

The Space Congress® Proceedings

2016 (44th) The Journey: Further Exploration for Universal Opportunities

May 26th, 7:30 AM

Spacecraft Radiation Shielding by a Dispersed Array of Superconducting Magnets

D. L. Chesny National Space Biomedical Research Institute (NSBRI)

S. T. Durrance National Space Biomedical Research Institute (NSBRI)

G. A. Levin National Space Biomedical Research Institute (NSBRI)

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation

Chesny, D. L.; Durrance, S. T.; and Levin, G. A., "Spacecraft Radiation Shielding by a Dispersed Array of Superconducting Magnets" (2016). The Space Congress® Proceedings. 10. https://commons.erau.edu/space-congress-proceedings/proceedings-2016-44th/presentations-2016/10

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

Spacecraft Radiation Shielding by a Dispersed Array of Superconducting Magnets

D. L. Chesny^{1,2,3}, S. T. Durrance¹, G. A. Levin¹, N. Brice Orange³

¹Florida Institute of Technology ²National Space Biomedical Research Institute ³OrangeWave Innovative Science, LLC

Interplanetary Radiation Environment

Galactic Cosmic Rays (GCRs)

Isotropic 1—1000 GeV particles protons, H, He, C, O, Ne, Fe Z = 1, 2, 6, 8, 10, 26

Solar Particle Events (SPEs)

Uni-directional 1—1000 MeV particles protons, H, He, C, Si, Fe Z = 1, 2, 6, 14, 26

Radiation Threat

Radiation Exposure Induced Death (REID)

NASA Standard of <3% increase (95% confidence)

Mean REID = 3.2% 95% Confidence Level = 10.5% REID Probability = 10.5%

Absorbed Dose in Tissue (*T*) by Radiation (*R*) Measured in Gray (Gy) 1 Gy is the absorption of 1 J/kg

Previously Proposed Safeguards

Superconducting magnets attached directly to spacecraft

Shielding efficiencies: 90% for 1 GeV 57% for 2 GeV

Drawbacks

- Screen interior from field
- Thermal management
- Hinders EVAs
- Re-designing Orion

Kervendal, E., Kirk, D., Meinke, R. (2006)

Bamford, R. A., et al. (2014)

Magnetic Shielding

New Concept

Dispersed Array of Superconducting Magnetic Satellites

Exploit the Integral Field Parameter

 $\vec{B} \times d\vec{l}$

Small vs large deflections

Code Formulation

$\vec{B}_{dipole} = \frac{\mu_0}{4\pi} \left(\frac{3\vec{r}(\vec{r} \cdot \vec{m})}{|\vec{r}|^5} - \frac{\vec{m}}{|\vec{r}|^3} \right)$

Throw away regions of divergence

Translation, Rotation, and Superposition

Equation of Motion

$$\frac{d\vec{u}}{dt} = \frac{300}{E_n [\text{MeV}]} \frac{Z}{A} (\vec{u} \times \vec{B}[T])$$

$$u[n+1] = u[n] + a \cdot dt$$
$$r[n+1] = r[n] + u[n+1] \cdot dt$$

Plane of Solar System y towards spacecraft

Effective Shields

Momentum "Maps"

$$\begin{array}{c} \text{Limit for small}\\ \text{deflections} \end{array} \Delta \vec{p} \left[\frac{\text{MeV}}{\text{c}} \right] = \frac{300Z}{A} \int \vec{B} \times d\vec{l} \\ \\ \Delta p_x = 300 \left[\frac{Z}{A} \int (B_y dz - B_z dy) \right] \\ \Delta p_y = 300 \left[\frac{Z}{A} \int (B_z dx - B_x dz) \right] \\ \Delta p_z = 300 \left[\frac{Z}{A} \int (B_x dy - B_y dx) \right] \end{array} \xrightarrow{\text{For +y velocity charged particles in a magnetic field}} \\ \Delta p_z = 300 \left[\frac{Z}{A} \int (B_x dy - B_y dx) \right] \xrightarrow{\text{Constrained}} \Delta p_z = 300 \left[\frac{Z}{A} \int B_x dy \right]$$

How do different magnetic dipole configurations affect particle momenta?

Momentum Map

Single Dipole

 $E_n = 1 \text{ MeV}$ $m = \pi x 10^4 \text{ A m}^2$

Momentum Map

4-dipole circle

Shield Optimization

2D Gaussian fits

Superconducting Magnets

For $m = \pi x 10^4 \text{ Am}^2 (20 \text{ cm radius loop}) - 5.6 \text{ kg}$

High-temperature superconducting wires (YBCO coated conductors)

Critical temperature 90 K - operating temperature 40-50 K, maintained using sunshield, similar to JWST, or "Solar White" coating

Magnets operate in persistent mode.

A closed loop made out of coated conductor.

An assembly of 100 loops.

Protected Volumes

Orion Multi-Purpose Crew Vehicle

Deep-Space Habitat

Sphere of 5 m diameter

Cylinder of 5 m diameter and 15 m length

Simulation – Single Dipole (m= π x10⁴ Am²)

$\% \text{Reduction} = \frac{\text{No field hits} - \#\text{hits}}{\text{No field hits}}$

x resolution	(21 hits)			Velocity I	Errors: 1.000	$0\pm 0.006, 1$	$.000 \pm 0.005$	$5, 1.001 \pm 0.0$
E _n (MeV)	1	10	30	60	100	150	200	1000
πx10 ³ A m ²	61.9	4.8	4.8	4.8	4.8	4.8	4.8	4.8
πx10 ⁴ A m ²	71.4	61.9	47.6	23.8	4.8	4.8	4.8	4.8
πx10 ⁵ A m ²	85.7	71.4	61.9	66.7	61.9	52.4	61.9	4.8
x resolution	(81 no fie	ld hits)		Velocity]	Errors: 1.00	$0 \pm 0.003, 1$	$.000 \pm 0.006$	$5, 1.001 \pm 0.0$
E _n (MeV)	1	10	30	60	100	150	200	1000
πx10 ³ A m ²	60.5	14.8	7.4	9.9	9.9	9.9	9.9	9.9
πx10 ⁴ A m ²	65.4	60.5	51.9	24.7	14.8	12.3	11.1	9.9
$\pi x 10^5 \Lambda m^2$	71.6	65.4	65.4	64.2	60.5	59.3	58.0	14.8

x resolution	n (177 no f	ield hits)		Velocity Errors: 1.000 ± 0.002 , 1.000 ± 0.006 , 1.001 ± 0.006					
E _n (MeV)	1	10	30	60	100	150	200	1000	
πx10 ³ A m ²	58.8	10.2	1.7	1.7	0.6	0.6	0.6	0.6	
πx10 ⁴ A m ²	66.7	58.8	45.2	22.6	10.2	6.8	5.1	0.6	
πx10 ⁵ A m²	70.1	66.7	63.3	62.1	58.8	55.4	51.4	10.2	

Simulation – Halbach Array

Simulation Results – Halbach Array

$\% \text{ Reduction} = \frac{\text{No field hits} - \#\text{hits}}{\text{No field hits}}$

1x resolution (75 hits)

E _n (MeV)	1	10	30	60	100	150	200	1000	
πx10 ³ A m ²	64.0	5.3	4.0	4.0	4.0	4.0	4.0	4.0	
πx10 ⁴ A m ²	85.3	64.0	34.7	17.3	5.3	4.0	4.0	4.0	
πx10 ⁵ A m²	94.6	85.3	77.3	66.7	64.0	50.7	46.7	5.3	
	Velocity Errors: 1.002 ± 0.020 , 1.013 ± 0.032 , 1.052 ± 0.078								

Robust Simulations

<u>**Plasma**</u> – an electrically neutral collection of a large number of positively and negatively charged particles

For accurate description of shields, we must account for BOTH ions and electrons

Particle-in-cell Method

Electric Potential (V) 20 0.18 0.16 15 0.14 0.12 0.10 10 0.08 0.06 5 0.04 0.02 0 0.00 10 5 25 0 15 20 30

Ion electric potential (V)

Ion charge density (C m⁻³)

 $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

Particle-in-cell Method

From Idea to Mission

Increase Technology Readiness Level (TRL)

- Superconductors in Space
- Technology Demonstration
- On-board Control in Deep-space

Increase TRL

NASA Space Radiation Laboratory

Digital Beam Imager

PIC prediction

Superconductors in Space

Cryogenic Select Surfaces

Reflects 99.9% solar irradiance

Transmits long infrared radiation from interior

Result: Cryogenic temperatures below 50K

Technology Demonstration

Nanoracks CubeSat deployment

South Atlantic Anomaly

0.04 – 10 MeV inner Van Allen Belt particles

On-board, Deep-space Control

Heliospheric current sheet

GCR Defense

For an isotropic distribution $f(\vec{r},\vec{p})$ in a magnetic field,

a first-order perturbation
$$f = f_0 + \sigma$$
 gives $\vec{v} \cdot \frac{\partial \sigma}{\partial \vec{r}} = -(\vec{F} \cdot \vec{p}) \frac{\partial f_0}{\partial |\vec{p}|} \frac{1}{|\vec{p}|} = 0$

Create isotropic distribution

20-pt Buckyball Simulation

 $m = 1e4 A m^2$

GCR Deflection

Robust Simulations

Results

Percent reductions in SPE radiation show feasibility

Existing technology shows viability

Equivalent Dose

Jiggens, P., et al. (2014)

Enabling Technology

Consider 12 mm wide and 50 μ m thick (no stabilizer) coated conductor.

Critical current at 77 K is 300 A. Lift factor at 50 K in 2 T field is about 2.

Then the critical current at 50 K is about 600 A.

We can take persistent current to be 50% of the critical.

Then, the engineering current density of persistent current is approximately J = 50 kA/cm2

Consider a loop of 20 cm radius creating a dipole moment $d=\pi x 10^{4} \text{ Am}^{2}$.

This required current of 250 kA or 5 cm² cross-section of the loop.

Enabling Technology

Mass density of Hastelloy (the substrate) is about 9 g/cm^3.

The total volume of a torus 20 cm in radius and 5 cm² cross-section is 630 cm³.

The mass of the superconducting material then is 5.6 kg.

For greater or smaller dipole of the same size the mass is scaled proportionally.

Increasing the size of the loop decreases the required current and the amount of the superconducting material inversely proportional to the radius.

These estimates do not take into account the support structure, power supply, electronics, sunscreen, etc.