electron diffusion regions are defined as the areas where ions and

electrons become decoupled from the magnetic field lines, respectively. The decoupling of

charged particles from the magnetic field lines is a clear violation of the “frozen-in” condition

(i.e. Alfvén’s Frozen-in Theorem). For an ideal MHD plasma, that is a fluid with an infinite

magnetic conductivity, the magnetic field lines are frozen into the fluid (Alfvén, 1942, 1943).

From an ideal MHD approximation, the change in magnetic field is governed by this

frozen-in condition, E+ (v ×B) = 0, and thus magnetic reconnection is not possible from

a theoretical standpoint. However, for a resistive fluid (i.e. resistive MHD), the plasma is

not infinitely conductive and thus Faraday’s Equation retains its diffusive term (see § 2.3.2

for a more in-depth description).

∇×B = µ0J (1.1)

∇×E = −∂B
∂t

(1.2)

J = σ(E + v ×B) (1.3)

From Ampere’s Law (Equation 1.1), Faraday’s Law (Equation 1.2 and the resistive

Ohm’s Law (Equation 1.3) the resistive induction equation becomes
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∂B

∂t
= ∇× (v ×B)− η∇2

B (1.4)

Where η is the resistivity such that it is inversely proportional to the conductivity η ≡ 1
σµ0

.

The first term on the right hand side of Equation 1.4 is the frozen-in term and the second

term is the diffusion term. It is useful to approximate these quantities in terms of length

scales. Let ∇ ≈ 1/l0, so that the ratio of the frozen-in to diffusion term is given by

RM =
1
l0
vB

η 1
l20
B

=
l0v

η
= σµ0l0v (1.5)

Equation 1.5 is the Reynold’s number (i.e. the Lundquist number). This plasma parameter

describes the magnetic field ”slippage” – how coupled the field is to the fluid. For typical

space plasmas the Reynold’s number is quite large, and for magnetic reconnection to operate

R . 1. However, taking into account other terms from the full form of the Generalized

Ohm’s law can break the “frozen-in” condition. The Generalized Ohm’s law is shown in

Equation 1.6 below and is derived in § 2.3.2.

Generalized Ohm’s Law (MHD)

E+ u×B =
memi

e2ρ

[∂j

∂t
+∇ · (uj+ ju)

]

− M

eρ
∇ ·P

e
+
mi

eρ
j×B+ ηj (1.6)

On the right hand side of Equation 1.6, the first term is the electron inertial term, the

second term is the electron pressure term, the third term is the Hall term and the fourth

term is the resistivity. These terms are designated by the scale size at which they dominate:

the electron inertial term is scaled by the square of the electron inertial length (c2/ω2
pe);

the electron pressure term ion and the Hall term are scaled by the inertial length (c/ωpi);

and the resistivity term is scaled by the inverse of the Lundquist number. The Lundquist

number is a special case of the magnetic Reynold’s number when the Alfvén velocity is the
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typical velocity scale of the system. As an example in the MHD approximation, when the

anti-parallel components of the field lines converge to the ion inertial scale lengths, the elec-

tron pressure and Hall terms have a large relative weight to the rest of the terms from the

Generalized Ohm’s law. Therefore at smaller length scales, the “frozen-in” condition can

break down, however only the electron inertial term, off diagonal components of the elec-

tron pressure tensor and resistivity term can break the “frozen-in” condition. Although the

Hall term cannot break the “frozen-in” condition, inclusion of the Hall term along side the

resistivity or other terms which can break the “frozen-in” condition in MHD models makes

fast reconnection possible (e.g. comparable to Hybrid and full kinetic models) (Birn et al.,

2001). These small length scales can form naturally due to solar wind interaction with the

magnetosphere – the curl in the magnetic field between resulting from the close proxim-

ity of the IMF and Earth’s geomagnetic field create thin current sheets which form the

magnetopause.

Reconnection is known to occur at the dayside magnetopause, in the magnetotail, in the

cusps and in the LLBL. At the magnetopause, it is useful to consider magnetic reconnec-

tion in two-dimensional (2D) space, with a separatrix separating the magnetic connection

topology (see Figure 1.5). From Figure 1.5, the separatrix divides the original connection

topology from the newly connected, or reconnected topology. Visually, the separatrix also

defines four quadrants: two inflow and two out flow regions, as well as an x-line at the center.

The inflow region marks the influx of plasma carrying fields from the original connectivity.

Plasma velocity in the inflow region will have a considerable perpendicular component with

respect to the magnetic field. Magnetic reconnection can release large amounts of energy

as energy stored in the magnetic field is released as kinetic energy, thermal energy and etc.

The newly connected filed lines act as a rubber band, expelling plasma in the outflow region

in field aligned jets as magnetic tension is released.
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INFLOW

OUTFLOWELECTRON DIFFUSION

SEPARATRIX

X-LINE

Figure 1.5: Illustration of magnetic reconnection.

Observations

Dungey (1961) first proposed that plasma convection was driven by a cycle of magnetic

reconnection at the dayside and nightside magnetosphere. Under southward IMF, magnetic

reconnection at the dayside magnetopause between the Earth’s geomagnetic field and the

solar wind IMF can occur. In the context of Figure 1.5, the inflow regions consist of the

original shocked solar wind IMF in the magnetosheath and the original magnetospheric

magnetic topologies. The outflow regions are the newly connected magnetic topologies

containing the magnetosheath plasma: field lines with one foot connected to the Earth’s

poles and the other connected to the solar wind. This outflow plasma and its associated

magnetic field are carried tailward over the polar regions to magnetotail. As these magnetic

field lines accumulate in the magnetotail, anti-parallel field components from the northern

and southern hemispheres converge to length scales where magnetic reconnection can occur,

forming two sets of magnetic topologies: (1) magnetic field lines that have both feet attached

to the solar wind IMF and (2) magnetic field lines that have both feet in the Earth’s

magnetic poles, one in the north and the other in the south. The plasma connected to the

solar wind IMF is eject tailward. Magnetic tension in the newly polar connected field carries
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SUNWARD

TAILWARD

Figure 1.6: Magnetic field motion in the ionosphere.

the ”frozen-in” plasma sunward. Dungey used the analogy of a doughnut to describe the

convection pattern in the ionosphere. Figure 1.6 shows the magnetic field line motion in

the ionosphere, where the open field line topology from dayside reconnection is represented

in the doughnut hole and the closed field line topology from reconnection in the tail is

represented by the doughnut(Dungey, 1961; Egeland & Burke, 2012).

The first evidence of magnetic reconnection at the magnetopause was published in 1979

(Paschmann et al., 1979) just two years after the launch of ISEE 1 and 2. Paschmann et al.
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(a) (b)

Figure 1.7: First evidence of magnetic reconnection (a) from ISEE traversal of the
dayside magnetopause (b). Figure courtesy of Paschmann et al. (1979).

(1979) showed ISEE observations of fast plasma flows at the dayside magnetopause when

traversing from the ring current to the magnetosheath (see Figures 1.7 (a) and (b)).

These results were consistent with magnetic reconnection theory and the Dungey model

– plasma is accelerated in the outflow region and carried poleward by the solar wind.

In 1981, B. U. O. Sonnerup et al. (1981) analyzed 11 ISEE magnetopause crossings, in

which the plasma velocity in the vicinity of the magnetopause was much greater than

in the magnetosheath, reporting results consistent with magnetic reconnection theory.

B. U. O. Sonnerup et al. (1981) showed, in part, that the increase in the tangential plasma

velocity was consistent with the theoretical value derived from the Maxwell stresses on the

plasma.

Observational evidence of reconnection in the tail had already been reported prior to

Paschmann et al. (1979) and B. U. O. Sonnerup et al. (1981). A statistical analysis of the

magnetic field structure in the magnetotail during substorm activity provided the location

of the neutral line (Nishida & Nagayama, 1973).
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In 1978, Russell & Elphic (1978) showed evidence of magnetic reconnection in the form

of“flux transfer events” (FTEs) from ISEE observations, concluding that the the periodic

switching on and off of dayside reconnection caused the tearing of flux tubes from the

magnetosphere. Russell & Elphic (1978) proposed that FTEs could be a major source of

magnetopause oscillations. Typical signatures of FTEs include bipolar variation in the

normal component of the magnetic field (Russell & Elphic, 1978; Russell & Elphic, 1979),

enhancements in the magnetic field magnitude (Russell & Elphic, 1978; Russell & Elphic,

1979; Paschmann et al., 1982) and total magnetic pressure (Paschmann et al., 1982) sepa-

rated by a median and mode of approximately 8 and 3 minutes respectively (Russell et al.,

1996).

Due to observational similarities between FTEs and KHI at the magnetospheric flanks –

such as the quasi-periodic nature of plasma property and field fluctuations including bipolar

variation in the normal component of the magnetic field – special care must be taken in

order to accurately differentiate between the two processes.

1.3.2 Kelvin-Helmholtz Instability

KHI occurs at the interface of two viscous fluids that have non zero relative velocity

and is known to occur in astrophysical plasmas including the solar corona (Foullon et al.,

2011; Nykyri & Foullon, 2013) and the terrestrial magnetopause (Fairfield et al., 2000;

H. Hasegawa, Fujimoto, Phan, et al., 2004; Nykyri et al., 2006). In fact, it has been

shown to occur quite frequently at the terrestrial magnetopause. A recent statistical

study found the KHI occurrence rate to be aprroximately 19% at Earth’s magnetopause

(Kavosi & Raeder, 2015). The magnetopause acts as an interface between the fast tail-

ward moving shocked solar wind plasma in the magnetosheath and the relatively stagnant

plasma in the magnetosphere. Small perturbations in this shear flow interface (e.g. the
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magnetopause boundary) allow for the growth of KHI. In a magnetized plasma however,

the magnetic field can act to stabilize the interface. More specifically, the magnetic field

tangential to the propagation direction (or wavevector) of the growing KH wave, can sta-

bilize the boundary, which is apparent from the onset condition. The onset condition for

KHI in a magnetized plasma is given by the following (Treumann & Baumjohann, 1997):

[k · (V1 −V2)]
2 ≥ n1 + n2

4πm0n1n2
[(k ·B1)

2 + (k ·B2)
2] (1.7)

Where Vi, Bi and ni are the velocity, magnetic field and number density for the ith side

of the boundary (e.g. shear flow interface); k is the KH wavevector. From Equation 1.7,

the onset of KHI is dependent upon the magnetic field orientation [(k · B1)
2 + (k · B2)

2]

in relation to the shear flow k · (V1 − V2) relative to the propagation direction of the

growing KH wave. The boundary becomes unstable to KHI when the shear flow along k is

large relative to the amount of magnetic field along k. The right hand side of Equation 1.7

goes to zero as the angle between the B and k approaches 90◦, maximizing the onset. At

the magnetopause, KHI onset is maximized in the equatorial plane at the magnetospheric

flanks under northward facing IMF, assuming k lies in the equatorial plane. Here the

angle between the Earth’s field and k, and the angle between the solar wind IMF and k is

approximately 90◦. In an incompressible plasma (e.g. ∇ · v = 0), with a constant |k ·B|,

Equation 1.7 can be reduced to:

[k · 1
2
(V1 −V2)]

2 > k · (VA,1 −VA,2)
2 (1.8)

Where the velocity shear along k must be greater than Alfvén velocity along k for KHI to

occur (Nykyri, 2013). Equation 1.8 is somewhat analogous to shock formation when the

flow speed exceeds the local information speed. In the 3-D system, the 2-D dynamics still

exist, however curvature of the magnetic field can act to stabilize KHI (Ma et al., 2014).
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KHI has been observed at the magnetopause under northward IMF (Fairfield et al.,

2000; H. Hasegawa, Fujimoto, Phan, et al., 2004; Taylor et al., 2008; Eriksson et al., 2009).

However, in the real 3D system, KH can grow wherever the onset condition is satisfied

(Adamson et al., 2016). Indeed, KHI has been observed under a diverse set of solar wind

conditions including PS orientation (Nykyri et al., 2006; Moore, 2012), OPS orientation

(Taylor et al., 2012) and even southward IMF (Hwang et al., 2011; Yan et al., 2014). As

a function of clock angle, the normalized occurrence rate of KHI is ≈ 35% for northward

IMF, ≈ 20% for IMF near the equatorial plane (both PS and OPS combined) and ≈ 10%

for southward IMF according to a recent statistical study that analyzed 7 years of THEMIS

magnetopause crossings (Kavosi & Raeder, 2015).

Field-aligned currents generated from the twisting of magnetic field lines inside of evolv-

ing KH vortices have been suggested to cause small-scale effects in the ionosphere. Fur-

thermore, theoretical work by A. Hasegawa (1976) suggests that discrete auroral signa-

tures can be attributed to the electron acceleration mechanism of Kinetic Alfvén Wave

(KAWs), mode converted from MHD surface waves at the magnetopause. Auroral bright

spots have been suggested to result from KHI activity in the magnetosphere (Lui et al.,

1989; Farrugia et al., 1994). Dougal et al. (2013) estimated the ionospheric location and

size of the quasi-periodic signatures from the flank magnetopause associated with KHI.

Global MHD and quasi-empirical Tsyganenko models were used for mapping of the mag-

netic field lines from the location of the spacecraft in the magnetosphere to the ionosphere.

Local 2-D MHD model to estimate the size of the MHD vortex in the flank magnetopause.

Assuming a time lag derived from the Alfvén speed along the mapped field line from the

magnetosphere to the ionosphere and assuming the area to be proportional to the magne-

tosphere to ionospheric total magnetic field ratio, Dougal et al. (2013) estimated location

and vortex sizes in the ionosphere. The calculated vortex sizes (at an altitude of 100 km)

were between approximately 40 and 600 km were within the same order of magnitude of
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estimates from Lui et al. (1989) and Farrugia et al. (1994). Dougal et al. (2013) estimated

travel times from the magnetosphere to the closest ionospheric location ranging between

approximately 1 to 4 minutes. Dougal et al. (2013) were able to map KHI events to sta-

tionary and traveling convection vortices observed by SuperDARN with vortices ranging in

size between 1000 and 1800 km.

KHI can result in the mass transport across the magnetopause via two methods: (1) the

“blobby” macroscopic mass transport provided by magnetic reconnection inside of the KH

vortices (Nykyri & Otto, 2001; Nykyri et al., 2006; H. Hasegawa et al., 2009) and (2) dif-

fusive transport (Fujimoto & Terasawa, 1994, 1995; H. Hasegawa, Fujimoto, Phan, et al.,

2004; Cowee et al., 2010). Mass transport across the magnetopause associated with recon-

nection in KHI vortices has been quantified and shown to be efficient in generating a cold-

dense plasma sheet in the time scale of about 2 hours (Nykyri & Otto, 2001) during strongly

northward IMF. KHI can also drive diffusive transport via ion transport through thin cur-

rent sheets (Fujimoto & Terasawa, 1994, 1995; H. Hasegawa, Fujimoto, Phan, et al., 2004;

Cowee et al., 2010) and through the generation of KAWs Johnson & Cheng (1997). § 1.4

contains more information on KHI associated reconnection and diffusion.

1.3.3 Plasma Wave Modes

In our universe, information and energy is carried through waves which travel through all

sorts of media, and just like any other media, waves propagate through plasmas. However,

because plasma is composed of ionized particles, the way waves propagate through a plasma

is different than any other media. In a plasma, there exists a “zoo” of wave modes, each

have unique dispersion properties.

A plasma wave’s dispersion relation is an expression which describes how its frequency

relates to its wavevector (i.e. ω(k)). For example, a non-dispersive wave has a linear rela-
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tionship between its frequency and wavevector, whereas a dispersive wave has a non-linear

relationship. Because the dispersion relation for a non-dispersive wave is linear, its phase ve-

locity (vφ = ω/k) is equal to its group velocity vg = dω/dk. An example of a non-dispersive

wave is a common electromagnetic wave propagating in a vacuum c = ω/k, where c is the

speed of light; in a plasma there is the compressional Alfvén wave vA = ω/k, where vA is

the Alfvén speed.

MHD Modes

For the MHD modes, dispersion relations are derived from the MHD description of a plasma.

The MHD system of equations are derived and discussed in § 2.3.2. The ideal MHD equa-

tions can be simplified using linear perturbation theory, where fields and state properties

are approximated by a linear combination of time independent background and time vary-

ing perturbation terms – analogous to a constant DC offset with an overlying time-varying

AC signal. Using linear perturbation theory, the fields and state properties are defined as

follows:

B = B0 + δB1

v = v0 + δv1

ρ = ρ0 + δρ1

p = p0 + δp1

For the ideal MHD case, these expressions are plugged into the Equation 2.24 (Continuity),

Equation 2.25 (Momentum), Equation 2.27 (Energy) and Faraday’s Law of Induction (∇×

E = −∂B/∂t) using the ideal form of the Generalized Ohm’s Law (E = −u×B) to define
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the electric field. Derivatives of the constant terms are zero, assuming that the time varying

perturbations are very small, all of their higher order terms go to zero. Thus, the linearized

ideal MHD equations are as follows:

Continuity

∂δρ

∂t
+ ρ0∇ · (δu) = 0 (1.9)

Momentum

ρ0
∂δu

∂t
= −∇δp + 1

µ0
(∇× δB)×B0 (1.10)

Energy

∂δp

∂t
= −γp0∇ · δu (1.11)

Faraday’s Law

δ∂B

∂t
= ∇× (δu×B0) (1.12)

Taking the time derivative of Equation 1.10 (Momentum) and plugging Equation 1.11 into

the result yields the following result:

ρ0
∂2δu

∂t2
= γp0∇(∇ · δu) + B2

0

µ0
(∇× (∇× (δu× eB))) × eB (1.13)

where B0 = B0eB and eB is the unit vector denoting the direction of the background

magnetic field. With a little algebra, Equation1.13 reduces to

∂2δu

∂t2
= c2s∇(∇ · δu) + v2A(∇× (∇× (δu × eB)))× eB (1.14)

where cs is the sound speed (c2s = γp0/ρ0) and vA is the Alfvén speed (v2A = B2
0/µ0ρ0).

Assuming plane wave solutions (e.g. δB = |δB|e(ik·x−iωt), where x is the position vector

and k = k⊥ex + k||ez where eB = ez), and taking the Fourier transform of Equation 1.14

yields the following system of equations in matrix form W · δu = 0:
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= 0 (1.15)

The non-trivial solutions to Equation 1.15 are found by taking the determinant of matrix

W and setting it equal to zero, such that Det(W ) = 0 since a nonsingular matrix will yield

only trivial solutions. The three solutions are the Shear Alfvén Wave, the Fast Mode Wave

and the Slow Mode Wave.

Shear Alfvén Waves

The first of the three non-trivial solutions, the Shear Alfvén Wave, is shown in Equation 1.16.

ω = k||vA = kvAcos(θ) (1.16)

The Shear Alfvén Wave is a non-dispersive wave that carries momentum and energy along

magnetic field lines. As the Shear Alfvén Wave propagates along, or at some small angle

to the background magnetic field θkB, small perpendicular perturbations (to B0) move the

the frozen-in plasma (see Figure 1.8). The Shear Alfvén Wave is an incompressible wave

(∇·δu = 0); the δu and δB perturbations are perpendicular to both k and B0 and the phase

speed approaches zero as k|| → 0. Because these waves are efficient at carrying momentum

and energy along magnetic field lines they are important to magnetospheric-ionospheric

coupling (Nykyri, 2011).

Fast and Slow Modes

The second and third non-trivial solutions to Equation 1.15 are the Fast (+) and Slow (−)

Wave modes shown in the following expression:

ω2 =
k2

2

(

c2s + v2A ±
[

(c2s + v2A)
2 − 4v2Ac

2
s

k2||

k2

]1/2
)

(1.17)
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k

B

δB

B

0

Figure 1.8: Shear Alfvén wave propagating along the magnetic field.
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As with the Shear Alfvén Wave, the Slow Mode Wave carries information along magnetic

field lines. The phase speed along the magnetic field line is the minimum between the sound

and Alfvén speeds, whereas the phase speed perpendicular to the magnetic field is zero.

Fast Magnetosonic Waves

The Fast Mode Wave also known as the Fast Magnetosonic Wave (FMW) has the largest

group speed and thus defines the maximum speed at which information can be carried

through an MHD plasma. Recall that the super-magnetosonic solar wind forms the “fast-

shock” (bow shock) upstream of the magnetopause. These waves are exceptionally impor-

tant because they can carry energy across field lines (i.e. perpendicular to the magnetic

field). The phase speed along the magnetic field line is the maximum between the sound

speed and Alfvén speed, whereas the phase speed perpendicular to the magnetic field is the

magnetosonic speed c2ms = c2s + v2A. Because FMWs can carry energy perpendicular to B0,

it is worthwhile to write its dispersion relation in terms of the perpendicular wavenumber

k⊥ as shown in Equation 1.17. As k|| → 0, the FMW becomes a Compressional Alfvén

Wave.

ω2 =
k2

2

(

c2ms +
[

(v2A − c2s)
2 + 4v2Ac

2
s

k2⊥
k2

]1/2
)

(1.18)

Compressional Alfvén Waves

Also in the cold plasma limit (cS << v2A), the Fast Mode Wave reduces to the Compressional

Alfvén wave (see Equation 1.19).

ω = kvA (1.19)

The Compressional Alfvén wave is a compressional longitudinal wave that causes compres-

sions and rarefactions in the plasma. Due to the plasma being ”frozen-in” to the magnetic

field lines, compressions and rarefactions cause the magnetic filed strength to fluctuate in
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the wake of the passing waves (see Figure 1.9).

Kinetic Alfvén Waves

The KAW is an important wave in part because of its association with magnetopause

processes (A. Hasegawa, 1976; A. Hasegawa & Chen, 1976; Johnson et al., 2001) and ion

heating (A. Hasegawa, 1976; A. Hasegawa & Chen, 1976; Johnson & Cheng, 2001) in both

space and laboratory plasmas. Theoretical work by A. Hasegawa (1976) has shown that

KAWs can accelerate “aurora-forming” electrons, manifested by geometric signatures con-

sistent with auroral observations. The dispersion relation for the KAW, shown in Equa-

tion 1.20, can be derived from a two fluid approximation of the plasma (Stasiewicz et al.,

2000). This is accomplished by combining Equation 2.19 (Fluid Momentum) for both elec-

trons and ions with Maxwell’s equations. The KAW is a dispersive wave that propagates

below the ion cyclotron frequency and generally has a left-hand polarization. The KAW

has a finite k⊥ with a wavelength comparable to the ion gyroradius (perpendicular to the

magnetic field) (A. Hasegawa, 1976).

ω = k||vAωic

√

1 + k2⊥(ρ
2
s + ρ2i )

ω2
ic + k2||v

2
A(1 + k2⊥ρ

2
i )

(1.20)

Ion Cyclotron Waves

Like the KAW, the Ion Cyclotron Wave (ICW) is a dispersive left-hand polarized wave which

propagates below the ion cyclotron frequency. ICWs can energize ions via ion cyclotron

resonance when ω → ωic, because it resonates with the ions motion about the background

magnetic field. The ICW dispersion relation (Stix, 1992), shown in Equation 1.21, is derived

from kinetic theory. Roots from Equation 2.11 are found by deriving the dielectric tensor

ǫ (see Equation 2.12) for a cold magnetized plasma and assuming parallel (with respect

to the magnetic field) propagation. The ICW dispersion relation is solved from the root
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k

B

Figure 1.9: Compressional Alfvén wave propagating perpendicular to the magnetic
field.
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associated with left-hand polarization, and is given by the following expression:

ω = ωic

(

1 +
ω2
pi

k2||c
2
+

ω2
pi

k2||c
2 + k2⊥c

2

)−1/2

(1.21)

1.4 Processes Associated with KHI

Understanding the transport and heating of plasma across different spatial and temporal

scales is particularly important in laboratory and space plasmas. The specific entropy,

Si = Ti/n
2
3 (where Ti is the ion temperature in eV/cm and n is the ion number den-

sity) increases by two orders of magnitude – from 2.5 - 70 eV cm2 in the magnetosheath

to 700 - 16000eV cm2 in the magnetosphere (Borovsky & Cayton, 2011). As such, it is

highly plausible that mechanisms acting across multiple scales are at play at Earth’s mag-

netopause. Magnetic reconnection which operates on ion and electron scales is known to be

produced by the non-linear evolution of KH vortices (Otto & Fairfield, 2000; Nykyri & Otto,

2001; Nykyri et al., 2006; H. Hasegawa et al., 2009). Reconnection inside KH vortices

has been associated with the production of field aligned ion beams (Nykyri et al., 2006;

Nishino, Fujimoto, Terasawa, et al., 2007; Nishino, Fujimoto, Ueno, et al., 2007), where non-

Maxwellian distributions provide energy capable of promoting wave growth. In addition,

KHI has also been associated with the excitation of KAWs at the magnetopause via a

process called mode conversion (A. Hasegawa, 1976; Johnson et al., 2001) which can accel-

erate particles parallel to the ambient field (A. Hasegawa, 1976) and heat ions stochastically

(Johnson & Cheng, 2001) and has been associated with energy transport across the mag-

netopause (Chaston et al., 2007).
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1.4.1 Reconnection inside Kelvin-Helmholtz Instability

Magnetic reconnection associated with KHI was first proposed by Hu and Liu in 1986. They

theorized that the twisting of magnetic field lines by the growing KHI generation at the

magnetopause can lead to the formation of magnetic islands. 2D MHD simulations have

been used to study the generation of so-called vortex-induced reconnection; these simula-

tions showed linear (Pu et al., 1990) and non-linear (Chen et al., 1997) coupling between

KHI and magnetic reconnection.

Not to be confused with vortex-induced reconnection, 2D MHD simulations have shown

that the twisting of magnetic field lines inside of KH vortices can generate thin current sheets

on the scale of the ion-inertial length where reconnection can occur (Otto & Fairfield, 2000;

Nykyri & Otto, 2004). Reconnection driven by the evolution of the KH vortices forms mag-

netic islands allowing for the transport of magnetosheath plasma into the magnetosphere

as shown in Figure 1.10. Nykyri & Otto (2001, 2004) quantified the plasma transport rate

inside of KH vortices using MHD and Hall MHD approximations respectively; they found

that that reconnection inside the vortices can provide transport velocities on the order of

1 − 2 km/s corresponding to a diffusion coefficient of 109m2/s. These findings suggested

that magnetic reconnection inside KH vortices might be a viable mechanism for trans-

porting mass across the magnetopause. In fact, reconnection inside KH vortices has been

shown to occur at the flank magnetopause (Nykyri et al., 2006; H. Hasegawa et al., 2009;

Eriksson et al., 2016).

Bridging the gap between fluid and ions scales is the observation of ion-beams dur-

ing reconnection inside of KH vortices (Nykyri et al., 2006). Ion-beam distributions are

non-Maxwellian and are a source of energy which may drive ion-scale wave activity. The

big picture in relation to cross-scale coupling is as follows: fluid scale KHI can generate

thin boundaries with anti-parallel facing magnetic fields which favor magnetic reconnec-
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Figure 1.10: Illustration of magnetic reconnection inside a KH vortex (Nykyri & Otto,
2001). As the magnetic field lines become twisted inside the KH vortex, magnetic
reconnection creates magnetic islands.

tion. Associated ion-beams can then drive ion-scale wave activity inside the fluid-scale KH

voritces.

1.4.2 Mode Conversion

Theoretical work by A. Hasegawa (1976) has shown that MHD surface waves excited by

either an MHD instability or externally applied impulse can “resonantly mode convert” to

KAWs. Further theoretical work suggests that stochastic ion heating (perpendicular to the

magnetic field) via kinetic Alfvén wave (KAW) turbulence may to some extent be responsible

for particle heating (A. Hasegawa, 1976; Johnson et al., 2001; Johnson & Cheng, 2001) and

transport (Johnson et al., 2001; Johnson & Cheng, 2001). Amplification of perpendicular

wave power at the Earth’s magnetopause can be explained by the theory of mode conversion

of compressional MHD waves into KAWs (Johnson et al., 2001). As the compressional

Alfvén mode propagates into regions with sharp gradients in the k||vA, Alfvén resonance

35



1.5. DAWN-DUSK ASYMMETRIES

(k2|| = k2A) can excite KAWs (A. Hasegawa, 1976; Cheng & Johnson, 1999; Johnson et al.,

2001). It should be noted that KH waves are compressional surface waves, or surface

Alfvén modes – a fast-mode wave containing a non-zero tangential (to the current sheet)

component of k (Pu & Kivelson, 1983). Amplification of the transverse magnetic field at the

magnetopause is seen by the increase in the ratio of transverse to compressional magnetic

wave power (P⊥/P||) at the Aflvén resonance location – see bottom panel of Figure 1.11 –

was shown to be consistent with theoretical calculations of compressional wave absorption

(Johnson et al., 2001). Furthermore, observations of mode conversion from KHI driven

surface waves to KAWs supporting transport of both electromagnetic energy and plasma

at the Alfvén resonance location have been made (Chaston et al., 2007) (please see Figure

1.12).

1.5 Dawn-Dusk Asymmetries

The shocked solar wind which populates the magnetosheath is the source plasma for entry

into the magnetosphere across the magnetopause via FTEs, magnetic reconnection as well

as diffusion in KH vortices and reconnection associated with KHI. The solar wind IMF is

statistically configured in the PS orientation which creates a quasi-parallel shock at the

dawnside bow shock responsible for generating various wave modes, instabilities and inter-

actions that could be responsible for heating ions (Eastwood et al., 2002, 2003, n.d., 2005;

Blanco-Cano et al., 2006). In this section we will discuss the inherent asymmetries in the

source magnetosheath plasma and the asymmetric evolution of magnetopause processes.

1.5.1 Asymmetries in the Source (Magnetosheath) Plasma

Results from a statistical study using data from IMP 8, ISEE 3, ISEE 1 and WIND space-

craft showed significant dawn-dusk asymmetry in the plasma density where a higher plasma
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density was reported at the dawn flank magnetopause (Paularena et al., 2001). This dawn

favored asymmetry was reported to be dependent upon the upstream solar wind conditions

during the solar minimum, however not for the solar maximum.

Longmore et al. (2005) reported a dawn-dusk asymmetry in the velocity magnitudes

and densities in the northern hemisphere from a statistical study of Cluster orbits. Lower

velocity magnitudes and higher densities were measured at the dawn flank magnetosheath

with no apparent dependency on solar wind IMF.

Walsh et al. (2012) conducted a statistical analysis of 1114 dayside boundary crossings

from 3 years of THEMIS spacecraft data. The study concluded several dawn-dusk asym-

metries near the sheath side magnetopause in the proton number density and temperature

as well as in the bulk flow and magnetic field strengths driven by a statistically PS orien-

tated IMF. The proton number density and temperature are both higher at the dawn flank,

whereas the bulk flow and magnetic field strengths are both higher at the dusk flank. These

results were found to be consistent with BATS-R-US global MHD simulations.

In a recent statistical analysis, Dimmock et al. (2014) reported that the magnetic field

fluctuation amplitudes in the magnetosheath interplanetary medium reference frame (MIPM)

were reduced by 20% - 25% on the dusk flank when compared to that of the dawn flank

under a statistically PS orientated IMF. These results are in agreement with previous stud-

ies, which have shown strong magnetic field fluctuations downstream of the quasi-parallel

shock (Fairfield et al., 2003; Luhmann et al., 1986; Zastenker et al., 2002; Němeček et al.,

2002; Shevyrev & Zastenker, 2005; Shevyrev et al., 2006, 2007).

Dimmock et al. (2015) showed evidence of a temperature asymmetry in the magne-

tosheath plasma from 7 years of THEMIS data, where the dawn flank is statistically hotter

than the dusk flank. The dawn flank was shown to be approximately 10% hotter when

the upstream solar wind IMF is in PS orientation (Dimmock et al., 2015). However, the

observed temperature asymmetry in the magnetosheath plasma is not sufficient to produce
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the observed scale of plasma sheet temperature asymmetry (Dimmock et al., 2015).

1.5.2 Asymmetric Evolution of Magnetopause Processes

Ten years of ISEE 1 and 2 observations of magnetopause crossings have shown that the

largest amplitudes of magnetopause oscillations occur at the dayside dawn-flank when the

IMF is in the PS orientation (Russell et al., 1997). Furthermore there were more observed

crossings per pass at the dayside dawn-flank under PS IMF (Russell et al., 1997), which

could be due to a higher occurrence rate of processes like KHI or FTEs at the dawn-flank.

KHI

It has been proposed that asymmetries in the MSH may lead to a dawn flank preference for

wave-particle interactions such as KHI and KAW activity that could explain the temper-

ature asymmetry of the cold-component ions in the plasma sheet (Nykyri, 2013). In fact,

recent BATS-R-US global MHD simulations have shown that the magnetosheath plasma

downstream of the quasi-parallel shock has less tangential magnetic field along the mag-

netosheath flow, allowing for faster KH growth times (Nykyri, 2013). Because the IMF

is statistically more often in PS orientation, faster onset times at the dawn flank sug-

gests that KHI might favor the dawn-flank (Nykyri, 2013). Furthermore stronger tangen-

tial magnetic field along magnetosheath flow downstream of the quasi-perpendicular shock

may stabilize KHI under PS at the dusk-flank. Indeed stronger magnetic field strengths

have been shown to favor the dusk-flank magnetosheath under PS IMF – a result from

a recent statistical study spanning 5 years of THEMIS magnetosheath and OMNI solar

wind data (Dimmock & Nykyri, 2013); these results are consistent with global BATS-R-

US and local simulations under similar solar wind conditions (Dimmock & Nykyri, 2013).

Additionally, in a statistical study of ultra low frequency (ULF) Pc3 velocity fluctuations
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from 6 years of THEMIS data, enhancements in the power spectral density have been

shown to favor the magnetosheath downstream of the quasi-parallel shock. The source of

which these fluctuations differed close to the magnetopause compared to the central magne-

tosheath and the region directly downstream of the shock (Dimmock, Nykyri, et al., 2016).

Work by Nykyri (2017) has shown that magnetosheath velocity fluctuations can be 40-

80 km/s and have a strong dawn-dusk asymmetry (favoring the quasi-parallel shock side)

which can impact KH growth rates and the initiation of reconnection at the magnetopause.

Dimmock, Nykyri, et al. (2016) suggest that the Pc3 velocity fluctuations near the magne-

topause are caused by a velocity shear and velocity shear driven processes such as KHI drive.

Furthermore Dimmock, Nykyri, et al. (2016) reported that these Pc3 velocity fluctuations

are significantly enhanced during fast solar wind intervals. KHI has long been associated

with continuous field line resonances in the Pc3 - Pc5 range (Miura, 1987; Lessard et al.,

1999).

In a followup statistical study of Pc4 - Pc5 field fluctuations Nykyri et al. (2016) re-

ported the magnetic field fluctuations – a feature associated with KHI – near the magne-

topause to be strongest at the dawn flank. Furthermore from the tailward velocity profile,

the dawn flank LLBL was shown to be thicker than at the dusk flank.

Recent work by Walsh (2014) suggests that KHI can be initiated on the dusk-side

dayside magnetopause when the plasmaspheric plume is in contact with the magnetopause

by lowering the threshold for the KHI initiation. Future studies, with equal amount of

dawn and dusk-flank crossings with similar solar wind conditions may shed light on which

flank KHI is observed more frequently. Recently, Henry et al. (2017) sorted the list of KH

events from Kavosi & Raeder (2015) and showed that the normalized occurrence rates of

KHI favor the dawn-flank during PS IMF.
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Wave Heating

A statistical study by Yao et al. (2011) showed a dawn-dusk asymmetry in the spectral

energy densities of ion gyro-radii scale electromagnetic waves that favored the dawnside over

the duskside magnetopause. Without detailed wave mode identification they suggested the

waves were likely KAWs, which have been attributed to ion heating and plasma transport

across the magnetopause (A. Hasegawa & Mima, 1978; Rezeau et al., 1989; Lee et al., 1994;

Johnson & Cheng, 1997, 2001; Chaston et al., 2007).

1.6 Motivation

There exists a strong dawn-dusk asymmetry in the cold-dense plasma sheet under northward

IMF conditions (H. Hasegawa et al., 2003; Wing et al., 2005). The plasma sheet hosts two

distinct ion populations during northward IMF conditions: the cold component ions (mag-

netosheath origin) and the hot component ions of (magnetospheric origin) (Fujimoto et al.,

1998; H. Hasegawa et al., 2003; H. Hasegawa, Fujimoto, Saito, & Mukai, 2004; Wing et al.,

2005). The cold component ions are 30% - 40% hotter on the dawn-side plasma sheet com-

pared to the dusk side (see Figure 1.13). The origins of this asymmetry are not currently un-

derstood. A more recent statistical study of magnetosheath temperatures (Dimmock et al.,

2014) shows that the magnetosheath temperatures are only about 10% - 15% higher at the

dawn-flank compared to the dusk-flank. Therefore, additional mechanisms at the magne-

topause must be at play to explain the temperature asymmetry in the plasma sheet: (1) the

entry mechanism generating the cold-dense plasma sheet; (2) an asymmetry in the source

magnetosheath plasma; or (3) a combination of the two.

Furthermore the specific entropy in the magnetosphere is several orders of magnitude

higher than in the magnetosheath (Borovsky & Cayton, 2011), a signature of strong non-

adiabatic heating. This phenomena is, at present, not well understood. It is the motivation
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Figure 1.13: The cold component temperature profile of the two-component
Maxwellian distribution function of the plasma sheet ions are calculated using data
from the Defense Meteorological Satellite Program (DMSP) (Wing et al., 2005). The
cold component ions tailward of ≈ -20 RE on the dawn flank are hotter compared to
the dusk flank.
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of this thesis to explore the the possible mechanisms at play that may be responsible for non-

adiabatic heating across the magnetopause and the plasma sheet temperature asymmetry.
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Chapter 2

Methodology

In this thesis, we analyze boundary crossings for ion-scale wave activity during periods

when KHI are active and inactive. In this section, methodologies and pertinent theories

are introduced related to KHI identification, the identification and dispersion analysis of

ion-scale wave activity and statistics. Identification of KHI activity is two fold, involving ob-

servations and validation through modeling. The analysis of ion-scale wave activity includes

the identification of wave activity through wavelet and Fourier analysis, multi-spacecraft

determination of the full dispersion relation, determination of ion-scale wave properties and

kinetic modeling.

2.1 Identifying KH Signatures in the LLBL

In order to efficiently identify intervals for KH waves in the LLBL, a search of the Cluster

Science Archive is performed over the dates when the Cluster spacecraft formation orbit is

in the vicinity of the low-latitude magnetospheric flanks. Plasma parameters including ion

number density, temperature, and total pressure along with the magnetic field properties

are analyzed for specific signatures consistent with KHI observations from the literature.

45



2.1. IDENTIFYING KH SIGNATURES IN THE LLBL

These typical signatures of KHI are as follows:

• Quasi-periodic variation of anti-correlated ion number density and temperature, be-

tween cold dense plasma (of magnetosheath origin) and hot tenuous plasma (of mag-

netoshperic origin).

• Significant total pressure variation – a maximum observed at the edge of the vortex

followed by a minimum at the vortex center.

• Faster than sheath flow, a unique feature observed in simulation results

(H. Hasegawa, Fujimoto, Phan, et al., 2004). In order for the force balance in the

radial direction to be maintained, the hot tenuous plasma must rotate faster than the

cold dense plasma (Nakamura et al., 2004).

• Bipolar variation in the component of the magnetic field normal to the magnetopause

current layer BN . The growing KH wave twists the magnetic field inside of its vortices

as it propagates along the magnetopause. This twisting motion causes the unit vector

normal to the magnetopause surface to change polarity as the magnetopause folds in

on itself resulting in the bipolar variation in BN .

These observations are depicted in an overview plot of the KHI event from June 6th 2002

(Moore, 2012; Moore et al., 2016), shown in Figure 2.1. From Panel (a) of Figure 2.1, there

is quasi-periodic variation between high energy ion (of magnetospheric origin) and low

energy ions (of magnetosheath origin); anti-correlated variation in the ion number density

and temperature are shown to be quasi-periodic in Panels (b) and (c) respectively; quasi-

periodic bi-polar variation in the magnetic field component normal to the magnetopause is

shown in Panel (d); and the total pressure variation plotted in Panel (e) is quasi-periodic –

minimums are encountered as the Cluster spacecraft encounters KH vortices. Observations

of faster than sheath flow are depicted in Panel (c) of Figure 2.2 – the collection of low
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density and high tailward velocity (Vx < 0) in the lower left quadrant denote this faster

than sheath flow..

2.2 Boundary Normal Coordinate System and Vari-

ance Analysis

In order to locate intervals with bipolar variation in the component of the magnetic field

that is most normal to the magnetopause boundary, it is often convenient to rotate the

field data into the Boundary Normal Coordinate System (BNC) denoted by the unit vec-

tors LMN. In the standard notation, N points normal to the magnetopause surface, L

points locally northward and M completes the system. These orthogonal unit vectors can

be obtained from the variance directions through minimum variance analysis of the mag-

netic field (MVAB) or maximum variance analysis of the −v × B electric field (MVAE)

(Khrabrov & Sonnerup, 1998; B. U. Ö. Sonnerup & Scheible, 1998). This method was de-

veloped in the context of a spacecraft traversal across a transition layer such as a current

sheet or a wave front. Therefore this is an invaluable technique in space physics for finding

the unit vector normal to the magnetopause and propagation direction of plasma waves.

MVAB is based on an ideal 1D approximation of a transition layer, such that ∂/∂x = 0

and ∂/∂y = 0 (B. U. Ö. Sonnerup & Scheible, 1998). From the divergence of the magnetic

field (∇ · B = 0), the 1D approximation is ∂Bz/∂z = 0; and from Faraday’s Law, the

1D approximation reduces to ∂Bz/∂t = 0. With these approximations it follows that the

z-component of the transition layer magnetic field is constant in space and time. Suppose

a spacecraft takes 3 distinct magnetic field measurements across a transition layer can be

written as B(1) · n̂ = B(2) · n̂ = B(3) · n̂, such that (B(1) − B(2)) and (B(2) − B(3)) are

not co-linear (B. U. Ö. Sonnerup & Scheible, 1998). It follows that their cross product is
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(a)

(b)

(c)
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(f )

(g)

Figure 2.1: Overview plot of the June 6th 2002 KHI event during PS IMF including
the omni-directional ion energy spectrogram (a), ion number density n (b), ion tem-
perature T (c), normal component of the magnetic field BN (d), total pressure (e),
total magnetic wave power |δBtot|2 (f) and total Poynting flux Stot (g).
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(a)

(b)

(c)

Figure 2.2: Cluster C1, C2 and C3 observations of the ion number density (a); ion
velocity (b); and faster than sheath flow (c) depicted by the fast tailward (-Vx) low
density plasma in the lower left quadrant of (c).
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perpendicular to the transition layer. Ideally B(2) would be measured nearest the transition

layer, while B(1) and B(3) would be measured on either side (B. U. Ö. Sonnerup & Scheible,

1998).

In the real system, the direction normal to a transition layer is not zero and instead, n̂

is determined from the minimum variance of the difference magnetic field vectors across the

transition layer (B. U. Ö. Sonnerup & Scheible, 1998). This minimum variance is shown in

Equation 2.1, where 〈B〉 is the time-averaged magnetic field for all m = 1 : M measure-

ments.

σ2 =
1

M

M
∑

m=1

|(B(m) − 〈B〉) · n̂|2 (2.1)

This minimization is achieved using the method of Lagrange multipliers λ with the con-

straint |n̂|2 = 1, such that

∂

∂nx

(

σ2 − λ(|n̂|2 − 1)
)

= 0 (2.2)

∂

∂ny

(

σ2 − λ(|n̂|2 − 1)
)

= 0 (2.3)

∂

∂nz

(

σ2 − λ(|n̂|2 − 1)
)

= 0 (2.4)

which yields the following:

3
∑

ν=1

MB
µνnν = λnµ (2.5)

MB
µν is the magnetic variance matrix such that MB

µν :=< BµBν > − < Bµ >< Bν >,

where µ, ν = 1, 2, 3 represents the components x, y, z in Cartesian coordinates from the
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original system geometry (B. U. Ö. Sonnerup & Scheible, 1998). The eigenvectors n̂ form

the orthonormal set of variance directions: maximum, intermediate and minimum corre-

sponding to the maximum, intermediate and minimum eigenvalues. The minimum variance

corresponds to the unit vector normal to the transition layer, while the intermediate and

maximum variance directions are co-planar to the transition layer.

In this research variance analysis is also used to determine the wave propagation di-

rection (i.e. the unit wave vector k̂) and the unit vector normal to the magnetopause N.

For the determination of the propagation direction of a plane wave, the minimum variance

direction corresponds to k̂, while the intermediate and maximum variance directions are

co-planar to the wave fronts. And for the determination of N, the minimum variance direc-

tion corresponds to N while the intermediate and maximum variance directions correspond

to L and M respectively as depicted in Figure 2.3.

One limitation of the variance analysis is that it has an 180◦ ambiguity and thus further

information of the system is required in order to resolve this ambiguity. For example, mul-

tiple spacecraft measurements of the same wave signal along with Doppler shift information

may help to resolve the 180◦ ambiguity.

2.3 Kinetic Theory

To this point, we have discussed ideal and resistive MHD plasmas because it is generally an

adequate approximation for a broad range of space plasma systems. However, kinetic theory

offers a much more accurate description of a plasma, including individual particle motion

and it is the foundation for deriving the MHD model. In this section, we will discuss the full

kinetic theory and how it leads into the multi-fluid and single fluid (MHD) approximations.

Kinetic theory treats the plasma as species-specific distributions in the six-dimensional

v-x phase space, defined by the independent, three-dimensional velocity and position vectors
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Figure 2.3: .Illustration of three-point measurement MVAB to determine LMN coor-
dinate system.
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(see Figure 2.4). Consider a collection of plasma such that the number of particles of species

s, Ns, is attained by integrating over its distribution function, fs(x,v, t).

Ns =

∫

V
fs(x,v, t)d

3xd3v (2.6)

Where v and x are independent variables. The conservation of particles moving with volume

V is conserved and therefore the dNs
dt = 0. Differentiating Equation 2.6 with respect to time

gives the following

d

dt

∫

V
fs(x,v, t)d

3xd3v =

∫

V

[∂fs
∂t

(x,v, t) + v · (∇xfs) +
F

m
· (∇vfs)

]

d3xd3v = 0 (2.7)

Taking the force to be the full Lorentz Force, F = qs(E + v×B), Equation 2.7 reduces to

the Vlasov equation.
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∂fs
∂t

(x,v, t) + v ·∇xfs +
qs
m
(E+ v×B) ·∇vfs = 0 (2.8)

Equation 2.8 is often referred to as the collisionless Boltzmann equation. For a magne-

tized plasma, solving the non-linear Vlasov equation coupled with Maxwell’s equations is

a daunting task at best. Landau offered a solution for a homogenous Maxwellian plasma

in the electrostatic limit using linear perturbation theory and residue calculus. Landau’s

solution provided a real and imaginary component, or dispersion relations; the real part

is the dispersion relation for the electrostatic Langmuir wave, while the imaginary part

represents the growth rate for Landau damping. As noted earlier the dispersion relation of

a wave relates the frequency to its wavevector k. Dispersion relations are unique to each

wave mode and thus can serve as an invaluable tool in wave mode identification in plasma

physics. In general, the approximations placed on a plasma restrict the resultant solution

to a particular behavior.

Case in point is the Langmuir wave, which is the description of an electron-scale wave

which propagates parallel to the magnetic field. In order to find the dispersion relation

of such a wave Landau assumed that no ambient fields were present, forced the magnetic

fluctuations to zero, and neglected ion effects. The electrostatic limit with zero magnetic

fluctuations reduces the field equations to Poisson’s equation E = −∇ψ. Furthermore,

Landau placed a limitation on the plasma such that the plasma response was dependent on

small time scales, thus neglecting ion motion and its subsequent effects. Using Maxwellian

distributed electrons forces damping, as there isn’t available energy to generate positive

growth rate.

For magnetized plasmas, a general dispersion relation can be obtained from combining

Ampere’s Law (∇×B = µ0j) and the Faraday’s Equation (∇×E = −δB/δt) to obtain the

following expression:
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∇×∇×E = −µ0
δ

δt
j (2.9)

Linearization of Equation 2.9 and the plane wave approximation yields the following:

[(

k2 − ω2

c2

)

I− kk

]

|δE(ω,k)| = iωµ0|δj(ω,k)| (2.10)

And using the plane wave approximation of the linearized Ohm’s Law σ(ω,k)|δE(ω,k)| =

|δj(ω,k)|, Equation 2.10 reduces to

det

[

k2c2

ω2

(

kk

k2
− I

)

+ ǫ(ω,k)

]

= 0 (2.11)

Where ǫ is the dielectric tensor, and is defined by the following:

ǫ(ω,k) = I+
i

ωǫ0
σ(ω,k) (2.12)

The species specific distribution functions are included in the dielectric tensor. The

dielectric tensor is dependent to type of plasma being described (e.g. a cold magnetized

plasma) Dispersion surfaces are obtained from the non-trivial solutions to Equation 2.11;

these dispersion surfaces describe linear wave propagation in an anisotropic magnetized

plasma.

2.3.1 WHAMP

In this research, the Waves in an Homogeneous Anisotropic, Multicomponent Plasma

(WHAMP) solver is used to solve the general dispersion relation from Equation 2.10 in

§2.3. WHAMP uses a linearized derivation of the dielectric term from Equation 2.10 given

by the following:
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Table 2.1: WHAMP input parameters.

Parameter Description Unit
B background magnetic field nT
m mass to proton mass ratio -
n density cm−3

T temperature eV
T⊥/T‖ anisotropy -
∆ depth of loss cone -
α size of loss cone -

vd/vth Vdrift/Vthermal -

ǫ = I−
∑

j

ω2
pj

ω2

[

I −
∞
∑

j=−∞

∫

d~vΠ

nωcj

v⊥
∂

∂v⊥
+ k‖

∂
∂v‖

ω − k‖v‖ + nωcj
fj

]

(2.13)

Where ωpj is the plasma frequency, ωcj if the gyro-frequency (or cyclotron frequency) and

fj is the distribution function for the jth species. The matrix Π contains nth order square

Bessel functions of argument k⊥v⊥/ωj . WHAMP assumes the background magnetic field

is in the z-direction and uses a coordinate system defined by orthogonal unit vectors ê1, ê2

and ê3 such that B = Bê3, v = v1⊥ê1 + v2⊥ê2 + v‖ê3 and k = k⊥ê1 + k‖ê3. WHAMP is

capable of handling up to 10 species at once each with it’s own unique distribution function.

Furthermore, the input parameters can be adjusted to form non-Maxwellian distributions.

Apart from the background magnetic field, each species has its own set of input parameters

that directly effect its distribution function. Table 3.3 lists the set of input parameters for

species j.

For species with a default Maxwellian distribution, the input parameters are listed in

Table 2.2.

Along with the input parameters for each species listed in Table 3.3, a starting frequency

and wavenumber range are required. The starting frequency is unit-less parameter, scaled

by 1/ωc of the first species provided. The wavenumber range is unit-less vector array of the
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Table 2.2: WHAMP Maxwellian (default) parameters.

Parameter Default
T⊥/T‖ 1
∆ 1
α 0

v‖/v⊥ 0

form [k⊥,start, δk⊥, k⊥,stop] and [k‖,start, δk‖, k‖,stop]; this parameter is scaled by ωc/vth of

the first species provided.

If a solution exists for the specified input parameters in the given frequency and wavenum-

ber range, WHAMP returns a unit-less complex-valued frequency matrix Dim(ωoutput) =

[length(k‖), length(k⊥)] scaled by 1/ωc; ℜ{ωoutput} is the dispersion surface and ℑ{ωoutput}

is the growth rate surface. Positive growth rates suggest that energy is available from the

plasma system to generate the wave, whereas negative growth rates suggests wave damping,

where the wave energy is absorbed by the plasma. Non-Maxwellian particle distributions

can provide energy required to generate wave modes, resulting in a positive wave growth.

WHAMP outputs also include the wave electric and magnetic fields, that can be used to

calculate ellipticity (please refer to §2.8).

To illustrate the abilities of WHAMP, let us model a plasma in the cusp region

(Dombrowski et al., 2012), by making similar assumptions to Landau’s solution – a ho-

mogenous Maxwellian plasma with electron (temporal) scale plasma response – with the

addition of an ambient magnetic field. This system can be modeled as a Maxwellian electron

plasma in WHAMP, with input parameters defined by the following MATLAB script:

T = 2 ; % eV

n = 2149; % cmˆ{−3}

m = 0; % e l e c t r on /proton mass

PlasmaModel .B = 36.850 e3 ; % nT
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a = 1 ; % an i so t r opy

b = 0 ; % s i z e o f l o s s cone

d = 1 ; % depth o f l o s s cone

vd = 0 ; % V dr i f t /V thermal

PlasmaModel . Spec i e s = { . . .

s t r u c t ( ’m’ ,m, ’ n ’ , n , ’ t ’ ,T, ’ a ’ , a , ’ b ’ , b , ’ d ’ , d , ’ vd ’ , vd ) . . .

} ;

f s t a r t = 2∗ p i ∗10 e3/w ce ;

kperp = [−4 .08 0 ] ;

kpar = [−4 .03 0 ] ;

varyKzFirst = 1 ;

useLog = 1 ; % 1 input log10 ( kpar ) and log10 ( kperp )

% 0 input g iven as kpar and kperp

maxIterat ions = 100;

InputParameters = { . . .

s t r u c t ( ’ f s t a r t ’ , f s t a r t , ’ kperp ’ , kperp , ’ kpar ’ , kpar , . . .

’ varyKzFirst ’ , varyKzFirst , ’ useLog ’ , useLog , . . .

’ maxIterat ions ’ , maxIterat ions ) . . .

} ;

The ℜ{ωoutput}-~k dispersion surface is shown in Figure 2.5. The surface color represents

the ellipticity of the wave mode; an ellipticity of ”-1” (dark blue) represents a left-hand

circular polarization, ”0” (white) represents a linear polarisation and ”+1” represents a

right-hand circular polarization. This dispersion surface describes the Langmuir-Whistler

modes (Dombrowski et al., 2012). The Whistler modes are represented by the strong right

hand polarization (bright red spot in Figure 2.5) whereas the Langmuir waves are more
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Figure 2.5: WHAMP dispersion surface for Langmuir-Whistler Modes. Shading rep-
resents wave ellipticity from left-handed circular polarized (strong blue) to linear
polarized (white) to right-hand circular polarized (strong red).

linearly polarized. One of the limitations of WHAMP, is that it is only able to form a

single solution for each ωoutput(k‖, k⊥), when in fact many solutions may exist in the ”full”

solution to the general dispersion relation. In the context of our example, the dispersion

surface shows two distinct wave modes as a single dispersion surface instead of multiple

distinct surfaces.

The theoretical dispersion relation for the electrostatic Langmuir wave mode is compared

to a cut from the WHAMP solution by Figure 2.6. The cut taken from the 2-D dispersion

surface is obtained for approximately k||vth,e/ωce > −3 and k⊥vth,e/ωce ≈ −4. Slight
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Figure 2.6: Comparison of theoretical dispersion relation to slice from WHAMP dis-
persion surface for k‖ >> k⊥.

discrepancies between the WHAMP cut and the theoretical dispersion for k||vth,e/ωce > −1

depicted in Figure 2.6 can most likely be attributed to taking a cut with a varying k|| and

constant k⊥, such that k 6= k2|| + k2⊥. In practice, a cut would be taken at a constant

propagation angle θkB, ensuring that k ≈ k2|| + k2⊥.

2.3.2 MHD Physics

As mentioned throughout the text, there are much more simplistic descriptions of a plasma

system, with the caveat of sacrificing some of the “less important” physics. Plasma proper-
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ties such as velocity, number density and etc. for species s are derived by taking moments

of the distribution function fs(x,v, t) (e.g. integrating the distribution function over veloc-

ity space). For example the number density ns is the zeroth moment of the distribution

function.

ns(x, t) =

∫

V
fs(x,v, t)d

3v (2.14)

The first and second moments of the distribution function are the bulk velocity and energy

shown in Equations 2.15 and 2.16 respectively.

Vs(x, t) =
1

ns

∫

V
vfs(x,v, t)d

3v (2.15)

Es(x, t) =
1

ns

∫

V

1

2
msv

2fs(x,v, t)d
3v (2.16)

Taking moments of the Vlasov equation leads to a fluid description of the plasma. In

doing so, the velocity distribution of the plasma is lost in fluid theory, replaced with a value

averaged over velocity space. The zeroth moment of the Vlasov equation is given by the

following equation:

∫

V

[

∂fs
∂t

(x,v, t) + v ·∇xfs +
qs
m
(E+ v×B) ·∇vfs

]

d3v = 0 (2.17)

which reduces to the fluid continuity equation for a collisionless plasma shown in Equa-

tion 2.18.

Continuity (Fluid)

∂ns
∂t

+∇ · (nsVs) = 0 (2.18)

Similarly the first and second moments of the Vlasov equation reduce to the Momentum
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Equation (Equation 2.19) and the Energy Equation (Equation 2.20) respectively.

Momentum (Fluid)

∂

∂t
(ρsVs) +∇ · (ρsVsVs) =

qs
ns

(E +Vs ×B)−∇ ·Ps (2.19)

Ps is the second-order pressure tensor defined by ms

∫

V (v−Vs)
2fsd

3v.

Energy (Fluid)

1

γ − 1

(

∂

∂t
ps +∇ · (psVs)

)

= −(Ps ·∇) ·Vs −∇ · L (2.20)

Where ps is the scalar pressure, L is the heat flux defined by 1
2ms

∫

V (v−Vs)
3fsd

3v, and γ

is the ratio of specific heats (γ = 5/3 for an adiabatic equation of state).

The two-fluid approximation treats the plasma as electron and ion fluids. To simplify a

plasma system even further, one can reduce the two-fluid approximation into a single fluid

approximation – this is the MHD approximation. This single fluid description of the plasma

is derived from the two-fluid approximation by combing the electron and ion fluid equations

separately and defining the current density, total mass density and combined momentum

as follows:

Current Density

j = e(Vi −Ve) (2.21)

Total Mass Density

ρ = n(mi +me) (2.22)

Combined Momentum

ρu = n(miui +meue) (2.23)

Thus the MHD equations of motion are as follows:
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Continuity (MHD)

∂ρ

∂t
+∇ · (ρu) = 0 (2.24)

Momentum (MHD)

∂ρu

∂t
+∇ · (ρuu) = −∇p+ j×B (2.25)

Generalized Ohm’s Law (MHD)

E+ u×B =
memi

e2ρ

[∂j

∂t
+∇ · (uj+ ju)

]

− M

ǫρ
∇pe +

mi

eρ
j×B+ ηj (2.26)

Equations 2.24, 2.25, 2.26 and the Energy Equation (not shown) define a single fluid

plasma that is isotropic (thermal scalar pressure) and neutral (n = ni = ne). Maxwell’s

equations combined with the single fluid equations (including the single fluid energy equa-

tion) comprise the MHD description of a plasma. Equation 2.26 is called the Generalized

Ohm’s Law. From the right hand side of Equation 2.26, the first term is the electron inertial

term, the second term is the electron pressure term, the third term is the Hall term and

the fourth term is the resistivity. The resistivity η from the resistivity term is produced

by particle-wave interactions in the real system. In the resistive MHD approximation the

numerical resistivity parameter is set to zero and is switched on when the critical current

density reaches a critical threshold. At certain length scales, it is often sufficient sufficient

to drop most of the terms on the right hand side of the Generalized Ohm’s Law. For ideal

MHD all of the terms on the right hand side are dropped so that Equation 2.26 reduces to

E+u×B= 0. Taking P = pI and assuming zero heat flux (∇ · L), the Energy Equation

reduces to:

Energy (Ideal MHD)

∂p

∂t
= −u · p− γp∇ · u (2.27)

The ideal MHD approximation is sufficient for most astrophysical plasmas, however it
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does not retain the physics necessary for small scale processes such as diffusion and magnetic

reconnection. As discussed in §1.3.1, magnetic reconnection violates the frozen-in condition

given by the u×B term. In order to describe a system in which magnetic reconnection

occurs, at the very least the resistive term must be included, thus a resistive MHD approx-

imation of the plasma becomes necessary. The resistive Ohm’s Law is E+u×B= ηj. From

the resistive MHD approximation (resistive Ohm’s law), the resistive form of the energy

equation can be written as shown in Equation 2.28.

Energy (Resistive MHD)

1

γ − 1

(

∂

∂t
p+∇ · (pu)

)

= −∇p · u− ηj2 (2.28)

2.4 Local 2-D MHD Simulations

In-situ satellite observations coupled with physical models are at the foundation of many

published KHI studies. Observations alone are not always sufficient for identifying KHI

at the magnetopause; signatures such as bipolar variation in the normal (to the magne-

topause) component of the magnetic field and faster than sheath flow are good indications

of KH waves, however flux transfer events (FTEs) have been known to produce similar

signatures (Russell & Elphic, 1979). FTE observations have shown bipolar variation in

BN (Paschmann et al., 1982) as well as faster than sheath flow for the magnetosphere

plasma (Korotova et al., 2009). Additionally, trains of flux transfer events can even pro-

duce quasi-periodic structures with periods similar to KH waves. A study of International

Sun-Earth Explorer (ISEE) magnetopause crossings on the dayside magnetosphere showed

that the observed FTEs had a mean periodicity of 3 minutes and and mode of just 3 minutes

(Lockwood & Wild, 1993).

Simulating the magnetopause boundary with a physical model can be an invaluable
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application to test whether or not the interface separating the magnetospheric and mag-

netosheath plasma is unstable to KHI. Ideally a global, fully-kinetic model encompassing

the dynamic solar wind, bow shock, magnetosheath and entire magnetosphere would be

the ultimate simulation, however is infeasible due to computational restrictions. A more

computationally reasonable approach is to use a local 2-D MHD model (Otto & Fairfield,

2000; Nykyri & Otto, 2001; Nykyri et al., 2006). Although MHD has its limitations, it is a

powerful tool when applied within its limiting boundaries. In this research a well accepted

local 2-D MHD local model (Otto & Fairfield, 2000; Nykyri & Otto, 2001; Nykyri et al.,

2006) is used to validate Cluster observations of KHI in the LLBL.

The 2D simulation window is comprised of a boundary separating 2 plasma (and mag-

netic field) regions. For the purpose of this work, these 2 plasma regions and the boundary

which separates them represent the magnetospheric and magnetosheath plasmas and the

magnetopause, respectively. The simulation box corresponds to the low-latitude magneto-

spheric flanks. The initial conditions for defining the simulation plane are assembled via

careful analysis of the the shear flow geometry in the region where the instability is ob-

served. For each side of the boundary, the magnetic field initial conditions are given by

Bx0 = Bsinψ,By0 = 0, Bz0 = Bcosψ, where ψ is the angle between the unperturbed mag-

netic field and the direction normal to the shear flow plane (Nykyri, 2013) (see Figure 2.7).

The direction of the shear flow is in the direction of the MSH plasma velocity, as this is

where the dominant flow exists; the magnitude of the shear flow is calculated by taking the

difference in the magnitudes of the observed MSH plasma velocity and the MSP plasma

velocity projected along the direction of the MSH plasma velocity. Distribution of the initial

density, pressure, velocity and magnetic field magnitudes across the simulation grid are de-

fined by hyperbolic tangent profiles (Otto & Fairfield, 2000) as depicted in Equations 2.29,

2.30, 2.31 and 2.32 respectively. The simulation is seeded by initial velocity perturbations

perpendicular to the boundary separating the MSP and MSH plasmas.
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ρ0(x) =
1

2
(ρmsh + ρmsp) +

1

2
(ρmsh − ρmsp)tanh(

y

L0
) (2.29)

p0(x) =
1

2
(pmsh + pmsp) +

1

2
(pmsh − pmsp)tanh(

y

L0
) (2.30)

v0(x) =
1

2
(vmsh + vmsp) +

1

2
(vmsh − vmsp)tanh(

y

L0
) (2.31)

b0(x) =
1

2
(bmsh + bmsp) +

1

2
(bmsh − bmsp)tanh(

y

L0
) (2.32)

The subscripts msp and msh correspond to the magnetospheric and magnetosheath sides

of the simulation boundary respectively and L0 is the length scale which corresponds to

the width of the boundary layer (Otto & Fairfield, 2000; Nykyri & Otto, 2001). The KH

wave length of the fastest growing mode is proportional to the boundary layer thickness, L

(λ (2−4)πL) (Miura & Pritchett, 1982). The vortex size of the each mode is approximately

1/4 of the wave length of the mode.

In the 3D system, KH waves are not bound to the equatorial plane and may propagate

wherever the onset condition is satisfied. Propagation of KH waves outside of the shear

flow plane is accomplished in the 2D model by tilting the simulation window by an angle

of φ, such that φ is the angle between the KH wave vector kKHI and the shear flow plane

(see Figure 2.7).

The model is defined by a set of resistive MHD equations (Otto, 1990) which are dis-

cretized using a finite difference leap frog technique (Potter, 1973) over a non-uniform Carte-

sian grid with the highest resolution at the boundary layer. Selection of the time step and

spatial grid resolution used in the numerical differentiation is restricted by the Courant-

Friedrichs-Lewy condition to ensure that the numerical solution is physically valid. The
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ψ

Figure 2.7: Schematic of the simulation plane (Otto & Nykyri, 2003); (Panel a) angle
between the ambient magnetic field and direction normal to the shear flow plane, ψ;
(Panel b) the angle between kKHI , φ.
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Courant-Friedrichs-Lewy condition states that the speed of information must not surpass

a single grid cell in a single time step (Fletcher, 1988). To satisfy the Courant-Friedrichs-

Lewy condition, the temporal δt and spatial δx, δy resolutions must be chosen such that

following inequality is satisfied

v
δt

δx
+ v

δt

δy
≤ CMAX (2.33)

where v =
√

v2A + v2s . For an explicit finite difference method, CMAX = 1.

2.5 Identifying High-Frequency Waves

Identifying intervals of high-frequency wave activity relative to the KH wave frequency is

accomplished through analyzing (temporal) wavelet spectrograms performed on the high-

resolution magnetic field data in the desired frequency range. The 22.4 Hz data capture rate

of the Flux Gate Magnetometer (FGM) instrument onboard Cluster allows for spectrogram

analysis of up to ≈ 11.2 Hz.

In order to capitalize on the most ion heating rich regions, the ion mixing regions are

identified in order to conduct a search for high-frequency wave activity. H. Hasegawa et al.

(2009) has shown evidence of three distinct ion energy populations during an extended

interval when the magnetopause boundary was under KHI: (1) low-energy MSH-like ion

centered about 1 keV, (2) high-energy MSP-like ions centered about 10 keV and (3) a

population with an energy range of ≈1 - 10 keV. It is in the mixed plasma region that we

focus our search for enhanced wave activity because we hypothesize this to be the source

region of ion-heating and the heating mechanism. Various filtering techniques (i.e. low-

pass, high-pass and band-pass filtering) are applied to the high-resolution magnetic field

data in the regions of enhanced wave activity inside the ion mixing regions. Filtering out
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the lower amplitudes and waves with frequencies outside the desired range from the signal

makes for easier identification of wave packets, under the assumption that the signal is a

linear superposition of the waves present in the data. One must take precaution when using

frequency filtering, as artifacts due to bleeding across spectral peaks and instrument induced

effects due to spacecraft spin and data capture rate frequencies can present themselves in

the data.

2.6 Experimental Dispersion Relation

The wave vector magnitude of an electromagnetic wave can be determined experimentally

by the observed phase shift between two spacecraft with the limitation that the spacecraft

separation is on the order of the observed wavelength (Balikhin et al., 1997; Dimmock et al.,

2013). The phase shift of an electromagnetic wave passing through two spatially separated

spacecraft is given by the following relation:

Ψ(ω1) = ~k(ω1) · ~R = |~k(ω1)||~Rcos(θkR)| (2.34)

Where Ψ(ω1) is the phase shift and θkR is the angle between wave vector ~k(ω1) and the

separation vector ~R. The phase shift is estimated by taking the (spatial) wavelet transform

of the magnetic field and k̂ is determined via MVAB B. U. O. Sonnerup & Cahill (1967)

and the corresponding multi-spacecraft geometry (e.g which spacecraft observes the wave

first).

For each frequency bin, the full wave vector can be reconstructed and thus the dispersion

relation can be resolved in the spacecraft frame. Applying a Doppler shift transform to the

frequencies in the spacecraft frame ω, yields the plasma rest frame frequencies ω1 (see
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Equation2.35).

ω1 = ω + ~k (ω1) · ~V (2.35)

Where ~V is the measured plasma velocity. This experimentally determined dispersion

relation can be compared with a theoretical dispersion relation and in combination with

other wave properties such as the polarization, polarity and propagation angle, the plasma

wave mode can be identified.

2.7 Statistical Study

2.7.1 Data Binning Process

Events Selection

The KHI database was populated from a list of previously published KH events, validated

with simulations (based on observational data) leading to the onset of KHI, with varying

IMF configurations. This database contains five dawn-flank events – one mixed PS-OPS

IMF event (Nykyri et al., 2006), two PS IMF events (Moore, 2012; Moore et al., 2016)

and two OPS IMF events (Moore, 2012; Moore et al., 2016) – and one dusk flank event

under northward IMF (H. Hasegawa, Fujimoto, Phan, et al., 2004). Observations consis-

tent with KHI are quasi-periodic variations in the plasma and field parameters including

anti-correlated density and temperature, bipolar variation of the magnetic field component

normal to the magnetopause, total pressure variations, with strong pressure minimums at

the center of the vortex.

For the non-KHI database, the Cluster Science Archive was searched for boundary cross-

ing which did not exhibit observations commonly associated with KHI. It is worth noting

that although the non-KHI database consists of events which lack observations consistent
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KHI, there is currently no way to exclude the possibility that KHI was previously acting

on the magnetopause boundary.

The total time duration of observations is about ≈ 12.5 hrs for KH events and ≈ 13 hrs

for non-KH events. The discrepancy in times is taken into account in various statistics by

including a weighting factor.

Data Binning

In order to perform statistics on boundary crossings during KHI activity, the data is binned

with respect to ion energy level. Fluctuations in ion energies between cold-component

and hot-component ions of magnetosheath and magnetospheric origin respectively as well

as a mixed population of moderate energies has been observed during periods of KHI

(H. Hasegawa, Fujimoto, Phan, et al., 2004). Thus, ion energies are separated into three

levels – magnetosphere (MSP), magnetosheath (MSH) and mixed (MIX) levels – represen-

tative of their corresponding plasma regions. Determination of these energy level values

(and subsequent plasma region bin) is based on statistical analysis of the ion distribu-

tion in flux-energy space over the event interval. This is performed systematically for each

event. The ion energy spectrogram data from the Hot Ion Analyzer (HIA) on board Cluster

Spacecrafts 1 and 3 have been obtained from the Cluster Science Archive.

Peaks in the flux-energy distribution are stored for each time stamp and used to con-

struct a frequency (occurrence) distribution of observed ion energies. By careful examina-

tion of the peaks in the ion energy frequency distributions along with associated tempera-

ture, number density and total pressure profiles, two thresholds are determined correspond-

ing to two out of the three MSP, MIX and MSH plasma profiles. The third threshold is

calculated, such that Ebin
MIX = AV Glog10(E

bin
MSH , E

bin
MSP ).

A pictogram illustrating how the binning algorithm is implemented to select the energy

levels for the MSH, MIX and MSP bins is shown for the June, 6th 2002 event in Figure 2.8.
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The top panel of Figure 2.8 shows an overlay of the flux-energy distributions for the entire

hour interval from the June 6th 2002 event. From the middle panel of Figure 2.8, it is

apparent that Ebin
MSH and Ebin

MSP are statistically determined to be 722 eV and 9.90×103 eV

respectively. Therefore Ebin
MIX is calculated to be the log10-average of the MSP and MSH

energy levels, 2.67 × 103 eV .

For data to be sorted into its appropriate plasma region (energy level bin), the corre-

sponding ion energy needs to be assessed for each time stamp; this is accomplished system-

atically. For each time stamp, the ion energy weighted average is calculated in log10-space,

such that AV Glog10(KE) =
∑N

i=1 KEi∗KEflux,i
∑N

j=1 KEflux,j
. The AV Glog10(KE) from each time stamp

from the June 6th 2002 event are plotted in the bottom panel of Figure 2.8 along with the

energy bin thresholds. The resulting weighted average is then sorted into its appropriate

energy bin by taking the minimum (absolute) difference between the three thresholds; e.g.

for time stamp τ , its corresponding energy bin is determined by the minimum difference

of the ion energy thresholds min(|AV Glog10(KE
τ ) − log10(

[

Ebin
MSH Ebin

MIX Ebin
MSP

]

)|). Fig-

ure 2.9 shows qualitatively how the binning algorithm sorts into the three plasma region

bins.

2.7.2 Ion-scale MVAB Wave Intervals

In order to collect information on the propagation angle θkB between the wave (unit) vector

k̂ and the background magnetic field B, a sliding window minimum variance analysis on

the high-pass filtered 22.4 Hz magnetic field (MVAB) is performed. The (temporal) length

of the window ∆t is proportional to the desired frequency such that ∆t = 1/(2fj) where

j is the jth-index of the frequency array. A step size equal to 50% of ∆t is used allowing

for some overlap. The frequency array is a power of two distribution of frequencies ranging

from 0.05 Hz to 2.7 Hz.
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Figure 2.8: Statistical Determination of Energy Levels. Overlay of ion flux-energy
distributions of from all time stamps (top panel); ion energy frequency distribution
(middle panel); and weighted mean energy for each time stamp (bottom panel).
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Time (Hours)

Figure 2.9: Binning algorithm output. A plot of the plasma parameters relative to
its plasma region sorting (bottom panel) by the binning algorithm for the June 6th

2002 event.

For data integrity only MVAB wave intervals with an eigenvalue ratio λint/λmin > 5

are retained. Furthermore, only well polarized MVAB wave intervals (
√

λint/λmax > 0.5)

are retained for computing statistics.

2.8 Ellipticity Calculation

Almost as important to wave identification as a dispersion relation is a plasma waves’

ellipticity. For electromagnetic waves, the ellipticity describes the polarity and handedness

of a wave with respect to its propagation direction k. Together they define how the wave

fields (e.g. δB(x, t)) oscillate in time with respect to k. For a plane wave, the handedness

describes the direction in which the field vectors ”rotate” about k in the plane perpendicular

to k; in other words right-hand and left-hand waves follow the right-hand and left-hand rules

respectively, where the thumb points in the direction of k.
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Suppose an electromagnetic wave is propagating in the positive z-direction, with mag-

netic field oscillations bound to the xy-plane such that k= kẑ, B= B0ẑ and

δ ~B ≈ B0[cos(ωt)x̂+ sin(ωt)ŷ] (2.36)

The trace of the magnetic field vector about k is shown in the left panel of Figure 2.10.

However, in plasma physics and in the context of this thesis, we are more concerned with the

polarization relative to the ambient magnetic field. In this case, the trace of the magnetic

field about the background (ambient) magnetic field B can be determined by rotating

the wave magnetic field δB into the variance directions determined by MVAB. Thus the

wave described in Equation 2.36 follows the right-hand rule with respect to the ambient

magnetic field (pointing out of the page) as seen in the right panel of Figure 2.10. Although

it might be tempting to use descriptors such as ”clockwise” and ”counter-clockwise”, doing

so will only lead to confusion. Descriptors like “clockwise” and “counter-clockwise” are

frame dependent (e.g. source vs observer) and not particularly useful after rotating into

the MVAB coordinates, especially when considering the angle between the wavevector and

the ambient magnetic field θkB.

Wave polarity is analogous to eccentricity from Algebra, except a polarization of 1 rep-

resents circular polarization, 0 represents linear polarization and polarity ∈ (0, 1) represents

an elliptical polarization. Thus, the circular polarized electromagnetic wave from Equation

2.36 and Figure 2.10 has a polarity of 1.

The ellipticity can be extracted from satellite field measurements such as Cluster’s FGM

instrument. Although the ellipticity can be calculated from electric field measurements,

Cluster’s EFW instrument can only resolve the two-dimensional electric field in the spin

plane. Subsequently the electric field component along the spin axis is derived from the ideal

MHD approximation (E = −v×B) and thus some important physics in regions deviating
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Figure 2.10: Trace of the wave magnetic field vector δB of an electromagnetic wave
propagating with respect to the propagation direction k (left panel) and trace of δB
rotated into MVAB coordinates with respect to the ambient filed B.

from ideal MHD are lost. In this thesis, the ellipticity is calculated using the high resolution

magnetic field data from Cluster’s FGM instrument.

In this research, two methods are used to calculate the ellipticity: (1) ellipticity, ǫ de-

scribed by Krauss-Varban et al. (1994) and (2) the degree of ellipticity, Vp described by

Carozzi et al. (2001). Both methods are dependent upon the wave fields (wavelet transform

of the high resolution magnetic field) that have been rotated into a field-aligned (Bavg)

coordinate system. The Bavg-aligned coordinate system is defined by a set of three or-

thonormal vectors, ê‖, ê⊥1, ê⊥2 such that ê‖ is parallel to Bavg and ê⊥1, ê⊥2 are coplanar,

perpendicular to Bavg as illustrated in Figure 2.11. It turns out that the specific directions

of the coplanar vectors ê⊥1, ê⊥2 in relation to the original coordinate system are arbitrary

as long as ê‖ is parallel to Bavg and together form a right handed coordinate system such

that ê‖ × ê⊥1 = ê⊥2.
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Figure 2.11: Orientation of the field-aligned coordinate system defined by the or-
thonormal vectors ê‖, ê⊥1, ê⊥2.

Ellipticity ǫ

The ellipticity as defined by Krauss-Varban et al. (1994) essentially calculates the difference

between the in right-hand circularly polarized and left-hand circularly polarized field powers,

ER and EL respectively. ER and EL are defined by Equations 2.37 and 2.38 respectively,

and the ellipticity is defined in Equation 2.39.

ER =
1√
2

[

δE⊥1 + iδE⊥2

]

(2.37)

EL =
1√
2

[

δE⊥1 − iδE⊥2

]

(2.38)

ǫ = ℜ{ER − iEL

ER + iEL
} (2.39)
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Degree of Ellipticity Vp

The Stoke’s Parameters [I Q U V ]T are quantities that describe the behavior of the oscil-

lating field associated with an electromagnetic wave. I is the total (polarized and unpolar-

ized) intensity; Q is the difference between horizontal linear and vertical linear polarized

intensities; U is the difference between +45◦ and − 45◦ linear polarized intensities; and V

is the difference between right hand circular and left hand circular polarized intensities.

Carozzi et al. (2001) formulated a set of Stoke’s Parameters based on the wave fields for

wide band polarimetry.
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(2.40)

The Stoke’s Parameters from Equation 2.40 are used in this research to resolve the

behavior of the wide band wave magnetic field (δB ∈ (0, 22.4/2Hz]). More specifically

the degree of ellipticity Vp shown in Equation 2.41 is used to determine the handedness and

polarity of the wave magnetic field with respect to Bavg.

Vp =
V√

Q2 + U 2 + V 2
(2.41)

Table 2.3 details how the ellipticity ǫ (Krauss-Varban et al., 1994) and degree of el-

lipticity Vp (Carozzi et al., 2001) describe the motion of the wave field associated with a

propagating wave.

78



2.8. ELLIPTICITY CALCULATION

Table 2.3: Ellipticity ǫ and degree of ellipticity Vp ranges.

ǫ, Vp ∈ Handedness Polarity
−1 left circular

(−1, 0) left elliptical
0 – linear

(0, 1) right elliptical
1 right circular

Field-Aligned Coordinate System

Because the ellipticity calculations are dependent upon the perpendicular wave-field com-

ponents, the high-resolution wave magnetic field must first be rotated into a field aligned

coordinate system (see Figure 2.11). A set of orthonormal basis vectors ê‖, ê⊥1, ê⊥2 that

make up this field-aligned coordinate system are determined using the Gram-Schmidt Pro-

cess. ê‖ is first established by calculating the unit-vector parallel to the ambient magnetic

field from the smoothed low-resolution magnetic field data. Then an arbitrary vector is

chosen such that it is not parallel to ê‖; this second vector is selected in practice by using

the minimum (maximum) variance direction N determined using MVAB (MVAE) to ensure

a non-parallel vector to ê‖. The following algorithm shows how ê⊥1 and ê⊥2 are determined

using the Gram-Schmidt process:

v2 = N

ê⊥1 =
v2 − ê‖ · v2

||v2 − ê‖ · v2||

ê⊥2 = ê‖ × ê⊥1
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Validation

Suppose a right-hand circular polarized with wave magnetic field δB ≈ B0[cos(ωt) ê⊥1 +

sin(ωt) ê⊥2] propagates along k = kê‖ in an ambient field B = B0ê‖. Figure 2.12a shows

that δB⊥2 leads δB⊥1 in phase by π/2. From Figures 2.12b and 2.12c, the ellipticity ǫ

and degree of ellipticity Vp are in good agreement, depicting a right-hand circular polarized

wave.

Similarly suppose a left-hand circular polarized with wave magnetic field δB ≈

B0[cos(ωt) ê⊥1 − sin(ωt) ê⊥2] propagates along k = kê‖ in an ambient field B = B0ê‖.

Figure 2.12a shows that δB⊥1 leads δB⊥2 in phase by π/2. Figures 2.13b and 2.13c the

ellipticity ǫ and degree of ellipticity Vp both depict a left-hand circular polarized wave.

Finally, Figure 2.14 shows a comparison of Vp from Nykyri et al. (2011) (top panel) and

the algorithm used in this research (bottom panel). In order to determine the perpendicular

wave components of the magnetic field, both panels from Figure 2.14 are obtained by

rotating the magnetic wave-field data into a (magnetic) field aligned coordinate system.

80



2.8. ELLIPTICITY CALCULATION

0 1π/2 π 3π/2 2π 5π/2 3π 7π/2 4π
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ω t [radians]

δ
 B

 [
n

T
]

 

 

δ Β
⊥1

δ Β
⊥2

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

B
int

B
m

a
x

θ
kB

179.9216

  
[n

T
]

  [nT]

Figure 2.12: (a)Right-hand wave signal, (b) the ellipticity ǫ and (c) degree of ellipticity
Vp. 81



2.8. ELLIPTICITY CALCULATION

0 1π/2 π 3π/2 2π 5π/2 3π 7π/2 4π
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ω t [radians]

δ
 B

 [
n

T
]

 

 

δ Β
⊥1

δ Β
⊥2

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

B
int

 [nT]

B
m

a
x
 [
n

T
]

θ
kB

179.8391

Figure 2.13: (a)Left-hand wave signal, (b) the ellipticity ǫ and (c) degree of ellipticity
Vp. 82



2.8. ELLIPTICITY CALCULATION

Figure 2.14: Ellipticity from (a) Nykyri et al. 2011 and (b) algorithm developed in
this thesis.
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Chapter 3

Case Study

The work within this Section has been published and first appeared in Nature Physics in

September 2016 (Moore et al., 2016).

3.1 Introduction

Understanding the transport and heating of plasma across different spatial and temporal

scales is particularly important in laboratory and space plasmas. The specific entropy,

Si = Ti/n
2
3 (where Ti is the ion temperature in eV/cm and n is the ion number density) in-

creases by two orders of magnitude from 2.5 -70 eV cm2 in the magnetosheath to 700 -16000

eV cm2 in the magnetosphere (Borovsky & Cayton, 2011). Theoretical work suggests that

stochastic ion heating (perpendicular to the magnetic field) via kinetic Alfvén wave (KAW)

turbulence may to some extent be responsible (Johnson & Cheng, 2001). Amplification

of perpendicular wave power at the Earth’s magnetopause can be explained by the the-

ory of mode conversion of compressional magnetohydrodynamic (MHD) waves into KAWs

(Johnson et al., 2001). Observations of mode conversion from surface waves to KAWs in-

cluding the transport of both electromagnetic energy and plasma at the Alfvén resonance
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location have been made (Chaston et al., 2007). Furthermore, in a recent statistical study,

it has indeed been shown that the spectral energy densities of ion-gyro radii scale waves are

stronger on the dawn flank (Yao et al., 2011). However, these studies have not determined

experimentally the wave vector (k) of the observed waves which is required for a robust

wave mode identification.

At the magnetopause, a strong velocity shear takes place between the magnetosheath

and magnetospheric plasma and as a result, ultra-low frequency Kelvin-Helmholtz Waves

(KHW) are generated by Kelvin-Helmholtz Instability (KHI). The fastest growing KHWs

typically have wavelengths of the order (2-4π∆), where ∆ is the width of the velocity

shear layer (Miura & Pritchett, 1982). Assuming that a velocity shear layer has a width

of approximately 4800 km in the source region of the wave, then the fastest growing KH

mode has a wavelength of about 30,160 - 60,320 km which is well above the ion inertial and

gyro radius scales. Mass transport across the magnetopause associated with KHI has been

quantified in simulations and shown to be efficient in generating a cold-dense plasma sheet

in the time scale of about 2 hours (Nykyri & Otto, 2001, 2004). Due to smaller magnetic

field tension at the dawn-flank during Parker-Spiral IMF (which is the most frequent IMF

orientation), the simulations have shown that KH is more unstable at the dawn-flank past

the terminator (Nykyri, 2013). It has therefore been suggested that KHI and associated

processes may be responsible for the dawn-favored plasma sheet density and temperature

asymmetry (Nykyri, 2013).

Prior theoretical work has shown that MHD FMWs can be excited by magnetosheath

flows in a presence of total pressure perturbations (Mann et al., 1999). The fast magne-

tosonic modes are the kinetic counterpart of the MHD FMWs. Previous simulations also

suggest that perpendicular propagating, large amplitude magnetosonic waves, with fre-

quencies ωci < ω < ωLH , can accelerate ions via the ~v × ~B-force parallel to the wave fronts

sufficiently damping the wave (Lembege et al., 1983). Investigation of the subharmonic-
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resonant interaction between ions and perpendicular propagating MHD waves has shown

that ions can be effectively perpendicularly heated for increasing wave magnetic field δ|B|,

but are limited to their source region as they are short lived (Terasawa & Nambu, 1989a).

Here, we present the first observations of a short lived (ion-scale) Fast Magnetosonic

Wave (FMW) that originates inside of an MHD-scale Kelvin-Helmholtz (KH) vortex,

characterized by a strong total pressure minimum (see Figure 3.1). KH waves are cre-

ated by a velocity shear and have been frequently observed at the magnetopause of

Earth (Fairfield et al., 2000; H. Hasegawa, Fujimoto, Phan, et al., 2004; Nykyri et al., 2006;

Taylor et al., 2012; Hwang et al., 2011; Yan et al., 2014; Kavosi & Raeder, 2015) and other

planets (Pope et al., 2009; Masters et al., 2010; Boardsen et al., 2010; Sundberg et al.,

2012). The observed magnetosonic wave has adequate energy to provide ≈ 2 keV energy

increase for the cold-component ions of magnetosheath origin.

It is well known that macroscopic velocity shears can lead to the formation and exci-

tation of KH instabilities (H. Hasegawa, Fujimoto, Phan, et al., 2004) and ion-scale waves

(Ganguli et al., 2002; Nykyri et al., 2003). In addition, the inclusion of smaller length-

scale terms in the generalised Ohms law produces multi-scale effects in the simulations

of the Kelvin-Helmholtz Instability (KHI). For example, it has been shown that includ-

ing the Hall term produces ion-inertial-scale structures within large MHD scale vortices

(Nykyri & Otto, 2004). Similarly, the addition of the electron inertial term allows for the

formation of electron-scale vortices inside an MHD-scale KH vortex (Nakamura et al., 2004).

Despite this, these multi-scale KH waves have not yet been verified with observations, and

while they may contribute to plasma transport, they are currently not linked to ion or

electron heating.

Simulations (Nykyri & Otto, 2001, 2004) and observations (Nykyri et al., 2006;

H. Hasegawa et al., 2009) also have shown that the KHI can generate magnetic reconnec-

tion as a secondary mechanism. In these cases, isolated ion beams accelerated anti-parallel
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with respect to background magnetic field were observed during brief intervals which sat-

isfied the reconnection criteria within the KHW (Nykyri et al., 2006). In a previous study

(H. Hasegawa et al., 2009), clear experimental evidence of ion-scale current sheets forming

near an MHD-scale KH vortex were reported. However, in this case, the circumstances did

not allow the authors to resolve particle heating on ion-scales like the present study. It is

also noteworthy that the formation of ion-scale current sheets inside MHD-scale vortices

have been generated in a simulated environment Rossi et al. (2015), thus strengthening the

interpretation of in-situ measurements.

Yet to be shown in observations, recent two fluid simulations show the formation of

shock structures inside KH vortices (Palermo et al., 2011). In the magnetotail, it has been

shown that fast Earthward plasma flows can lead to an ion temperature asymmetry that

can generate ion-scale mirror-mode structures (Zieger et al., 2011). The present manuscript

describes the first unambiguous experimental determination of an obliquely propagating

kinetic magnetosonic wave located inside of an MHD-scale KH vortex in which ions were

heated during the wave interval. In the magnetosheath side of the vortex, we observed

nearly parallel propagating left-handed waves (LH interval) that likely belong to the ion

cyclotron or kinetic Alfvén branch. We also analyse an upstream interval with considerable

wave power containing right-hand polarized waves that propagate above and below ωci (RH

interval). The coupling of the MHD - scale KH instability and the ion scale wave activity

seems to be responsible for the observed ion heating. What is noteworthy is that this

heating may explain the origin of the ion temperature asymmetry reported in the plasma

sheet. Since this mechanism leads to non-adiabatic cross-scale heating, it may be also

important elsewhere in the universe where velocity shears are present.
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3.2 Cross-Scale Observations

On June 6th 2002, the four Cluster spacecraft (≈ 100 km from each other ) traversed

the dawnside flank of the Earth’s magnetosphere under a Parker Spiral oriented IMF (see

Figure 3.1). Observations show periodic (τ ≈ 3 min) encounters both with magnetosheath-

like and magnetospheric-like plasma regions and bipolar variations of the normal com-

ponent (BN ) of the magnetic field (see Figure 3.2). Fluctuations in the total pressure

(PT ) range from 0.1 to 0.33 nPa and brief intervals of ‘faster than sheath flow’-plasma

(H. Hasegawa et al., 2006) are observed in the tenuous magnetospheric-like regions. The

magnetopause boundary was determined to be KH unstable (please refer to the § 3.4 for a

detailed analysis of the KH observations and simulations). We estimate that the observed

KHW has a wavelength ≈ 36,000 km.

A high frequency magnetosonic wave was detected between 13:27:36 - 13:27:54 UT

inside a vortex of the KHW characterized by the total pressure minimum (see Figures 3.1

and 3.2). Plotted in Figure 3.3 is the experimental dispersion relation compared to cuts

from the kinetic dispersion surface and theoretical dispersion relations for an MHD FMW,

kinetic Alfvén wave (KAW) (Stasiewicz et al., 2000) and an Ion-Cyclotron (IC) wave (Stix,

1992). The MHD FMW dispersion relation is defined by the following expression:

ω2 =
k2

2

(

c2ms +

[

(v2A − c2s)
2 + 4v2Ac

2
s

k2⊥
k2

]1/2
)

(3.1)

where c2ms = c2s + v2A. The plasma parameters in Equation 3.1 taken from the

magnetosheath-like plasma interval just outside of the FMW interval are as follows: Alfvén

speed VA = 2.47 × 105m/s, sound speed cs = 2.34 × 105m/s, and the magnetosonic speed

cms = 3.40 × 105m/s. The closeness between the experimental, and theoretical MHD

FMW dispersion in Figure 3.3 is striking. This agreement is strongly suggestive that the

electromagnetic wave packet consists of FMWs with wavelengths of 200-2,000 km. Al-
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scale (200 -2000 km) Fast Magnetosonic Mode wave packet. Total pressure and
density from simulation and Cluster data is shown. The blue, green and pink asterisks
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though the observed wave packet satisfies the MHD fast mode dispersion relation, it likely

belongs to the kinetic magnetosonic branch (Krauss-Varban et al., 1994) because its fre-

quency is in the vicinity of the local proton cyclotron frequency. The kinetic dispersion is

determined by using a hot plasma dispersion solver – waves in a homogeneous, anisotropic

multicomponent plasma (WHAMP (Roennmark, 1982)). Shell-like distribution functions

were observed for the ion and electron species (see Figure 3.4) and are used as an input for

the WHAMP solver (Colpitts et al., 2012) (see Table 3.3); magnetosonic wave observations

have been associated with shell-like ion distributions through observations (Perraut et al.,

1982; Boardsen et al., 1992; Meredith et al., 2008; Balikhin et al., 2015; Walker et al., 2015)

and simulations (Min & Liu, 2015). The kinetic solution is depicted in Figure 3.5. Cuts at

varying propagation angles are taken from the WHAMP dispersion surface to be compared

with the experimental dispersion; the cut corresponding to the 71◦ propagation angle with

respect to the ambient field is in best agreement with the experimental dispersion (Fig-

ure 3.3). Furthermore, a positive wave growth (evidenced by the positive imaginary part

in Figure 3.6) suggests that there is sufficient energy supplied by the observed shell-like

distributions to generate this wave mode. From Figure 3.3, the theoretical KAW and IC

dispersion relations are not in agreement with the experimental results.

Stronger emissions in the Bz spectrum from Figure 3.9 occur slightly upstream of the

FMW interval. The RH and LH intervals occur during 13:25:52 - 13:26:07 UT and 13:26:28 -

13:27:09 UT respectively. Over the RH interval, the Bz spectrum depicts separate emissions

above and below ωci. Further analysis shows (see § 3.5) that the right-handed wave which

propagates above the ωci most likely belongs to the magnetosonic branch. The right-handed

wave mode (RH interval) that propagates below ωci most likely belongs to the KAW branch

(see Figure 3.8 (LH interval) most likely belongs to the KAW or ion-cyclotron branch (see

Figure 3.8). It has been suggested that KAW activity is linked to KHI via mode conversion

(Johnson et al., 2001; Chaston et al., 2007) and that KAW can heat ions stochastically
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FMW FMW
(a)

(b)

Figure 3.4: Observed distribution ion and electron distribution functions observed by
C1 during the FMW wave interval.
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(Johnson & Cheng, 2001) at the magnetopause. The right-handed mode from the RH

interval that propagates above ωci might very well belong to the magnetosonic branch.

Please refer to § 3.5 for a more detailed analysis on the RH, LH and FMW intervals.

Table 3.1: Table of wave profiles for right hand, left hand and fast magne-
tosonic wave modes. Wave properties and local plasma parameters for the observed
RH, LH and FMW intervals. The < ωic and > ωic subscripts denote propagation an-
gles from MVAB for frequency ranges below and above ωic respectively.

RH LH FMW

Polarisation right-handed left-handed right-handed
θkB,1 88◦<ωic

4◦ 95◦

θkB,4 89◦>ωic
92◦

β 0.79 0.42 1.0
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3.3 Cold Component Ion Heating

The ion spectrogram in Figure 3.10b shows clearly a 1.39 keV ion population at ≈ 13:27:32.4

followed by 2.6 keV and 3.4 keV ion populations with the same flux magnitudes of ≈ 3.8×105

keVcm−2s−1sr−1keV−1 (light orange color). The net increase in the kinetic energy flux, ∆

KEflux, is estimated by integrating the instantaneous change in KE over the wave interval to

get ≈ 7.0×106 keVcm−2sr−1; the solid angle is assumed to be unit-less. The total Poynting

flux of the FMW, Stot, is plotted over the shaded pink wave interval in Figure 3.10b, where

Smax
tot ≈ 2.5 × 106 keVcm−2s−1. Similarly by integrating the instantaneous Stot over the

wave interval, we arrive at a total integrated Poynting Flux of ≈ 4.4 × 106 keVcm−2. The

total integrated Poynting Flux and the integrated ∆ KEflux have values that are of the

same order of magnitude; discrepancies are most likely owed to the fact that the Poynting

Flux is calculated using Cluster 4 whereas the ∆ KEflux is calculated using Cluster 1;

this is because the 3D particle energy flux data is only available for Cluster 1 and Cluster

3, whereas the electric field data use for the Poynting Flux calculation is corrupted for

Cluster 1 during for the wave interval. Assuming that the FMW is completely damped, its

wave energy is sufficient to cause a ≈ 2 keV increase in the ion energy when assuming an

integrated flux magnitude of ≈ 7.0 × 106 keVcm−2sr−1.

The condition for cyclotron resonance (Terasawa & Nambu, 1989b) ω − k||V|| = nωci

(n = ±1,±2,±3, ) is met for the fourth harmonic and is consistent with the parallel velocity

bands observed in the ion distribution functions during the wave interval. The experimental

dispersion relation shows that the FMW packet consists of waves with frequencies ≈ 1-9

times the ωci. We expect this to be a possible mechanism responsible for the ion heating.

It has been shown that velocity shears (including those generated by KHI) can generate a

broad spectra of electromagnetic waves (Peñano & Ganguli, 1999, 2000, 2002; Tejero et al.,

2011; Ganguli et al., 2014). The macroscopic velocity shear originating from the interaction
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Figure 3.10: Cluster data showing the mixing region where cross-scale en-
ergy transport takes place. Omni-directional Ion Energy Spectrogram (Panel a)
and the total Poynting flux Stot calculated with the high pass filtered electric and
magnetic fields with a cutoff frequency of 0.2 Hz (Panel b). The total integrated
Poynting flux is provided for the RH, LH and FMW intervals denoted by the blue,
green and pink shaded regions respectively. Please note that the total Poynting flux
is calculated from C4 data because the electric field and wave (EFW) data from C1

is corrupted for the interval 13:00:00 - 14:00:00 UT. The three blue arrows (Panel a)
represent the 1.39 keV, 2.6 keV and 3.4 keV ion energies.

between the solar wind and the Earth’s magnetosphere provides free energy which generates

KHI on MHD scales. We have estimated that the kinetic energy per unit area contained in

the velocity shear is about 840 keV cm−2. Twisting and compression of the magnetic field

and plasma by the KHI is estimated to use about 820 keV cm−2 leaving a surplus of about 20

keV cm−2. The wave energy given by the integrated Poynting flux is ≈ 22 % of the available

energy surplus. It is well possible that other similar wave packages have been excited in

other regions not observed in-situ by the spacecraft. We would like to note that 22% is an

estimate based on a single wave packet, and does not include any contributions from the

additional structures we observed during this interval. As a result, 22% can be interpreted

as a conservative estimate which would likely increase if all wave packet contributions could

be included. The calculation of the global impact from cross-scale coupling mechanisms

are better suited to studies of a statistical nature, and for this, more events are required.

However, we should stress that suitable observations of such a phenomena are very rare due
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to the requirement of numerous strict criteria such as: 1) the occurrence of MHD-scale KHI

during its non-linear phase, 2) simultaneous measurement of clear and coherent ion-scale

wave structures coinciding with a KH vortex, 3) spacecraft separation distances within a

fraction of the wave length and 4) non-perpendicular k vector relative to the spacecraft

separation vector. It is also worth noting that associated with conditions 1-4 are additional

sub-criteria and the satisfaction of 1-4 does not necessarily guarantee a suitable event. In

our case, the circumstances arose such that each one was satisfied, making these set of

observations particularly rare.

The total integrated Poynting flux is shown to be larger for the RH and LH intervals

when compared to the FMW interval. Because the RH and LH intervals are located in higher

density regions, the level of energization in the ion spectrograms is not as clear as during the

FMW interval which was observed in the more tenuous plasma. However, it has been shown

that the ion energization process is indeed more effective in the vicinity of the dawn-flank

magnetopause compared to the dusk-flank (H. Hasegawa et al., 2003), so the presence of

these high-frequency waves adjacent to KH vortex can be the explantation to this dawn-dusk

asymmetry. Simulations show that for variety of Solar Wind plasma conditions, the KHI

typically grows more efficiently at the dawn-flank (Nykyri, 2013) magnetopause due to the

smaller magnetic field tension during the most typical IMF orientation (the Parker-Spiral

IMF). Also, a recent statistical study has confirmed that PC4-Pc5 ULF fluctuation power,

which characterizes the fluctuations generated by the KHI, is more enhanced in the region

of the magnetopause downstream of a quasi-parallel shock, which coincides with the dawn-

flank for the Parker-Spiral IMF (Nykyri & Dimmock, 2016). Furthermore, a statistical

study shows that the spectral energy densities on the order of the ion gyro-radius are larger

on the dawn flank (Yao et al., 2011).
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3.4 KHI Observations and Simulations

Presented in Figure 3.11 are measurements made by the Cluster spacecraft over the time

interval between 13:00:00 and 14:00:00 UT on June 6th during Parker-Spiral IMF. The

solar wind conditions and IMF orientation were determined using the OMNI database

(King & Papitashvili, 2005). Each quantity has been rotated from GSE, to boundary nor-

mal co-ordinates (Paschmann & Daly, 1998) to better highlight the structures, where N is

in the direction normal to the magnetopause, M runs along the magnetopause and is most

aligned with the tailward plasma flow and L completes the system. Observations show

periodic (τ ≈ 3 min) encounters both with magnetosheath-like and magnetospheric-like

plasma regions and bipolar variations of the normal component (BN ) of the magnetic field.

Magnetosheath-like plasma typically has a high density, low temperature but high tailward

velocities, whereas magnetospheric plasma is hotter, with predominantly low tailward ve-

locities. Fluctuations in the total pressure (PT ) range from 0.1 to 0.33 nPa where the total

pressure is defined by the sum of the thermal and magnetic pressures i.e.

PT = nkT +
B2

2µ0
(3.2)

About mid-way through the hour interval, BN rapidly rises then falls off gradually; this

signature has been observed previously at the dawn-flank magnetopause, also under Parker

Spiral IMF orientation, and was identified as KHI (Nykyri et al., 2006). Figure 3.12 shows a

2.5-D MHD simulation of the KHI created using plasma and field parameters from this event

(see Table 3.2)). A strong total pressure minimum is created inside the vortex of a non-

linear KH wave with a wavelength of ≈ 36,000 km. The plasma density has an intermediate

value between high-density magnetosheath-like and low-density magnetospheric-like plasma

in the vortex. In Figure 3.12, plasma parameters and field values from Cluster are compared

with corresponding quantities from the 2.5-D Local MHD simulation – the results have a
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Table 3.2: The normalisation constants are nnorm = 3.5 cm−3, Bnorm = 8.5 nT ,
Vnorm = 100.7 km/s, Pnorm = 0.036 nPa, lnorm = 2400 km and tnorm = 21.68 s. The
shear layer thickness was set to 4800 km.
Initial conditions MSP MSH

BL 0.886 2.537
BM −0.156 0.923
VL 0.836 −2.507
VM −0.996 2.988
n 0.11 1.89
P 8.18 1.7
β 10.1 0.23
VA 2.71 1.96

striking qualitative agreement. The red highlighted column in Figure 3.1 indicates how the

KH wave might pass by the spacecraft in order to produce the observed signatures. The

FMW interval was observed inside the total pressure minimum (signifying the center of

the KHI vortex) and at the gradient between intermediate density and low-density plasma.

A total pressure minimum is observed when BN polarity switches, due to twisting of the

magnetic field in the N,M -plane by the KHI. The simulations qualitatively reproduce the

polarity and structure of the observed BN . Other key signatures of non-linear vortices

are the hot, magnetospheric-like plasma in the region of a total pressure minimum, and

faster than the magnetosheath flow in magnetospheric-side of the non-linear vortex. These

signatures are consistent with the previously published KH observations and simulations

(Fairfield et al., 2000; Otto & Fairfield, 2000; Nykyri et al., 2006; H. Hasegawa et al., 2005;

Nykyri & Foullon, 2013; Kavosi & Raeder, 2015).

For example, this faster than sheath flow in the VM -component is first observed by C4

at ≈ 13:27:06 UT and later at ≈ 13:30:15 UT. Similarly, the virtual spacecraft measures

the faster than sheath flow in the VM -component first at t = 00:06:58 and later, during the

2nd encounter of the vortex at t = 00:09:24.
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Figure 3.11: An overview of processed time series data collected by the Cluster space-
craft during the KH interval: C1 (black), C2 (red) C3 (green), and C4 (blue) field
data is represented in boundary normal coordinates using maximum variance analy-
sis (MVAE) of the -(V × B) electric field. No plasma data exists for C2. Density
(Panel a), VN (Panel b), VM (Panel c), VL (Panel d), VT (Panel e), Temperature
(Panel f), Pressure (Panel g), BN (Panel h), BM (Panel i), BL (Panel j), BT (Panel
k), Satellite Constellation Positions in km from C3 (Panels l), and Cluster location
in RE and variance directions (Panels m).The shaded blue, green and pink regions
represent the RH, LH and high frequency FMW intervals respectively.
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(a)

(b)

(c)

(d)

(e)

Figure 3.12: Comparison of observed and simulated plasma and magnetic field prop-
erties. The left most panel depicts the observed data (C1, C3 and C4 are the black,
green and blue trace, respectively) and the right most panel depicts the time series
simulation data. Density (Panel a), Temperature (Panel b), Total Pressure (Panel c),
BN (Panel d) and VM . The red arrows show the ‘faster than sheath flow’-signature
for C4.
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3.5 Wave Analysis

Ion energy spectrograms measured during extended periods of KH activity at the LLBL

have shown quasi-periodic fluctuations between hot and cold ion populations of magneto-

sphere and magnetosheath origin, respectively. These observations include regions where

these ion populations become mixed which may be indicative of plasma transport and

heating (H. Hasegawa et al., 2003). Figure 3.13 depicts three distinct ion populations: (1)

magnetosphere typical, (2) magnetosheath typical and (3) mixed. Typical magnetospheric

ion energies are centered around 10 keV, typical magnetosheath ion energies are centered

about 1 keV, whereas the mixed ion energies range from about 1 keV to 10 keV. The FMW

was observed inside one of the aforementioned mixing regions. The z-component magnetic

wave power, and the high pass filtered Bz are presented in Supplementary Figure 3.9, re-

spectively. From Supplementary Figure 3.9 the wave power decreases instantaneously after

the wave pulse ends (denoted by the second dotted line in Supplementary Figure 3.9). The

highest power is mainly in the lower frequency range centred at approximately 0.3 Hz, how-

ever there is an obvious amplification in the magnetic wave power in the higher frequency

range (up to nearly 1 Hz) which occurs towards the end of the wave packet. The frequency

of the highest amplitude oscillation is roughly 0.28 Hz and is remarkably close to fcp which

is around 0.3 Hz.

MVAB performed on the high-pass filtered, and smoothed (using a box car moving

average) 22 Hz magnetic field data from Cluster 1 and 4, yielded propagation angles of

95◦, and 98◦ with respect to the ambient magnetic field direction, respectively. The quasi-

perpendicular propagating wave is first encountered by Cluster 1 then closely followed by

Cluster 4. Hodograms were computed based on the MVAB directions and suggest the wave

packet is elliptically and right handed polarized in the spacecraft frame (please refer Sup-

plementary Figure 3.9). The ratio of the maximum and minimum eigenvalues (max/min)
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is approximately 3.13 and 2.31 for C1 and C4 respectively, whereas the intermediate to

minimum (int/min) eigenvalue ratios were approximately 525 and 116 for C1 and C4, re-

spectively. The large magnitude of int/min indicates clearly defined MVAB directions,

whereas the square root of the intermediate to maximum eigenvalue ratio defines the el-

lipticities (e) which are e1 ≈ 0.57 and e4 ≈ 0.66. Figure 3.9 shows that the wave activity

lasted over 110 seconds, but we were able to utilize the 2-spacecraft technique only for

the latter 20 second interval. It is evident that over this longer wave interval, the specific

entropy increases nearly an order of a magnitude. During the 20 second interval that was

identified as a FMW, the specific entropy increases by factor of ≈ 3 and both the parallel

and perpendicular temperature increase by a factor of ≈ 2 (see Supplementary Figure 3.9).

Analysis of RH, LH and WHAMP The upstream wave activity corresponds to

larger emissions in the Bz-spectrum (Supplemental Figure 4a) and consequently more wave

energy (see Figure 5b). TheBz-spectrum shows two emissions over the RH interval (13:25:52

- 13:26:07 UT) that are separated in frequency space at ωci; MVAB reveals right-hand

polarized waves with a quasi-perpendicular propagation to the ambient magnetic field above

and below ωci. Similarly, MVAB reveals a left-hand polarized wave with a quasi-parallel

propagation angle to the ambient magnetic field over the LH interval from Supplemental

Figure 4 (13:26:28 - 13:27:09 UT). However, by resolving the 180◦ ambiguity of k̂ with

two-point spacecraft measurements and considering the plasma flow one can determine

the polarisation in the plasma frame. The (filtered) magnetic field data suggested that

C4 encounters the wave first followed by C1 (Figure 3.9). Due to the 180◦ ambiguity

of k̂’s direction, there are two possibilities: (1) k̂ =< −0.00691, 0.668,−0.744 > or (2)

k̂ = − < −0.00691, 0.668,−0.744 >. By taking k̂ and projecting it onto the separation

vector R41, it becomes apparent that (2) is the more appropriate representation of the wave

vector direction (see Figure 3.14). Taking the resolved k̂=< 0.00691,−0.668, 0.744 >, we

then calculate the frequency in the plasma frame, ωplasma, based on the Doppler Effect
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Table 3.3: WHAMP Inputs. Mass m is scaled by the proton mass (ms/mp), the
density n is given in cm−3 and the parallel temperature T|| is given in eV .
Interval Species Distribution m n T|| T⊥/T||
RH H+ Shell 1 0.910 10.5 0.736

1 -0.910 2.09 1
e− Maxwellian 0 2.64 0.35 1

LH H+ Maxwellian 1 2.54 209 0.92
e− Maxwellian 0 2.64 0.35 1
e− Shell 0 2.64 2.84 1

0 -2.64 1.02 1

FMW H+ Maxwellian 1 0.25 0.522 1
H+ Shell 1 0.25 4.70 8.60

1 -0.25 2.01 1
e− Maxwellian 0 0.95 0.455 1
e− Shell 0 0.95 11.4 1

0 -0.95 1.02 1

on the the observed frequency in the spacecraft frame ωspacecraft. The equation for the

Doppler shift is given by ωplasma = ωspacecraft+~k ·~vbulk where ~k = |~k|k̂. |~k| is given a range

of 2π/2000km < |~k| < 2π/200km. Figure 3.15 shows that the wave in the spacecraft frame

has a right-handed polarization for wavelengths less than ≈ 272 km which is on the order

of the satellite separation between C4 and C1 (R41 = 188 km). Therefore it is possible

that the LH wave is either left-handed or right-handed in the plasma frame depending on

its wavelength. This procedure is duplicated for the RH and FMW intervals, and it is

determined that the polarization remains right-handed in the plasma frame.

Similar to the FMW interval, a theoretical kinetic dispersion is found using WHAMP for

the RH and LH intervals. Hollow shell-like distributions are observed for the ion species (see

Figure 3.16) during the RH interval and used as an input for WHAMP. For the LH interval,

shell-like distribution functions were observed for the electron species (see Figure 3.17)

and are used as an input for the WHAMP solver. Table 3.3 depicts the WHAMP input

parameters used for all three intervals.

The kinetic solutions produced by WHAMP for the RH and LH wave intervals are
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Figure 3.14: Resolving the 180◦ ambiguity of k̂. Projections of k̂ onto ~R14 for cases
(1) and (2) discussed in the text.
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Figure 3.15: Demonstration of the Doppler effect for the LH wave interval. The
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RH RH

Figure 3.16: Observed distribution ion distribution functions observed by C1 during
the RH wave interval.

Figure 3.17: Observed electron distribution functions observed by C1 during the LH
wave interval.
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depicted in Figures 3.18 and 3.19 respectively. From Figure 3.18, two distinct wave modes

are shown: a right-hand mode that propagates under ωci and a right-hand mode that

propagates above ωci. From Figure 3.19, a left-hand wave mode is shown that propagates

under ωci and becomes slightly right-handed for very small values of k||. Figure 3.5, a wave

mode extending over many times the ωci is right-handed for oblique propagation angles

and becomes left-handed and then linearly polarized as the propagation angle approaches

90◦. Cuts at varying propagation angles are taken from each dispersion surface (from

Figures 3.18, 3.19 and 3.5) corresponding to the appropriate observed propagation angles

listed in Table 3.1 for the RH, LH and FMW intervals, respectively; the best match to

a known theoretical dispersion (and experimentally determined dispersion relation for the

FMW interval) is chosen and shown in Figures 3.7, 3.8 and 3.3. From Figure 3.7, the quasi-

perpendicular right-hand modes – corresponding to the 83◦ and 86◦ cuts – propagating

under ωci are a close match to the theoretical dispersion for a KAW; the oblique right-hand

(76◦ and 80◦ cuts) modes propagating above ωci might belong to the magnetosonic branch.

From Figure 3.8, the quasi-parallel left-hand wave modes are close to the theoretical KAW

and IC dispersions.
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described in Table 3.3 for the RH wave interval. The color bar represents the ellipticity
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white represents a linear polarisation.
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Figure 3.19: Dispersion surfaces determined by WHAMP using inputs parameters
described in Table 3.3 for the LH wave interval. The color bar represents the ellipticity
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white represents a linear polarisation.
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Chapter 4

Statistical Study

The work within this Section was submitted to Journal of Geophysical Research: Space

Physics in March 2017.

4.1 Introduction

The origin of the properties of our near-Earth plasma is still not well understood – for

instance the specific entropy (S = T/n2/3) increases by 1-2 orders of magnitude across

the magnetopause which is indicative of strong non-adiabatic heating (Borovsky & Cayton,

2011). Furthermore, the magnetospheric ions are about 50 times hotter than those in the

magnetosheath. There also exists a temperature and density asymmetry among the cold

component ions in the magnetotail plasma sheet favoring the dawn flank – cold component

ions are 30 - 40% hotter and more abundant on the dawn flank (H. Hasegawa et al., 2003;

Wing et al., 2005).]

There are three possible sources for these plasma sheet asymmetries: a) seed asymmetry

of the magnetosheath plasma temperature and density, b) asymmetry of magnetopause pro-

cesses favoring the dawn flank, c) asymmetry of some plasma sheet/magnetotail processes:
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Walsh et al. (2012) have shown dawn favored asymmetries in the proton densities and tem-

peratures, as well as dusk favored asymmetries of the plasma flow speed and magnetic

field strengths in the dayside magnetosheath near the magnetopause. In studies consider-

ing the entire dayside magnetosheath, the dawn flank, which is downstream of the quasi-

parallel bow shock, has been shown to host a hotter and denser plasma (Dimmock et al.,

2015; Dimmock, Pulkkinen, et al., 2016). However, the level of this dayside asymmetry (15

%) is insufficient to account for the observed plasma sheet asymmetry (30-40 %) in the

magnetotail, in particular because magnetosheath plasma becomes cooler with increasing

tailward distance. The dawn flank magnetosheath is also more prone to higher amplitude

magnetic field fluctuations which are further enhanced during faster solar wind velocities

(Dimmock et al., 2014), which may affect the growth of the physical mechanisms at the

magnetopause.]

The two main mechanisms that can facilitate plasma transport and heating at the Low

Latitude Boundary Layer (LLBL) are magnetic reconnection and Kelvin-Helmholtz Insta-

bility. Recently, Ma & Otto (2014) showed, using Hall-MHD simulations, that significant

specific entropy increase in magnetic reconnection at the Earth’s magnetopause is possible

only if magnetosheath plasma beta is low (β <<1). Because magnetosheath beta typically

is of the order of unity close to magnetopause (see Appendix A), other physical mechanisms

must also be at work that contribute to the strong non-adiabatic ion heating in this region.

The other possible mechanism is the Kelvin-Helmholtz Instability, which has been observed

during northward (H. Hasegawa, Fujimoto, Phan, et al., 2004), southward (Hwang et al.,

2011; Yan et al., 2014) and Parker Spiral (PS) (Nykyri et al., 2006; Moore et al., 2016)

interplanetary magnetic field (IMF) orientations. A recent survey of 6 years of in situ

data from NASA’s Time History of Events and Macroscale Interactions during Substorms

(THEMIS) mission has shown that Kelvin-Helmholtz (KH) waves are frequent at the mag-

netopause, providing strong observational evidence as to their importance for magnetopause
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dynamics (Kavosi & Raeder, 2015). The spatial distribution of these KH waves observed

between 2007-2013 using the list by (Kavosi & Raeder, 2015) favors the dawn flank magne-

topause during the Parker-Spiral (PS) IMF orientation (in preparation (Henry et al., 2017)).

Also, MHD simulations demonstrate that for variety of Solar Wind plasma conditions and

during PS IMF orientation, the KHI growth shows a slight preference for dawn flank due to

the smaller magnetic field tension when compared to the dusk flank (Nykyri, 2013). Fur-

thermore, Nykyri (2017) showed that the seed velocity fluctuations in the magnetosheath

have a strong dawn favored asymmetry and can contribute to faster KHI growth times at

the dawn magnetopause. Recent statistical studies using 6 years of THEMIS data illustrate

that the fluctuations in ULF Pc4-Pc5 and Pc3 range, which characterize the frequency range

of fluctuations generated by the KHI (Miura & Pritchett, 1982), are indeed more enhanced

in the dawn flank (Nykyri & Dimmock, 2016; Dimmock, Nykyri, et al., 2016).

There are many secondary mechanisms associated with the KHI that can make plasma

heating and transport more efficient on the dawn-side magnetopause flank: Magnetic re-

connection inside KH vortices has been proposed as a mechanism for transporting mass

across the magnetopause and generating the cold-dense plasma sheet (Nykyri & Otto, 2001,

2004; Nykyri et al., 2006; Taylor & Lavraud, 2008; H. Hasegawa et al., 2009). KH associ-

ated ion-beams observed during a reconnection interval may act as a driver for ion-scale

waves (Nykyri et al., 2006), which may in turn heat the plasma.

KHI may also lead to the formation of kinetic Alfvén waves (KAWs) at the magnetopause

via mode conversion from ultra low frequency MHD surface waves (Johnson & Cheng,

1997; Johnson et al., 2001). KAWs have been attributed to ion heating and plasma trans-

port across the magnetopause (A. Hasegawa & Mima, 1978; Rezeau et al., 1989; Lee et al.,

1994; Johnson & Cheng, 1997; Johnson et al., 2001). Observations consistent with this phe-

nomenon have been shown to transport significant energy into the magnetosphere at the

Alfvén resonance (Chaston et al., 2007). A statistical study by Yao et al. (2011) showed a
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dawn-dusk asymmetry in the spectral energy densities of ion gyro-radii scale electromagnetic

waves that favored the dawnside over the duskside magnetopause.

Using measurements from two Cluster spacecraft ≈ 80 km apart, Moore et al. (2016)

recently unambiguously identified, in terms of an observational dispersion relation, a fast

magnetosonic (FMW) wave packet in the vicinity of a KH vortex. The wave energy as-

sociated with the FMW interval accounted for a substantial amount of energy transport

to the cold-component ion population. It was suggested that velocity shears at the flank

magnetopause generate KHI at the MHD scale, which contained sufficient kinetic energy

to power ion-scale FMW generation in the vicinity of a rolled-up KH vortex. Shell-like ion

distributions observed inside the KH vortex were suggested as a likely driving source of the

observed FMW. During this event, also other wave packets were observed with properties

consistent with KAWs in magnetosheath side of the vortex, as well as another wave packet

in mixed region that had properties consistent with FMW. The ion scale wave observations

and associated heating during this event are consistent with cross-scale energy transport

from fluid-scale KHI, into ion-scale waves, allowing the kinetic energy of the velocity shear

to be transferred into heat energy of ions. We have calculated various wave properties such

as ellipticity, Poynting flux, wave power and wave propagation angle with respect to the

magnetic field, during this event, which can be used as a bench-mark for the interpretation

of the results of a statistical study of the wave properties.

In the present study our motivation is to study a) whether ion-scale waves are more

abundant when KHI is present and b) whether ion heating is more abundant during ion-scale

wave observations when KHI is present compared to crossings without KHI. We compare the

statistics of ion scale wave properties and plasma parameters between boundary crossings

during ≈ 12 hrs of KHI to crossings where signatures of active KHI are absent. Summary

along with binning statistics plots for each of the KH and non-KH events are shown in

Appendix A.1.1.
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4.2 Broad Band Statistics

The following broad band statistics are taken over a relatively large band of frequencies

0.05Hz ≤ f ≤ 2.7Hz to offer a general account for the degree of polarization and magnetic

compressibility over the three plasma regimes during KHI and non-KHI boundary crossings.

4.2.1 Degree of Polarization

The degree of polarization ǫ, plotted in Figure 4.1, is calculated from the Stokes’ parameters

compiled from the magnetic wave fields described by Carozzi et al. (2001). Probability

distributions in ǫ are non-zero between approximately ±0.9 for frequency ranges above

(Top Panels of Figure 4.1) and below (Bottom Panels of Figure 4.1) the local fic. These

distributions form a trident distribution containing three distinct peaks at approximately

±0.675 and at 0 for all plasma regimes at all frequencies. Overall there is little distinction

in the observed ǫ between KHI and non-KHI events. Furthermore, due to possible Doppler

effects, an accurate weight of handedness (right-hand vs left-hand) in the plasma frame is

not attainable.

4.2.2 Magnetic Compressibility

One dimensional probability distribution functions depicting the magnetic compressibility

|δB|||2/|δB⊥|2 are shown for the MSP, MIX and MSH plasma regimes in Figure 4.2 for

both KHI events (left panels) and non-KHI events (right panels). Although statistically

transverse (|δB|||2/|δB⊥|2 < 1 for most intervals), there are less observed transverse waves

in the MSP plasma regime relative to the MIX and MSH regimes during KHI events when

compared to non-KHI events – please refer to the top left and top right panels of Figure 4.2.

However, when considering only the significant wave power (|δBtot|2 > 33% |δBtot|2), an

amplification in the transverse wave power occurs (statistically) in the MIX plasma regime
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Figure 4.1: Degree of polarization ǫ calculated in the MSP (red), MIX (green) and
MSH (blue) plasma above (Top Panels) and below (Bottom Panels) the local ion
cyclotron frequency fic during KHI (Left Panel) and non-KHI events (Right Panel).
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Figure 4.2: Magnetic compressibility |δB|||2/|δB⊥|2 calculated in the MSP (red), MIX
(green) and MSH (blue) plasma for all frequencies (0.05Hz ≤ f ≤ 2.7Hz) during
KHI (Left Panel) and non-KHI events (Right Panel). PDFs depicted in the Bottom
Panels result from filtering out wave intervals with |δBtot|2 < 33% |δBtot|2.

for the KHI events.

4.3 Ion-scale Wave Intervals

The statistics for the ion scale wave intervals are obtained by considering frequency bins near

the local fic, including the range [f(jic−10), f(jic+10)], where jic is the index of the frequency

bin corresponding to the local fic. The 2-d histograms consisting of θkB and kinetic wave

properties are compiled by tallying counts accrued in each parameters’ overlapping bins.

All of the ion-scale wave properties are calculated in the spacecraft frame. Because it
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is not possible to account for the actual Doppler shift for each of the MVAB wave intervals

on a statistical basis, we approximate the possible effects by accounting for the maximum

effects. For a brief analysis on the Doppler shift effects, please refer to Appendix B.

4.3.1 Mean Total Magnetic Wave Power, Ptot

The mean total magnetic wave power, Ptot = |δBtot|2, is determined by taking the mean

of the total magnetic wave power over each MVAB wave interval. The 2-d distribution

of Ptot versus wave propagation angle, θkB, for the MSP plasma regime are shown in the

left (KHI events) and right (non-KHI events) panels of Figure 4.3. From the left panel in

Figure 4.3, a higher count density (log10-counts per cell) during KHI events is observed for

obliquely propagating waves with relatively low power (Ptot), with the highest count density

accounted for in the 80◦ − 90◦ bin. A more moderate count density is observed for oblique

waves (60◦ − 90◦) with significantly higher power for KH events than for non-KHI events.

In contrast, during non-KHI events the highest count density is observed for 40◦ − 50◦, low

power waves (see Figure 4.3 (b)). High power ion scale waves are rarely observed during

the non-KHI events in MSP region.

To offer a better comparative analysis between statistics gathered during KHI and non-

KHI events, a log10 count difference between the KHI and non-KHI events is calculated for

each of the kinetic wave properties and plotted in the following 2-d distributions. Difference

distributions in which observations taken from KHI events dominate are designated by red

whereas those dominated by observations taken from non-KHI events are designated by

blue, and a zero log10 count difference is designated by white. Please note that an actual

count difference of 0 or 1 is assigned a log10 count difference of 0.

The 2-d comparative distributions of the mean total wave power versus propagation

angle (Ptot vs θkB) depicting the log10 count difference between observations made during
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Figure 4.3: The 2-d distributions of mean total magnetic wave power versus wave
propagation angle (Ptot vs θkB) between KHI (left panel) and non-KHI (right panel)
events in the MSP plasma regime.

KHI and non-KHI events are shown in Figure 4.4 for the MSP, MIX and MSH plasma

regimes respectively. In the MSP plasma regime (Figure 4.4 (a)), more obliquely propagat-

ing waves between 50◦ − 90◦ are observed during KHI events for a broad range of power

(Ptot ≈ 0 − 0.9nT 2/Hz), whereas during non-KHI events more waves with low power

(Ptot ≈ 0− 0.05nT 2/Hz) and lower propagation angle (θkB ≈ 10◦ − 50◦) are observed.

A similar trend is seen for waves with low power (Ptot ≈ 0 − 0.1nT 2/Hz) in the MIX

plasma regime, where observations of obliquely propagating waves (θkB ≈ 40◦ − 90◦) are

dominant during KHI events and waves with lower propagation angle (θkB ≈ 0◦ − 40◦) are

dominant during non-KHI events (Figure 4.4 (b)).

There is a larger disparity between high power waves in the MIX plasma regime when

compared to the MSP, with a slight preference of KHI event observations between θkB =

40◦ − 80◦. The quasi-perpendicular propagating (θkB = 80◦ − 90◦) observations tend to be

more non-KHI dominant.

In the MSH plasma regime (Figure 4.4 (c)), the low power wave observations are non-

KHI dominant for all propagation angles. There is a slight asymmetry for waves contributing

to the higher power with a clear dominance of KHI events for low propagation angles
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(θkB ≈ 0◦ − 30◦).

4.3.2 Total Integrated Poynting Flux

The total integrated Poynting flux, Sint =
∫

Stot∂t, associated with the FMW interval from

Moore et al. (2016) is approximately 4.4×106 keV cm−2. For statistics the Sint is computed

by integrating the wave Poynting flux over each MVAB wave interval. The 2-d distributions

of Sint vs θkB are displayed in Figure 4.5. In the Figure 4.5 (a), observations made in

the MSP plasma regime show a broad distribution of KHI dominant Sint for obliquely

propagating waves (θkB = 50◦ − 90◦) and non-KHI dominant (narrowly distributed Sint)

wave observations for lower propagation angles (θkB = 10◦ − 50◦).

In the MIX plasma regime (Figure 4.5 (b)), however, the KHI dominant observations

are subdued to a narrow band of low Sint for θkB ≈ 40◦−90◦. The non-KHI dominant wave

observations comprise a narrow band of Sint for lower propagating angles (θkB ≈ 0◦−40◦).

The trend for higher Sint values is not well discernible, however there is a band of KHI

dominant quasi-perpendicular wave observations for Sint ≈ 0.5− 2 keV cm−2.

There is a transition to non-KHI dominant wave observations in MSH plasma regime

(Figure 4.5 (c)) for the low Sint across most propagation angles ( θkB = 0◦−50◦, 60◦−90◦).

There is a slight asymmetry for moderate integrated Poynting flux (Sint ≈ 0.25 − 1.75106

keV cm−2) where obliquely propagating waves (θkB = 60◦−90◦) are non-KHI dominant and

waves with smaller propagation angles (θkB = 0◦ − 40◦) are dominant during KH events.

4.3.3 Polarization Dispersion: FMW

Moore et al. (2016) showed unambiguous observations of a quasi-perpendicular propagating

(θkB ≈ 85◦, 88◦) FMWs observed close to center of a KH vortex (evidenced by a total

pressure minimum) with sufficient energy to account for observed ion heating. The wave
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Figure 4.4: The 2-d comparative distributions of mean total power (Ptot) versus
propagation angle (θkB) between KHI and non-KHI events. The panels from top
to bottom represent the MSP, MIX and MSH plasma regimes, respectively.
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Figure 4.5: The 2-d comparative distribution of the integrated Poynting flux versus
propagation angle (Sint versus θkB). The panels from top to bottom represent the
MSP, MIX and MSH plasma regimes, respectively.
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δE/δB-polarization (scaled by the local Alfvén speed ), (|δE⊥|/|δB⊥|)/vA versus the wave

frequency calculated during this FMW interval is plotted in Figure 4.6. For f < fic, where

fic ≈ 0.3 Hz, there is a strong count density between approximately 0 − 4, indicating the

waves are mostly electromagnetic. This distribution broadens (becomes more electrostatic)

for f > fic, but the strongest count densities are still in electromagnetic regime 0− 10.

Because the local fic for the FMW interval is approximately 0.3 Hz, the frequency range

of interest in context to the MVAB wave interval statistics is approximately 0.20−0.45 Hz.

In Figure 4.6 the scaled δE/δB-polarization is approximately 0− 4 for the strongest count

densities and up to 8 for the lower count densities.

4.3.4 Mean δE/δB Polarization Dispersion

The 2-d distributions of the mean scaled δE/δB polarization, P, versus propagation angle

are plotted in Figures 4.7 (a)-(c). P is calculated by taking the mean (|δE⊥|/|δB⊥|)/vA over

each MVAB wave interval. In the MSP plasma regime (Figure 4.7 (a)), the distributions of

P vs θkB show a dominance for KHI events across all values of P for the strongly obliquely

propagating waves (θkB = 50◦ − 90◦). This KHI dominant distribution in much narrower

(≈ 0.125 − 4) for smaller propagation angles (θkB = 0◦ − 40◦). This trend is qualitatively

similar in the MIX plasma regime (Figure 4.7 (b)).

Observations in the MSH plasma regime (Figure 4.7 (c)) show a narrow KHI dominant

distribution in P (≈ 0.125 − 2) for all θkB, whereas observations at higher values of P (>

2.125) are non-KHI dominant for all θkB.

4.3.5 Plasma Parameters

In this section, plasma parameters are shown for both the ion-scale wave intervals and from

a global perspective. Please refer to Appendix A for an analysis on possible solar wind

128



4.3. ION-SCALE WAVE INTERVALS

0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

16

18

20

Frequency [Hz]

(|
δ
 E

⊥
|/

|δ
 B

⊥
|)

/v
A

 

 

L
o

g
 C

o
u

n
ts

0

0.5

1

1.5

Figure 4.6: Polarization dispersion (|δE⊥|/|δB⊥|)/vA from the June 6th 2002 FMW
interval.
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Figure 4.7: The 2-d comparative distributions of scaled mean δE/δB polarization
versus propagation angle.The panels from top to bottom represent the MSP, MIX
and MSH plasma regimes, respectively.
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Figure 4.8: Plasma beta calculated during the ion-scale MVAB wave intervals for the
MSP (red), MIX (green) and MSH (blue) plasma for the KH (left panel) and non-KH
(right panel) events.

effects on magnetosheath plasma parameters.

The plasma beta β calculated over the MVAB wave intervals is plotted in Figures 4.8

(a)-(b). During the KHI events the β probability distributions are much narrower in the

MIX and MSH plasma regimes with peaks < 1 and are much broader in the MSP plasma

(Figure 4.8 (a)). When integrating the tails of the distributions in the MIX and MSH

plasma, only ≈ 20% of all the wave intervals have β > 1. For KHI events ≈ 50% of all wave

intervals in MSP plasma regime have β > 1. During the non-KHI events, the distributions

in all three plasma regimes share similar peaks, with the broadest distribution in the MSH

plasma (right panel of Figure 4.8). Integrating the tails of the distributions reveals that the

β steadily increases from the MSP (≈ 13% > 1) to the MIX (≈ 17% > 1) to the MSH (≈

32% > 1) plasma regime.

Although the PDFs from the Figures 4.8 (a)-(b) depict ion-scale waves propagating

through lower beta MSH plasmas during KH events compared to the non-KH events, it is

worthwhile to inspect the global plasma beta βMSH
global observed in the MSH plasma regime.

Figures 4.9 (a)-(b) show the 1-d distributions of the global MSH plasma beta calculated

over the range 0 < β ≤ 10 for the KH and non-KH events respectively. It should be noted
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Figure 4.9: Plasma beta calculated globally for the MSP (red), MIX (green) and MSH
(blue) plasma for the KH (left panel) and non-KH (right panel) events.

that the global MSH data value range extends beyond βMSH
global , however the low MSH β

(relative to 1) is of special interest.

In general, βMSH
global is lower during the KH events compared to the non-KH events –

≈ 77% < 1 and ≈ 35% < 1 for the KH and non-KH events respectively. Hall MHD

simulations of the dayside magnetopause have shown a significant specific entropy increase

from the inflow to outflow region, associated with magnetic reconnection, is only possible

for sufficiently low plasma beta (β << 1) in the inflow region (Ma & Otto, 2014). Although

there exists components of the βMSH
global PDFs from both the KH and non-KH events that

are much lower than one, they are statistically insignificant – ≈ 3% and 2% of the PDFs

have a global MSH plasma beta less than 0.1 for the KH and non-KH events respectively.

Ma & Otto (2014) concluded that β ≈ 0.1 − 1 in the magnetosheath is insufficient for a

specific entropy increase of one to two orders of magnitude due to magnetic reconnection.

When calculating the mean specific entropy over the MVAB wave intervals (SMVAB),

there is a significantly larger increase in the specific entropy (indicative of strong non-

adiabatic heating) during the KHI events (Figures 4.10 (a)-(b)). Careful analysis was

performed on the tails of the distributions from the MSP plasma regime relative to the
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Figure 4.10: Specific entropy calculated during the ion-scale MVAB wave intervals
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(left panels) and non-KH events (right panels). The log-mean average of the global
specific entropy (black line) is displayed for the KH and non-KH events.

log-mean average of the global MSH specific entropy < SMSH
global > (please see Table 4.1).

Approximately 79% of the ion-scale wave intervals during KH events, the specific entropy

in the MSP plasma revealed an increase of at least 2 orders of magnitude (relative to the

global log-mean average specific entropy in the MSH), while during non-KHI events only ≈

49% showed a specific entropy increase of 2 orders of magnitude. This significant increase

in the specific entropy from the MSH to MSP plasmas observed during the ion scale wave

intervals suggests strong non-adiabatic heating. However, it should be noted that when

considering only the cold component ions, DMSP ionospheric data mapped into the plasma

sheet suggests that the specific entropy may only increase by a factor of 5 (Johnson & Wing,

2009) and that the approximate 2 order of magnitude increase shown by Borovsky & Cayton

(2011) may be due to the influence of the hot ion population.

However, the global specific entropy Sn
global – calculated at all time stamps, where n

designates the plasma region – during the KH (and non-KH) is strikingly different than

that taken from the MVAB intervals (see Figures 4.11 (a)-(b)). For instance, there exists

a relatively larg population of high specific entropy MSP plasma (SMSP
global > 1) during the
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Figure 4.11: Global specific entropy vs mean plasma flow for KH (left panels) and
non-KH events (right panels). The panels from top to bottom represent the MSP,
MIX and MSH plasma regimes, respectively.

non-KH (the top right panel of Figure 4.11) events compared to the KH events (the top left

panel of Figure 4.11). Furthermore a larger percentage of MSP data points are observed to

have specific entropy values greater than < SMSH
global > by at least two orders of magnitude

for the non-KH events compared to the KH events (see Table 4.1). The calculated log-mean

specific entropies < Sn
global > are listed in Table 4.1 for the MSP, MIX and MSH plasma

regions along with their ratios relative to the MSH < Sn
global > / < SMSH

global > and the

percentage of data points greater than < SMSH
global > by at least 2 orders of magnitude both

globally (Pn
global) and for the ion scale wave intervals (Pn

MV AB). Another interesting feature

is how the ratios of global log-mean specific entropies are strikingly similar for the KH and

non-KH events as shown in Table 4.1.

Comparisons between the global and MVAB interval log-mean specific entropies are

provided in Table 4.2. Interestingly for each plasma region, the ratio of the log-mean

specific entropies between the global and ion scale wave intervals (< Sn
MVAB/Sn

global >,

where n represents the plasma region) calculated during the KH events is much closer to

unity when compared to the non-KH events (see diagonals from Table 4.2). For example, in

134



4.4. DISCUSSION

Table 4.1: Details on the global specific entropy across the MSP, MIX and MSH
plasma regimes.

n < Sn
global > Pn

global
a Pn

MV AB
b

<S
n
global

>

<SMSH
global

>

KHI
{

MSP 4.87 × 103 26% 79% 60

MIX 1.27 × 103 0.058% 7.5% 16
MSH 80.6 0% 0% 1

non-KHI
{

MSP 2.89 × 103 71% 49% 64
MIX 754 30% 45% 17
MSH 45.4 .0050% 23.5% 1

a Pglobal := % global data points greater than < SMSH
global > by at least two orders of magnitude.

b PMV AB := integral of Sn
global greater than < SMSH

global > by at least two orders of magnitude.

Table 4.2: Log-mean specific entropy ratios relating the global and ion scale wave
intervals. The bold values along the diagonals correspond to the ratio of the global
log-mean specific entropy in plasma of type n to its corresponding MVAB value.

n
<Sn

MV AB>

<SMSP
global>

<Sn
MV AB>

<SMIX
global>

<Sn
MV AB>

<SMSH
global>

KHI
{

MSP 1.00 3.83 60.3
MIX 0.226 0.866 13.6
MSH 0.0178 0.0683 1.08

non-KHI
{

MSP 0.363 1.39 23.1
MIX 0.384 1.47 24.4
MSH 0.0526 0.202 3.35

the MSP plasma (n = MSP) < SMSP
MVAB/SMSP

global > is 1.00 and 0.363 for the KH and non-KH

events respectively. This means that the specific entropy calculated in the ion-scale wave

intervals offers a more quantitatively accurate description of the global specific entropy

during the KH events compared to the non-KH events. In other words there is a better

correlation between < Sn
MV AB > and < Sn

global > when KH is active.

4.4 Discussion

In the present work, ion scale properties for KH and non-KH events were compared. Cluster

data from magnetopause crossings in the low-latitude flanks were binned according to their

relative ion energies in order to compare ion scale wave properties in the magnetosphere,

magnetosheath and mixed plasmas. These ion scale properties are compared to previous
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observations of ion scale wave activity from Moore et al. (2016), specifically a FMW interval

associated with ion heating inside a rolled-up KH vortex.

4.4.1 Broad Band Statistics

In Figures 4.1 (a) - (d), the degree of polarization ǫ above and below fic was shown for the

KH and non-KH events. The peaks in the |ǫ| PDFs, at approximately ±0.675, are in good

agreement with ion-scale wave activity from Moore et al. (2016), where ellipticities were

calculated to be ≈ |0.57| and ≈ |0.66| from Cluster 1 and 4 respectively for right-handed

FMW interval (which was identified with a two-spacecraft method), ≈ |0.35| and ≈ |0.60|

for a double emission right-handed wave interval (likely a KAW below fic and a FMW

above fic respectively, which were identified with single spacecraft method) and ≈ |0.57| for

a left-handed interval (likely a KAW, which was identified with single spacecraft method).

Without the ability to accurately assess the handedness of these waves in a statistical

manner, the weight of right to left handedness in the degree of polarization between the

KH and non-KH events remains indistinguishable.

The magnetic compressibility was presented in § 4.2.2; when considering only the signif-

icant wave power across all frequencies (0.05Hz ≤ f ≤ 2.7Hz), there is an amplification in

the transverse wave power at the MIX region during the KH events (see Figure 4.2 (c)). This

amplification is consistent with observations of mode conversion from MHD surface waves

to KAWs at the magnetopause (Johnson & Cheng, 1997; Johnson et al., 2001), considering

data binned in the MIX regime are best representative of observations taken nearest to the

actual magnetopause when compared to those binned into the MSP and MSH regimes. No

such amplification in the MIX regime occurs for the non-KH events. It may be that there

are more KAWs present during the KH events.
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4.4.2 Ion-Scale Wave Intervals

Ion-scale waves identified using a sliding window MVAB were shown in § 4.3 with their

perspective properties.

In Figures 4.4 (a) - (c) the comparison in the total magnetic wave power between the

KH and non-KH events was presented for the MSP, MIX and MSH plasmas respectively.

There is an apparent transition in the comparisons between the low power band of quasi-

perpendicular waves from the MSH to the MIX and MSP plasmas where observations go

from non-KH to KH dominant respectively. In the MSH plasma the low power waves

are non-KH dominant for all propagation angles. In the MIX and MSP plasmas the low

power oblique waves are KH dominant, where the KH dominance extends to the high power

waves in the MSP. Furthermore, there are relatively more KH dominant high power wave

observations for in the MIX and MSP plasma regions.

The lower power waves shown in the MIX and MSP plasma regime for the quasi-

perpendicular waves are consistent with the observed quasi-perpendicular FMW observed

inside the center of the KH vortex from Moore et al. (2016). The quasi-perpendicular

(θkB = 85◦, 88◦) FMWs observed on June 6th 2002 by Moore et al. (2016) in the center

of a KH vortex has a magnetic wave amplitude range of approximately 0.3− 0.6nT/Hz1/2

which corresponds to |δBtot|2 ≈ 0.09 − 0.36nT 2/Hz. Recall that the binning algorithm

discussed earlier sets approximately 75% of the FMW interval into the MIX bin and the

remaining 25% into the MSP bin.

The difference in total integrated Poynting flux Sint between the KH and non-KH events

for the MSP, MIX and MSH plasmas was depicted in Figures 4.5 (a) - (c) respectively. There

is a clear non-KH dominance in the available wave energy among the quasi-perpendicular

waves in the MSH. However, a transition occurs in the MIX plasma, where the wave energy

among the quasi-perpendicular waves becomes KH dominant for the lower band of Sint.
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This transition accumulates to KH dominant quasi-perpendicular waves for all Sint. This

appears to be connected to the enhancement of KH dominant quasi-perpendicular wave

power in the MIX and MSP plasmas from the MSH discussed above. This transition in

the total magnetic wave power and total integrated Poynting flux suggests that more quasi-

perpendicular waves and their associated wave energy are more accessible to the MSP

plasma when KHI is active. KAWs can heat ions stochastically (Johnson & Cheng, 2001)

and have been shown to transfer significant energy into the magnetosphere (Chaston et al.,

2007) when KHI is active. KH vortex associated FMWs have also been shown to heat cold

component ions (Moore et al., 2016).

The KH dominant observations of quasi-perpendicular waves in the MSP and MIX

plasma, shown in Figures 4.7 (a) and (b) respectively, might not appear to be consistent

with the Sint from the FMW interval at first glance, however when considering the MVAB

window length compared to the actual FMW interval duration, the results are in good

agreement: The FMW interval is approximately 18.4 s in duration with a local average

fic ≈ 0.3Hz (Moore et al., 2016). Because the MVAB window length is dependent upon

fic and search is limited to [f(jic−10), f(jic+10)], the window range over the FMW interval

is bound by an approximate 0.20 − 0.45Hz restriction. This restricts the possible MVAB

window lengths passing over the FMW interval to approximately 2.2−5 s, which corresponds

to a maximum of 27% of the actual FMW interval length. A crude estimation assumes that

only 27% of the actual FMW Sint is recorded in the 2-d distribution plot of the Sint versus

propagation angle, which is approximately only 1.2 × 106 keV cm−2. This scaled estimate

makes the KHI dominant wave observations in the MSP and MIX plasma regimes consistent

with the FMW observations from Moore et al. (2016).

In Figure 4.6, the scaled wave electric to wave magnetic field ratio P was presented

for the FMW wave interval, which includes data from the MSP and MIX plasmas. The

distribution is shown to be quite broad (approximately 0 ≤ P ≤ 8) near the local ion
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cyclotron frequency (fic ≈ 0.3Hz). Additionally, the comparison of P between the KH

and non-KH events were provided for the MSP, MIX and MSH plasmas in Figures 4.7 (a)-

(c). In the MSH plasma, the KH dominant distribution consist of a narrow band (P ≤ 2) for

all propagation angles. Perpendicular KAW observations have been shown to have a wave

electric to wave magnetic field ratio scaled by the local Alfvén velocity to be greater than

one (Chaston et al., 2007; Chaston et al., 2012). It would appear that the narrow band of

KH-dominant quasi-parallel, electromagnetic wave observations in the MSH do not carry a

significant amount of wave energy relative to the other quasi-perpendicular ion-scale waves

observed during non-KH events.

Similarly to the wave power and Poynting flux distributions, there is a transition from

the KH dominant trend in the MSH beginning in the MIX plasma, where the P distribution

begins to widen (especially for the quasi-perpendicular component) in the MIX plasma and

broadens even further in the MSP plasma. The broad KH dominant distributions in P at

oblique angles (θkB = 50◦−90◦) for the MSP and MIX plasma regimes are consistent with

the FMW P-dispersion in the vicinity of the local ion cyclotron frequency. The portion of

the KH dominant P distributions near unity among the quasi-perpendicular waves in the

MIX and MSP plasmas is consistent with both the FMW interval and KAWs.

Presented in Figures 4.8 (a)-(b) and Figures 4.9 (a)-(b) were the plasma beta profiles

for the ion-scale wave intervals and global plasma beta profiles for the MSH plasma βMSH
global

respectively. It was shown that although the βMSH
global is statistically lower during the KH

events, it is not sufficiently low (required β << 1), so that reconnection and associated

shocks could account for the level of observed non-adiabtic heating (Ma & Otto, 2014).

Furthermore, the high global beta in the MSH during the non-KH events might might

explain why KHI is inactive. Compressibility and magnetic tension are known to stabilize

KHI (Miura & Pritchett, 1982); compressibility can result from high plasma pressure and

velocity in the magnetosheath.
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In the later portion of § 4.3.5, results from the global and ion-scale wave intervals

were shown and discussed. It was shown from Figures 4.10 (a)-(b) that there is signifi-

cant increase in the specific entropy related to the ion-scale wave intervals during the KH

events. One conclusion that is drawn is that there is more non-adiabatic heating across

the magnetopause associated with ion-scale wave activity when KHI is active. Although

from a global perspective, there is a larger increase in specific entropy from the MSH to

the MIX and MSP plasmas during the non-KH events, it should be noted that the specific

entropy calculation does not differentiate between the cold and hot component ions. In

fact, southward IMF can contribute to the formation of a hot and tenuous plasma sheet

(Wing & Newell, 2002). Plasma energization in the plasma sheet related to substorm ac-

tivity is well known (Hones et al., 1976) – ion (Runov et al., 2009; Hietala et al., 2015) and

electron (Runov et al., 2009) heating has been shown in plasma flow channels in the mag-

netotail. Furthermore, a hot and tenuous plasma sheet would have a higher specific entropy

than a cold and dense plasma sheet. From Table 4.3, the time-lagged OMNI data shows

that several of the non-KH events possess a significant southward component in the IMF

of the upstream solar wind which may drive reconnection in the magnetotail and generate

bursty bulk flows.

There is significant evidence of strong non-adiabatic heating directly related to ion-

scale wave activity when KHI is active. Furthermore quasi-perpendicular waves and their

associated energy are more accessible to the MSP plasma when KHI is active. Overall,

the global plasma beta in the MSH plasma regime is lower during the KH events when

compared to the non-KH events, although not sufficiently low (required β < 0.1), so that

reconnection and associated shocks could account for the level of observed non-adiabtic

heating (Ma & Otto, 2014). These results suggest that ion scale waves, such as observed

and studied in detail by Moore et al. (2016) could strongly contribute to this significant

non-adiabatic heating observed across the magnetopause during KHI events. Moore et al.
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(2016) observed the specific entropy increase by a factor of ≈ 3 over the short FMW interval

observed inside of a KH vortex, and ≈ 1.4 orders of magnitude relative to the magnetosheath

during the entire two minute duration of the ion scale wave activity. The temperature of

the cold-component ion population during this brief wave period increased by 2 keV.

4.5 Effects of Solar Wind Speed on Plasma Pa-

rameters

It has been shown that certain plasma parameters in the magnetosheath can be effected

by solar wind flows. Wang et al. (2012) revealed a correlation between magnetosheath ion

temperatures (Ti), and ion to electron temperature ratios from a statistical study using 4

years of THEMIS data. They showed that higher solar wind speeds (|V | > 450 km/s) cor-

respond to higher ion temperatures in the magnetosheath whereas lower solar wind speeds

(|V | < 450 km/s) correspond to lower ion temperatures. In this section we explore the

plausibility of contamination in the plasma parameters due to initial solar wind conditions

by exploring how solar fast and slow wind speeds effect the seed population in the magne-

tosheath.

Average solar wind conditions are calculated from time-lagged OMNI data by averaging

over time scales comparable to each event and are listed in Tabe 4.3. The ”fast” solar

wind speeds are highlighted in bold. In the context of this section fast and slow solar wind

speeds are defined as |V | > 400 km/s and |V | < 400 km/s, respectively. There are a fair

distribution of slow and fast solar winds speeds for both the KH and non-KH events, with

an outlier residing in the non-KH event list where the average solar wind speed is larger

than 700 km/s. It should be noted that removing this fast solar wind outlier (June 3rd 2003)

diminishes a significant portion of the high specific entropy population that is observed in
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Table 4.3: Average time-lagged solar wind data from OMNI.
Date [yyyy-mm-dd] ~B [nT ] ~V [km/s] n [cm−3] T [106 K] |B| [nT ] |V | [km/s]

KHI

{

2001-07-03 <3.88, -5.40, -0.52> <-402.27, -15.62, -11.24> 8.11 0.09 8.49 403.03

2001-11-20 <-3.06, 0.58, 2.75> <-388.68, -41.87, -21.30> 3.82 0.10 4.20 391.50
2002-06-06 <0.96, -4.95, -0.16> <-367.12, -13.46, -11.08> 4.13 0.02 5.16 367.57
2002-06-13 <2.79, -3.39, -4.62> <-368.44, -0.34, -26.72> 5.81 0.05 6.78 369.57
2004-06-19a <-0.52, 3.73, 1.08> <-472.56, 8.29, 8.27> 3.05 0.12 4.52 472.99

2004-06-21 <0.96, 2.30, 1.21> <-408.91, -2.82, 5.93> 3.67 0.06 3.70 409.13

non-KHI

{

2003-06-03 <-4.16, 2.24, -1.26> <-782.42, 9.00, 19.27> 3.05 0.30 6.99 784.08

2004-11-16 <2.02, -4.90, 1.95> <-428.69, 19.00, 16.11> 7.26 0.16 7.37 430.00

2004-11-27 <-2.36, 2.68, -4.05> <-421.57, -21.99, -4.67> 5.40 0.08 6.43 422.62

2005-06-28 <-2.18, 2.32, 0.10> <-375.06, -5.55, 20.80> 9.41 0.05 3.38 375.70
2007-06-04 <3.42, 1.84, 1.77> <-478.45, 36.66, -2.14> 4.73 0.13 4.73 479.94

2007-06-06 <-1.97, -0.31, -1.45> <-347.99, 1.88, -7.79> 3.96 0.03 2.50 348.12
2007-06-06 <-2.03, 1.20, -0.80> <-337.68, -1.77, -3.58> 4.14 0.03 2.67 337.76
2009-06-03 <0.79, 0.45, 1.51> <-303.62, -0.69, -4.02> 7.67 0.02 2.28 303.67
2009-06-26 <3.29, 0.80, -0.49> <-449.43, 25.56, -2.55> 2.92 0.10 3.50 450.19

aThis event was considered PS by Moore (2012) due to differing techniques in averaging solar wind data.

the MSP plasma during the non-KH events (right panel of Figure 4.11), however the effects

on Pglobal and PMVAB from Table 4.1 are minute.

For solar wind a solar wind speed of 748 km/s and southward IMF the magnetosphere

is under heavy driving, likely resulting in substorm activity or bursty bulk flows in the

magnetoail which can increase the hot population of ions in the magnetotail.

Statistical mapping of the magnetosheath specific entropy in the magnetosheath

interplanetary medium (MIPM) is performed using 5 years of THEMIS and

OMNI data (Dimmock & Nykyri, 2013; Dimmock et al., 2014; Dimmock et al., 2015;

Dimmock, Pulkkinen, et al., 2016). The specific entropy dependance on the solar wind

speed can be seen in Figure 4.12, where the overall mean specific entropy in the magne-

tosheath is higher during fast (right panel) solar wind speeds compare to slow (left panel)

solar wind speeds. There are noticeable enhancements in the mean specific entropy ad-

jacent to the magnetopause (inner boundary) for both the solar wind speeds. However,

comparing Figures 4.12 (a)-(b), this enhancement appears slitely wider for the fast solar

wind, especially for the tailward populations.

Although the magnitude of the solar wind velocity seems to be correlated to the specific

entropy in the magnetosheath plasma, it is unlikely that these effects contribute to the

relative specific entropy increases observed in either the global or MVAB wave intervals
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discussed in § 4.3.5. This is mostly because the < SMSH,KHI
global > is in fact higher than

< SMSH,nonKHI
global > even though the average solar wind speed for all of the KH events is

lower than that of the non-KH events.

Plasma beta dependance on the solar wind speed is depicted in Figures 4.13 (a)-(b) and

4.14 (a)-(b) for the mean and minimum plasma beta, respectively, where at first glance the

plasma beta is larger for slower wind speeds in the central magnetosheath and near the bow

shock. For both solar wind speeds, the lowest mean and minimum plasma beta populations

are located in the vicinity of the magnetopause corresponding to the enhancements in the

mean specific entropy from Figures 4.12 (a)-(b).

There appears to be little solar wind speed dependence on the mean plasma beta when

comparing the region adjacent to the magnetopause in Figures 4.13 (a)-(b) except for a

slightly wider low minimum beta population for the fast solar wind, especially farther

tailward; this is more evident when comparing Figures 4.14 (a)-(b). Saturating the color

bar from Figures 4.14 (a)-(b) gives a more detailed description of the minimum plasma

beta range along the magnetopause depicted in Figures 4.15 (a)-(b). In Figures 4.14 (a)-

(b), there are more populations of very low plasma beta (β < 0.1) when the solar wind is

fast (Figure 4.14 (b)) compared to when it is slow (Figure 4.14 (a )).

This data suggests that there is a correlation between the specific entropy enhancements

in the magnetosheath along the magnetopause and the plasma beta, with subtle variation

when considering solar wind speed. The plasma beta adjacent to the magnetopause is

slightly lower for faster solar wind and corresponds to larger enhancements in the specific

entropy along the magnetosheath side of the magnetopause. On average, the plasma beta

along the magnetopause is not sufficiently low (β < 0.1) to account for a significant increase

in the specific entropy in the magnetosphere from magnetic reconnection (Ma & Otto, 2014).

However, there exists a larger population that might satisfy the low plasma beta requirement

when the solar wind is fast – Ma & Otto (2014) showed β = 0.025 in the inflow region
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Figure 4.12: Mean of the mean specific entropy maps for slow (left panel) and fast
(right panel) solar wind using THEMIS data.
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Figure 4.13: Mean of the mean plasma beta maps for slow (left panel) and fast (right
panel) solar wind using THEMIS data.
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Figure 4.14: Mean of the minimum plasma beta maps for slow (left panel) and fast
(right panel) solar wind using THEMIS data.
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Figure 4.15: Saturated scale of the mean of the minimum plasma beta maps for slow
(left panel) and fast (right panel) solar wind using THEMIS data.
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(magnetosheath) was sufficiently low to increase the specific entropy in the outflow region

(magnetosphere) by a factor of 4. It is most likely that the global specific increase for the

non-KH events is produced in part by magnetic reconnection and substorm activity.

4.6 Doppler Shift Effects

In an aim to estimate possible Doppler effects, we use the higher end of the wavelength range

from the FMW interval from Moore et al. (2016) (200 km ≤ λ ≤ 2000 km) corresponding

to the ion-cyclotron frequency range such that a moderate Doppler shift will result. Thus

a wavelength of λ = 2000 km is chosen (Appendix A.2 shows the most extreme Doppler

shift effects for λ = 200 km) for the Doppler shift equation ωp = ωsc − 2πk̂/λ · ~vflow, where

ωp is the plasma frame angular frequency, ωsc is the spacecraft frame angular frequency, k̂

is the propagations direction and ~vbulk is the plasma flow in the spacecraft frame. Because

the propagation direction vector k̂ is determined via MVAB, there is a 180◦ ambiguity with

respect to the background magnetic field. As such, the estimation of the Doppler effect

is split into the two extreme cases where k̂ is parallel or anti-parallel to ~vbulk such that

ωp = ωsc ∓ 2πk̂/λ · ~vflow.

Figures 4.16, 4.17 and 4.18 show how the possible Doppler shifts may effect the

2-d mean magnetic wave power, total integrated Poynting flux and mean scaled δE/δB

comparative distributions. The left, middle and right columns from Figures 4.16, 4.17 and

4.18 correspond to an parallel Doppler shift, no Doppler shift and anti-parallel Doppler shift

respectively.

Taking into account the parallel Doppler shift has an insignificant effect on the proper-

ties of the 2-d mean magnetic wave power, total integrated Poynting flux and mean scaled

δE/δB comparative distributions (see the leftmost columns of Figures 4.16, 4.17 and 4.18).

Similarly, the estimated anti-parallel Doppler shift has an insignificant effect on the proper-
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ties of the 2-d mean magnetic wave power, total integrated Poynting flux and mean scaled

δE/δB comparative distributions (see the rightmost columns of Figures 4.16, 4.17 and

4.18).

When considering the Doppler shift for an ion-scale wave (λ = 2000 km), the resulting

effect on the ion-scale wave properties are insignificant. This suggests that the results

discussed in § 4.4 are valid in the plasma frame.
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Figure 4.16: Estimated parallel k̂ (left columns) and anti-parallel k̂ (right columns)
Doppler effects on the 2-d comparative distributions of mean total power (Ptot) versus
propagation angle (θkB) between KHI and non-KHI events; center columns are the
non-Doppler shifted distributions. The panels from top to bottom represent the MSP,
MIX and MSH plasma regimes, respectively.
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Figure 4.17: Estimated parallel k̂ (left columns) and anti-parallel k̂ (right columns)
Doppler effects on the 2-d comparative distribution of the integrated Poynting flux
versus propagation angle (Sint versus θkB); center columns are the non-Doppler shifted
distributions. The panels from top to bottom represent the MSP, MIX and MSH
plasma regimes, respectively.

151



4.6. DOPPLER SHIFT EFFECTS

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

θ
k
B

 

 

K
H

I 
−

 n
o

n
K

H
I

L
o
g

 C
o

u
n

t 
D

if
fe

re
n

c
e

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2(a)

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

θ
k
B

 

 

K
H

I 
−

 n
o

n
K

H
I

L
o
g

 C
o

u
n

t 
D

if
fe

re
n

c
e

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2(b)

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

θ
k
B

 

 

K
H

I 
−

 n
o

n
K

H
I

L
o
g

 C
o

u
n

t 
D

if
fe

re
n

c
e

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2(c)

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

θ
k
B

 

 

K
H

I 
−

 n
o

n
K

H
I

L
o

g
 C

o
u

n
t 
D

if
fe

re
n

c
e

−3

−2

−1

0

1

2

3(d)

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

θ
k
B

 

 

K
H

I 
−

 n
o

n
K

H
I

L
o

g
 C

o
u

n
t 
D

if
fe

re
n

c
e

−3

−2

−1

0

1

2

3(e)

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

θ
k
B

 

 

K
H

I 
−

 n
o

n
K

H
I

L
o

g
 C

o
u

n
t 
D

if
fe

re
n

c
e

−4

−3

−2

−1

0

1

2

3

4(f )

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

θ
k
B

(|δ E
⊥
|/|δ B

⊥
|)/v

A

 

 

K
H

I 
−

 n
o

n
K

H
I

L
o

g
 C

o
u

n
t 
D

if
fe

re
n

c
e

−3

−2

−1

0

1

2

3(g)

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

θ
k
B

(|δ E
⊥
|/|δ B

⊥
|)/v

A

 

 

K
H

I 
−

 n
o

n
K

H
I

L
o

g
 C

o
u

n
t 
D

if
fe

re
n

c
e

−3

−2

−1

0

1

2

3(h)

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

θ
k
B

(|δ E
⊥
| /|δ B

⊥
|)/v

A

 

 

K
H

I 
−

 n
o

n
K

H
I

L
o

g
 C

o
u

n
t 
D

if
fe

re
n

c
e

−3

−2

−1

0

1

2

3(i)

Figure 4.18: Estimated parallel k̂ (left columns) and anti-parallel k̂ (right columns)
Doppler effects on the 2-d comparative distributions of scaled mean δE/δB polar-
ization versus propagation angle; center columns are the non-Doppler shifted distri-
butions.The panels from top to bottom represent the MSP, MIX and MSH plasma
regimes, respectively.
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Chapter 5

Summary

5.1 Case Study

The observations described in this study show a cross-scale evolution from the ULF range

to the ωci-range where the cold-component ions are energized. These observations are

consistent with previous studies that portray an increased amount of wave power across

multiple scales at the dawn-flank and may very well be one of the primary mechanisms at

play responsible for the 30-40% increased temperature of the cold-component ions in the

dawnside plasma sheet.

Observations on June 6th 2002 are consistent with typical KHI signatures and are repro-

duced qualitatively with simulations. We detect, and provide strong evidence in the form of

an experimental dispersion relation, of a magnetosonic wave inside a KH vortex character-

ized by a total pressure minimum. The observed magnetosonic wave packet propagates al-

most perpendicularly to the ambient field in vicinity of the ion cyclotron frequency, is short-

lived and has adequate energy to provide ≈ 2 keV energy increase for the cold-component

ions of magnetosheath origin. The present observation of a large relative amplitude (δB/B
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≈ 33 percent), 200-2,000 km wavelength magnetosonic wave packet, generated by a 36,000

km wavelength Kelvin-Helmholtz wave is consistent with cross-scale energy transport. This

finding could have a profound, cross disciplinary application to a broad range of systems

which experience velocity shear and where KHI can form. For example, similar cross-scale

mechanisms may contribute to the heating of the solar corona (Foullon et al., 2011) and also

play a role in other astrophysical plasmas. Although here the cross-scale heating occurred

in a natural plasma environment, where the observed wave length ratio between the fluid

and ion scale wave is in the range of ≈ 20-200, it would be important to study this further

in the controlled man-made devices such as the Large Plasma Device (LAPD) where the

KHI has been successfully generated (Horton et al., 2005). Especially compelling would

be to investigate an optimal parameter regime and velocity shear layer and magnetic field

geometries where the FMWs radiated by the KHI can heat the plasma most effectively.

These efforts may also be beneficial for the understanding the cross-scale energy transport

in man-made fusion devices (Ongena et al., 2016).

5.2 Statistical Study

This present work identified ion-scale wave properties associated with magnetopause cross-

ings in the the low latitude flanks during periods where KHI was active and inactive and

addressed the ubiquity of non-adiabatic heating to KHI. The conclusions can be summarized

as follows:

1. Increase in the specific entropy associated with ion-scale waves is more pronounced

when KHI is present.

2. Global specific entropy profiles show a stronger increase from MSH to MSP for the

non-KH events, most likely due to a hot and tenuous plasma sheet.
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3. MSH plasma beta is globally lower (β < 1) when KHI is present, however not suffi-

ciently low enough to account for non-adiabatic heating from reconnection and asso-

ciated shocks.

4. The mean total magnetic wave power observed during the FMW interval in Moore et al.

(2016) falls within the range of KH dominant observations of quasi-perpendicular

propagating waves in the MIX and MSP plasma.

5. In the MIX and MSP plasma, the estimated total integrated Poynting flux calculated

during the FMW interval in Moore et al. (2016) falls within the range of KH dominant

observations of quasi-perpendicular propagating waves.

6. The broad distributions in the δE/δB ratio scaled by the local Alfvén velocity for

the KH-dominant quasi-perpendicular ion-scale wave activity is consistent with the

FMW interval.

7. The strong KH dominant scaled δE/δB range greater than unity supports the exis-

tence of KAWs in the MSP, MIX and MSH plasmas.

8. Peaks in the degree of polarization during KH and non-KH events are consistent with

the ion scale waves observed by Moore et al. (2016).

9. When considering the significant magnetic wave power, the magnetic compressibility

profiles show an amplification in the transverse magnetic wave power in the MIX

plasma consistent with mode conversion from from surface MHD to KAWs.

10. More wave energy from obliquely propagating waves are is available to the MSP when

KHI is active.

11. Solar wind effects on the source MSH plasma is an unlikely cause of the specific

entropy associated with the ion-scale waves in the MSP plasma when KHI is active.
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In summary, there is a clear association between non-adiabatic heating and ion scale

wave activity when KHI is active. Among the ion scale wave activity, a distinct KH-

dominance is shown for quasi-perpendicular waves whose properties are consistent with

recently observed FMW activity and KAWs. Although the specific entropy is shown to

increase from the MSH to MSP when KHI is inactive, the plasma sheet may already be

populated by hot and tenuous plasma due to substorm activity.

These findings may shed significant light on the origins of the plasma sheet temperature

asymmetry of cold-component ions and non-adiabatic heating across the magnetopause.

Energy provided in the form of a velocity shear can drive fluid scale KH waves at the

magnetopause. Previously, it has been shown that there is a sufficient energy deficit – left-

over from the twisting of magnetic lines and plasma compression from the KH motion –

comparable to ion scale FMW emissions capable of energizing ions via harmonic cyclotron

resonance. These results suggest that waves, consistent with KH vortex associated FMW

activity and KAWs, may play a significant role in the cross-scale energy transport between

fluid and ion scales. However more work is needed to uncover the mechanism by which these

waves are generated inside the pressure wells of the KH vortices. For instance, the local

2-D MHD model used in this research contain the necessary physics for MHD magnetosonic

waves to propagate in the simulation plane, however this is limited to low frequency ranges

(ω ≤ ωic) and the kinetic distribution functions cannot be provided by the MHD output

data. Therefore, fully kinetic modeling or hybrid modeling with kinetic ions of KHI at

the magnetopause should be analyzed in order to determine the typical ion distribution

functions that are generated inside the vortex centers.
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Chapter 6

Discussion and Future Work

Although here the cross-scale heating occurred in a natural plasma environment, where

the observed wave length ratio between the fluid and ion scale wave is in the range of ≈

20-200, it would be important to study this further in the controlled man-made devices

such as the Large Plasma Device (LAPD) where the KHI has been successfully generated

(Horton et al., 2005). Especially compelling would be to investigate an optimal parameter

regime and velocity shear layer and magnetic field geometries where the FMWs radiated by

the KHI can heat the plasma most effectively. These efforts may also be beneficial for the

understanding the cross-scale energy transport in man-made fusion devices (Ongena et al.,

2016).

The present finding contributes to the understanding of the specific entropy increase at

the magnetopause and on the origin of the asymmetry of the cold-component ions in the

plasma sheet. However, it would be significant to extend this work to electron scales.

It has been shown that the ion to electron temperature ratio Ti/Te remains relatively

constant across the magnetopause from the magnetosheath plasma to the plasma sheet,

while the temperature and specific entropy for the ions and electrons increase dramati-
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cally (Wang et al., 2012). This “stagnant” ratio suggests that both the magnetosheath ions

and electrons undergo heating to similar proportions upon entry into the magnetosphere

(Wang et al., 2012). In other words, it is as if the electrons know when the ions are heated.

Interestingly, at higher k-values (on electron scales) the magnetosonic mode becomes a

Whistler wave (Krauss-Varban et al., 1994) which may interact and energize electrons. It

may be that the FMWs generated inside the KH vortices – which can heat ions – are coupled

to electron-scale Whistler modes which in turn heat the electrons. Future work is needed in

order to quantify if the magnetosonic-whistler branch continues to the electron scales with

sufficiently high Poynting flux in the real system. The recently launched Magnetospheric

Multi-Scale (MMS) mission provides superior measurement cadence and has the capabil-

ity to extend the presently measured magnetosonic dispersion relation to higher k-values.

These technical capabilities, paired with well suited orbital parameters, indicate that these

data should be an ideal candidate for such studies and therefore significantly contribute to

addressing these unresolved questions. Finally, it would be desirable to construct a labora-

tory experiment of this mechanism and investigate the parameter regime to yield maximum

ion and electron heating.

The near-Earth environment is an ideal laboratory for studying phenomena that would

otherwise not allow for in-situ measurements like the solar corona (Retino, 2016). Fur-

thermore, KHI is one the main mechanisms resulting from the Sun’s interaction with the

magnetopause (Retino, 2016). Of equal significance, this cross-scale mechanism may be fun-

damental in contributing to the heating of the solar corona, where significant shear flows

are present and KHI can form (Nykyri & Foullon, 2013; Foullon et al., 2013), and therefore

warrant further detailed investigation. Similar to the sudden increase in ion temperatures

across the magnetopause, where the magnetospheric ions are approximately 50 times hotter

than the magnetosheath ions, the temperature increase from the visible surface of the Sun

to the solar corona is staggering (Borovsky & Cayton, 2011).
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From fusion research applications to solving one of the most pressing problems in astro-

physical plasmas, uncovering the specific mechanism generating ion-scale fast magnetosonic

waves inside Kelvin-Helmholtz vortices allowing cross-scale energy transport is crucial.
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Appendix A

Appendix

A.1 Binning and Sorting Statistical Figures and

Summary Plots

A.1.1 KHI Events

The figures containing the format similar to that shown in Figure A.1 depict qualitative

determination of the MSH, MIX and MSP threshold values. The omni-directional ion energy

spectrograms rotated into flux-energy space for the entire event interval length are plotted

in the Top Panel; the Middle Panel shows the histogram of observed ion energies tallied

from each time step over the entire event length; and the weighted mean average of the ion

energy is plotted relative to the plasma regime threshold in the Bottom Panel – the blue,

green and red lines represent the energy thresholds for the MSH, MIX and MSP plasma

regimes respectively.

The figures sharing the same format as shown in Figure A.2 depict the output of the

binning algorithm. The bin in which each time step has been sorted into based upon its
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PLOTS

subsequent weighted mean average is plotted in the Bottom Panel – the blue, green and red

lines represent the MSH, MIX and MSP plasma regimes respectively.
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PLOTS

Time (Hours)

Figure A.1: Energy band statistics and sorting for July 3rd 2001 Event.
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Figure A.2: July 3rd 2001 Event summary and boundary position.
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Figure A.3: Energy band statistics and sorting for November 20th 2001 Event.
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Figure A.4: November 20th 2001 Event summary and boundary position.
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Figure A.5: Energy band statistics and sorting for June 6th 2002 Event.
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Figure A.6: June 6th 2002 Event summary and boundary position.
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Figure A.7: Energy band statistics and sorting for June 13th 2002 Event.
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Figure A.8: June 13th 2002 Event summary and boundary position.
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Figure A.9: Energy band statistics and sorting for June 19th 2004 Event.
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Figure A.10: June 19th 2004 Event summary and boundary position.
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Figure A.11: Energy band statistics and sorting for June 21st 2004 Event.
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Figure A.12: June 21st 2004 Event summary and boundary position.
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A.1.2 Non-KHI Events
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Figure A.13: Energy band statistics and sorting for June 3rd 2003 Event.
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Figure A.14: June 3rd 2003 Event summary and boundary position.
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Figure A.15: Energy band statistics and sorting for November 16th 2004 Event.
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Figure A.16: November 16th 2004 Event summary and boundary position.
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Figure A.17: Energy band statistics and sorting for November 27th 2004 Event.
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Figure A.18: November 27th 2004 Event summary and boundary position.
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Figure A.19: Energy band statistics and sorting for June 28th 2005 Event.
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Figure A.20: June 28th 2005 Event summary and boundary position.

182



A.1. BINNING AND SORTING STATISTICAL FIGURES AND SUMMARY

PLOTS

10
0

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

Energy (eV)

C
o

u
n

ts

10
0

10
1

10
2

10
3

10
4

10
5

3

4

5

6

7

8

Energy (eV)

F
lu

x

[l
o

g
1

0
 (

k
e

V
/(

c
m

2
s
 s

r 
k
e

V
))

]

6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7
10

0

10
1

10
2

10
3

10
4

10
5

W
e

ig
h

te
d

 M
e

a
n

 E
n

e
rg

y
 (

e
V

)

 

 

Mean

MSH Band

MIX Band

MSP Band

Time (Hours)

Figure A.21: Energy band statistics and sorting for June 4th 2007 Event.
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Figure A.22: June 4th 2007 Event summary and boundary position.
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Figure A.23: Energy band statistics and sorting for June 6th 2007 Event A.
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Figure A.24: June 6th 2007 Event A summary and boundary position.
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Figure A.25: Energy band statistics and sorting for June 6th 2007 Event B.
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Figure A.26: June 6th 2007 Event B summary and boundary position.
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Figure A.27: Energy band statistics and sorting for June 3rd 2009 Event.
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Figure A.28: June 3rd 2009 Event summary and boundary position.
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A.2 Extreme Doppler Shift Effects

In an aim to estimate possible Doppler effects, we use the end of the wavelength range from

the FMW interval from Moore et al. (2016) (200 km ≤ λ ≤ 2000 km) such that an extreme

Doppler shift will result. Thus a wavelength of λ = 200 km is chosen for the Doppler shift

equation ωp = ωsc−2πk̂/λ ·~vflow, where ωp is the plasma frame angular frequency, ωsc is the

spacecraft frame angular frequency, k̂ is the propagations direction and ~vbulk is the plasma

flow in the spacecraft frame. Because the propagation direction vector k̂ is determined via

MVAB, there is a 180◦ ambiguity with respect to the background magnetic field. As such,

the estimation of the Doppler effect is split into the two extreme cases where k̂ is parallel

or anti-parallel to ~vbulk such that ωp = ωsc ∓ 2πk̂/λ · ~vflow.

Figures A.31, A.32 and A.33 show how the possible extreme Doppler shifts may effect

the 2-d mean magnetic wave power, total integrated Poynting flux and mean scaled δE/δB

comparative distributions. The left, middle and right columns from Figures A.31, A.32

and A.33 correspond to an anti-parallel Doppler shift, no Doppler shift and parallel Doppler

shift respectively.

Taking into account both extreme cases of the Doppler shift change the trends discussed in

the ion-scale distributions in the MSH plasma. The most noticeable consequences of such

extreme Doppler shift estimates are in the Ptot and Sint distributions. Specifically the anti-

parallel and parallel Doppler shift estimates in the MIX plasma push the quasi-perpendicular

portion of the Ptot into a range inconsistent with the June 6th 2002 FMW observations (see

the middle row of panels from Figure A.31). Similarly the anti-parallel and parallel Doppler

shift estimates in the MIX plasma push the quasi-perpendicular portion of the Sint into a

range inconsistent with the June 6th 2002 FMW observations (see Figures A.32 (d) and

(f)). When accounting for the extreme parallel Doppler shift on the P distribution in the

MSH plasma (Figure A.33 (i)), there is little evidence of KAW activity that was evidenced
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Figure A.29: Energy band statistics and sorting for June 26th 2009 Event.
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Figure A.30: June 26th 2009 Event summary and boundary position.

by the KH-dominant band near unity for the anti-parallel and zero Doppler shift cases in

Figures A.33 (g) and (h) respectively.

Although accounting for possible Doppler shift effects causes changes in the results from

the main text – most notably in the MIX Ptot and Sint distributions – these are for very

extreme cases for a singular wavelength which most likely corresponds to frequencies well

outside of the ion-cyclotron frequency and thus considerable weight should not be placed

on these results.
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Figure A.31: Estimated parallel k̂ (left columns) and anti-parallel k̂ (right columns)
Extreme Doppler effects on the 2-d comparative distributions of mean total power
(Ptot) versus propagation angle (θkB) between KHI and non-KHI events; center
columns are the non-Doppler shifted distributions. The panels from top to bottom
represent the MSP, MIX and MSH plasma regimes, respectively.
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Figure A.32: Estimated parallel k̂ (left columns) and anti-parallel k̂ (right columns)
Extreme Doppler effects on the 2-d comparative distribution of the integrated Poynt-
ing flux versus propagation angle (Sint versus θkB); center columns are the non-
Doppler shifted distributions. The panels from top to bottom represent the MSP,
MIX and MSH plasma regimes, respectively.
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Figure A.33: Estimated parallel k̂ (left columns) and anti-parallel k̂ (right columns)
Extreme Doppler effects on the 2-d comparative distributions of scaled mean δE/δB
polarization versus propagation angle; center columns are the non-Doppler shifted dis-
tributions.The panels from top to bottom represent the MSP, MIX and MSH plasma
regimes, respectively.
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Science Reviews , 92 , 423-533.

Stenuit, H., Fujimoto, M., Fuselier, S. A., Sauvaud, J.-A., Wing, S., Fedorov, A.,

. . . Pedersen, A. (2002, October). Multispacecraft study on the dynamics of the

dusk-flank magnetosphere under northward IMF: 10-11 January 1997. Journal of

Geophysical Research (Space Physics), 107 , 1333. doi: 10.1029/2002JA009246

Stix, T. H. (1992). Waves in plasmas.

Sundberg, T., Boardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Zurbuchen,

T. H., . . . Solomon, S. C. (2012, April). MESSENGER orbital observations of

large-amplitude Kelvin-Helmholtz waves at Mercury’s magnetopause. Journal of

Geophysical Research (Space Physics), 117 , 4216. doi: 10.1029/2011JA017268

221



REFERENCES

Taylor, M. G. G. T., Hasegawa, H., Lavraud, B., Phan, T., Escoubet, C. P., Dunlop,

M. W., . . . Wild, J. A. (2012). Spatial distribution of rolled up kelvin-helmholtz

vortices at earth’s dayside and flank magnetopause. Annales Geophysicae, 30 (6),

1025–1035. Retrieved from http://www.ann-geophys.net/30/1025/2012/ doi:

10.5194/angeo-30-1025-2012

Taylor, M. G. G. T., Hasegawa, H., Lavraud, B., Phan, T., Escoubet, C. P., Dunlop,

M. W., . . . Wild, J. A. (2012, June). Spatial distribution of rolled up Kelvin-

Helmholtz vortices at Earth’s dayside and flank magnetopause. Annales Geophys-

icae, 30 , 1025-1035. doi: 10.5194/angeo-30-1025-2012

Taylor, M. G. G. T., & Lavraud, B. (2008, June). Observation of three distinct ion

populations at the Kelvin-Helmholtz-unstable magnetopause. Annales Geophysi-

cae, 26 , 1559-1566. doi: 10.5194/angeo-26-1559-2008

Taylor, M. G. G. T., Lavraud, B., Escoubet, C. P., Milan, S. E., Nykyri, K., Dun-

lop, M. W., . . . Zhang, T. L. (2008). The plasma sheet and boundary layers

under northward IMF: A multi-point and multi-instrument perspective. Advances

in Space Research, 41 , 1619-1629. doi: 10.1016/j.asr.2007.10.013

Tejero, E. M., Amatucci, W. E., Ganguli, G., Cothran, C. D., Crabtree, C., &

Thomas, E., Jr. (2011, May). Spontaneous Electromagnetic Emission from a

Strongly Localized Plasma Flow. Physical Review Letters , 106 (18), 185001. doi:

10.1103/PhysRevLett.106.185001

Terasawa, T., Fujimoto, M., Mukai, T., Shinohara, I., Saito, Y., Yamamoto, T.,

. . . Lepping, R. P. (1997). Solar wind control of density and temperature in the

222

http://www.ann-geophys.net/30/1025/2012/


REFERENCES

near-Earth plasma sheet: WIND/GEOTAIL collaboration. Geophysical Research

Letters , 24 , 935-938. doi: 10.1029/96GL04018

Terasawa, T., & Nambu, M. (1989a, May). Ion heating and acceleration by magne-

tosonic waves via cyclotron subharmonic resonance. Geophysical Review Letters ,

16 , 357-360. doi: 10.1029/GL016i005p00357

Terasawa, T., & Nambu, M. (1989b, May). Ion heating and acceleration by magne-

tosonic waves via cyclotron subharmonic resonance. Geophysical Research Letters ,

16 , 357-360. doi: 10.1029/GL016i005p00357

Treumann, R., & Baumjohann, W. (1997). Advanced space plasma physics. Imperial

College Press.

University, B. (2017). Physics of aurorae. Retrieved 2017-01-27, from

http://www.bu.edu/csp/PASS/science/aurora.htmlm

Walker, S. N., Balikhin, M. A., Shklyar, D. R., Yearby, K. H., Canu, P., Carr, C. M.,

& Dandouras, I. (2015). Experimental determination of the dispersion relation of

magnetosonic waves. Journal of Geophysical Research: Space Physics , n/a–n/a. Re-

trieved from http://dx.doi.org/10.1002/2015JA021746 (2015JA021746) doi:

10.1002/2015JA021746

Walsh, B. (2014). Magnetopause boundary conditions and modes of SW-M coupling.

In Geospace environment modelling summer workshop. Portsmouth, Virginia.

Walsh, B. M., Sibeck, D. G., Wang, Y., & Fairfield, D. H. (2012). Dawn-dusk

asymmetries in the earth’s magnetosheath. Journal of Geophysical Research: Space

Physics , 117 (A12). doi: 10.1029/2012JA018240

223

http://www.bu.edu/csp/PASS/science/aurora.htmlm
http://dx.doi.org/10.1002/2015JA021746


REFERENCES

Wang, C.-P., Gkioulidou, M., Lyons, L. R., & Angelopoulos, V. (2012). Spatial

distributions of the ion to electron temperature ratio in the magnetosheath and

plasma sheet. Journal of Geophysical Research: Space Physics , 117 (A8), n/a–

n/a. Retrieved from http://dx.doi.org/10.1029/2012JA017658 (A08215) doi:

10.1029/2012JA017658

Wing, S., Johnson, J. R., & Fujimoto, M. (2006, December). Timescale for the

formation of the cold-dense plasma sheet: A case study. Geophysical Research

Lettersl , 33 , 23106. doi: 10.1029/2006GL027110

Wing, S., Johnson, J. R., Newell, P. T., & Meng, C.-I. (2005, August). Dawn-dusk

asymmetries, ion spectra, and sources in the northward interplanetary magnetic

field plasma sheet. Journal of Geophysical Research (Space Physics), 110 , 8205.

doi: 10.1029/2005JA011086

Wing, S., & Newell, P. T. (2002). 2d plasma sheet ion density and temperature profiles

for northward and southward imf. Geophysical Research Letters , 29 (9), 21-1–21-

4. Retrieved from http://dx.doi.org/10.1029/2001GL013950 doi: 10.1029/

2001GL013950

Yan, G. Q., Mozer, F. S., Shen, C., Chen, T., Parks, G. K., Cai, C. L., & McFadden,

J. P. (2014, July). Kelvin-Helmholtz vortices observed by THEMIS at the duskside

of the magnetopause under southward interplanetary magnetic field. Geophyical

Research Letters , 41 , 4427-4434. doi: 10.1002/2014GL060589

Yao, Y., Chaston, C. C., Glassmeier, K.-H., & Angelopoulos, V. (2011, May). Elec-

tromagnetic waves on ion gyro-radii scales across the magnetopause. Geophysical

224

http://dx.doi.org/10.1029/2012JA017658
http://dx.doi.org/10.1029/2001GL013950


REFERENCES

Research Letters , 38 , 9102. doi: 10.1029/2011GL047328

Zastenker, G. N., Nozdrachev, M. N., Němeček, Z., Šafránková, J., Paularena, K. I.,
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