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Mixing

Stirring is the mechanical motion of the fluid: the cause;

Mixing is the homogenization of a substance: effect.




...A traditional joke is that a topologist can't distinguish a coffee
mug from a doughnut.. How about what’s in your mug?




It comes as a surprise to many that mixing is actually a proper field of study.

After all, how much of a mathematical challenge can stirring milk in a teacup
present?

Well, quite a difficult one, actually! For the particular case of the teacup,
stirring creates turbulence, and turbulent flows are usually extremely
~ good at mixing.

Turbulence is hard—if not impossible—to understand,
so we are already in dangerous territory.

JEAN-LUC THIFFEAULT and MATTHEW D. FINN,
Topology, braids and mixing in fluids,
Phil. Trans. R. Soc. A (2006) 364, 3251-3266




The teacup is not the best example because there is not much to achieving good
mixing: a flick of the wrist will usually suffice.

But there are many other situations of practical interest where this is not the case for
various reasons.

The basic setting is the same: given some quantity (e.g. milk, temperature, moisture,
salt, dye, etc. usually referred to as the scalar field ) that is transported by a fluid
(e.g. air or water):

How does the concentration of that substance
evolve in time?

From there very different questions can arise.

1. Does the scalar concentration tend to a

constant distribution

2. If so, how rapidly?

3. Does the scalar eventually fill the entire
domain, or are there transport barriers
that prevent this?

4. How much energy is required to stir the
fluid?




What is the mechanism that redistributes a couple of
scalars in a mixing process?

One candidate is molecular diffusion, which all scalars
undergo, but that is utterly negligible in practical
applications.

The primary mode of redistribution is by far transport by
currents. In this case, the scalars are active rather than
passive.

For modeling (e.g. climate, combustion), it is crucial to
know how fast the global redistribution of the scalar
occurs.



If the fluid motion takes place at micro-scales (on the
surface of microchips., or in the molecular diffusion of
DNA) the motion of a fluid like water behaves as a
viscous fluid: turbulence is impractical to achieve.

The problem is that the fluid motion is so regular that
mixing is very difficult, and is very slow .

This is where chaotic mixing becomes the best option,
and the field has undergone a renaissance owing to lab-
on-a-chip applications



Steady three-dimensional flows could have chaotic
trajectories (Henon, 1966).

Two-dimensional flows with time dependence, could
have chaotic trajectories, too.

The advantage of this for fluid mixing: chaotic
advection. (Aref, 1984).

The flow pattern is not changing in time, but if one
starts two particle trajectories close to each other
they diverge exponentially, at a rate given by the
Lyapunov exponent of the flow.



When the flow is chaotic the fluid particles rapidly
become uncorrelated and forget about each other’s
whereabouts.

That is exactly what it means for a scalar to be mixed:
the initial concentration field is forgotten, then the
molecular diffusion in ultimately achieving this
homogenization

Chaotic mixing can potentially achieve the same result
as turbulence, but with much simpler fluid motion and at
a lower energy cost.



Chaotic mixing is a process by which flow tracers
develop into complex fractals under the action of
a fluid flow.

The flow is characterized by an exponential
growth of fluid filaments.
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At least 3 degrees of freedom are necessary for a dynamic system to
be chaotic.

Three-dimensional flows have three degrees of freedom
correspondingto the three coordinates, and usually result in chaotic
advection, except when the flow has symmetries that reduce the
number of degrees of freedom.

In flows with less than 3 degrees of freedom, Lagrangian trajectories
are confined to closed tubes, and shear-induced mixing can only
proceed within these tubes.
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Topological chaos methods:

Given a diffeomorphism f between two-dimensional compact manifolds,
the Thurston—Nielsen classification theorem tells us that f is isotopic to g
which is one of three types of mapping.

.. Finite-order. If g is repeated enough times, the resulting diffeomorphism
is the identity.

2. Pseudo-Anosov (pA). g stretches the fluid elements by a factor x>1, so
that repeated application gives exponential stretching; x is called the
dilatation of g and log x is its topological entropy.

3. Reducible. g leaves a family of curves invariant, and these curves delimit
sub-regions that are of type 1 or 2.

Anosov diffeomorphisms are the prototypical chaotic maps: they stretch
uniformly everywhere. A pseudo-Anosov map allows for a finite number of
singularities in the stable and unstable foliations of the map.



The best mixing should induce a diffeomorphism f that is either
isotopic to a pseudo-Anosov map, or splits M into subregions that
include type 2 components.

However, most industrial situations involve open flows: fluid enters a
mixing region only for a finite time, and then exits, having hopefully
been mixed.

In this case topological considerations cannot tell anything. The
Thurston—Nielsen theorem does not apply,

Until one can define a topological entropy by looking at the growth
rate of material lines or the density of periodic orbits, we prefer to
approach the mixing from a PDE point of view.



Present theories:

Freidlin-Wentzell theory (2002) studies an advection-
diffusion equation and, for a class of Hamiltonian flows,
proves the convergence of solutions as the velocity of the
fluid — .

The conditions on the flows for which the procedure can
be carried out are given in terms of certain non-
degeneracy and growth assumptions on the stream
function.



Kifer, Berestycki, Hamel and Nadirashvili theory
(1991). employs probabilistic methods and is focused,
in particular, on the estimates of the principal
eigenvalue of the advection operator’

They described the asymptotic behavior of the principal
eigenvalue (which determines the asymptotic rate of
decay of the solutions of the initial value problem),

...and the corresponding positive eigenfunction in the
case where the diffusion operator has a discrete
spectrum and sufficiently smooth eigenfunctions.

The principal eigenvalue stays bounded as flow—if and
only if uhas a first integralin H.



However, in the of a compact manifold without boundary
or Neumann boundary conditions the principal eigenvalue
IS simply zero and corresponds to the constant
eigenfunction.

Instead one is interested in the speed of convergence of
the solution to its average, the relaxation speed.

In studying the advection-enhanced diffusion one needs
estimates on the velocity-dependent norm decay at a
fixed positive time.



In the Constantin, Kiselev, Ryzhik, Zlatos theory
(2008) unitary evolution alternates with dissipation.

The absence of sufficiently regular eigenfunctions
appears as a key for the lack of enhanced relaxation in
this particular class of dynamical systems.

We present here a characterization of
incompressible flows that are relaxation enhancing,
In a general setup.

NOTE: The study uses dynamical estimates, and do
not discuss the spectral gap.

We assume that the solution tends to a certain limit and
define relaxation enhancement in terms of speed up in
reaching this limit.




The theoretical framework to describe the equilibrium properties of a
binary fluid mixture is given by a Landau-type mean-field theory in which

the free-energy:
S

where and are the
total density, and the

= concentration difference
A A A A between the 2
\_ components, respectively.
is used to obtain thermodynamic quantities.
T=temperature, = coefficient of surface tension
Ideal gas term Fluid bulk Interfacial properties

properties




The corresponding thermodynamic quantities are:

Chemical potential

Pressure tensor

The mean-field coefficients are explained from these relations: a is related to
linear properties, b is related to the nonlinear terms.

Here

the fluid velocity, the shear and bulk viscosities, mobility coeff.



The fluid flow is described by the Navier-Stokes equations:

Reynolds number

Strouhal number



(Eqg. 1)



We generalize the passive scalar equation, Eq. 1 :

Into the abstract one:

which is a Bochner type of ODE in time.

(Eq. 1)



In some cases we can study with the same model an open flow mixing system.

In this case we either consider M to be non-compact, or we consider the sources
of the flow, as divergence terms in the compact manifold M:



We have the homogenous Sobolev spaces

such that

associated with I formed by




We use the following criterion to describe the incompressible flow
efficiency in improving the solution relaxation, and thus enhancing
the mixing process by advection.

Definition of relaxation enhancing:

In the following we will work on the Hilbert space H of functions with zero mean.



Theorem 1 Constantin-Kiselev-Ryzhik-Zlatos Ann. Math. 168 (2008) 643







We write Eq. (1) <

In a different form:

with a rescaling of time, and
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A function fis in if for every open subset U

contained in M such that U is relatively compact (i.e. the
closure of U is compact),

the restriction of fto U is in






In order to show this we use the so called RAGE Theorem. (Ruelle 1969, W. O. Amrein,
V. Georgescu, 1974, and W. Enss 1978)

See for example:
H. Cycon, R. Froese, W. Kirsch and B. Simon, Schrédinger Operators (Springer-Verlag, 1987)

The origin of this theorem lies in the observation that for the free linear Schrédinger
equation all solutions are radiative or “pseudorandom” (i.e. profile decomposition).

A sequence of solutions to the free linear Schrodinger equation can be splitinto a
small number of "structured" components which are localized in space-time and in
frequency, plus a "pseudorandom term which is dispersed in space-time, and is
small in various useful norms.



The RAGE theorem asserts, that there are no further types of states, and that every
state decomposes uniquely into a bound state and a radiating state.

RAGE theorem is also related to Strongly mixing systems.

For any two sets E and F in a measure-preserving system (a probability space X and
a shift map T (measuring preserving, invertible and bi-measurable)

we have:

This is saying that shifted sets become asymptotically independent of un-shifted sets.









So, by using the RAGE Theorem, we know that if the initial data lies in the continuum
spectrum of L then the L-evolution will spend most of the time in higher
modes of . That is, on one hand:

Spectral projection of L on its
continuous spectral subspace




Spectral projection of L on its
pure point spectrum subspace




Sketch of the 2nd part of the proof of Theorem 1 based on Lemma 2,
the RAGE Theorem, Lemma 3 and Property 2



r

Which concludes the proof of Theorem 1.



Generalization for reaction-diffusion-advection equations.

It contains a nonlinear reaction term f (Boltzmann equation)

We have:






NLWL 2

2,200 gallons water max.

15.5 feet long

4 waves generator
Electromagnetic, Interferometry

Pneumatic earthquake simulator



The construction

September



October-November
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November-December







Rebecca
Woods

- CAPSTONE Spring

Steven Z

2012 (09/15)
Thompson
Nigel Smith Calc. 1
- AE’ Senior
Marcus AE, senior
Jackson
- EE’ Senior
Christopher Computer,
Wright sophomore

Reading Chap. 4
Thinking at the laser beams
problem

Study the actuator A24
experiment (Nov)

Designing a code for a hydrod.

model (Sept.-Oct)
Study the actuator A24
experiment (Nov)

Measured tank
Helped constructions

Electric/electronic
connections, various helps
(11/20)

Acquired all data

Studied IR sensors and Parallax
protoboards

Works on a general model of the lab
automatics

Helps hands on everything

Theory for the
NLWL
experiments

Experiments in
NLWL,

Experiments in
NLWL, and
Fortran codes

Experiments
NLWL

Design level
control

Design level
control

IR sensors and
proto-boards

Design complete

automatics

General help
(10/10)

Solved the laser beams problem
Learned elements of Euler equation

Wrote a report on experiments on A24 from Nov.

Wrote a report on experiments on A24 from Nov.

Made a tank model

Main electric panel

Automatic controls and interfaces (10/05)

Automatic controls and interfaces (10/05)

IR sensors and proto-boards (10/10)

Design complete automatics (11/16)




Research accomplished:

Actuators law of motion (Dale, Thompson)
Qualitative experiments 2+more fluids (JC)
Teaching PDE with the water tank (FD+class)

Automatics and labh modeling (Hansen, Williams,
Jackson, Wright)

Design and experiment laser reflection on water
surface (RW)

v
0.152+-0.001 0.63+-0.01
0.130+-0.002 0.314+-0.001 1.21+-0.01
0.187+-0.002 0.148+-0.001 1.34+-0.03

P 0.280+-0.001 1.49+-0.03

* Experiments in medium height/shallow water at NLWL on 11/09/2011 with Dr. Drullion
and her class.

* Experimental errors: Reaction time of observer, about 0.2 s. Distance 2%. Amplitude:
10%-20% depending on wave amplitude



We have a fully operational wave tank

Wave generators: 2 (electromagnetic actuators) out of 4 (stepper
and pneumatic)

Turbulence generator is operational

Measurement of density and elevation with lasers: operational
Data acquisition: oscilloscope and LabView: operational

Trained students and working: 9

Faculty actively involved: 2.5

1 lab technician (MP)

TO DO

Install stepper actuator for vortex generation

Install compressed air actuator for earthquake simulation
Install the interferometry fluid imaging

Experiments splashdown for NASA

Install the capacitive electric sensors for elevation
Experiments with multiple fluid turbulence

Experiments deep water solitons




UNIVERSITY OF ILLINOIS AT URBANA CHAMPAIGN Hydraulic Research lab:
Turbidity == MY vise :

Sediments &
Constructions &
Jets

Bubbles




Texas A&M Engineering, Engineering Lab, Research Park,
Offshore Research Technology Center




Similar labs in the world

The University of North Carolina
at Chapel Hill: Modular wave tank
for multi-scale fluid dynamics
(NSF founded, matched S .6-1 M):

Jets

Sediments

Internal waves

Solitons



Tel Aviv University, Water Waves
Research laboratory:

Nonlinear waves

Random waves

Tsunami

27. 11:2006




U. Maryland, Engineering,
Fluid Dynamics Lab:

Ship waves

Wind wave tank



NLWL 3

3,500 gallons water max.

32 feet long

* Multiple waves actuator

PV, LIF, Schlieren imaging, Interferometry

Realistic earthquake simulator



Experimental
setup:

Pressure
incoming
water

“Fuel” line

Lasers: 3 visible red

Zoom in “fuel” injection
system: 2 pumps.
Regimes: stepper,
continuous or pulsed.

Mixing
observation
chamber

Lasers: 2
visible blue,
green and 1
I.R.

Electromagnetic gauges
flow rate measurement







Experimental results for mixing studies with laser intensity signal. Without “fuel,” intensity in water is at normal max value.
When “fuel” crosses a transverse laser beam intensity drops because of light attenuation. The amount of fuel-into-water
integrated along that beam generates a proportional decrease in light intensity. By comparing the pattern, timing and amount
of intensity drop in different laser beams at different orientations we obtain information of the quality of mixing.

Here below are results taken at 195 frames/s. One vortex is created at t=0.65 s and persists 2 cm since the green laser does not
record it anymore. Another vortex vanishes, since the yellow trace, which is further away from the disperser, receives a vortex
before the first (blue) one.
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Relative laser transparency intensity vs. time in seconds. Four lasers all at 12-degree
angle vs. z-axis, all at x=+2.5 cm at 1 cm longitudinal x-separation.
Velocity water flow =.78 m/s
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Normalized laser transparency intensity (l) versus normalized time (t)
Four visible lasers. Same angle. 1cm longitudinal separation.
V0=.15m/s PG=32 cm water
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Lasers are placed at 90-degrees phase shift one from the other, and still at 1 cm along z separated. 195 fps.

A Von Karman vortex street (periodic structure of vortices) was be detected. This vortex lattice (4 vortices) travels stable for
about 3 cm. The last laser detects only the first vortex in the in the street: either the lattice dissipated, or it rotated around a
diagonal axis as a combination of the interaction with the walls and the Strouhal instability.
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Velocity water flow =1.02 m/s  Pressure “fuel” =26 cmH20




Normalized laser transparency intensity (l) versus normalized time (t)
Four visible lasers. Same angle. 1cm longitudinal separation.
V0=.30 m/s PG=28 cm water
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Normalized laser transparency intensity (l) versus normalized
time (t)
Four visible lasers. Same angle. 1cm longitudinal separation.
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2.0

Computer processing of data: Wavelet interpolation (D5)
V0=.80 m/s

PF=29 cmw

L1
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Wavelet interpolation (D5)
V0=.19 m/s PG=29 cm water
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Stability in time of patterns

decreases in time, instead
can be measured

Time (space) evolution of
of increasing

one vortex pattern.
Winding number 6-7

Rotational distribution
of one vortex pattern.

It shows coherence and

finite volume.

Sizes can be measured




CONCLUSIONS

We presented enhancement of diffusive mixing on a compact Riemannian
manifold by a fast incompressible flow.

We described the class of flows that make the deviation of the solution from
its average arbitrarily small in an arbitrarily short time, provided that the flow
amplitude is large enough.

The necessary and sufficient condition on such flows is expressed naturally in
terms of the spectral properties of the dynamical system associated with the
flow.

Further studies are needed for non-compact manifolds, or compact manifolds
with Dirichlet BC. The optimal shape of the fixed obstacles in the mixing
device could be obtained through such a research.



http://daytonabeach.erau.edu/cnls2013

— I £
mil=

June 18-22, 2013

=l

Contents

o General Information

Important Dares
Scientific Committee
Flenary Speakers
Special Sessions

Abstracts
Conference Venue
Scientific Program

Summer Schoo! CNLS (June 18 - June 22, 2013) succeeds the Monlinear waves, theory and applications conference in
Travel Information Beijing, China.

Proceedings During the three weeks of Summer School (May 27 - June 14, 2013) we aim to give participants an
i idea of advanced mathematical and computational methods in nonlinear (systems) of {partial)
9 differential equations, as well as some current research areas where these methods are being further
developed and applied. The detail programs of the summer school can be found here.

CNLS-2013 The conference in Monlinear Systems and summer school, Kathmandu, Mepal (CNLS-2013) is hosted
by the Central Department of Mathematics, Tribhuvan University Nepal.

Dapartmant of

Azt raticas

=1

HOME ABOUT US CONTACT mg
Embry Riddle Nonlinear waves sk

R il EMBRY-RIDDLE

A |l || AERONAUTICAL UNIVERSITY

—y
A e gEoa



	Topology and Geometry of Mixing of Fluids
	Scholarly Commons Citation

	Varna.June.2012

