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ABSTRACT

The purpose of this research is to develop a variable-fidelity approach for

addressing the safety of unmanned aerial system (UAS) operations in the

national aerospace system (NAS). This task is implemented on the basis of

safety investigation toolkit for analysis and reporting wake vortex safety

system (SITAR WVSS) code, which is a dynamic low-fidelity model addressing

generation, evolution, and interaction of the leader-aircraft wake vortex with the

follower-aircraft lifting surfaces.

The first part of the dissertation deals with the generation, evolution, and

interaction of the wake vortices produced by an aircraft. In particular, it

presents the results of the vortex safety analysis conducted for selected UAS

operating alongside commercial aircraft in the terminal zone. The work further

investigates and compares decay and transport of the wake vortex in the

vicinity of various grounds including a solid surface, a forest canopy, and a water

surface, representative of various terminal zone environments. The obtained

high-fidelity results form the basis for reduced-order models to be integrated into

the fast-analysis code under development for in-situ wake vortex safety predictions.

The second part of the dissertation introduces a robust nonlinear control method

that is proven to achieve altitude regulation in the presence of unmodeled external

disturbances (e.g. wind gust, wake vortex disturbance) and actuator parametric

uncertainty. This method is designed as a part of “Interaction” sub-module of

the SITAR WVSS model. The results demonstrate the capability of the proposed

nonlinear controller to asymptotically reject wind gust/wake-vortex disturbances

and the parametric uncertainty. The proposed controller is a great choice for small

UAV applications with limited computational resources.
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1. INTRODUCTION

The Federal Aviation Administration (FAA) currently addresses a number of

challenges presented by the integration of unmanned aircraft systems (UAS) in

the National Aerospace System (NAS). Further development and improvements

to the Integrated Safety Assessment Model (ISAM) should fully incorporate UAS

operations both for current and future risk analyses. In particular, the flight

trajectory of unmanned aerial vehicles (UAVs) can be significantly affected by

external disturbances such as turbulence, upstream wake vortices or wind gusts.

Also, the aircraft operations are subject to various parametric uncertainties due

to the stochastic nature of the atmospheric flows as well as aircraft parameters

themselves (Holzäpfel, 2014). In this context, the assessment of the wake vortex

interference events in the terminal zone relies on the accuracy of the low-fidelity

predictive models incorporating various classes of UAS in the comprehensive wake

vortex interference studies.

In recent years, a number of parametric wake vortex prediction models have

been developed such as AVOSS wake vortex prediction algorithm (APA) (Delisi,

Robins, & Pruis, 2016) and TASS driven algorithms for wake prediction (TDAWP,

TDP) (Proctor, Hamilton, & Switzer, 2006) models developed by NASA (Ahmad

et al., 2016), and deterministic two-phase model/probabilistic two-phase model

(D2P/P2P) (Holzäpfel, 2006) models developed by DLR. These models output

the wake vortex’s circulation strength and position considering its generation,

decay and advection processes. For instance, P2P model is capable of providing a
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probabilistic distribution of wake vortex circulation strength and vertical/lateral

position in real-time. Considering the wake decay and advection processes, P2P

model predicts the uncertainty bounds and the upper and lower limits of wake

vortex parameters for the cone of uncertainty in the wake evolution. Alternatively,

the Monte-Carlo approach is applied in APA and TDAWP models to get the cones of

uncertainty in terms of uncertainty bounds (Ahmad et al., 2014).

The primary motivation of the current study is to develop variable-fidelity

approach for addressing the safety of UAS operations in the NAS. This is

implemented on the basis of SITAR WVSS (Safety Investigation Toolkit for

Analysis and Reporting Wake Vortex Safety System) by developing the dynamic

low-fidelity model addressing generation, evolution and interaction of wake vortex

with the follower aircraft. Specific objectives of the dissertation research include:

• Wake vortex evolution and prediction of the position and strength of wake

vortices in the atmosphere (Out-of-Ground zone, Near-Ground-Zone and

In-Ground-Zone) using deterministic and probabilistic approaches. In

particular, for the for the In-Ground Zone, the high-fidelity LES simulations

are conducted to investigate the propagation of wake vortices in the vicinity of

three types of ground surfaces: flat ground, forest canopy and water surface.

The obtained results are employed in terms of the reduced order models of

In-Ground-Effect, incorporated in the fast-time SITAR WVSS code. Overall,

the following extensions are implemented to accuint for various effects in

wake evolution: The Near-Ground Effect (NGE), The In-Ground Effect (IGE)
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mode, The effect of ambient stratification and turbulence, Probabilistic

modeling of the cone of uncertainty in the wake evolution predictions.

• The wake vortex-aircraft interaction and assessing the operational safety

risks. In particular, new a criterion of assessing the wake induced UAS

reaction, RCR (Luckner, Höhne, & Fuhrmann, 2004), is incorporated in the

model as an impact severity criterion.

• A robust nonlinear control method proven to achieve aircraft trajectory

regulation in the presence of unmodeled external disturbances (e.g. wake

vortices, wind gusts) and actuator parametric uncertainty. Particularly, this

part of the work includes:

– Implementation of the low fidelity wake vortex/aircraft interaction model

– Derivation of the nonlinear UAV regulation control method

– Detailed numerical simulation results which demonstrate the

performance of the proposed nonlinear control law

– Simulation of the same control objective using the H∞ linear control law

for comparison

– Simulation in the presence of parameter variations as well as SJA

mathematical model.

– The performance of the nonlinear robust controller in the presence of the

real wake-vortex disturbance in the vicinity of the ground as well as far

from the ground surface (the Monte-Carlo simulations).
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2. ADVANCES IN SITAR WVSS LOW FIDELITY MODELING

The task of integrating UAS systems (particularly small-size) with the routine

air-traffic operations in the terminal zones poses a number of challenges. One

likely scenario examined in the current work is the interaction of a follower UAS

(considered in a steady-level flight) with the wake vortex induced by a larger

leader aircraft. As the UAS approaches the wake, it is affected by a rolling moment

induced by the upstream vortex that may lead to a loss of the aircraft control.

The subsequent sections first discuss the models implemented within Safety

Investigation Toolkit for Analysis and Reporting Wake Vortex Safety System

(SITAR WVSS, or SITAR) module employed in the current study to predict the

effects of the UAS wake interaction process. The developed dynamic model of an

aircraft entering a wake vortex is presented. It allows evaluating changes in the

important flight parameters following the wake vortex interaction and assessing

the operational safety risks.

2.1 Safety Assessment Model Implementation

The SITAR WVSS system enables modeling of various scenarios to assess

the operational safety risks of UAS by utilizing a list of aircrafts with their

characteristics and track files containing information regarding the aircraft’s

spatial movement as inputs. The input track files contain a set of coordinates in

space (altitude, latitude, longitude) and time corresponding to each point. If the

points contained in the track files are not sufficient, interpolation can be used to

fill every points along the time axis every N seconds, where N is the interpolation



5

time period. Different interpolation time periods can be set up and the flight

can be divided into discrete frames corresponding to the interpolated points.

The N-seconds flight through or in the wake can be simulated with a specified

response model, which are described in the subsequent sections. This capability

allows SITAR’s simulations to account for up to ten aircrafts and their wake

vortex interaction simultaneously in one scenario. As illustrated in Fig. 2.1, the

simulations show the aircraft model with the accompanying trailing wake vortices

(in the form of rings) on the interface. Each vortex ring is color coded in green,

yellow, or red signifying the level of intensities for three categories of aircraft:

Light, Medium, and Heavy according to ICAO wake turbulence category. When

the follower aircraft encounters the wake vortex, the impact is calculated using

the previously mentioned dynamic model. This also enables the prediction of

the follower aircraft’s flight trajectory while interacting with the wake vortex.

Simulation time can be prescribed and parameters such as maximum bank angle,

altitude change, and the angular velocity are calculated. There is an opportunity to

create an encounter artificially by supplying the horizontal and vertical offsets and

the closing angle.

2.2 Wake Vortex Generation and Evolution Modeling

The wake vortex evolution predictions based on WVSS model (Kazarin

et al., 2016) take into account effects of atmospheric turbulence, temperature

stratification and wind. The initial modeling of the wake vortex employs



6

Figure 2.1: Wake vortex rings behind the leader aircraft.

Kutta-Joukowski theorem and specifies the initial elliptical distribution of the

bound vortex circulation with amplitude,

Γ0 =
W

ρV bπ
4

, (2.1)

where b is wing span, W is aircraft weight, ρ is density and V is aircraft velocity.

Usually, the initial vortex core radius may vary between 1% and 5% of the wing

span. In accordance with the reported flight test measurements, the initial core

radius of the wake appears close to 3.5% of the span. Thus, the following constant

radius of the vortex core is assumed in the current analysis,

rc = 0.035b (2.2)



7

Tangential velocities induced by the wake are calculated using Burnham-Hallock

model (Burnham & Hallock, 1982) with a constant core radius,

Vt =
Γ0

2π

r

r2c + r2
(2.3)

The two-phase transport and decay model is used to predict the evolution

of the vortex strength incorporating the diffusion phase followed by the rapid

decay phase. The model calculates the life time of the vortex ring as proposed by

Sarpkaya (Sarpkaya, 2000). The “accumulated damage” model is used for taking

into account a possibly varying profile of the eddy dissipation rate (EDR). The

lifetime of a vortex Tdem is a nonlinear function of EDR, nondimensional time

T = tV0

b0
, Cη1,Cη2 are model constants for diffusion and rapid decay phases (Baranov

& Belotserkovsky, 2013). The equation which describes the circulation evolution is:

dΓ

dt
=−Cη1,η2

Γ

Tdem

(2.4)

To determine the moment of transition from the diffusion phase to the rapid decay

phase, the function fdem(T) is introduced. This function characterizes the portion of

the vortex lifetime which is reached by the time point t and is calculated according

to:

fdem(T)=
∫t

0

dT

Tdemexp(−0.185N∗Tdem)
(2.5)
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where N∗ is the nondimensional Brunt-Vaisala frequency. Thus, the effect of

stratification on wake vortex decay is taken into account. The rapid decay starts

when fdem(T) becomes equal to 1.

Modeling the wake vortices near the ground (as the aircraft takes off or

descends for landing) is obtained through the classical inviscid theory (Baranov &

Belotserkovsky, 2013). As the vortices approach the “in-ground” vicinity (where the

distance to the ground is less than or equal to 2b0), a thin vortex sheet (a boundary

layer) is generated due to the zero normal velocity at the ground (impermeability

condition). With the ground assumed to be flat, the velocity field at any position

above the ground is easily obtained by using the image vortices below the ground

plane instead of the vortex sheet. Cross-wind influence and vortex decay due to the

ambient turbulence are also taken into account in the model.

The ambient stratification effect is also included in the model and is based

on the improved analysis (Greene, 1986). It considers the accumulation of the

stratification effect in the dynamics of vortices in the atmosphere, and modeled by,

(

d2h

dt2

)

strat

=−
∫h

h0

N2(h)dh (2.6)

where h and h0 are the current and initial heights of the vortex cores, respectively.

Deceleration of the vortex propagation due to the stratification effect is caused by

decrease in the vortex circulation and the vortex speed of descent. The effect of
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stratification is to reduce the lifespan of vortices and the maximum height attained

by them. The stratification-induced deceleration is described by,

dυstrat

dt
=βstrα

2
str

(

d2h

dt2

)

strat

(2.7)

with the corresponding circulation reduction defined by,

dΓ

dt
=−(1−βstr)α

2
str(2πb0)

(

d2h

dt2

)

strat

, (2.8)

where all the model coefficients (βstr,αstr) are defined (Baranov & Belotserkovsky,

2013).

2.2.1 Deterministic and Probabilistic Approaches

Deterministic simulations are based on the direct application of the model

equations described above. However, due to the stochastic nature of the turbulence

and significant variations in the vortex position and strength, the deterministic

approach to predict wake vortex evaluation is not accurate. Moreover, the state

of the atmospheric boundary layer as well as aircraft parameters (Holzäpfel,

2014) cannot be predicted deterministically. The LIDAR measurements from

different airports show significant scattering of experimental data and requires

implementation of a probabilistic approach that can provide bounds of the

expected behavior of wake vortex. The width of the uncertainty bounds depends

on variations of parameters the model including parameters and those depending

on them (e.g. Γ0 and b0).
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The "success rate" in probabilistic predictions is defined as the number of

experimental points that appear within the bounding curves divided by the total

number of experimental points. The additional characteristic introduced for

circulation is the fraction of points lying under the upper bound of the circulation

curve. Indeed, in most applications, only the maximum value of circulation is

important.

In order to quantify the effectiveness of the deterministic and probabilistic

approaches, the success rates, root mean square (RMS) deviation, mean absolute

error (MAE) and statistical bias values were obtained and compared against results

from other existing models.

P2P-based and RMS-based Approaches

This approach is based on DLR’s probabilistic two-phase model (Holzäpfel,

2006). P2P is a parametric transport and decay model designed to predict the

probabilistic behavior of the wake vortex in real time. The output of the model

consists of upper and lower bounds for vortex strength and position. The bounds

are obtained from two runs with a combination of decay parameters as well as

uncertainty allowances added/subtracted to the curves of wake evolution and

propagation.

In the current model, the deterministic curves for the wake evolution are first

obtained from the original WVSS model, but the uncertainty bounds are calculated

using the P2P approach. Thus, the onset of rapid decay is shifted by ±0.2Tdem,

and the vortex strength evolution curve is spread by ±0.2Γ0. The upper and lower
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curves for vertical vortex position are obtained by adding/subtracting of one initial

vortex spacing. Also, the influence of ambient turbulence is taken into account. The

expression for upper/lower bounds can be written as (Holzäpfel, 2006),

z∗u(l) = z∗± (1+
∫

q∗dt∗) (2.9)

where z∗ is the vertical coordinate nondimensionalized by b0, and RMS value of

ambient turbulence (q∗) plays the role of the superimposed propagation velocity.

A very simple approach developed in this work is based on RMS deviations

calculated from Denver’03 and Memphis’95 data sets. The normalized values of

RMS deviations for the strength and vertical position of wake vortices are first

calculated using WVSS model. Next, such values are considered as constant

uncertainty allowances. The values of 0.3Γ0 and 0.5b0 are obtained and used in the

simulation. The uncertainty allowances are subtracted/added to form lower/upper

bound curves of circulation evolution and propagation. The simulation results will

be discussed in the next section.

Monte-Carlo Approach

The Monte-Carlo (M-C) approach was evaluated using Memphis’95 and

Denver’03 wake vortex data sets. In this section, case 1167 from Memphis’ 95 data

set was used as an example to illustrate the employed methodology. Note that the

validity of the approach using the same data sets in NASA’s APA and TDP wake

vortex models was also demonstrated (Gloudemans et al., 2016).
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The Monte-Carlo approach is based on perturbing the initial wake vortex

conditions (b0,V0, z0) in the deterministic model and generating profiles of the

ambient parameters (such as the EDR and potential temperature profiles) using

the probability density functions (PDFs). The PDFs are obtained by applying the

maximum likelihood estimation method to density histograms corresponding to a

particular data set. The vertical profiles are truncated at the heights of the vortex

generation and the mean values are calculated from the zero height to that value.

400 perturbations for vertical profiles were generated using PDFs and used as

input parameters along with other parametric perturbations. The mean curve

and standard deviations were then calculated to obtain the confidence bounds.

Figures 2.2 and 2.3 illustrate EDR and potential temperature gradient profiles from

Memphis’95 data set, along with density histograms and distributions.

Figure 2.2: Vertical profiles of EDR and potential temperature gradient.

The initial conditions for the stratification profile are provided in terms of

the potential temperature distribution. The PDFs are generated for the potential
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Figure 2.3: EDR and potential temperature gradient histograms.

temperature gradient since this gradient defines the Brunt-Vaisala frequency (2.10)

that directly affects the wake decay,

N =

√

dθ

dz

g

θ
(2.10)

The perturbations of initial conditions for Γ0,b0,z0,V0 were calculated

according to (Holzäpfel, 2014). For instance, z0 values with the mean equal to

initial z0 and standard deviation of 7m were calculated using normal distribution.

For Γ0, the variation between 0.9Γ0 and 1.25Γ0 was used. V0 was found from Γ0

and b0. Moreover, a uniform distribution in the range of 0.95b0 to b0 was used to

prescribe the initial vortex separation b0.

The generated constant profiles of EDR and potential temperature along with

other generated initial conditions were used to run 400 Monte-Carlo simulations.

The PDFs and generated constant vertical profiles are demonstrated in (Kazarin
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& Golubev, 2017a) The potential temperatures were calculated based on dθ/dz, as

follows:

θ = θ0+
dθ

dz
z (2.11)

where θ0 is the base potential temperature.

The upper and lower bounds are obtained by adding and subtracting the

standard deviation to evolution/propagation curve for each time moment. The

results for the case 1167 are shown in the next section for all the approaches

considered.

Figure 2.4: PDFs of generated constant vertical profiles.

2.2.2 Results and Comparison with Other Models

In this section, the evaluation of the employed deterministic and probabilistic

approaches and their comparison with other models is conducted using Memphis’95

and Denver’03 data sets. A comprehensive field experiment to measure wake

vortices and the associated ambient meteorological conditions was conducted

at the Memphis International Airport in Tennessee from August 6 through
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Figure 2.5: Generated constant profiles.

August 29, 1995 (Zak, 1996). The wake data was collected using LIDAR. Also, the

meteorological sensors included radiosondes, sodars, a wind profiler, one 150ft

high meteorological tower, a Radio Acoustic Sounding System (RASS), and NASA

Langley OV-10 research aircraft. The radiosondes were used to measure winds and

temperature measurements. The data processed for fast-time wake models included

EDR, stratification profiles, and headwind/crosswind data. Also, the aircraft data

included the initial position (offset) of the vortex pair with respect to the runway

centerline (y0), the initial height of the vortices (z0), the initial vortex descent rate

(V0), and the initial vortex separation distance (b0).

Denver’03 data set was obtained during the experiment conducted by NASA

during late August and September of 2003. All the necessary data for the fast-time

wake modeling was also provided. Further details about both data sets can be

found in NASA report (Ahmad & Pruis, 2015).
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Deterministic Approach

The vortex evolution characteristics based on WVSS simulations are

demonstrated in Fig. 2.6 for case 1167 from Memphis’95 data set. The LIDAR

measurements are also shown (in square symbols) in these plots.
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Figure 2.6: Deterministic wake vortex evolution simulations for case 1167.

Clearly, the experimental data scatter for the vortex circulation (Figure 2.6) is

very significant, and thus the deterministic predictions appear not adequate. On

the other hand, the experimental data is better predicted for the vortex descent

(Figure 2.6). However, the deviations for some points are still significant and

further increase with the distance.

The accuracy of deterministic approach was estimated in terms of RMS

deviation, MAE and statistical bias. The corresponding comparison with results

from APA 3.8 and TDP 2.1 models (Delisi et al., 2016) (Proctor et al., 2006) is shown

in Tables 2.1 for Denver’03 data.

Probabilistic Approach

Figure2.8 shows results of the Monte-Carlo simulations for the case 1167

(Memphis’95 data set) with the initial conditions described in section (2.2.1).
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Table 2.1: RMS, MAE, BIAS for Denver’ 03 data set (OGE)

Parameter

(norm by Γ0,b0) WV SS AP A3.8 TDP2.1

RMSΓ 0.23 0.24 0.3

MAEΓ 0.19 0.22 0.29

BI ASΓ -0.13 0.2 0.24

RMSZ 0.66 0.66 0.66

MAEZ 0.46 0.56 0.55

BI ASZ 0.14 0.074 -0.054

Table 2.2: RMS, MAE, BIAS (Memphis’ 95 data set)

Parameter

(norm by Γ0,b0) WV SS AP A3.8 TDP2.1

RMSΓ 0.36 0.29 0.29

MAEΓ 0.23 0.25 0.24

BI ASΓ -0.08 -0.09 0

RMSZ 0.5 0.34 0.34

MAEZ 0.38 0.39 0.29

BI ASZ -0.12 -0.015 0.09

Figure 2.7: Ultra Stick 120. Source: UAV Laboratories, University of Minnesota.

The corresponding RMS-based wake vortex evolution uncertainty bounds are

shown in Fig. 2.9 and demonstrate a good success rate in covering experimental

data within the predicted cone of uncertainty. Alternatively, the P2P-based

results are shown in in Fig. 2.10. In the latter approach, the time of demise also

varied, which resulted in a faster divergence of the predicted uncertainty bounds.
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(a) Vertical Descent.
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(b) Circulation evolution.

Figure 2.8: Wake vortex evolution 2σ bounds based on 400 M-C simulations.
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Figure 2.9: RMS-based wake vortex evolution bounds.

From Figures 2.8, 2.9 and 2.10 one may conclude that the uncertainty bounds in

P2P-based approach are wide enough to capture nearly all experimental points

except the circulation strength during the initial period. Similar behavior appears

typical in most case analyses. Also notable is that Monte-Carlo approach appears

more accurate in terms of vertical position bounds than RMS-based approach,

which is also demonstrated in the success rate statistics discussed below.
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Figure 2.10: P2P-based wake vortex evolution bounds.

The success rates based on all case studies for Memphis’95 and Denver’03 data

sets are summarized. The results for Denver’03 is shown in tables 2.4, 2.3 (Full

results can be found in (Kazarin & Golubev, 2017a). In these simulations, the value

of Γ0 was varied from 0.9Γ0 to 1.25Γ0, as suggested by (Holzäpfel, 2014) to account

for uncertainty, e.g., in aircraft weight. The Monte-Carlo approach implemented

in WVSS code demonstrates good results for the vertical position and Γunder max

metrics of the wake vortex evolution and compares favorably against results from

APA and TDP models (Ahmad et al., 2014). The overall success rate for circulation

based on the current Monte-Carlo simulations appears close to the APA-TDP

multimodel result (for Memphis’ 95 data set) and multi-model(APA, TDP and D2P)

result (for Denver’ 03 data set).

At the same time, P2P and RMS based approaches demonstrate a significantly

better performance in terms of the success rates. This is attributed to the wider

uncertainty bounds obtained in those simulations. Furthermore, such approaches

can be easily applied in any fast-time prediction model, require minimum input

data and are numerically more efficient compared to Monte-Carlo approach.
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Finally, one should note that all the reported probabilistic simulations were

conducted only for OGE zone analysis (currently implemented in WVSS code), with

the future work extending the studies to IGE zone predictions.

Table 2.3: Success rates (Memphis’ 95 data set) (Γ0 0.9-1.25)

Parameter WV SSMC,OGE AP A3.8MC TDPMC AP ATDPMCWV SSP2P WV SSRMS

Zwithin bounds 0.77 0.68 0.63 0.72 0.96 0.6

Γwithin bounds 0.61 0.51 0.25 0.65 0.75 0.78

Γunder max 0.84 0.7 0.59 0.81 0.82 0.91

Table 2.4: Success rates (Denver’ 03 data set) (Γ0 0.9-1.25)

Parameter WV SSMC AP A3.4MC TDPMC MultiModelMCWV SSP2P WV SSRMS

Zwithin bounds 0.69 0.68 0.74 0.74 0.88 0.55

Γwithin bounds 0.5 0.48 0.35 0.58 0.71 0.84

Γunder max 0.97 0.95 0.94 0.98 0.97 0.98

2.3 Dynamic Model of Aircraft Entering a Wake Vortex

The developed approach incorporates a simplified aircraft dynamic model to

evaluate the effects of the wake vortex interaction. In this model, only the banking

moment perturbation is considered while the side forces resulting from the wake

interaction are not taken into consideration (note that the magnitude of the induced

rolling moment may thus be slightly overestimated since accounting for the lateral

motion would reduce the wake interaction period). In addition, pitching and yaw

moments are also neglected. Additional parameters include sideslip, which is

assumed to be zero, thrust force, which counteracts the drag, and G-force equal to
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1 for a steady horizontal flight. Based on the described assumptions, the dynamics

of the aircraft can be described by (McCormick, 1995):

dV

dt
=−sin(Θ) (2.12)

dΘ

dt
=

g

V
(cosγ(1+∆p)− cos(Θ)) (2.13)

dΨ

dt
=

g

V cosΘ
(sinγ(1+∆p)) (2.14)

Correspondingly, the dynamics of the aircraft position in spatial coordinates is

governed by,

dh

dt
=V sin(Θ) (2.15)

dx

dt
=V cos(Θ)cos(Ψ) (2.16)

dz

dt
=−V cos(Θ)sin(Ψ) (2.17)
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Furthermore, the induced rolling moment, ∆Mx , and the control input, Mux,

are introduced in the following linearized equations governing the roll angular

velocity ωx and the bank angle γ,

dωx

dt
=

ρV Sl2

2
m

ωx
x +∆Mx −Mux

Ixx

(2.18)

It is worth noting that the induced rolling moment and the control input are

introduced in the linearized equations governing the roll angular velocity and

the bank angle. The aerodynamic forces, moments, and the magnitude of induced

rolling moment depend on such factors as the wake intensity and the aircraft

geometry and can be obtained using the strip model described, e.g., in (McCormick,

1995), where the induced rolling moment is the resultant of the sum of moments

created by particular "strip" of wing and fins.

2.4 Wake Vortex Encounter Predictions

The parametric study with several variable-size UAS systems interacting

with the wake generated by a leader Boeing 737 aircraft for two different cases

is considered within the deterministic approach. Also, the probabilistic approach

is developed. The obtained probabilistic predictions based on the improved

(SITAR) WVSS model (Kazarin et al., 2016) are validated against Memphis’95

and Denver’03 airport LIDAR data (Gloudemans et al., 2016). Three probabilistic

approaches are applied (including P2P-based approach, Monte-Carlo simulations

and RMS-based approach) to compare the resulting boundaries of the cones
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of uncertainty for the wake vortex strength position. The performance of all

approaches is estimated in terms of the "success rates" in comparison with

scattered experimental data. Finally, a comparison of current predictions against

results based on APA 3.8 and TDP 2.1 models is conducted.

2.5 Benchmark Case Study Scenario for Wake Induced UAS Reaction and

Response

The first case corresponds to an encounter at an altitude of 860 m and VL= 86

m/s. In the second case, the encounter occurs after the take-off of a Boeing 737. The

UAS selected as follower aircraft are the Osprey small UAV (sUAV), MQ-1 Predator

UAV, and Northrop Grumman’s RQ-4 Global Hawk UAV. Their key characteristics

are presented in Table 2.5.

Table 2.5: UAV characteristics parameters used in simulations

UAV Weight

(kg)

Jxx

(kg∗m2)

Wing span

(m)

Wing area

(m2)

Osprey 29.48 5.17 3.35 1.87

MQ-1 Predator 1020 3547 14.8 11.5

RQ-4 Global

Hawk
12133 241660 35.42 50.1

To assess the wake induced UAS reaction, a roll control ratio is used as the

impact severity criteria (Schwarz et al, 2010),

RCR = |Cl,WV /Cl(δa,max)| (2.19)
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The values of RCR behind the B-737 for the three UAS are illustrated in Fig.

3. Zones with RCR > 1 are considered hazardous due to the induced rolling

disturbance exceeding the aircraft’s maximum roll control power, thus resulting in

a loss of control. Results for the Osprey sUAV reveals the impact with a wake from

B-737 to be hazardous at the horizontal offset of 15 m from the leaders’ flightpath.

These regions are spaced approximately 30 meters from one another and show an

area in between inducing zero rolling disturbance on the sUAV. Therefore, a stable

flight is possible for an Osprey operating behind a B-737 due to its small size and

short wingspan, however it would have to operate in the areas with RCR = 0.

Results for the Global Hawk and Predator UAVs (Fig. 2.11) reveal the zones of the

wake vortex impact to be much greater. Such differences are primarily a result of

the larger aircraft dimension and wingspan.

(a) Osprey. (b) Predator.

(c) Global Hawk.

Figure 2.11: Wake vortex induced Roll Control Ratio (RCR) contours.
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The aircraft response model incorporated in the SITAR code assumes an

immediate reaction of the aircraft to the wake-induced disturbance in the form of

the maximum aileron deflection to compensate for the exerted rolling moment. The

control input is used to simulate the autopilot response using one of three models:

• The first model realizes the maximum aileron deflection at time T1 = 0.5 s

after the entry. The moment of entry is T = 0

• In the second model, the ailerons are fully deflected (30 deg) after the delay

of T2 = 0.1s if the bank angle exceeds the maximum of 10 deg or if the bank

angular velocity exceeds the limit of 15 deg/s

• In the third model, there is no response input

Fig. 2.12 compares the bank deviations with the corresponding response

models when entering a wake vortex for different UAS where blue curve shows the

case without reaction, green one - full deflection after T1, red one - full deflection

after T2. The altitude change of the follower UAV for both benchmark cases

was also analyzed. The data for RCR and bank angle was obtained based on

deterministic SITAR WVSS model. However, it can be adapted for the probabilistic

realization of WVSS model.
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(a) Osprey. (b) Predator.

(c) Global Hawk.

Figure 2.12: Maximum bank deviations for Osprey , Predator and Global Hawk.
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3. HIGH FIDELITY MODELING: EFFECTS OF GROUND SURFACE

CONDITIONS ON AIRCRAFT WAKE VORTEX EVOLUTION

The chapter investigates and compares decay and transport of an aircraft

wake vortex in the vicinity of a solid surface, a forest canopy, and a water surface,

representative of various terminal-zone environments. The analysis elucidates

some critical features and differences in near-ground wake dynamics which could

be important for aircraft operations during takeoff and landing. Particularly,

the results of the study may provide insights for ensuring wake safety in future

integration of various classes of unmanned aircraft systems (UAS) in airport

operations. The reported results are based on Large Eddy Simulations (LES)

conducted using an open-source OpenFOAM solver. The obtained high-fidelity

findings will form the basis for reduced-order models to be integrated in the

fast-analysis code under development for in-situ wake vortex evolution predictions.

It is well known that wake vortices emitted by the leader aircraft persist for a

long period of time and pose a potentially significant risk to the follower aircraft

by inducing severe unsteady aerodynamic loads, particularly critical at takeoff

and landing in close proximity to the ground. A number of aircraft accidents were

reported in the past involving, e.g., small general aircraft affected by a mispredicted

dynamics of a wake emitted by a large leader aircraft (Schwarz & Fischenberg,

2014). On the other hand, the near-ground wake-vortex evolution and decay vary

significantly depending on various types of surface conditions present at the
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terminal zones. Hence, this subject must be addressed through a high-fidelity

modeling such as proposed in the current work.

The probability of wake encounters increases significantly during final

approach in ground proximity. Moreover, close to the ground the wake can

suddenly change its dynamics due to rebounding and other complex nonlinear

features associated with production of secondary vorticity (in-ground effects).

The mechanisms of wake vortex propagation near the ground (including both

out-of-ground effects (OGE) and in-ground effects (IGE)) have been studied

extensively in the past (Proctor, Hamilton, & Han, 2000; Robins & Delisi, 1993;

Barker & Crow, 1977; Holzapfel & Steen, 2007). A number of LES studies as well

as experimental data were used to investigate various phenomena associate with

behavior of wake-vortex pair near the ground surface. For instance, (Wang et al.,

2016) studied the effect of solid obstacle on wake vortex decay and propagation.

Much less research examined the effect of different types of ground surfaces on

the wake propagation. The LES TASS code was employed (Proctor & Han, 1999)

to consider the effect of surface roughness. The influence of surface roughness

and its patterns on wake vortex propagation was studied (Zheng & Wei, 2013).

Vortex ring interaction with water surface was studied experimentally (Weigand &

Gharib, 1995). (Sarpkaya, 1996) extensively researched the vortex-ring/free-surface

interaction experimentally and pointed out to the need of more thorough numerical

investigations. The vorticity interaction with free surface to give a thorough

interpretation of the associated physical phenomen was studied (Rood, 1995, 1994).
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Additional insights are to be gained from experimental studies of the near-surface

flow dynamics over air-water and air-solid interfaces conducted (Shaikh &

Siddiqui, 2010). Furthermore, in (Lim & Adhikari, 2015) a thorough review on the

interaction of vortex ring with porous surfaces. A numerical study of a vortex ring

impact with a permeable wall was conducted (Cheng, Lou, & Lim, 2014).

The canopy characterization including its interaction with atmospheric

boundary layer was examined in a number of previous studies. For instance,

the wind interaction with the forest canopy, the resulting drag effects, as well

as the experimental studies of the aerodynamic properties of trees and plants

were conducted (Bitog et al., 2012; Raupach, Finnigan, & Brunet, 1996; Mueller,

Mell, & Simeoni, 2014; Aumond et al., 2013). The properties of the atmospheric

boundary layer over the forest canopy and a complex terrain were also thoroughly

investigated (Belcher, Finnigan, & Harman, 2008; Schindler, 2004; Crasto, 2007;

Gavrilov et al., 2011). The flow interactions with various canopies,their induced

turbulence properties (Ghisalberti & Nepf, 2009; Suga & Kuwata, 2014), and the

characteristics of the wind flow above and within the forest (Marshall, 1998; Shaw

& Schumann, 1992) were addressed. Finally, the properties and distribution of

different types of forests, along with the evaluation of the forest crown profiles,

were studied (Dubrasich, Hann, & Tappeiner I, 1997; Fayad et al., 2016).
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3.1 Numerical Formulation

3.1.1 Numerical Method

All current simulations were performed using OpenFOAM CFD software,

with Swak4FOAM library employed for initialization of the wake vortex flowfield.

The OpenFOAM solver employs a finite-volume approach with second-order

discretization in time and space. An implicit-backward time marching scheme

with central-difference spatial discretization were selected. The transient solver

for incompressible, turbulent flow based on PIMPLE (merged PISO-SIMPLE)

algorithm was used. In addition, for multiphase simulations, a solver based on

volume-of-fluid (VOF) phase-fraction, interface-capturing algorithm was utilized.

Such method is shown to be more flexible and efficient than other methods for

treating complex boundary conditions with free-surface interfaces (Hirt & Nichols,

1981).

Porous medium features are modeled by adding a source term and a porosity

coefficient in the time derivative (Hafsteinsson, 2009) of Navier-Stokes equations,

∂

∂t
(γρui)+u j

∂

∂x j

(ρui)=−
∂p

∂x j

+µ
∂τi j

∂x j

+Si, (3.1)

where γ is between 0 and 1 (1 corresponds to complete porosity), and Si is a source

term consisting of two parts: the inertial term (proportional to the velocity squared)

and the viscous loss term (proportional to the velocity) contributing to the pressure
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drop with the generally nonlinear dependence on the fluid velocity. The employed

Darcy-Forchheimer source equation is defined as follows,

Si =−(µD i j +
1

2
ρ|u j j|Fi j)ui, (3.2)

where in the case of a simple homogeneous porous medium, the tensors

D i j and Fi j are replaced with scalars D and F representing viscous and inertial

resistance coefficients.

LES simulations were conducted using implicit LES (ILES) approach. Parallel

computations were implemented using the "scotch" domain decomposition method

minimizing the number of subdomain boundaries and requiring no geometric input

from a user.

3.1.2 Wake Vortex Pair Initialization

Burnham-Hallock’s model was chosen for initialization of a fully rolled-up pair

of wake vortices, with the vortex core radius of rc = 3m (Burnham & Hallock, 1982).

The initial position above a ground surface was set at b0/2. The wake parameters

were selected in accordance with the experimental data (“Meteorological and Wake

Vortex Data Set, Dallas-Fort Worth International Airport”, 1998) and shown in

Table 3.2. Simulations were performed with Reynolds number ReΓ = Γ0/ν = 23000

(conventionally much smaller compared to more realistic ReΓ ∼ 107). The molecular

viscosity and density values of ν = 1.7 · 10−2m2/s and ρ = 1.2kg/m3 for air, and

ν = 1.13 · 10−3m2/s and ρ = 1000kg/m3 for water were selected, respectively. The
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wall-resolved LES required a stretched mesh in the wall-normal direction, with y+

value not exceeding 1. For the following discussion, the non-dimensional time is

defined as t̄ = t/t0 where t0 =Γ0/2πb20 = 22 s.

Table 3.1: Initial vortex parameters

Parameter Value

b0 37 [m]

Γ0 390 [m2/s]

Initial height 16 [m]

For the canopy study, general initial parameters were chosen. The initial position

above a ground surface as well as separation was set at b0. The wake parameters

correspond to those for a generic heavy aircraft (Gerz, Holzäpfel, & Darracq,

2002). Simulations were performed with Reynolds number ReΓ = Γ0/ν = 23100

(conventionally much smaller compared to more realistic ReΓ ∼ 107). The molecular

viscosity and density values of ν= 2.29 ·10−2m2/s. The wall-resolved LES required a

stretched mesh in the wall-normal direction, with maximum y+ value not exceeding

0.3. For the following discussion, the non-dimensional time is defined as t̄ = t/t0

where t0 = Γ0/2πb20 = 26.2 s. The initial vortex parameters are presented in

Table 3.2.

Table 3.2: Initial vortex parameters

Parameter Value

b0 47.1 [m]

Γ0 530 [m2/s]

Initial height 47.1 [m]
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3.1.3 List of Simulations

Simulations were conducted for three types of ground surfaces: solid (hard)

surface, forest canopy (modeled as porous medium), and water surface. In the

case of the forest canopy and the water surface, the employed computational

domains were extended by attaching extra regions at the bottom boundaries. The

list of simulations and the parameters of the numerical setup are summarized in

Table 3.4.

Table 3.3: Simulations and numerical setup parameters

Case Domain size Type of the Ground Surface Attached region height [m]

1 2.2b0×8.1b0×2.2b0 flat ground —

2 2.2b0×8.1b0×2.47b0 porous surface 10

3 2.2b0×8.1b0×2.47b0 water surface 10

The evolution of the wake vortex pair near different configurations of a

forest canopy is also considered. The change in the canopy height, the type of the

forest canopy, canopy roughness, as well as the effect of the forest clearing on the

wake vortex is investigated. The separate set of simulations describing the wake

evolution near the forest configurations described above is presented.

Several configurations of the ground surface are considered in the study: the

flat ground(hard surface), the flat tomato canopy, the deciduous forest canopy

(hardwoods), rough tomato canopy, and flat tomato canopy with clearing. In all

the cases considered except the hard surface case, the computational domain

was extended by attaching an extra region at the bottom boundary. The list
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of simulations and the parameters of the numerical setup are summarized in

Table 3.4.

The difference between the flat and the rough cases is in the values of D and F

coefficients and will be further discussed. The difference between the rough and

the flat tomato canopy cases is the shape of the attached porous domain. In the

former case, the porous domain consists of the (6×6m) columns which models the

stems and crowns of the hardwoods (Dubrasich et al., 1997). The heights of such

’trees’ are distributed normally with the prescribed standard deviation(σ = 3) to

demonstrate the effect of the rough canopy surface (Figure 3.1).

Figure 3.1: The rough porous surface.

Table 3.4: Simulations and numerical setup parameters for the canopy study

Case Domain size Type of the Ground Surface Attached region size

1 4b0×8b0×3b0 ground surface —

2 4b0×8b0×3.3b0 tomato canopy 10m

3 4b0×8b0×3.15b0 flat hardwoods(deciduous) 5m

4 4b0×8b0×3.3b0 rough hardwoods(deciduous) 10m

5 4b0×8b0×3.3b0 tomato canopy with clearing 10m



35

3.1.4 Computational Domains and Boundary Conditions

Two computational domains were considered in the current analysis

(Table 3.4). The initial (2.2b0 × 8.1b0 × 2.2b0) domain selected for solid ground

surface simulations was extended to (2.2b0×8.1b0×2.47b0) domain for modeling the

forest canopy and water surface effects. With the initial vortex separation distance

of b0 = 37 m, the resulting dimensions of the selected domains were (Lx,L y,Lz =

82 m, 300 m, 82 m) and (Lx,L y,Lz = 82 m, 300 m, 92 m), respectively. Based on the

grid sensitivity studies, an adequate grid resolution was achieved with Nx,Ny,Nz =

150,545,192 cells and Nx,Ny,Nz = 150,545,232 cells, correspondingly. The mesh

was stretched in the wall-normal direction up to b0 and remained uniform up to the

domain top boundaries.

Due to the computational constraints, a short domain extension in the vortex

core direction was employed. Note that such domain may not fully resolve the

three-dimensional linking instabilities. On the other hand, the evolution of the

wake vortex in short (2.2b0 in x direction) and long (12.2b0 in x direction) domains

were compared (Proctor et al., 2000), with the circulation and lateral position time

histories revealing only slight differences.

Periodic boundary conditions were imposed in the lateral and axial directions.

The no-slip wall and slip wall boundary conditions were set on the lower and upper

bounds for the hard surface case. In the cases of the forest canopy and water

surfaces, porous and water regions of 10 m height were attached to the lower



36

bound of the domain with the wall boundary condition applied at the bottoms of the

regions. The porous zone initialization is further discussed in Section 3.2 and 3.2.3.

Also, three computational domains are considered in the canopy analysis

(Table 3.4). The initial (3b0 × 8b0 × 3b0) domain selected for solid ground surface

simulations is extended to (3b0 × 8b0 × 3.15b0) and (3b0 × 8b0 × 3.3b0) domain

for modeling the forest canopy. With the initial vortex separation distance of

b0 = 47.1 m, the resulting dimensions of the selected domains are (Lx,L y,Lz =

192 m, 384 m, 144 m), (Lx,L y,Lz = 192 m, 384 m, 149 m) and (Lx,L y,Lz = 192

m, 384 m, 154 m) respectively. Based on the grid sensitivity studies, the adequate

grid resolution was achieved with Nx,Ny,Nz = 256,512,256 cells and Nx,Ny,Nz =

256,512,296 cells, correspondingly. The mesh was stretched in the wall-normal

direction up to b0 and remained uniform up to the domain top boundaries.

Periodic boundary conditions were imposed in the lateral and axial directions.

The no-slip wall and the slip wall boundary conditions were set on the lower and

upper bounds for the hard surface case. In the cases of the forest canopy, the porous

regions of 5 m and 10 m height were attached to the lower bound of the domain

with the wall boundary condition applied at the bottoms of the regions.

3.1.5 Grid Sensitivity Study

The grid sensitivity study is conducted for the hard surface case for three

grid resolutions. The list of the grids is presented in Table 3.6. The results for the

vertical and horizontal evolution of the wake vortex as well as for circulation decay
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Table 3.5: Grids employed for grid sensitivity study

Case Domain resolution [cells] Total number of cells

coarse 120×492×159 9,387,360

medium 150×545×192 15,696,000

fine 167×612×230 23,506,920

history do not differ significantly (Figures 3.4 and 3.4c ). The medium grid with

150×545×192 cells is used in subsequent analysis.
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Figure 3.2: Position comparison with light detection and ranging system (LIDAR)

data.
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Figure 3.3: Circulation comparison with LIDAR data.
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The grid sensitivity for canopy study is also performed and is conducted for

the hard surface case for three grid resolutions. The list of the grids is presented in

Table 3.6.

Table 3.6: Grids employed for grid sensitivity study

Case Domain resolution [cells] Total number of cells

coarse 213×426×213 19,327,194

medium 256×512×256 33,554,432

fine 282×563×282 44,772,012

The results for the vertical and horizontal evolution of the wake vortex as well

as for circulation decay history do not differ significantly (Figure 3.4 ). The medium

grid with 256×512×256 cells is used in subsequent analysis.

3.2 Wake Vortex Evolution with Different Ground Surfaces

The current simulations are conducted for a quiescent medium (i.e., without

any ambient turbulence, cross wind or wind shear, or temperature stratification).

The obtained results will be used as benchmarks for subsequent studies accounting

for various non-quiescent medium effects.

3.2.1 Solid Flat Ground Surface

The Q-isosurfaces describing the evolution of the vortex pair in time are

demonstrated in Figure 3.5. The dynamics of the ground approach and rebound

is clearly observed along with the induced near-ground vorticity layer as the pair

approaches the wall. The vortex roll-up is accompanied by the formation of the

secondary vortices that detach from the ground and start circulating around the

primary vortices interacting with the latter and eventually distorting those by
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(a) Z̄ time history. (b) Ȳ time history.

(c) Γ̄ time history.

Figure 3.4: Grid sensitivity study.

inducing short-wave instabilities in the appearing complex system of vortical

structures (Harris & Williamson, 2012).

The vortex strength is defined using a common measure, Γ5−15 = b
6

∫b/4
b/12Γ(r)dr,

where Γ(r) is the circulation calculated over a circle of radius r centered at the

vortex core, and b is the wing span of the generator airplane. The center of the

vortex core was tracked by locating the point with the minimum pressure value.
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(a) t̄ = 0.13. (b) t̄ = 0.39.

(c) t̄ = 0.52. (d) t̄ = 0.65.

(e) t̄ = 1.17. (f) t̄ = 1.56.

(g) t̄ = 1.96. (h) t̄ = 2.35.

Figure 3.5: Wake vortex evolution with flat ground. Q isosurfaces.

For the test study, LES simulation of the vortex pair dynamics is performed

for the landing L-1011 aircraft, with results compared against LIDAR data

(“Meteorological and Wake Vortex Data Set, Dallas-Fort Worth International
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Airport”, 1998) and LES simulation of (Proctor et al., 2000). Note that several 3D

computations were performed in the latter study for different levels turbulence

intensity defined in terms of the eddy dissipation rate (EDR). Since no turbulence

is included is current simulations, only one case with EDR = 3.317 ·10−8 is selected

for the current comparison. The LIDAR measurements along with the position and

circulation history are shown in (Kazarin & Golubev, 2017b)
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Figure 3.6: Position comparison with LIDAR data.
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Figure 3.7: Circulation comparison with LIDAR data.

The time history of the vortex vertical position is shown in Figure 3.6a. One

may notice that after t̄ = 0.5, a strong rebound occurs. Since no ambient turbulence
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is introduced in the computations, the vortex pair remains stable (undeformed)

for a long period of time, which allows the secondary vortex to rotate around

the primary one without significant dissipation and forces the primary vortex to

ascend. The resulting strong rebound followed by return to descent causes the

oscillatory trajectory pattern observed in Figure 3.6a and may explain deviation

from the expected behavior. Further discrepancies between both simulations

and measurements may be attributed to several possible causes as mentioned

in (Proctor et al., 2000).

The predicted port-vortex lateral position is shown in Figure 3.6b, with

the difference between the current simulation and experiment attributed to the

unaccounted ambient wind. On the other hand, the predicted vortex strength

measure (Figure 3.7) is generally close to results from LIDAR measurements and

results (Proctor et al., 2000). The observed difference in the initial circulation

values is attributed to the different applied vortex initializations.

3.2.2 Comparison with Experimental Data

In this section, the validation of the solver setup using the experimental

data (Stephan et al., 2014) is performed. The simulation domain size, initial

and boundary conditions are similar to those used in (Wang et al., 2017). The

initial parameters used for vortex pair initialization replicate the ones from the

experiment (Table 3.7). For comparison, the LES simulations are performed for

two grid sizes: 18.6 million cells and 32 million cells. Figure 3.8 demonstrates

the circulation and vertical position time histories of the wake vortex. From
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Figure 3.8a, one can see that the initial rebound height based on LES simulation

is higher than the experimental one. As mentioned in (Wang et al., 2017), the effect

could be due to the lack of the background turbulence and/or the difference in the

initial conditions in the simulation and the experimental setup. The circulation

values (Figure 3.8b) from the LES simulation are very close to the experimental

values and DLR LES simulation.

Table 3.7: Initial vortex parameters.

Parameter Value

b0 0.153 [m]

Γ0 0.052 [m2/s]

Initial height 0.0765 [m]

V0 0.043 [m/s]

rc,0 0.009 [m]

ReΓ 52000

(a) Z̄ time history. (b) Γ̄ time history.

Figure 3.8: Comparison with the experimental data.

3.2.3 Forest Canopy

The forest canopy is modeled as a zone with porous medium defined as a

solid matrix with interconnected pores. An isotropic porous medium with uniform
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distributions of porosity properties in all directions is specified for simplicity. The

following values of the coefficients D and F in Equation 3.2 are calculated using

Ergun’s equation (Ergun, 1952):

F = 3.5
dp

1−φ
φ3

D = 150

d2
p

(1−φ)2
φ3

(3.3)

where φ is porosity, dp is the mean particle diameter.

These parameters are calculated for two types of the forest canopies: the

tomato canopy (φ = 0.9) and deciduous forest which has relatively low porosity

level (φ = 0.77). The wind tunnel measurements of aerodynamic properties

of a tomato canopy (Sase et al., 2012) are used to obtain F and D values. The

porosity parameters for the canopy are found by measuring the pressure loss

through the canopy for five velocity values. Thus, the permeability of the porous

medium K is determined experimentally. Note that
p

K corresponds to the

characteristic dimension of the porous medium ( e.g. dimension of the average

pore).
p

K is determined experimentally to be 0.13 m. Then, using Kozeny’s

equation (Momentum Equations for Porous Media, n.d.),

K = d2
pφ

3

180(1−φ)2
(3.4)
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the mean particle diameter is calculated. As a result, the values of 0.9 and 0.18385

are used for φ and dp in the current simulations. Based on the study conducted to

determine the drag coefficient and relationship between the permeability and the

momentum loss coefficients of a tomato canopy for the various leaf area densities,

the resulting values of F = 2.6 and D = 60.876 are selected. For the hardwoods,

the permeability (K = 0.005) is found from (Crasto, 2007) and (Wallbank, 2008).

Crasto performed the numerical simulations of the atmospheric boundary layer

using WindSim software and their validations with the wind tunnel experiments.

The various parameters for several types of the forests were derived. Based on this

analysis, the values for D = 172.5 and F = 5.46 are established for the hardwoods

and employed in the current study.

3.2.4 Forest Canopy Parametric Study

Flat Canopies

In Figure 3.9, the time histories of the vertical (Z̄) and horizontal position

(Ȳ ) as well as the vortex strength (Γ̄5−15) are compared against those for the

hard surface. The slope of the vertical time history curves for the porous and

hard surfaces coincides until t̄ = 1. At t̄ = 1, the rebound occurs. However, the

rebound peaks appear different. It is worth noting that the ’rebounding hump’ is

presented for the hard and both porous surfaces. Such a behavior can be explained

by the dynamics of secondary vortices. The development of the secondary vortex

tends to arrest the primary’s vortex horizontal motion. In the canopy case, the

secondary vortex detaches earlier than in hard surface case rotating around the
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primary vortex faster thus limiting the horizontal deviation. At t̄ = 3.8, the second

rebound is initiated. It is clear that the vortex dynamics for the deciduous canopy

is different from the tomato canopy surface case. Figure 3.9a demonstrates the

wake vortex behavior in space more clear. The rebound in both porous cases occurs

earlier.

The circulation evolution results in Figure 3.9b indicate a similar decay rate

starting from t̄ = 4 for the canopy and hard surface cases. As discussed before, the

dynamics of the primary vortices and the loss of the momentum due to penetration

of the flow in the porous surface are the possible reasons for the faster decay of the

wake vortex in case of the canopy surface. The properties of the deciduous surface

are closer to the hard surface case, which results in slower decay of the vortex

strength in comparison with the tomato surface case.

Figures 3.10 and 3.11 demonstrate the vorticity fields for two moments of time.

At the early stage (Figure 3.10), the difference in the formation of the secondary

vortices can be noted. Also, the dynamics of the secondary vortices for deciduous

canopy case is closer to the hard surface case then for the tomato case because

of the larger difference in porosity and permeability. The same can be noticed

in Figure 3.11 for t̄ = 3.78. The numerous coherent structures observed in the

canopy cases point to the higher circulation decay rates, which is also clear from

Figure 3.9b.
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(a) Position. (b) Γ̄ time history.

(c) Z̄ time history. (d) Ȳ time history.

Figure 3.9: Position and Γ̄5−15 over the flat surfaces.
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(a) Hard Surface.

(b) Tomato canopy, 10m.

(c) Deciduous canopy, 10m.

Figure 3.10: Vorticity fields for t̄ = 1.26, x̄∗ = 2.04.
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(a) Hard Surface.

(b) Tomato canopy, 10m.

(c) Deciduous canopy, 10m.

Figure 3.11: Vorticity fields for t̄ = 3.78, x̄∗ = 2.04.
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Canopies of Different Heights

The flow over the hardwoods of 5m and 10m height is analyzed in this

subsection. As expected, the vortex pair dynamics in the case of the lower canopy

is close to the hard surface case. Indeed, the circulation time history and position in

space (Figure 3.12) clearly indicate this. However, the distinction in votex pair’s

position between 5 m and 10 m canopy cases is obvious. The difference in the

horizontal position offset for t̄ = 2 (Figures 3.12a and 3.12d) between hard surface

case and tomato canopy case is about 0.2b0. A closer look at Figures 3.13 and 3.14

reveals an apparent difference in the formation of the secondary vortices.

Rough Canopy

The effect of the canopy roughness is investigated in this section using the

cases of the flat tomato canopy of 10m height and the rough surface. First, tomato

canopy Roughness with “tree” cross section of 3m × 3m is considered. As shown

below, the ground surface roughness effect on the vortex pair’s circulation is similar

to the effect of an obstacle (Wang et al., 2017; Stephan et al., 2014). However, in

comparison to the obstacle effect (Wang et al., 2017), the circulation level drops

slightly slower. In Figure 3.16, the effect of roughness is pronounced in terms

of the secondary vortex structures wraping around the primary vortices and

starting to accelerate the wake vortex decay. Already at t̄ = 0.69, (Figure 3.18),

the secondary vortex structures are different from those above the flat surfaces.

In Figure 3.19, one can observe the absence of the pronounced secondary vortices

above the rough surface as opposed to flat surfaces. From Figure 3.16, it is clear
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(a) Position. (b) Γ̄ time history.

(c) Z̄ time history. (d) Ȳ time history.

Figure 3.12: Position and Γ̄5−15 over the flat porous surfaces of different height.

that roughness produces strong secondary vortex structures in comparison to the

flat tomato canopy. Moreover, above the rough surface, a tremendous reduction of

circulation strengths between t̄ = 1 and t̄ = 2 compared with the hard surface and

flat canopy cases is observed. The reduction is around 40%−50%. The circulation

plots (Figure 3.15b) show significant dissipation for the rough case at t̄ = 3. The

intensity of the wake vortex (Γ̄ = 0.4) possibly may have a very little effect on the

follower aircraft.
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(a) Hard surface.

(b) Deciduous canopy, 10m.

(c) Deciduous canopy, 5m.

Figure 3.13: Vorticity fields for t̄ = 1.03, x̄∗ = 2.04.
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(a) Hard surface.

(b) Deciduous canopy, 10m.

(c) Deciduous canopy, 5m.

Figure 3.14: Vorticity fields for t̄ = 2.86, x̄∗ = 2.04.
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Figures 3.15a and 3.15c demonstrate the impact of a rough surface on the

wake vortex rebound height. The first dip (at t̄ = 1) of the vortex pair is higher

for the rough case (Figure 3.15c). After rebound, the vortex pair rises with

approximately similar rate for all cases. It is worth noting that the wake vortex

does not descend after it reaches the first peak (in comparison with two other cases)

and continues to rise reaching the maximum of Z̄ = 1.3. The horizontal motion also

differs in the rough case. As opposed to vertical ascend and rebound distance, the

horizontal deviation is lower for the rough case.

(a) Position. (b) Γ̄ time history.

(c) Z̄ time history. (d) Ȳ time history.

Figure 3.15: Position and Γ̄5−15 over the flat porous surfaces of different height.
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(a) Tomato canopy. (b) Rough tomato canopy.

Figure 3.16: Q = 0.5 isosurface with vorticity coloring, t̄ = 1.03.

(a) Tomato canopy. (b) Rough tomato canopy.

Figure 3.17: Q = 0.5 isosurface with vorticity coloring, t̄ = 2.06.
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(a) Hard surface.

(b) Tomato canopy, 10 m.

(c) Rough tomato canopy, 10 m with std 3 m.

Figure 3.18: Vorticity fields for t̄ = 0.69, x̄∗ = 2.04.
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(a) Hard surface.

(b) Tomato canopy, 10 m.

(c) Rough tomato canopy, 10 m with std 3 m.

Figure 3.19: Vorticity fields for t̄ = 1.72, x̄∗ = 1.72.
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Next, the deciduous canopy roughness with ’tree’ cross section of 6m× 6m is

presented. In case of the rough hardwoods (deciduous canopy), the vortex strength

drops with the same rate as it does in case of the tomato canopy (Figure 3.20b). The

rebound height over the rough deciduous canopy case exceeds the one in the case

of the rough tomato canopy (Figure 3.20c). On the contrary, the horizontal offset

from the initial position is the smallest for the deciduous canopy. Thus, one can

conclude that roughness contributes the most in the vortex decay. Also, the change

of the “roughness" or “tree" size by the factor of 2 does not change the decay rate

significantly.

Canopy Clearing

Finally, we discuss the preliminary study of the vortex pair evolution over

a canopy clearing. The canopy clearing is the porous zone of the reduced size

which occupies only the half of the attached region (Figure 3.22). The vortex pair’s

parameters are obtained for the slice over the forest surface (x∗ = 1.02, forest part)

and the slice over the forest clearing surface itself (x∗ = 2.04, clearing part). In

addition, Q-isosurfaces (Q=0.1) with vorticity coloring are shown for four moments

of time (Figure 3.22). All the parameters are compared with those in the hard

surface and tomato canopy surface cases.

The wake vortices are disturbed near the boundaries, which is due to the

application of the periodic boundary condition (Figure 3.22). The same phenomena

is described by (Misaka et al., 2011), where the airplane was moved through

the domain. As a result, the wake development during the flight violated the
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(a) Position. (b) Γ̄ time history.

(c) Z̄ time history. (d) Ȳ time history.

Figure 3.20: Position and Γ̄5−15 over the flat porous surfaces of different height.

flow periodicity. In our case, the periodicity of the flow is also violated due to the

presence of the porous region near one of the boundaries. Nevertheless, the periodic

boundary condition is imposed in this work to insure the stability of the numerical

solution.

Considering the circulation time history (Figure 3.21b), one can observe a

significant drop from t̄ = 2 to t̄ = 3 for both clearing and forest parts. Note, that

the observed decay rate is quite different from both the tomato canopy and the
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hard surface cases. This may be explained as follows. One of the possible reasons

is the periodic boundary conditions in the x-direction discussed above. Second,

the deformation of the left and right vortices towards each other may trigger the

formation of the secondary vortex structures. As can be seen from the Figure 3.22,

the vortex disturbances rapidly propagate through the vortex structures. Finally,

the size of the domain in the x-direction may be too small and is shown to be an

important parameter in the studies with obstacle (Stephan et al., 2014).

The time history of the position of the vortex core is shown in the

Figures 3.21a,3.21c and3.21d. Approximately at t̄ = 1.5, the vortex over the forest

part stops following the trajectory of the one over the tomato canopy case and stays

almost in the same position. As for the clearing part, the vortex pair almost stops

rising after t̄ = 2 and as a result resides lower than in other three cases.

3.2.5 Water Surface

The obtained results indicate that the flow over the free surface is quite

different from the flow over the hard surface or porous medium. Indeed, while

the flux of vorticity over a solid boundary is proportional to the surface pressure

gradient, such flux for the free surface is proportional to the fluid acceleration at

the free surface interface (Rood, 1994). Furthermore, the vortex interaction can

cause deformation of the surface, and the vortex interaction with the free surface

boundary does not depend on the dynamics of the fluid on the other side of the

boundary (Rood, 1994).



61

(a) Position. (b) Γ̄ time history.

(c) Z̄ time history. (d) Ȳ time history.

Figure 3.21: Position and Γ̄5−15 over the forest clearing.

3.2.6 Comparison and Discussion of Results

Vertical and horizontal time history as well as the vortex strength evolution

are shown in the Figures 3.23 and 3.24. Figure 3.26 demonstrates the circulation

time history for three cases. The cross plane at x = 41 m is shown.

The slope of the vertical time history curves for the porous and hard surfaces

agrees well. However, the rebound peaks appear different. As discussed in Section

3.2 and 3.2.1, such differences are caused by different dynamics of secondary
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(a) t̄ = 0.34. (b) t̄ = 0.8.

(c) t̄ = 1.26. (d) t̄ = 2.29.

Figure 3.22: Q = 0.1 isosurfaces with vorticity coloring.

vortices. It is worth noting that the ’rebounding hump’ is present for both hard and

porous surfaces but disappears for the water surface case.

The circulation evolution results in Figure 3.24 indicate a faster decay from

t̄=0 to 1 in the water surface case. Numerous coherent structures start deforming

the primary vortex at t̄ = 0.95 (Figure 3.25b). The same can be noticed in Figure

3.27b. After t̄ = 1, the slope of the circulation curve for water case remains almost

the same. However, for hard surface and especially for porous surface case, it

becomes more steep after t̄ = 2. Indeed, Figures 3.25, 3.28 also demonstrate that

after t̄ = 2 the coherent structures start to greatly affect the primary vortices in
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both hard and porous medium cases. The vortex sheet on the water surface exhibits

a stronger dynamics of vortical stuctures (Figures 3.27 and 3.28) compared to the

hard and porous surface cases.

According to the experimental results of (Shaikh & Siddiqui, 2010), the

magnitude of the normalized Reynolds stress in the near surface region is higher

over the water surface in comparison to the solid wall. Thus, the viscous dissipation

for the water surface case is more intensive, which agrees with the current results.

Moreover, the TKE production over the water surface was found to be the highest

in comparison with smooth wall case and enhanced in the presence of waves which

is likely due to enhancement of the Reynolds stress (Shaikh & Siddiqui, 2010). The

highest magnitudes of TKE dissipation rate are also observed in the water surface

case.
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(a) Z time history.
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(b) Y time history.

Figure 3.23: Position for three surfaces.
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Figure 3.24: Circulation for three surfaces.

3.3 High-Fidelity Based Reduced Order Model of In-ground Effects for

WVSS

The vortex pair is considered to be In-Ground-Effect when the separation from

the ground is less than b. It is very important to predict the wake vortex behavior

in the vicinity of the ground especially in terminal zones. The effect of the ground

on wake-vortex evolution has been widely studied by (Proctor et al., 2000; Harvey

& Perry, 1971; Holzapfel & Steen, 2007; Burnham, Hallock, Tombach, Brashears,

& Barber, 1978). It is known that the vortex decay is enhanced near the ground

and it is a complex phenomenon. In order to predict the behavior of the vortex pair

in the in-ground zone, one need to take into account the interaction of the vortex

pair (primary vortices) with the surface boundary layer. Several fast-time models

exist which can predict the in-ground evolution of the wake vortex (e.g. APA, TDP

etc). In this section, a reduced order model of in-ground effect is developed based on

high-fidelity simulation for incorporation in the WVSS fast-time prediction code.
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3.3.1 Reduced-order model approach

The reduced order model approach is based on high-fidelity LES simulations

described in the previous section. The wake vortex initial separation and distance

(b), initial height over the ground h0 and initial circulation Γ0 are considered

to be the main parameters which affect the dynamics of the wake vortex near

the ground. The in-ground model should cover the wide range of b,h0 and Γ0

parameters in order to be able to predict the behavior of the vortex pair generated

by different aircraft’s which can belong to different categories. For that reason,

the “2-D computational grid” which consists of possible combinations of Γ0 and b

is considered.

The “nodes” in the grid correspond to transient LES simulations of the wake

vortex evolution near the ground with the parameters chosen and h0 = b. The

“2-D computational grid” can be used in WVSS to model the behavior of the vortex

pair in the vicinity of the ground. The values at the points between the nodes

can be found by interpolation between the LES -“calculated” nodes. The choice

of interpolation points is also discussed and the results are validated against the

existing fast-time model with in-ground effect (APA 3.8).

The “2-D computational grid” is shown in Figure 3.29. This is an example of

the grid which can be used in the real simulations and it covers the 200 m2/s −

400 m2/s circulation range and 30 m−50 m spacing range. It can be expanded to

cover the bigger range of circulation and spacing sizes of the airplanes. The blue
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dots are the points which were calculated from LES simulation only, the green ones

are calculated and modeled using the interpolation from adjacent points.

Four different types of interpolation are considered:

• vertical point interpolation (points with the same spacing but with different

circulations are used)

• horizontal point interpolation (points with the same circulation but with

different spacing are used)

• diagonal point interpolation

• four-points interpolation

The results are shown in Figures 3.31, 3.32 and 3.33. The interpolation with

the use of vertical (Figure 3.31) and horizontal (Figure 3.32) points can potentially

work well for the circulation prediction and the horizontal position. However, the

vertical coordinate of the vortex pair can be approximated by such interpolation

only during the first 20 seconds of the descent. Figure 3.33 demonstrates the

interpolation process where diagonal points, as well as all four points, are used.

These two methods give better results than the first two considered. The black

dashed line shows the result obtained from LES simulation and which is have to be

modeled using interpolation. The cyan and green dots are the result of diagonal and

four points interpolation. The diagonal interpolation seems to give better results

which can be explained by the similarity of the flow with bigger spacing and bigger

circulation values. Indeed, the intensity of interaction between two vortices is
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stronger when they are closer and more strong and vice versa. Thus, there is no

need to perform simulations for all the points in the grid. Instead of this one can

use the diagonal points interpolation to find the values for a vertical and horizontal

position as well as the circulation in the points of interest. It is possible to make the

grid more dense depending on the computational power available. Moreover, the

time histories for the position and vortex strength obtained in the nodes of the “2-D

computational grid” can be used as uncertainty boundaries in simulations.

3.3.2 Comparison with APA 3.8 Fast-Time Model

The comparison of reduced-order model results with the existing APA 3.8

model is performed for three nodes: Γ0 = 200 m2/s,b = 30 m;Γ0 = 300 m2/s,b =

40 m;Γ0 = 400 m2/s,b = 50 m and are shown in Figures 3.34, 3.35, 3.36. The vertical

and horizontal position of LES and fast-time modeled solution (APA 3.8) as well as

the vortex strengths are close to each other.
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(a) t̄ = 0.27.

(b) t̄ = 0.95.

(c) t̄ = 1.36.

Figure 3.25: Circulation evolution for three surfaces.
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(a) t̄ = 2.32.

(b) t̄ = 3.4.

(c) t̄ = 4.

Figure 3.26: Circulation evolution for three surfaces.
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(a) t̄ = 0.13.

(b) t̄ = 0.52.

Figure 3.27: Wake vortex evolution with flat ground. Q isosurfaces (|Q| = 0.5).
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(a) t̄ = 1.96.

(b) t̄ = 2.22.

Figure 3.28: Wake vortex evolution with flat ground. Q isosurfaces (|Q| = 0.5).
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Figure 3.29: 2D computational grid.

Figure 3.30: Interpolated, simulated and modeled points.



73

(a) Points used for interpolation. (b) Vertical descent.

(c) Horizontal position. (d) Circulation evolution.

Figure 3.31: Position and strength for vertical interpolation points.
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(a) Points used for interpolation. (b) Vertical descent.

(c) Horizontal position. (d) Circulation evolution.

Figure 3.32: Position and strength for horizontal interpolation points.
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(a) Points used for diagonal interpolation. (b) Points used for 4-points interpolation.

(c) Vertical descent. (d) Horizontal position.

(e) Circulation evolution.

Figure 3.33: Position and strength for diagonal and 4-points interpolation.
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(a) Vertical Descent.

(b) Circulation Evolution.

(c) Circulation Evolution.

Figure 3.34: Γ= 200 m2/s,b = 30m. LES simulation (Red), APA 3.8 (Blue).
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(a) Vertical Descent.

(b) Circulation Evolution.

(c) Circulation Evolution.

Figure 3.35: Γ= 300 m2/s,b = 40m. LES simulation (Red), APA 3.8 (Blue).
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(a) Vertical Descent.

(b) Circulation Evolution.

(c) Circulation Evolution.

Figure 3.36: Γ= 400 m2/s,b = 50m. LES simulation (Red), APA 3.8 (Blue).
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4. ROBUST NONLINEAR TRACKING CONTROL FOR UNMANNED

AIRCRAFT WITH VIRTUAL CONTROL SURFACES

The Federal Aviation Administration (FAA) is currently faced with myriad

operational safety challenges that exist in integrating UAS in the NAS. Specifically,

the Integrated Safety Assessment Model (ISAM) requires further development

and improvements in order to fully address UAS operations for current and future

risk analyses. Motivated by the desire to improve the safety of UAS operating in

the NAS, the development of novel UAV flight control technologies is of critical

importance.

Specifically, there is a need for control system technologies that are capable

of quickly recovering from unpredictable and potentially hazardous operating

conditions resulting from phenomena such as airflow disturbances due to upstream

wake vortex, wind gusts, or turbulence. Based on these considerations, the focus

of the current chapter is on the development of a nonlinear control method, which

demonstrates reliable and accurate UAV trajectory regulation in the presence of

unmodeled and time-varying operating conditions in addition to uncertainty in

the governing UAS dynamic model. Particularly, a robust nonlinear flight control

strategy in the presence of the wind gust, as well as the wake vortex disturbance, is

presented. The analysis of the robust nonlinear controller in comparison to a linear

H∞ controller for several cases is demonstrated.

Moreover, a robust nonlinear flight control strategy is presented, which

utilizes arrays of SJAs embedded in a seamless UAV blended wing-body design (see
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Figure 4.1). SJAs can provide enhanced maneuverability for small fixed-wing UAV

applications, where the use of heavy, mechanical deflection surfaces is impractical

or detrimental. The proposed control design is particularly advantageous in

maintaining flight stability in the presence of a high degree of uncertainty and

nonlinearity in the UAV operating conditions (e.g., flight conditions inherent in

tight urban environments and terminal zones). In addition, the proposed control

method is capable of compensating for the parametric uncertainty and nonlinearity

inherent in the dynamics of SJA.

Figure 4.1: Seamless aircraft employing SJAs in a blended wing-body design.

The developed methodology and the conducted studies pave the way to further

optimization, testing and validation of the wake/gust interference models including

appropriate estimation of uncertainties in aircraft and weather inputs, developing

inputs to fault tree analyses within ISAM structure, and eventually employing the

developed models for adjusting procedures for UAS operations in the terminal zone

within SITAR WVSS module. standard linear control method.
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In this chapter, the UAV-wake-vortex interaction, as well as UAV-gust

interaction, is considered. Particularly, a robust nonlinear flight control strategy

capable of the wake vortex disturbance rejection in different phases of evolution

including in-ground and out-of-ground phases is presented. The disturbance is both

modeled by applying the low fidelity model of wake vortex pair (Yu, Qu, & Zhang,

2018) for the steady level flight and Monte-Carlo simulations scenario as well as

using high fidelity simulations (Large Eddy Simulation (LES)) for the take-off and

landing when the wake vortex is in in-ground effect phase. The proposed control

design is particularly advantageous in maintaining flight stability in the presence

of a high degree of uncertainty and nonlinearity in the UAV operating conditions

(e.g., flight conditions inherent in tight urban environments and terminal zones).

4.1 Mathematical Model

This section describes the mathematical model utilized to develop our

nonlinear control method. The subsequently provided numerical simulation results

are obtained using the mathematical models presented in this section for the

UAV, SJA actuator dynamics, and wind gusts. The UAV dynamic model under

consideration in this chapter is assumed to contain parametric model uncertainty

in addition to unmodeled, time-varying nonlinearities. The aircraft dynamics is
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modeled via a quasi-linear state space system as (Tchieu et al., 2008; Nelson, 1998;

Deb et al., 2005, 2007, 2008; Mondschein et al., 2011; Singhal et al., 2009):

ẋ = A(ρ)x+B(ρ)u+ f (x, t)

y= C(ρ)x+D(ρ)u

(4.1)

where ρ is a measurable exogenous parameter vector, called the scheduling

parameter, x ∈ R
n are the deviation states, u ∈ R

m are the deviation inputs, y ∈ R
p

are the deviation outputs, and f (x, t) is an unknown nonlinear disturbance. Here,

A(ρ) ∈ R
n×n represents the system matrix, B(ρ) ∈ R

n×m the input matrix, C(ρ) ∈

R
p×n the output matrix, and D(ρ) ∈ R

p×m the feedthrough matrix. The system is

then arranged such that:

A(ρ)= A0+
k

∑

i=1
δi A i (4.2)

B(ρ)= B0+
k

∑

i=1
δiBi (4.3)

C(ρ)= C0+
k

∑

i=1
δiCi (4.4)

D(ρ)= D0+
k

∑

i=1
δiD i (4.5)

where A0, B0, C0, and D0 are the nominal state space matrices. The parametric

uncertainty is reflected by δi ∈ [−1,1], and the structural knowledge about the

uncertainty is contained in the matrices A i, Bi, Ci, and D i (Zhou, Doyle, & Glover,

1995). This chapter will focused on the longitudinal control of a small UAV.
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The longitudinal dynamics of an aircraft is described by the state vector x =

[u,w,q,θ,Ze]
T , input vector u = [δe,δτ]

T , and output vector y = [V ,α,q,θ,h,ax,az]
T .

Here, u is the axial velocity, w is the vertical velocity, q is the pitch rate, θ is

the pitch angle, and Ze is the vertical position of the aircraft with respect to

the horizon. In addition, δe is the elevator deflection, δτ is the throttle input,

V is the true airspeed, α is the angle of attack, h is the altitude, ax is the axial

acceleration, az is the vertical acceleration. The scheduling parameter ρ can be

altitude and Mach number and the unknown disturbance f (x, t) could be wind gusts

or nonlinearities not captured in the linear model.

The state vector for lateral dynamics is x = [v, p, r,φ,ψ]T with input vector

u = [δa,δr]
T . Where v,p,r,φ,ψ is lateral velocity, roll and yaw rates and angles.

The input parameters are aileron and rudder deflections. As mentioned above, the

control application of this chapter is on small UAVs with synthetic jet actuators

(SJA). The action of these actuators can be related to a virtual elevator deflection

δe such that:

ẋ = Ax+Bu+ f (x, t) (4.6)

where A ∈ R
nxn represents a constant, uncertain state matrix; and B ∈ R

nxm

denotes an uncertain input gain matrix. In Equation 4.6, the state vector x(t)
❞❡❢=

[

v(t) w(t) q(t) θ(t) h(t)
]

, where the state elements include vertical and

horizontal components of velocity v(t) and w(t) , pitch rate q(t) , pitch angle θ(t) ,

and altitude h(t) (Natesan, Gu, & Postlethwaite, 2007; Kumar & Jain, 2014). In
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4.6, f (x, t) denotes a general, unknown nonlinear disturbance. For example, f (x, t)

could represent exogenous disturbances (e.g., due to wind gusts) or nonlinearities

not captured in the linearized dynamic model, for example. Also in 4.6, the control

input term u(t)
❞❡❢=

[

δe(t) δt(t)
]T ∈ R

m, where δe(t) ∈ R
m−1 denotes the elevator

control deflection angle; and δt(t) ∈ R is the throttle input. In our SJA-based UAV

control application, the (virtual) elevator deflection angle input δe(t) is generated by

an array consisting of m−1 SJAs. Thus, the virtual elevator deflection angle input

can be expressed as:

δe(t)
❞❡❢=

[

u1(t) u2(t) ... um−1(t)
]T

(4.7)

where ui(t) ∈ R, i = 1,2, ...,m−1 represents the virtual surface deflection due to the

ith array of SJAs. Based on empirical studies, the SJA dynamics can be modeled

as (Deb et al., 2005, 2007, 2008, 2006)

ui(t)= θ∗2i −
θ∗
1i

Vi(t)
, i = 1,2, ...,m−1 (4.8)

where Vi(t) = A2
ppi

(t) ∈ R denotes the peak-to-peak voltage acting on the ith SJA

array; and θ∗
1i
,θ∗

2i
∈ R are uncertain constant physical parameters. One of the

control design challenges is that the control terms in ui(t) depend nonlinearly on

the voltage signal Vi(t) and contain parametric uncertainty due to θ∗
1i
and θ∗

2i
. This

challenge will be mitigated using a robust nonlinear control technique.
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4.2 Nonlinear Robust Control

4.2.1 Control Objective

The control objective is divided into two parts: one for the longitudinal

dynamics and one for the lateral dynamics. The goal is to force the UAV altitude

and pitch rate (i.e., h(t) and q(t) ) to track a given desired constant value

(longitudinal) as well as roll and yaw rates (i.e., r and p) ) (lateral) in spite of model

uncertainty and external disturbances.

To quantify the control objective, the trajectory regulation error e(t) ∈ R and

auxiliary regulation error r(t)
❞❡❢=

[

rq(t) rh(t)
]T

∈R
2 are defined as:

e(t)=











h(t)

θ(t)











(4.9)

r(t)=











rh(t)

rq(t)











=











ḣ(t)+α1h(t)

q(t)+α2θ(t)











(4.10)

In case of lateral motion, the auxiliary regulation error r(t)
❞❡❢=

[

rp(t) rr(t)
]T

∈

R
2 and roll/yaw regulation error are as follows:

e(t)=











φ(t)

ψ(t)











(4.11)
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r(t)=











rp(t)

rr(t)











=











φ̇(t)+α1φ(t)

ψ̇(t)+α2ψ(t)











(4.12)

In equations (4.10,4.12) α1,α2 ∈R denote positive, constant control gains.

Thus, the trajectory regulation control objective can be stated mathematically

as
∥

∥e(t)
∥

∥ → 0, where ‖‖ denotes the standard Euclidean norm of the vector

argument. Note that, based on the auxiliary regulation error definitions in

equations (4.10 and 4.12),
∥

∥r(t)
∥

∥→ 0⇒
∥

∥e(t)
∥

∥→ 0.

Remark 1: The regulation error and auxiliary errors defined in Equations

(4.9,4.11) and (4.10,4.12) are a key aspect of the contribution presented here. The

definitions of the auxiliary regulation errors enable us to recast the dynamic model

in Equation (4.1) in a form that is amenable to altitude/pitch angle and roll/yaw

angle regulation control. Indeed, it can be seen that differentiation of r(t) produces

a set of equations that render the altitude and pitch angle states (h(t) and θ(t)) and

roll/yaw angles (φ, ψ) fully controllable through the elevator deflection and throttle

inputs δe(t), δt(t) and δa(t), δr(t) . Thus, the auxiliary error terms rh(t),rq(t), rr(t),

rp(t) can be viewed as sliding surfaces, which enables us to prove our altitude and

pitch angle regulation results.

4.2.2 Robust Controller Development

A contribution of the control method presented in this chapter is the capability

of the proposed control strategy to asymptotically compensate for the control input

nonlinearity and parametric uncertainty in the SJA dynamic model. To achieve
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this, a robust inverse structure for Vi(t), i = 1, ...,m − 1 will be utilized, which

contains constant feedforward best-guess estimates of the uncertain parameters

θ∗
1i
and θ∗

2i
. The robust inverse that compensates for the uncertain jet array

nonlinearities are expressed as (MacKunis et al., 2013):

Vi(t)=
θ̂1i

θ̂2i −udi(t)
, i = 1, ...,m−1 (4.13)

where θ̂∗
1i
, θ̂∗

2i
∈ R

+ are constant feedforward estimates of θ∗
1i
and θ∗

2i
, respectively;

and udi ∈ R, i = 1, ...,m − 1 are subsequently defined auxiliary control signals.

Note that the robust-inverse structure in (4.13) is only required for the virtual

elevator deflection angle control inputs in δe(t). The schematic block diagram of the

simulink model is presented in the Figure 4.19.

Remark 2: The controller design presented in this chapter is valid for systems

in the form of Equations 4.1, where the total number of control inputs (i.e., the

throttle and the SJA arrays) is greater than or equal to the number of states

to be controlled (i.e., the m ≥ n case). For the case where m > n, the following

control design can easily be modified using the matrix pseudoinverse definition, for

example. The underactuated case where m < n would require a specialized design

methodology and is not addressed in the current result. The following control

design and subsequent simulation results are based on the case where m = n = 2,

without loss of generality. In order to achieve asymptotic convergence of θ, h and φ,

ψ to zero with a given convergence rate in the presence of a bounded disturbance
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(i.e. wake vortex or wind gust), we have to drive the auxiliary regulation error r to

zero in finite time.

Taking into account the original dynamic model, and the auxiliary regulation

error r, the auxiliary control term u is designed as:

[

u

]

=
[

Ω̂
−1

]











k1rh,r

k2rq,p











+











β1tanh(rh,r)

β2tanh(rq,p)











(4.14)

where Ω̂ denotes a constant auxiliary matrix, and []−1 denotes the inverse of

a matrix. The feedback control gains (i.e., amplifiers) k1,k2,β1,β2 can be tuned

to adjust the closed loop regulation response to achieve the desired system

performance (e.g., to achieve a faster response time).

Note that the continuous tanh() switching term in Equation 4.14 is used in the

subsequent simulation implementation, but the discontinuous signum() function

is required to prove asymptotic disturbance rejection as shown in (Kazarin et

al., 2017) . The feedback control gains (i.e., amplifiers) α1,α2,β1,β2,k1,k2 can be

tuned to adjust the closed loop trajectory regulation response to achieve the desired

system performance (e.g., to achieve a faster response time).
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4.2.3 Observer Design

In 4.1 the explicitly defined output y can be denoted as sufficiently

differentiable vector function h(x). To facilitate the subsequent observer design and

analysis, a vector H(x) ∈R
n of output derivatives is defined as:

H(x)= [h1(x),h2(x), ...hn(x)]
T = [h(x)L f h(x)...L f

n−1h(x)]T (4.15)

where L f
ih(x) denotes the i-th Lie derivative of the output function h(x) along the

direction of the vector field Ax.

An observer that estimates the full state x(t) of the system in 4.1 using only

measurements of y(t) can be designed as (Drakunov, 1992):

˙̂x = Ax̂+Msgn[V (t)−H(x̂)]+Bu (4.16)

In 4.16, V (t) = [v1(t), . . . ,vn(t)]
T is defined via the recursive form v1(t) =

y(t),vi+1(t)= m̂isgn[vi(t)−hi(x̂(t))] for i = 1, . . . ,n−1.

Also in 4.16, M(x̂) ∈ R
n×n denotes a diagonal matrix with positive elements

defined as:

M(x̂)= diag[m1(x̂), . . . ,mn(x̂)] (4.17)

where mi(x̂) ∈R,x̂ ∈R i = 1, . . . ,n.

Similar to the design in (Caraballo et al., 2007), it can be shown that the

observer design in 4.16 achieves finite-time estimation of the state x(t). Specifically,
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it can be shown that, through judicious selection of the diagonal matrix M(x̂), ˆx(t) =

x(t) for any t ≥ t1. By including the additional term in the observer design, it follows

that, for t ≥ t1 , the system converges to the sliding manifold σ = V (t)−H(x̂) , and

the observer equation 4.16 exactly estimates the state x(t) of the flow dynamic

system in 4.1.

4.3 Numerical simulation

4.3.1 Linear, Parameter-Varying Model

For further comparison of linear vs nonlinear control designs, here will be

used a linear, parameter-varying (LPV) model based on a small fixed-wing UAV.

The UAV selected for numerical simulations is the Ultrastick 120 for which the

aerodynamics and flight dynamics has been widely studied (Freeman, 2014;

Dorobantu et al., 2011). Figure 4.2 shows a picture of the UAV airframe. The LPV

model is created by linearizing the nonlinear equations of motion about a set of

equilibrium points. Here, the LPV model of the Ultrastick 120 holds a constant

altitude and varying airspeed.

Figure 4.2: Ultra Stick 120. Source: UAV Laboratories, University of Minnesota.
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The Ultrastick 120 LPV model is then generated by obtaining a set of

equilibrium points holding a constant altitude of 100m and varying airspeed

between 15-29m/s. These equilibrium points are shown in Figure 4.3 where

airspeed V = 23m/s is chosen as the nominal flight condition. Figure 4.4 shows the

change of system dynamics in the presence of parametric uncertainty in comparison

to the nominal flight condition. Robust nonlinear and linear controllers for such

UAV designed, with performance analysis presented below.
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Figure 4.3: Varying parameter trajectory: set of equilibrium points for LPV model.

4.3.2 H∞ Linear Controller

The interconnection used to synthesize the linear controllers is depicted in

Fig. 4.5. Here, e represents the control objective outputs, i.e. altitude h and pitch

angle θ. The controller K∞ takes the pitch rate q, pitch angle θ, altitude h, and

vertical acceleration az as feedback measurements. The controller minimizes

the robust performance level from actuation disturbances, d, and wind gusts
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Figure 4.4: Elevator and throttle deflection frequency response to altitude and pitch

rate for nominal system (red) and uncertain system (blue).

disturbances w to the control objectives, e, while maximizing the robustness to

model uncertain.

Figure 4.5: Control interconnection for linear design.

Constant weights, Wm, are used to model the disturbances to each control

input. This weight is selected as Wm = 0.4 for all control inputs. In addition, a

multiplicative input weight is included to avoid destabilizing unmodeled frequency
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modes outside the control bandwidth. The uncertainty model weight is described by

Wu = 1.22(s+0.48)/(s+0.224).

On the other hand, the disturbance rejection of critical variables is enforced

by a constant performance weight Wp. A constant gain attenuation of Wp = 1 is

assigned to each control objective in order to ensure damping. Similarly, wind gust

disturbances are attenuated with a constant weight Wd = 1 and noise is accounted

with the constant weight Wn = 0.05 for each measurement. Once all the weights are

defined, the next step is to design H∞ controllers such that the system gain from

[d,w]T to [e,u]T is less than 1. The Robust Control Toolbox from MATLAB is used

to design the H∞ controller with a system gain of γ = 0.99. Hence, the controller

designed achieves the control objectives specified in the control interconnection.

4.3.3 Simulation

Wind Gust Model

The performance of the nonlinear robust controller is tested using the

Matlab/Simulink software. The simulation is based on state space systems

describing each particular equilibrium point of LPV model described above.

Similar to (Golubev et al., 2016) the aircraft longitudinal performance is

evaluated for a nonlinear disturbance in the form of a vertical wind gust described

as (Part, 2002),

f (x, t)= wg

1

V0







Uds

2

[

1− cos

(

πs

H

)

]







(4.18)
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where H denotes the distance (between 35 feet and 350 feet) along the aircraft

flight path for the gust to reach its peak velocity, V0 is the forward velocity of the

aircraft when it enters the gust, s ∈
[

0,2H
]

represents the distance penetrated

into the gust (i.e., s =
∫t2

t1
V (t)dt, where V (t) is the forward velocity element of the

state vector x), and Uds is the design gust velocity (Part, 2002). The vector wg ∈ R
5

represents the relative impact of the gust on each state of the system. This FAR

the formulation is intended to be used to evaluate both vertical and lateral gust

loads, so a similar representation can be developed for the lateral dynamics. This

simulation uses the parameters H = 15.24m, and V0 equal to the speed in the

current trim state, (cruise velocity). Since the state vector is this case is defined

as x(t)
❞❡❢=

[

v(t) w(t) q(t) θ(t) h(t)
]

, the constant gain parameters of the

simulated model were modified slightly from (4.18). The remainder of the additive

disturbances in f (x, t) represents nonlinearities not captured in the linearized state

space model (e.g., due to small angle assumptions).

The SJA actuator dynamic model uses the following well-accepted, empirically

determined values for the constant parameters (Deb et al., 2005, 2007, 2008) θ∗
1i

and θ∗
2i
:

θ∗1i = 33.33, θ∗2i = 15 (4.19)

Remark 3: The values used in the simulation for the parameters θ∗1 and θ∗2

are used to generate the SJA dynamic model only. The parameters are assumed

to be uncertain and are not used in the feedback control law. Our preliminary
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results show that the robust nonlinear control method presented here is capable of

achieving accurate tracking control of a SJA-based UAV system when the constant

estimates θ̂1 and θ̂2 differ by as much as 1 % from the actual values θ∗1 and θ∗2 .

4.4 Wake Vortex Modeling

In order to determine the loads induced on the aircraft flying through the

wake vortex, one need to model the flow field induced by the vortex pair as well

as the forces and moments acting on the airplane while interaction. Knowing the

characteristics of wake the generator aircraft with elliptically loaded wings, one

can obtain the vortex flow field created by the vortex pair. The vortex pair in this

study is modeled by Burnham-Hallock model (Burnham & Hallock, 1982) where

tangential velocities induced by the wake are calculated with a constant core

radius,

Vt =
Γ0

2π

r

r2c + r2
(4.20)

The evolution of the wake vortex was simulated by the WVSS in the out-of-ground

zone as well as near the ground, where the interaction of the wake vortex and

surface boundary layer occurs. The forces and moments for both zones are

calculated using the strip theory. Far from the ground, the wake vortex is modeled

by using the low fidelity model, where the vortices are two-dimensional and the

velocity field is calculated directly from Burnham-Hallock model and are stationary

during the encounter. Also, Monte-Carlo simulations for this flight regime are

performed. The full procedure of Monte-Carlo approach is discussed in our previous
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work (Kazarin & Golubev, 2017a). Hence, the steady level flight phase is modeled in

the out-of-ground zone.

In the vicinity of the ground, the behavior of the vortex is based on the data

from the 3D LES simulations performed in OpenFOAM software and described in

detail in our studies devoted to the wake vortex propagation near different types

of ground surfaces (Kazarin & Golubev, 2017b, 2018). Then, the velocity fields are

extracted from the 3D simulation and are used for the calculation of forces and

moments acting on the airplane. When interacting with each other and with the

surface boundary layer, the vortex pair generates a turbulent velocity field which

can significantly affect the aircraft. The simulation close to the ground surface

models take-off and landing phase of the flight.

4.5 Results

This section presents the analysis of the robust nonlinear controllers in comparison

to a linear Hinf controller described above and also in (Dorobantu, Murch,

Mettler, & Balas, 2013) with the same performance objectives. Results for several

equilibrium points as well as wind gust amplitudes are presented in the (Kazarin et

al., 2017). In this work, the results for one equilibrium points are shown. The aim

of the regulation is to drive the altitude and pitch rate deviation to zero. The control

gains selected for the nonlinear control law in the simulation are (see Equation

(4.10)):

k1 = 6, k2 = 10, α1 = 50, α2 = 90 (4.21)
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The detailed time evolution of the flight trajectories during closed-loop linear

and nonlinear controller, the operation is performed for two trim conditions (23

m/s and 21 m/s) and equal gust amplitudes of 17 m/s. The pitch rate and pitch

angle deviations for 21 m/s equilibrium point are lower in case of the nonlinear

controller. However, the altitude deviation is slightly lower for linear control law.

For nominal trim point, the altitude deviation remains almost the same for two

controllers, but pitch rate and pitch angle disturbances turn out to be much lower

for the nonlinear controller. For nominal equilibrium point, nonlinear controller

significantly outperforms the linear one in terms of elevator deflection, however,

throttle power required by the linear controller is much lower. When trim condition

changes from nominal, the nonlinear controller still works better in terms of pitch

rate and pitch angle deviations. The control power for elevator input is still small

for the nonlinear case and throttle inputs are almost the same.

Figure 4.24 reflects the performance of two controllers under the impact of

stronger gust. It is clear that the maximum altitude deviation is smaller for the

linear controller. Pitch rate and pitch angle curves are much more disturbed in the

linear case. However, the elevator deflection for nonlinear control law (Figure 4.25)

is lower by an order of magnitude.

The reaction of the controllers to SJA uncertainty was also tested and is shown

in Figures 4.27 and 4.26. The control power needed to suppress the gust in the

presence of SJA uncertainty is significant. As for the state convergence, the linear

controller is still stable but the offset from the zero is about 1.5 for the pitch angle
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θ. The nonlinear control law, in this case, gives a constant offset of about 0.01

degree.

4.5.1 Interaction with Wake Vortex. Take-off and Landing Phases

The velocity fields are extracted from the LES simulation of the wake vortex

in the ground vicinity for three cases: highly turbulent case, take-off, and landing

cases. The corresponding vorticity fields are shown in Figure 4.6. The red dashed

line displays the path along which the aircraft was swept through the domain.

Figures 4.7 - 4.15 show the result of the wake-vortex-aircraft interaction for each

case.

The highly turbulent case reflects the turbulent nature of the real wake vortex.

The parameters of the generator aircraft and flight regime determine the following

characteristics of the wake vortex:

• Circulation Γ0 = 600m2/s

• Vortex core radius rc = 1.8m

• Separation distance 30m

• Current time t = 132s

The secondary vortices are being destroyed due to the interaction with

the primary vortices. The destruction is accompanied by the generation of the

turbulence with the opposite vorticity which triggers the breaking up of the vortex

pair and formation of the smaller vortices. The similar process takes place when

the vortex pair interacts with the turbulent atmosphere. The bigger the turbulence
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intensity the more pronounced the decay is. This case demonstrates the behavior of

the aircraft in the highly turbulent atmosphere provided with the interaction with

the wake vortex.

Figure 4.7 and 4.8a demonstrate the response of the aircraft to the disturbance

created by the highly turbulent velocity fields at H = 54m from the ground surface

and expressed in terms of roll rate disturbance and horizontal velocity disturbance

(Figure 4.8b). For roll φ and yaw, ψ angles the nonlinear controller suppresses the

deviation faster than the linear one. Roll rate p and yaw rate reactions are similar

for both controllers in terms of amplitude and convergence rate. The horizontal

velocity v oscillations tend to be bigger for the nonlinear controller. The rudder and

ailerons’ deflections (Figure 4.9) are also bigger in case of the nonlinear controller.

In general, the highly turbulent case is characterized by sharp peaks in each state

which correspond to intense oscillations in the velocity field and in forces and

moments acting on the aircraft as a result.

The landing case is shown in Figure 4.6b and is characterized by fully formed

secondary vortices revolving over the primary ones. The trajectory of the follower

airplane crosses both of them at the H = 37m from the ground. In this case,

the nonlinear controller completely outperforms the linear one: the maximum

amplitude of the states’ deviation is lower and convergence time is shorter (Figures

4.10 and 4.11a). However, this advantage is reached at the expense of energy spent

on the surface deflection (Figure 4.12). The wake vortex is characterized by:

• Circulation Γ0 = 300m2/s
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• Vortex core radius rc = 1.8m

• Separation distance 30m

• Current time t = 60s

In the take-off case, the distance to the ground for the follower aircraft is

13.1m, the secondary vortices formed due to the wake vortex interaction with the

ground surface boundary layer cross the aircraft’s trajectory. The characteristics of

the vortex pair are as follows:

• Circulation Γ0 = 300m2/s

• Vortex core radius rc = 1.8m

• Separation distance 30m

• Current time t = 42s

The convergence rate for roll angle φ, yaw angle ψ and roll rate p (Figure

4.13 and 4.14a) is higher in the nonlinear case. The maximum deviation for all the

states is higher for the H∞ controller which makes the nonlinear controller more

efficient. The ailerons deviations are shown in Figure 4.15 are almost the same for

both controllers, however, the rudder deflection is bigger in case of the nonlinear

controller.

4.5.2 Interaction with Wake Vortex. Steady Level Flight Phase

Two sets of Monte Carlo simulations were done to model the steady level flight

of the aircraft in the presence of wake vortex. The first set was performed to form
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(a)

(b)

(c)

Figure 4.6: (a) Highly turbulent case. Γ0 = 600m2/s, t = 132s,h = 54.5m (b) Landing

case. Γ0 = 300m2/s, t = 60s,h = 37m (c)Take-off case. Γ0 = 300m2/s, t = 42s,h = 13m.

the cone of uncertainty for the wake vortex itself. The second set corresponds to the

simulations for the control system and is performed for the several trim points.
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Figure 4.7: States deviations for nominal trim point, highly turbulent case.

(a) (b)

Figure 4.8: (a) Horizontal velocity and (b) Disturbance, highly turbulent case.

The Nominal Trim Point Simulations

The Monte Carlo simulations for wake vortex pair were performed based on

the real data case form Memphis’95 wake vortex data set. The approach is based

on perturbing the initial wake vortex conditions (b0, V0, z0) in the deterministic
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(a) (b)

(c)

Figure 4.9: Deflection surfaces deviations for (a)left aileron (b) right aileron and (c)

rudder, highly turbulent case.
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Figure 4.10: States deviations for nominal trim point, landing case.

(a) (b)

Figure 4.11: (a) Horizontal velocity and (b) Disturbance, landing case.

model and generating profiles of the ambient parameters (such as the EDR and

potential temperature profiles) using the probability density functions (PDFs).

The PDFs are obtained by applying the maximum likelihood estimation method

to density histograms corresponding to a particular data set. The vertical profiles
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(a) (b)

(c)

Figure 4.12: Deflection surfaces deviations for (a)left aileron (b) right aileron and (c)

rudder, landing case.
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Figure 4.13: States deviations for nominal trim point, take-off case.

(a) (b)

Figure 4.14: (a) Horizontal velocity and (b) Disturbance, take-off case.

are truncated at the heights of the vortex generation and the mean values are

calculated from the zero height to that value. 400 perturbations for vertical

profiles were generated using PDFs and used as input parameters along with other

parametric perturbations. More details of the method can be found in our previous



107

(a) (b)

(c)

Figure 4.15: Deviations for (a)left aileron (b) right aileron and (c) rudder, take-off

case.
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work (Kazarin et al., 2016). The characteristics of the generator aircraft (B-722)

are:

• Circulation Γ0 = 262m2/s

• Span b = 32.9 m

• Velocity V = 77.8 m/s

The distance to the generator’s aircraft path line as well as 400 wake vortex

realizations were used as an input to the linear and nonlinear control system. The

Vertical position of the follower aircraft was fixed at Z = 175 m. The separation

distance between the vortices in vortex pair, generator aircraft’s weight as well as

the vertical distance to the generator aircraft’s flight path are the input parameters

for controllers’ Monte Carlo simulations. Figure 4.16 shows the nondimensionalized

circulation and vertical coordinate of the vortex pair obtained in the first set of

simulations which forms the cone of uncertainty in the real wake vortex. Several

distances to the generator aircraft are considered. The response of the follower

aircraft at the distances of 5.46 NM,4.16 NM and 2.34 NM which correspond to

t̄ = 5, t̄ = 3.84 and t̄ = 2.14 is considered.

Figure 4.16 demonstrates the cone of the uncertainty of the wake vortex

in terms of vertical coordinate and its strength. Blue dashed lines show the cut

which corresponds to the moment of time considered. The plots of the states for

each Monte Carlo simulation (t̄ = 5) are shown in the Figure 4.17. The average

Root Mean Square Error (RMSE) and Average Maximum Deviations (AMD)
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(a) Vertical Descent (b) Circulation Evolution

Figure 4.16: Wake vortex evolution results based on 400 Monte-Carlo simulations.

The simulation is performed for t̄ = 5 (Blue dashed line).

of deflections surfaces metrics are chosen to demonstrate the performance of

the controller. The values of the average RMSE and AMD for each state are

summarizes in Tables 4.1, 4.2 and 4.3. The RMSE for all the states shows that

the nonlinear controller is more effective than the linear one in terms of states’

deviations. However, the nonlinear controller uses the rudder more actively and

spends more energy on it as a result. Also, From the comparison of the RMSE

values, one can see that the nonlinear controller works more effective than the

linear one.

Table 4.1: Average states’ RMSE and Maximum Deviations of Deflection Surfaces

over 400 Monte Carlo simulations. t̄ = 5

Controller type ∆φ,deg ∆ψ,deg ∆p,deg/s ∆r,deg/s ∆v,m/s ∆AL ∆AR ∆R

NonlinearARMSE 1.22 0.78 3.46 1.16 0.13 0.64 0.63 0.93

LinearARMSE 1.75 1.33 4.31 2.05 0.2 0.71 0.7 0.22

NonlinearAMD 6.52 3.5 23.53 6.51 0.5 2.93 2.97 4.06

LinearAMD 7.83 5.69 27.2 9.81 1.03 3.39 3.27 1.22

Table 4.2: Average states’ RMSE and Maximum Deviations of Deflection Surfaces

over 400 Monte Carlo simulations. t̄ = 3.84

Controller type ∆φ,deg ∆ψ,deg ∆p,deg/s ∆r,deg/s ∆v,m/s ∆AL ∆AR ∆Rr

Nonlinear 2.34 1.44 6.54 2.06 0.27 1.09 1.08 1.64

Linear 3.26 2.43 7.93 3.75 0.38 1.23 1.26 0.39

NonlinearAMD 12.53 5.92 45.49 10.93 1.02 4.88 5.04 6.96

LinearAMD 14.66 9.94 51.08 17.05 2 5.7 5.58 2.09
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Figure 4.17: States deviations (nominal trim point, MC simulations.

Table 4.3: Average states’ RMSE and Maximum Deviations of Deflection Surfaces

over 400 Monte Carlo simulations. t̄ = 2.14

Controller type ∆φ,deg ∆ψ,deg ∆p,deg/s ∆r,deg/s ∆v,m/s ∆AL ∆AR ∆R

NonlinearARMSE 7.71 5.1 17.72 6.5 0.76 2.52 2.22 3.42

LinearARMSE 9.44 7.21 19.47 9.76 0.9 2.54 2.46 0.94

NonlinearAMD 34.6 20.1 122.6 32.7 3.15 9.39 9.25 12.34

LinearAMD 36.7 29.2 129.7 44.3 4.8 10.6 10.13 4.58

4.5.3 The Simulations with Parametric Uncertainty

The LPV simulation is performed for several trim points (equilibrium points)

which corresponds to the change of parameters of the aircraft and the flight

conditions. At the same time, the linear and nonlinear controllers are designed for

the nominal trim point. The results are presented in Tables 4.4 and 4.5. The states’

average RMSE and AMD are summarized for t̄ = 2.14 and t̄ = 2.14 and equilibrium

points #7 and #8 which correspond to 27 m/s and 29 m/s (Figure 4.3). It is clear that
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the nonlinear controller outperforms the linear one. However, this advantage is due

to the usage of a higher amount of energy spent on the rudder deflection.

Figure 4.18: Generator aircraft and several positions of the follower aircraft.

Table 4.4: Average states’ RMSE and Maximum Deviations of Deflection Surfaces

over 400 Monte Carlo simulations.Equilibrium point #7. t̄ = 3.84

Controller type ∆φ,deg ∆ψ,deg ∆p,deg/s ∆r,deg/s ∆v,m/s ∆AL ∆AR ∆R

NonlinearARMSE 1.88 0.03 5.5 1.49 0.22 0.69 0.69 1.07

LinearARMSE 2.2 0.9 6.24 2.6 0.22 0.88 0.87 0.3

NonlinearAMD 10.09 4.07 37.6 9.26 1 3.23 3.38 5.04

LinearAMD 10.7 5.7 39.9 13.83 1.19 4.15 4.15 1.64

Table 4.5: Average states’ RMSE and Maximum Deviations of Deflection Surfaces

over 400 Monte Carlo simulations. Equilibrium point #8. t̄ = 2.14

Controller type ∆φ,deg ∆ψ,deg ∆p,deg/s ∆r,deg/s ∆v,m/s ∆AL ∆AR ∆R

NonlinearARMSE 2.02 1.01 5.88 1.62 0.24 0.79 0.8 1.23

LinearARMSE 2.51 1.54 6.77 2.9 0.25 0.97 0.95 0.32

NonlinearAMD 10.8 4.5 39.85 9.82 1.01 3.55 3.85 5.58

LinearAMD 11.89 6.6 43.27 14.75 1.36 4.54 4.55 1.77
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Figure 4.19: Simulink model diagram.
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Figure 4.20: States deviations for nominal point (23 m/s point), 17 m/s gust.



114

Figure 4.21: States deviations for 21 m/s point, 17 m/s gust.
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Figure 4.22: Control surface deviations for nominal point (23 m/s point), 17 m/s

gust.

Figure 4.23: Control surface deviations for 21 m/s point, 17 m/s gust.
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Figure 4.24: States deviations for nominal point, 23 m/s gust.
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Figure 4.25: Control surface deviations for nominal point , 23 m/s gust.

Figure 4.26: Control surface deviations for nominal point, 23 m/s gust, SJA case.
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Figure 4.27: States deviations for nominal point, 23 m/s gust, SJA case.
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5. CONCLUSION

The current work focuses on developing a variable-fidelity approach for

addressing the safety of UAS operations in the NAS using the framework of

simulation software SITAR WVSS. The latter is the dynamic low-fidelity model

predicting generation, evolution, and interaction of aircraft wake vortices. The

SITAR WVSS system consists of several sub-modules.

The “Generation” and “Evolution” sub-modules deal with wake vortex

evolution and prediction of the position and strength of wake vortices in the

atmosphere and atmospheric boundary layer using deterministic and probabilistic

approaches. This part reported on validation studies performed for three

probabilistic wake vortex evolution approaches implemented as part of WVSS code

and compared against other existing models using Memphis’95 and Denver’03 data

sets collected from LIDAR airport measurements. In terms of the overall success

rates, the WVSS Monte-Carlo simulations outperformed APA 3.4, 3.8 and TDP

2.1 model predictions based on Memphis’ 95 dataset study and appeared close to

the results from APA-TDP multi-model simulations. The implemented P2P and

RMS based probabilistic approaches demonstrated better success rates compared

to results from Monte-Carlo simulation. P2P and RMS based approaches are also

easily implementable in any fast-time prediction model, require minimum input

data and are numerically more efficient compared to the Monte-Carlo approach. On

the other hand, they introduce wider bounds in the predicted cones of uncertainty

for the evolution of wake vortex characteristics.
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As for the evolution of wake vortex in the atmospheric boundary layer, the

In-Ground LES simulations were conducted to investigate the transport and

decay of the wake vortex pair in the vicinity of the hard surface, forest canopy

(porous surface) and the water surface is studied and compared. The forest canopy

and water surface were modeled by adding a porous and water subregions to the

original computational domain. The case of the wake vortex propagation over the

water surface is investigated using the VOF method. It is shown that the wake

vortex evolutions over the hard and porous surfaces were similar in terms of the

secondary vorticity production and vortex pair’s dynamics. However, in the case of

the porous surface, the jet entrainment affected the dynamics of the vortex pair.

In the water surface case, the results appeared quite different from the hard and

porous surface cases. Particularly, more intense turbulence generation is observed

near the water surface during the wake vortex approach. As a result, the higher

dissipation affected the wake vortex dynamics and decay.

The evolution of the wake vortex pair near different configurations of a forest

canopy was also studied and compared using OpenFOAM LES simulations. Only

the cases without ambient turbulence and formed atmospheric boundary layers

were considered in this study. The change in the canopy height, the type of the

forest canopy, canopy roughness, as well as the effect of the forest clearing on the

wake vortex was investigated. The validation of the solver setup was performed

against the experimental data.
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Two configurations of the rough canopy were tested including the canopies

formed with 3m×3m and 6m×6m cross sections. It was shown that the roughness

triggers the formation of the secondary vorticity structures and has a great impact

on the wake vortex strength decay. The effects of flat canopies of two heights were

studied and compared. The dynamics of the vortex pair over the lower canopy was

observed to be closer to that above the flat hard surface. The effect of the canopy

clearing (i.e., a gap in the forest canopy) was shown to significantly change the

dynamics of the vortex pair in comparison with the hard surface and forest canopy

cases. The high-fidelity based low-fidelity in-ground effect model was developed,

which can be incorporated into SITAR WVSS system. The results for the in-ground

wake vortex propagation were compared to the results obtained using APA 3.8

model from NASA.

The “Interaction” sub-module is developed to simulate the wake vortex-aircraft

interaction and assessing the operational safety risks. The assessment is based

on examining the roll control ratios (RCR) of 3 variable-size UAVs (Osprey, Global

Hawk, and Predator) induced by the wake of the leader B-737 aircraft. The impact

areas were shown in terms of the vertical and horizontal offsets of the follower UAS

with respect to the leader position. Three different autopilot response scenarios

were further investigated including the time-delayed responses.

A robust nonlinear control method is developed as a part of the “Interaction”

sub-module. It is proven to achieve altitude regulation in the presence of

unmodeled external disturbances (e.g. wake vortices, wind gusts) and actuator
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parametric uncertainty. A nonlinear UAV regulation control method is presented,

which is proven to asymptotically regulate pitch angle and altitude in the presence

of extreme wind gust disturbances. Detailed numerical simulation results were

provided to demonstrate the performance of the proposed nonlinear control law.

To provide a basis for comparison, the same control objective is simulated using a

linear control law. It is shown that the nonlinear control method compensates for

the wind gust disturbances significantly more effective than the linear controller.

Moreover, parameter variations in the state space model were introduced in the

simulation. Both nonlinear and linear controllers were tested in the presence of

uncertainty in the aircraft and SJA actuator dynamic model. The results showed

that the nonlinear control design outperformed the linear control method for the

simulated trajectory regulation objective under the tested levels of uncertainty.

Finally, the performance of the nonlinear controller is successfully tested in the

presence of the wake vortex disturbance in the vicinity of the ground as well as far

from the ground. The in-ground interaction was modeled using high-fidelity LES

simulations, where the interaction with the secondary vorticity and turbulence is

taken into account. The Monte-Carlo simulations for the out-of-ground interaction

are performed based on the real cone of uncertainty for the wake-vortex. The

performance of the nonlinear robust controller and H∞ linear controller were

compared for both in-ground and out-of-ground zone. The nonlinear controller

outperformed the linear one in terms of average RMSE and AMD.
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