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ABSTRACT

We investigate the application of neural networks to the automation of MK spec-
tral classification. The data set for this project consists of a set of over 5000 optical
(3800–5200Å) spectra obtained from objective prism plates from the Michigan Spec-
tral Survey. These spectra, along with their two-dimensional MK classifications listed
in the Michigan Henry Draper Catalogue, were used to develop supervised neural
network classifiers. We show that neural networks can give accurate spectral type
classifications (σ68 = 0.82 subtypes, σrms= 1.09 subtypes) across the full range of
spectral types present in the data set (B2–M7). We show also that the networks yield
correct luminosity classes for over 95% of both dwarfs and giants with a high degree
of confidence.

Stellar spectra generally contain a large amount of redundant information. We
investigate the application of Principal Components Analysis (PCA) to the optimal
compression of spectra. We show that PCA can compress the spectra by a factor
of over 30 while retaining essentially all of the useful information in the data set.
Furthermore, it is shown that this compression optimally removes noise and can be
used to identify unusual spectra.

This paper is a continuation of the work done by von Hippel et al. (1994) (Paper
I).

Key words: methods: analytical, data analysis, numerical - stars: fundamental pa-
rameters

1 INTRODUCTION

The MK classification of stellar spectra (Morgan, Keenan
& Kellman 1943; Keenan & McNeil 1976; Morgan, Abt &
Tapscott 1978) is an important tool in stellar and galactic
astrophysics. In addition to providing fundamental stellar
information it was, for example, central to the discovery of
nearby Galactic spiral arms (Morgan, Sharpless & Oster-
brock 1952; Morgan, Whitford & Code 1953).

MK classification is usually performed by a trained ex-
pert visually matching the overall appearance of a spectrum
to the ‘closest’ MK standard spectrum. Such a qualitative

⋆ Present Address: Mullard Radio Astronomy Observatory,
Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE,
UK
† email: calj@mrao.cam.ac.uk

method of classification suffers from subjective decisions and
may differ from person to person: what is deemed as ‘close’
by one person may not be ‘close’ for another. In addition,
visual classification is very time consuming, with an expert
classifying a few 105 stars in a dedicated lifetime. Spectra
collected from large spectral surveys, often as a by-product
of other surveys (e.g. the Sloan Digital Sky Survey (Kent
1994)) will have to be classified by automated means. Thus
if stellar classification is to continue to be useful to the
astronomical community, it has to be made faster and put
on a more quantitative and objective basis.

In this paper we investigate the application of neural
networks to the MK classification of optical stellar spec-
tra. The so-called ‘supervised’ neural networks used in this
project are implemented to yield an accurate mapping be-
tween a data domain (the stellar spectra) and a classifica-
tion domain (the MK classifications). While visual classi-
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2 C.A.L. Bailer-Jones et al.

fiers have mentally determined this mapping, they have not
quantified it. This mapping is, however, present intrinsically
in a large set of classified spectra. The neural network’s re-
sultant classification criteria will be essentially equivalent
to the human’s criteria. However, whereas a human’s crite-
ria may vary from adverse physiological and psychological
factors such as health and mood, the network will retain a
consistent set of classification criteria. We will also demon-
strate how the technique of Principal Components Analy-
sis (PCA) can be used to optimally compress the spectra.
This has a number of advantages including the preferen-
tial removal of noise and an ability to isolate bogus spectra.
Furthermore, using PCA-compressed spectra (rather than
complete spectra) in the neural network classifiers leads to
reduced training times and better convergence stability.

While MK classification will continue to be a useful tool
to astronomers, it becomes increasingly desirable to obtain
physical parameters (Teff , log g, etc.) for stars. Bailer-Jones
et al. (1997b) describe a neural network approach to the
parametrization of stellar spectra by training a neural net-
work on synthetic spectra.

2 PREVIOUS CLASSIFICATION WORK

There have been a number of attempts in the past to au-
tomate stellar spectral classification. Kurtz (1982) classified
low (14 Å) resolution spectra using cross-correlation with
standard spectra and achieved a mean classification error of
2.2 spectral subtypes for stars in the range B0 to M2. The
same technique gave poor luminosity classification results.
LaSala (1994) used the related technique of minimum dis-
tance classification to classify a set of 350 B-star spectra,
and achieved a mean error of 1.14 spectral subtypes.

The classification work of von Hippel et al. (1994) (Pa-
per I) was one of the first applications of neural networks to
stellar spectral classification. Their neural network solution
based on a set of 575 spectra gave an RMS classification
error of 1.7 spectral subtypes (and a 68-percentile error of
1.4 spectral subtypes) for spectra in the range B3 to M4.
Gulati et al. (1994) trained a neural network on a set of 55
spectra giving an incomplete coverage of spectral classes O
through to M. While they reported classification errors of 2
subtypes, it should be noted that they used a very complex
neural network with over 18,000 free parameters (network
weights), with no justification of why such a complex net-
work was required. The result is that the determination of
these weights was likely to be poorly constrained by the
small amount of training data used.

There have also been attempts to classify spectra be-
yond the visual. Weaver & Torres-Dodgen (1995) used neu-
ral networks to classify infrared spectra (5800 Å to 8900 Å)
of A stars at 15 Å, and achieved spectral type and luminosity
class classification precisions of 0.4 subtypes and 0.15 lumi-
nosity classes respectively. They have recently achieved good
results in the infrared for a wide-range of spectral types (O–
M) and luminosity classes (I–V) (Weaver & Torres-Dodgen
1997). Vieira & Pons (1995) used a neural network trained
on a set of 64 IUE ultraviolet spectra (150 Å to 3200 Å) in
the range O3 to G5, and reported a classification error of 1.1
spectral subtypes. It was unclear, however, why a network
with 110,000 weights was required.

Table 1. The spectral data.

Plate type IIaO
Plate size ≈ 20× 20 cm

≈ 5◦ × 5◦

12,000 × 12,000 pixels
289 Mb (FITS)

Plate scale 96.62 arcsec mm−1

Dispersion 108 Å/mm at Hγ
Scanning pixel size 15µm

⇒ 1.45 arcsec pix−1

⇒ 1.6 Å at Hγ
(1.05 Å pix−1 @ 3802 Å
2.84 Å pix−1 @ 5186 Å)

Coverage of final spectra 3802–5186 Å
Magnitude limit of plates B ∼ 12

Whitney (1983) has examined the use of Principal Com-
ponents Analysis for spectral classification of a set of 53
A and F stars. His data set consisted of 47 photoelectric
measurements of spectra over the wavelength range 3500 Å
to 4000 Å. He applied PCA to his data set and then per-
formed a regression on the three most significant compo-
nents, achieving an average classification error of 1.6 spectral
subtypes.

3 THE SPECTRAL DATA

The classification techniques described in this paper were de-
veloped using a set of 5000 spectra taken from the Michigan
Spectral Survey (Houk 1994). The data reduction method
is described in Paper I and in more detail in Bailer-Jones
et al. (1997a). The present work expands the data set of
Paper I by a factor of ten and doubles the spectral resolu-
tion. The wavelength range is also slightly different, with the
details summarized in Table 1. The classification informa-
tion required to train and test the neural networks is taken
from the Michigan Henry Draper (MHD) catalogue (Houk &
Cowley 1975; Houk 1978, 1982; Houk & Smith-Moore 1988).
In this paper we only examine the automated classification
of normal stars in terms of their MK spectral type and lu-
minosity classes. However, the MHD contains considerable
additional information, particularly with regard to peculiar-
ities, so this catalogue would be suitable for developing more
detailed automated classifiers.

Our set of 5144 spectra contains stars over a wide range
of spectral types (B2–M7) for luminosity classes III, IV and
V as well as the ‘intermediate’ luminosity classes III/IV and
IV/V. This set, hereafter referred to as data set ‘A’, was
used to develop a spectral type classifier. A second data
set, ‘B’, contains only ‘whole’ luminosity classes (i.e. not
the III/IV and IV/V spectra). This set of 4795 spectra is
used to develop the luminosity class classifier. The distribu-
tion of spectral types in this latter set is shown in Figure 1.
The spectra were normalized to have equal areas, i.e. equal
total intensities, thus removing any scale differences result-
ing from different apparent magnitudes. Line-only spectra
were obtained for both data sets, using a non-linear rectifi-
cation method (Bailer-Jones et al. 1997a). In this paper we
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Neural Network Classification of Stellar Spectra 3

Figure 1. Distribution of spectral types for each luminosity class
in data set B. The dotted line represent giants (III), the dashed
line subgiants (IV) and the solid line dwarfs (V). The distribution
for data set A is very similar.

investigate automated classification with both line-only and
line+continuum spectra.

4 NEURAL NETWORK MODELS

A neural network is a computational tool which will provide
a general, non-linear parameterized mapping between a set
of inputs (such as a stellar spectrum) and one or more out-
puts (such as a spectral classification). The type of neural
network architecture used in this paper is known as a multi-

layer perceptron neural network (e.g. Hertz, Krogh & Palmer
1991; Bishop 1995; Lahav et al. 1996). In order to give the
correct input–output mapping, the network is trained on a
set of representative input–output data. Training proceeds
by optimising the network parameters (the ‘weights’) to give
the minimum classification error. With the weights fixed, the
network is used to produce outputs (MK classifications) for
unclassified inputs (stellar spectra), effectively by interpo-
lating the training data. Note that the output from a neural
network is some non-linear function of all of the network
inputs. Thus the network’s classifications are based on the
appearance of the whole spectrum: we do not have to tell
the network in advance which spectral lines are relevant.

Network training used the methods of gradient descent
and backpropagation (Rumelhart, Hinton &Williams 1986).
Network performance was found to be insensitive to the ex-
act vaules of the ‘gain’ and ‘momentum’ parameters. It was
determined that 1000 training iterations were sufficient to
ensure that the network error, as evaluated on an indepen-
dent test data set, had reached its minimum error. Up to 50
times as many iterations gave only negligible improvement.
Training a neural network on 2500 spectra represented as
50 PCA coefficients typically took about an hour. The ap-
plication of these trained networks to then classify a similar
number of spectra is a few seconds. Further details can be
found in Bailer-Jones (1996).

Spectral type classification was performed by represent-
ing the 57 MK classifications in the MHD as points on a

Table 2. Numerical coding of the MK spectral types. ‘SpT’ will
be used to label this code, so that 44 SpT ≡ K2. The MHD
catalogue omits some classes (e.g. F4 and G7).

1 O3 18 A0 38 G3
2 O4 19 A1 39 G5
3 O5 20 A2 40 G6
4 O6 21 A3 41 G8
5 O7 22 A4 42 K0
6 O8 23 A5 43 K1
7 O9 24 A6 44 K2

7.5 O9.5 25 A7 45 K3
8 B0 26 A8 46 K4
8.5 B0.5 27 A9 47 K5
9 B1 28 F0 48 M0
10 B2 29 F2 49 M1
11 B3 30 F3 50 M2
12 B4 31 F5 51 M3
13 B5 32 F6 52 M4
14 B6 33 F7 53 M5
15 B7 34 F8 54 M6
16 B8 35 G0 55 M7
17 B9 36 G1 56 M8
17.5 B9.5 37 G2 57 M9

continuous scale of numbers 1–57 (Table 2). This is reason-
able as we know that spectral type is closely related to effec-
tive temperature (Teff) and MK spectral types are essentially
binnings of a continuous sequence. The appropriate neural
network therefore had a single output giving a continuous
number in the range 1–57. We shall refer to this as continu-
ous mode. Note that although the network is trained on in-
teger or half-integer values, it can produce any real-value
classification for new spectra.

For the luminosity class problem, we used a network
in probabilistic mode. This refers to a network with several
outputs, each output referring to a mutually exclusive class.
In our case we had three outputs, with one output corre-
sponding to each of classes III, IV and V. In this mode, the
values in each node can be interpreted as the probability that
the input spectrum is of that particular luminosity classes.
Probabilistic interpretation of neural networks in both prob-
abilistic mode (also referred to in the neural network liter-
ature as ‘classification’) and continuous mode (also referred
to as ‘regression’) can be taken much further. In particular,
the outputs can be interpreted as Bayesian posterior prob-
abilities (e.g. Richard & Lippmann 1991; MacKay 1995).

4.1 Committee of Networks

Identical neural networks trained from different initial ran-
dom weights should ideally converge on the same weights
and hence produce identical input–output mappings. How-
ever, given the high dimensionality and complexity of the
error surface which is explored during training, it is unlikely
that numerical minimization procedures with different ini-
tializations would converge on exactly the same final weight
vector.

We can reduce the effects of this ‘convergence noise’
problem by using a committee of neural networks. The com-
mittee consists of L identical networks which are separately
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4 C.A.L. Bailer-Jones et al.

trained from different initial weights. When the network is
used in continuous mode, the committee classification of the
pth spectrum, Cp, is just the average of the individual net-
work classifications. In probabilisitic mode, the outputs from
each network corresponding to a given class are summed
to give the (unnormalized) committee probability of that
class. In some applications, Cp will be a more accurate clas-
sification than any of the individual network classifications
(Bishop 1995). All classification results presented in this pa-
per were obtained with a committee of ten neural networks.

4.2 Neural Network Error Measures

The performance of a trained neural network (or committee
thereof) is evaluated by comparing its classifications of an
independent set of spectra with their ‘true’ classifications
in the MHD catalogue. We must not evaluate the perfor-
mance of the neural network using the data on which it was
trained. This is because it is possible for the network to
overfit the training data rather than capture the underlying
input–output mapping which the training data represent.
This can occur if there is either insufficient data to constrain
the determination of the network weights, or if the training
data is not representative of the problem in hand. Such an
overfitted network would typically produce very low classi-
fication errors on the training data yet produce relatively
large errors on an independent test data set. Our procedure
was therefore to train a network on half of the spectra and
test its performance on the other half, there being approxi-
mately 2500 spectra in each half.

We use the following error measures to evaluate the
performance of our networks. The first is the RMS error,
σrms, of the difference between the network classifications
and the ‘true’ classifications. This statistic suffers from the
usual problem that it is sensitive to outliers and may not,
therefore, be very characteristic of the majority of residuals
in the core of the distribution. A more robust measure uses
only the central 68% of the residuals, σ68. If the residuals are
distributed as a Gaussian, σ68 is the 1σ standard deviation
of a Gaussian distribution. Both σrms and σ68 are external

errors, because they are measured with respect to a set of
ideal classifications which are external to the neural network.

Due to the ‘convergence noise’ problem (section 4.1), a
network re-trained from different initial weights would give
slightly different classifications. This level of difference is
characterised by the internal error and is evaluated using
the committee of networks. The internal error for a single
spectrum is:

σ
p

int =

√

√

√

√

1

L− 1

l=L
∑

l=1

(Cp

l −Cp)2 . (1)

C
p

l is the classification given by the lth network in the com-
mittee. The total internal error, σint, is σ

p

int averaged over
all spectra, and can be considered as the contribution to
the total (external) error on account of imperfect network
convergence.

An additional consequence of the ‘convergence noise’ is
that a single value of the external error, σ68, is not exact.
Thus if we wish to compare values of σ68 produced by differ-
ent network models, then we need to know the uncertainty

Figure 2. Average spectrum for line+continuum version of spec-
tra in data set A.

in σ68 in order to known whether the difference between two
values of σ68 is statistically significant. A suitable measure
of this uncertainty is given by the standard error in the σ of
a Gaussian distribution,

ε =
σ68√
2M

, (2)

where M is the number of spectra in the test set. This result
holds exactly in the limit as M → ∞.

5 PRINCIPAL COMPONENTS ANALYSIS

It is usually desirable – and often essential – to reduce the
dimensionality of a data set prior to classification. Dimen-
sionality reduction often leads to enhanced reliability when
using neural networks to give a generalized mapping, on ac-
count of the reduced number of parameters in the network.
This will also lead to greatly reduced training times. While
classification with complete spectra can produce good re-
sults (Paper I), dimensionality reduction may be essential
in some applications, such as when data transmission rates
from space-based observatories are limited (e.g. Lindegren
& Perryman 1996).

Principal Components Analysis (PCA) is one method
for achieving a dimensionality reduction. PCA is a method
of representing a set of N-dimensional data by means of
their projections onto a set of r optimally defined axes. As
these axes (the principal components) form an orthogonal
set, PCA yields a linear transformation of the data. A com-
pression of the data is obtained by ignoring those compo-
nents which represent the least variance in the data. The
compressed spectra, as represented by their projections, onto
the most significant principal components, are then used as
the neural network inputs. In this section we will demon-
strate the benefits of a PCA preprocessing of spectra, such
as noise removal and identification of bogus spectra, and
highlight some of its problems. In the next section we shall
demonstrate that high quality classifications can be achieved
with these compressed spectra.

Below we discuss the application of PCA to the
line+continuum spectra of data set A. A separate analysis
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was carried out for the line-only spectra (Bailer-Jones 1996).
PCA has been used in several areas of astronomy, including
stellar spectral classification (Deeming 1964; Whitney 1983;
Storrie-Lombardi et al. 1994), galaxy spectral classification
(Folkes, Lahav & Maddox 1996) and quasar spectral classifi-
cation (Francis et al. 1992). Further details of the technique
can be found in texts (e.g. Murtagh & Heck 1987).

5.1 The Principal Components

PCA was performed on zero-mean spectra: the subtracted
average spectrum, x, is shown in Figure 2. Figure 3 shows
the first ten principal components, u, plotted on a common
vertical scale. Because the principal components are eigen-
vectors of a symmetric matrix, they are orthogonal, and it
is convenient also to normalize them to unit length, so that
uT
i .uj = δi,j . As the eigenvectors are simply rotations in the

N-dimensional data space of the original axes on which the
spectra are defined, they resemble spectra, in particular in
that they have the same number of elements (820) as the
original spectra.

It is interesting that both the stellar continuum and the
individual spectral lines are distributed across many eigen-
vectors. For example, the Ca II H&K lines at 3934 Å and
3969 Å are distinct in the first four eigenvectors as well as
the average spectrum. (Note that the sign of the eigenvec-
tors is arbitrary, as the admixture coefficients – the projec-
tions of the spectra onto the principal components – can be
negative.) That the features do not separate into different
components is not surprising: We known from the physics
of line formation in stellar photospheres that a spectrum is
not a linear combination of spectral features, so we should
not expect a linear decomposition of the spectrum (such
as PCA) to clearly isolate these spectral features. Features
are generally distributed across many components, e.g. com-
ponents 5 and 8 which show many lines common to a wide
range of spectral types. However, some features are predom-
inantly represented by a single components. For example, it
can be seen that the TiO bands (which extend redward from
about 4500 Å) characteristic of M stars are more strongly
represented in the 7th principal component than any other
component.

The principal components represent sources of variance
in the data. Thus the most significant principal components
show those features which vary the most between the spec-
tra: it is important to realise that the principal components
do not simply represent strong features. Note also that the
eigenvectors obtained from PCA are entirely dependent on
the data. Therefore the eigenvectors for a different set of
stellar spectra are likely to be rather different.

5.2 The Admixture Coefficients

The projection of the pth spectrum onto the kth principal
components is known as the admixture coefficient, ak,p. Be-
cause PCA is only a linear transformation of the spectra, one
would not expect there to be a strong correlation between
the stellar classification parameters and the admixture co-
efficients. Figure 4 shows the admixture coefficients for the
line+continuum spectra plotted against the coded MK spec-
tral type, SpT, for each of the first ten eigenvectors shown

in Figure 3. No single coefficient shows a strong correlation
across the full range of subtypes, so classification cannot be
achieved using any one coefficient. Some coefficients do, how-
ever, show correlations over part of the spectral range. We
saw in Figure 3 that the 7th eigenvector represents some fea-
tures of late-type stars and we see in Figure 4 that the corre-
sponding admixture coefficient, shows a trend with spectral
type for SpT >

∼
48.

5.3 PCA as Data Compression and Noise Filter

The most significant principal components contain those fea-
tures which are most strongly correlated in many of the
spectra. It follows that noise – which is uncorrelated with
any other features by definition – will be represented in the
less significant components. Thus by retaining only the more
significant components to represent the spectra we achieve a
data compression that preferentially removes noise. The re-

duced reconstruction, yp, of the p
th spectrum xp, is obtained

by using only the first r principal components to reconstruct
the spectrum, i.e.

yp = x+

k=r
∑

k=1

ak,puk , r < N . (3)

Let εp be the error incurred in using this reduced recon-
struction. By definition, xp = yp + εp, so

εp =

k=N
∑

k=r+1

ak,puk . (4)

Averaging over all spectra gives rise to the average error, E ,
from which we define the figure-of-merit of the reconstruc-
tion quality of the whole data set as R = 1− E , and

R = 100%

∑k=r

k=1
λk

∑k=N

k=1
λk

, (5)

where λk is the kth eigenvalue of the covariance matrix,
S, of the data (Bailer-Jones 1996). Figure 5a shows how R

varies with the number of eigenvectors used to reconstruct
the spectra, and Table 3 tabulates some of these values. We
see that only 25 eigenvectors (∼ 3% of the total) are suffi-
cient to reconstruct 95.8% of the variance in the data. This
large factor of data compression is a great benefit for any
approach to the classification problem as it corresponds to
a large reduction of the dimensionality of the space required
to describe the data.

It is convenient to define an empirical measure of the
reconstruction error for individual spectra

E =
100%

S

i=N
∑

i=1

|yi,p − xi,p| , (6)

where S is the total area under each spectrum, which was
fixed to a constant value when the spectra were area nor-
malized. This measure is useful as it does not require the
existence of eigenvalues for its evaluation, and hence can
be used to compare reconstruction errors between any data
compression techniques. The frequency distribution of these
errors is shown in Figure 6.

Figure 7 gives a visual presentation of spectral recon-
struction by showing an M star spectrum reconstructed with
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6 C.A.L. Bailer-Jones et al.

Figure 3. The first ten principal components of the line+continuum spectra in data set A. The principal
components are normalized eigenvectors plotted against wavelength. A number of spectral features can be
seen. In particular, the 7th eigenvector strongly represents the TiO bands of late-type stars.

Figure 4. (This figure is provided as a separate GIF file.) The first ten principal component admixture
coefficients for all spectra (line+continuum format) in data set A plotted against spectral subtype (SpT).
The correlation between the 7th coefficient and spectral subtype for SpT >

∼
48 (M stars) is accountable by

reference to Figure 3 where we see that the 7th eigenvector gives a strong representation of the TiO features
in M stars. In general, however, the admixture coefficients cannot be used individually to give spectral type
classifications.

an increasing number of components. We have seen in Fig-
ure 3 that the 7th eigenvector is representative of the TiO
bands in late type stars. In reconstructing this M star spec-
trum we see that the reconstruction error drops significantly

when the 7th component is added, and that visually this
r = 7 spectrum is greatly improved over the r = 6 one.

An optimal trade-off between compression (and noise
removal) and accurate spectral representation is achieved
for r = n when dR

dn
≈ const. If a PCA were performed on a

c© 1997 RAS, MNRAS 000, 000–000



Neural Network Classification of Stellar Spectra 7

Figure 5. Quality of spectral reconstruction with a reduced num-
ber of eigenvectors. a) The quality of reconstruction increases
dramatically over the first 25 or so eigenvectors. b) At n ≈ 25,
dR
dn

≈ 0, and the remaining eigenvectors are predominantly noise.
Thus an optimal reconstruction only requires approximately the
first 25 eigenvectors. R is the reconstruction error predicted by
the eigenvalues (equation 5) and so is the reconstruction error for
the whole data set.

Table 3. Selected values from Figure 5.

Number of
Eigenvectors R(= 1− E) dR/dn d2R/dn2

1 71.135 – –
2 80.840 9.705 −61.430
3 84.884 4.044 −5.661
4 87.139 2.255 −1.789
5 88.989 1.850 −0.405
10 93.861 0.570 −0.119
15 94.930 0.174 −0.004
20 95.458 0.074 −0.012
25 95.760 0.052 −0.005
30 95.972 0.036 −0.002
35 96.121 0.027 −0.001
40 96.244 0.023 −0.001
45 96.352 0.021 −0.000
50 96.449 0.018 −0.001
820 100.000 0.000 0.000

data set of pure noise, no component would be a greater dis-
criminant than another, and their ranking would be random
giving dR

dn
= const for all n. Turning this argument around,

the point where the R-n plot levels off ( dR
dn

≈ const) is where
the components begin to be dominated by noise. This occurs
between n = 20 and n = 30 (Figure 5b). Figure 8 compares
a faint spectrum reconstructed with 25 components with the
original spectrum. The reconstructed spectrum is consider-
ably less noisy and the residual spectrum contains no major
features. Note that if we had lower S/N data, dR

dn
would

turn constant at a smaller value of N . Thus for lower S/N
data, the optimality criterion translates into retaining fewer
components.

Figure 6. Frequency distribution of the empirical reconstruc-
tion error defined by equation 6. The solid line shows the er-
rors for a 50-component reconstruction and the dashed line for
a 25-component reconstruction. (a) histogram of the reconstruc-
tion errors. (b) the cumulative distribution of (a). This shows
the fraction of spectra which are reconstructed with an error less
than that shown on the horizontal axis. For example, 95% of the
spectra have E < 4.6%.

One of the drawbacks of PCA is that very weak spectral
features or features which are only present in a small fraction
of the data will be lost in a reduced reconstruction. This is
because they show very little correlation across the data
set. Thus the residual spectrum will contain, in addition
to noise, some weak features which are not well correlated
across the spectra. However, as can be seen from Figure 8,
by no means are all such features are lost. Thus we see that
the principal components (like neural network classifiers) are
sensitive to the relative frequency of occurrence of features
in the data set. An advantage of this is that PCA can be
used to filter out bogus features (e.g. plate scratches, strong
cosmic rays) because such features are rare and randomly
positioned. This is demonstrated in Figure 9.

5.4 Constructing New Spectra

Having performed PCA on a set of stellar spectra (the con-

struction set), we may want to find the admixture coeffi-
cients for a new set of data, such as more recently acquired
spectra. We do not have to re-evaluate the principal compo-
nents using the combined data sets: instead we can project
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Figure 7. Reconstruction of an M star (HD 14002, type M3/4
III, magnitude 9.4). The figures in bold refer to the number of
eigenvectors used to reconstruct the spectrum. The percentage
figures are the corresponding reconstruction error, E. Note the
improved reconstruction as the 7th component is added.

the new spectra onto the old components. We can even ob-
tain the admixture coefficients for incomplete spectra, thus
permitting a complete reconstruction. This would be useful
if we wanted to apply the neural network classifier to new
spectra with a slightly different wavelength coverage.

Another advantage of PCA is that the reconstruction
error, E, can be used to filter-out bogus and non-stellar spec-
tra, as in such cases the reconstruction error would be larger
than the typical values in Figure 6. As an example, Figure 10
shows how this filtering works by attempting to reconstruct
sky noise. The 25-component reconstruction gives an error
of 28%, which is several times larger than the maximum
reconstruction error of the spectra in the construction set.

This method of rejection assumes that the data used
to define the principal components are representative of the
stellar spectra which we want to classify. Thus rare types of
stars with strong features, e.g. Me stars, would be filtered
out along with all the bogus spectra. Note that a neural
network applied to either the complete spectra or the PCA
compressed spectra suffers from a similar problem: spectral
types which are relatively rare in the training data set will be
poorly classified. But with PCA there is no reason why such
objects have to be blindly rejected: A large reconstruction
error indicates an unknown object, so PCA could be used as

Figure 8. Reconstruction of a faint G star (HD 219795, G3 V,
magnitude 11.1). The reconstruction error is E = 4.26%. The top
spectrum is the original spectrum, the middle is the spectrum
reconstructed with 25 components and the bottom is the resid-
ual spectrum, i.e. reconstructed minus original. The arrow marks
the location of a weak luminosity sensitive line Sr II which is re-
tained in the reconstruction. This spectrum is one of the faintest
(and hence noisiest) in the data set, so most reconstructions are
considerably better.

Figure 9. The use of PCA in filtering out bogus features. (See
caption to Figure 8.) The contaminating feature here is probably
due to a piece of dust on the plate during plate scanning. The
star is HD 3391, type F5 V, magnitude 10.8. The reconstruction
error is E = 5.30%.
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Figure 10. Bogus spectra (in this case a patch of sky) are recon-
structed with a large error, which can be used to filter them out
of the data set prior to classification. The figures in bold refer to
the number of eigenvectors used to reconstruct the spectrum. The
percentage figures are the corresponding reconstruction error, E.

a coarse front-end classifier to a more refined classification
system.

6 SPECTRAL TYPE RESULTS

Neural networks were applied to the spectral type problem
in continuous mode (see section 4). Each spectrum is rep-
resented by the admixture coefficients of the first 25 or 50
principal components. Data set A is used throughout.

Figure 11 shows classification results using a com-
mittee of ten networks applied to the 50-component
line+continuum PCA spectra. Each network has a 50:5:1
architecture, indicating 50 nodes in the input layer, 5 nodes
in the hidden layer and a single output (numbers exclude
bias nodes). The average classification error is σ68 = 1.07
SpT, which has an associated uncertainty of ε = 0.02 SpT,
i.e. σ68 = 1.07± 0.02 SpT. σrms = 1.41 SpT, indicating that
the tails of the distribution of the residuals are ‘heavier’ than
we would get if the distribution were Gaussian.

The optimality criterion for reconstructing spectra (sec-
tion 5.3) specified that 25 principal components would give
an optimal reconstrutcion. However, this figure was achieved
without any reference to how we would subsequently use the

Figure 11. Spectral type classification results from a committee
of ten 50:5:1 neural networks applied to line+continuum spec-
tra. The left-hand panel is a plot of the committee classifications
against the ‘true’ classifications listed in the MHD catalogue. The
diagonal line is the locus of points for which the committee classi-
fications equal the catalogue classifications, and is drawn to guide
the eye. Note that even a perfect classifier would not give results
exactly on this line on account of noise in the spectra and un-
certainty in the ‘true’ classifications. The right-hand panel is a
histogram of the classification residuals, Cp − Gp, where Cp is
the committee classification and Gp the catalogue classification
of the pth spectrum. The classification error is σ68 = 1.07 SpT.

Figure 12. Variation of network classification (external) error, as
a function of number of PCA inputs to the neural network. The

solid line is σ68 and the dotted line is σrms. The number of inputs,
r, is the number of principal components used to represent each
spectrum. The error bars on the lower curve are 3× ε errors (see
equation 2). Statistically speaking, there is a significant drop in
the classification error from r = 1 to r ≈ 25, followed by a barely
significant decrease in error to r = 50.

spectra. A direct evaluation of the number of principal com-
ponents required is shown in Figure 12, which summarizes
the performance of networks with an r:5:1 architecture for
a range of r. The behaviour is well anti-correlated with the
behaviour of the reconstruction quality, R, in Figure 5. This
is what we would expect and demonstrates that the network
is making best use of the information given to it.

As the number of hidden nodes in the network increases,
so does its ability to accurately model increasingly complex
input–output functions. Figure 13 shows how the classifi-
cation errors vary with the number of hidden nodes These
results show that as q is increased to about seven, there is
an improvement in classification performance, but beyond
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Figure 13.Variation of the network classification (external) error
as a function of the number of hidden nodes, q, in a 50:q:1 neural
network. For each value of q a single neural network was trained
using line+continuum spectra and its performance assessed by
measuring σ68 (solid line) and σrms (dashed line). The error bars
are 3× ε, where ε is the statistical uncertainty in σ68.

this there is no statistically significant improvement. (Note
that the neural network with only one hidden node can only
linearly discriminate between spectral types, which explains
the sharp decrease in classification error between q = 1 and
q = 2.) A network with q = 250, gave σ68 = 1.00±0.01 SpT,
which is a small increase over q ≈ 5. While it is theoretically
true that a sufficiently large number of hidden nodes will in-
crease performance (Hornick, Stinchcombe & White 1990),
the number of hidden nodes required would be inhibitively
large, both on account of training time and over-fitting the
data. The solution is to use an additional hidden layer. This
can provide increased complexity with a smaller total num-
ber of weights. A committee of ten 50:5:5:1 neural networks
gave a classification error of σ68 = 0.88 ± 0.01 SpT, which
is significantly better than the results with only one hidden
layer.

Table 4 is a summary of the spectral type classifica-
tion results obtained with a range of network architectures.
The most significant result is that smaller external errors
(σ68 and σrms) are obtained with two hidden layers com-
pared with one hidden layer. Interestingly, the internal error
is smaller when the total number of weights is smaller, pre-
sumably because the minimum of the error function is easier
to locate consistently when the dimensionality of the space
is lower. This is one reason for using PCA to compress the
spectra, as it results in a network with fewer weights.

Our results also show a very small improvememnt in
classification performance when using line-only spectra. This
is perhaps to be expected as the continuum is more contami-
nated by effects such as interstellar reddening and non-linear
photographic response. It is interesting that von Hippel et al.
(1994) (Paper I) obtained worse results with line-only spec-
tra. This is probably because they used spectra at half the
resolution, resulting in the loss of some line-information
(whereas the continuum would hardly be affected).

The best results are plotted in Figure 14. Table 5 lists
the σ68 error achieved by each neural network in this com-
mittee and confirms empirically that the error obtained by
the ten networks acting as a committee is lower than any

Figure 14. Best spectral type results (σ68 = 0.82 SpT), obtained
with a committee of ten 25:5:5:1 networks with line-only spectra.

Table 5. Spectral type classification errors for each member a
committee (25:5:5:1 networks on line-only spectra). The commit-
tee error is lower than the error achieved by any one of its mem-
bers acting alone. The dispersion of results for individual network
is typical of the other committees used in the spectral type prob-
lem.

Network σ68 σrms

1 0.90 1.21
2 0.86 1.23
3 0.87 1.09
4 0.89 1.27
5 0.93 1.24
6 0.91 1.21
7 0.87 1.17
8 0.95 1.31
9 0.89 1.13
10 0.87 1.17

Committee 0.82 1.09

σint 0.36

one of the networks acting alone. Figure 15 shows graphi-
cally the degree of reproducibility of results. The committee
result of σ68 = 0.82 compares quite favourably with the
error in the catalogue classifications themselves, estimated
to be σ68 = 0.63 SpT (N. Houk, private communication,
1995), which represents a lower limit on the precision we
can achieve. Larger networks did not improve performance
further.

To prove that the PCA was not limiting the perfor-
mance of the neural network classifiers, we trained a com-
mittee of neural networks on the original (non-PCA) 820-
bin spectra. The mean classification error of σ68 = 0.82
SpT shown in Table 4 is no better than the PCA-input
results for comparable numbers of hidden nodes, confirm-
ing that the PCA compression has not resulted in the loss
of any classification-significant information. Strictly speak-
ing, this 820:5:5:1 network has too many weights to be well-
determined by the data (4141 weights (unknowns) vs. 2500
spectra (equations)), so it may be surprising that such a net-
work can generalize. However, due to correlations between
the spectral features, some input weights will be correlated,
effectively reducing the number of parameters which must
be determined by the data. Indeed, the Principal Compo-
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Table 4. Summary of the spectral type classification results using committees of ten networks
for a variety of architectures. The error measures in columns 3–6 are defined in section 4.2.

Network Spectral σ68 ε σrms σint No. of
Architecture Format (SpT) (SpT) (SpT) (SpT) Weights

25:3:1 line+continuum 1.11 ±0.015 1.43 0.19 82
25:5:1 line+continuum 1.11 ±0.015 1.46 0.18 136
50:5:1 line+continuum 1.07 ±0.015 1.41 0.24 261
25:5:5:1 line+continuum 0.86 ±0.012 1.16 0.33 166
50:5:5:1 line+continuum 0.88 ±0.012 1.16 0.47 291
820:5:5:1 line+continuum 0.82 ±0.011 1.18 0.15 4141
25:3:1 line-only 1.09 ±0.015 1.43 0.28 82
25:5:1 line-only 1.04 ±0.015 1.37 0.34 136
50:5:1 line-only 1.03 ±0.014 1.35 0.41 261
25:5:5:1 line-only 0.82 ±0.011 1.09 0.36 166
50:5:5:1 line-only 0.86 ±0.012 1.15 0.56 291

25:25:25:1 line-only 0.86 ±0.012 1.15 0.53 1326
MHD class. photographic

(Houk) plates 0.63 – – 0.44 ?

Figure 15. (This figure is provided as a separate GIF file.) Performance of the first five members of the
committee networks used to produce the results in Figure 14. The left-hand figures show how the neural

network error drops with increasing iteration number. The dashed line shows the error on the training set
and the solid line the error on the test set. Note that the network error, as measured on the test set during
training, briefly increases early on in the training for the first and third networks. This demonstrates that
we should not stop training the instant that the error on the test set rises. It is also interesting that most of
the training takes place in the first few iterations.

Figure 16. Neural network classification errors as a function of
spectral type. The solid line is the external error, σ68, and the
dotted line the internal error, σint. The error bars on the ex-
ternal error histogram are 3 × ε errors for each spectral type
bin, showing that the differences are significant. These results
are from the committee of ten 25:5:5:1 neural networks applied
to line+continuum spectra shown in Table 4.

nents Analysis showed that the effective dimensionality of
the spectra is only about 25.

The internal and external error measures we have been

using are averages over all spectral types. Figure 16 shows
that σ68 and σint vary considerably as a function of spec-
tral type. This is influenced by the frequency distribution of
spectral types: As we can see from comparison with Figure 1,
where there are relatively few spectra in the training set the
classification errors are correspondingly higher. This is be-
cause the neural network has been presented with relatively
little information about these regions, and the few spectra
are unlikely to give adequate information on the intra-class
variability. Indeed, if we remove the few spectra at the earli-
est and latest spectral types, our overall error drops towards
the limit imposed by the training data.

We have also experimented using neural networks
in probabilistic mode for spectral type classification. A
committee of ten such 50:5:5:57 networks applied to the
line+continuum spectra gave σrms = 2.09 SpT, which is
somewhat inferior to continuous output results. However,
the probabilistic approach does offer some advantages, such
as the ability to recognise composite spectra (Weaver 1994).

7 LUMINOSITY CLASS RESULTS

Neural networks were applied to the luminosity class prob-
lem in probabilistic mode (see section 4) using data set B.
The spectrum is classified as that class for which the output
is highest. We only consider two-hidden layer networks.

The measure of network performance when we have a
few discrete classes is by means of the confusion matrix. This
reports the fraction of spectra which have been correctly and
incorrectly classified for each class. Table 6 compares the re-
sults from different committees of networks, with the four
combinations of line-only or line+continuum spectra rep-
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Table 6. Confusion matrices for four different committees of ten networks. Each confusion matrix lists the
percentage of spectra which have been classified correctly and incorrectly. Thus from the top-left matrix we
see that the committee correctly classifies 97.7% of class Vs as class Vs, but incorrectly classifies 1.5% of
spectra which are class V in the catalogue as class III. The rows of each matrix sum to 100%.
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resented with 25 or 50 principal components. We see that
there is little difference in performance between any of these
combinations. This is in agreement with the spectral type
classifications and confirms that most of the luminosity class
information is contained within the first 25 admixture coef-
ficients. The networks give very good results for classes III
and V (but not class IV), although the better results for
class V than class III may be due to larger fraction of class
Vs in the data set (1.6 times as many).

Figure 17 shows the distribution of the probabilities
which the committee assigns for each class. While most of
the class III and V objects are correctly classified with large
confidence, the opposite is true for class IVs. The nework is
not classifying IVs at random (otherwise we would expect
it to classify about 33% correct). Rather, the networks have
a preference for classifying IVs as either IIIs or Vs. While
the relative paucity of class IVs in the training set will have
some influence, they are not so rare to give such poor per-
formance. Nor are the IVs lower quality spectra.

Referring back to Figure 1 we see that there is a fairly
strong correlation between spectral type and luminosity
class. Is the network using spectral type information to pro-
duce luminosity classifications? It would do quite well if it
simply classified all spectra later than about K0 as giants
and the rest as dwarfs. (Note that much of this correlation is
real, because the HR diagram is not uniformly populated.)

To find out what spectral information the networks are
using, an ‘overlap’ data set was created by selecting spec-
tra of classes III, IV and V in roughly equal numbers for
that range of spectral types where their frequency distribu-
tions overlap (around G6). These spectra were then classi-
fied using a committee previously trained on all the data.
We see from Table 7 that the committee still yields good
classifications of classes III and V, for which it cannot be
using spectral type information as there is no correlation

Table 7. An ‘overlap’ data set is classified using the committee
of ten 50:5:5:3 networks trained on line+continuum spectra. This
overlap data set consists of those spectral classes for which the
three luminosity classes are equally represented, which is for spec-
tral types G5/G6, G6, G6/G8 and G8. This data set consists of
86 IIIs, 83 IVs and 68 Vs. The committee still classifies IIIs and
Vs well and still fails on IVs (cf. Table 6).
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between spectral type and luminosity class over this specif-
ically chosen and narrow spectral range. There must, there-
fore, be independent luminosity information present in this
50-component reconstruction of the stellar spectra. The class
IV classifications are still poor.

The failure on class IV spectra implies that, at the res-
olution of these spectra, class IV stars are not spectroscop-
ically distinct from either class III or class V. Certainly, vi-
sual classifiers find it hard to distinguish class IVs from IIIs
and Vs around late G-type stars (N. Houk, private commu-
nication, 1996). It cannot be due to the PCA compression
as complete spectrum classification gives almost exactly the
same results as shown in Figure 6. Problems with the data
reduction, e.g. imperfectly registering the spectra in wave-
length, could also contribute. An alternative explanation is
as follows. Visual classifiers can focuse on certain lines in a
spectrum and disregard all others. In principal, neural net-
works can do this too by altering their weights. However,
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Figure 17. Distribution of class probabilities assigned by the three outputs of a committee of ten 50:5:5:3
networks trained on line+continuum spectra. Each plot is a histogram of the committee probabilities for
a certain network class (column) and a certain catalogue class (row). For example, the bottom-left hand
diagram shows the distribution of the committee probabilities from the class III output node for spectra
which are catalogue class V, and shows that most catalogue class V objects have been assigned a low
probability of being class III. Each plot in a given row includes the same spectra, and this number has been
used to normalize the fractions for that row. The total numbers of IIIs, IVs and Vs in the test data set are
848 IIIs, 185 IVs and 1364 Vs, with almost exactly the same numbers in the training set. Due to the nature
of the sigmoid function in the neural network we can never achieve 100% confidence.

when there is noise in the spectrum some inputs will show
random correlations with the target outputs. Thus the net-
work will make a small level of false inference about the rel-
evance of certain inputs in determining the outputs. With
class IV discrimination the relevance of the few truly im-
portant features may have been washed out this false ‘noise
association’. A solution to this problem is to use prior knowl-
edge of which lines are relevant and train the network only
on those features. Another approach is automatic relevance

determination (MacKay 1995), which is a Bayesian tech-
nique for assessing the relevance of the inputs using the ev-
idence in the data.

We attempted to use networks with two continuous out-
puts to tackle the spectral type and luminosity class prob-
lems simulataneously. However, the results were inferior,
with the best results being σ68 = 1.53 SpT (σrms = 2.02
SpT) for the spectral type and σ68 = 0.15 (σrms = 0.4) lumi-
nosity classes (Bailer-Jones 1996). Due to the spectral type–
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luminosity class correlation in the data set, the network may
be unable to adequately separate out luminosity effects from
temperature ones. This is not helped by the weakness of the
luminosity distiguishing features in this wavelength region.
In order to tackle both problems simultaneously, we may
need a more complex model, and such complexity may not
be available with modest-sized networks.

8 SUMMARY

We have produced a system for the automated two-
parameter classification of stellar spectra over a wide range
of spectral types (B2–M7) based on a large (> 5000), ho-
mogenous set of spectra. We have shown that we can achieve
classification errors of σ68 = 0.82 subtypes (σrms = 1.09 sub-
types) over this complete range of spectral subtypes. This
result compares favourably with the intrinsic errors of σ68 =
0.63 subtypes in our training data. Once a neural network
has been trained, its classification results are completely re-
producible. Moreover, the low values of their internal errors
(< 0.4 spectral subtypes) demonstrate that networks can be
re-trained to give sufficiently consistent classifications.

We have achieved correct luminosity class classification
for over 95% of dwarfs (class V) and giants (class III). Re-
sults for luminosity class IV spectra were considerably worse.
It is believed that the data themselves could be a limiting
factor and methods for improving these results were dis-
cussed. Despite the correlation in the data set between spec-
tral type and luminosity class, it was demonstrated that the
neural networks were using luminosity features to do dwarf-
giant discrimination.

Network with two hidden layers performed considerably
better (≈ 0.2 subtypes) than ones with only one hidden
layer. The best classification results were achieved by tack-
ling the spectral type and luminosity class problems sepa-
rately, using continuous and probabilistic networks respec-
tively.

We used Principal Components Analysis to compress
the spectra by a factor of over 30 while retaining 96% of the
variance in the data. It was shown that this compression
predominantly removes noise. In addition the PCA prepro-
cessing reduces the dimensionality of the data and can be
used to filter out bogus spectral features or identify unusual
spectra. However, PCA has the drawback that very weak or
rare features will not be well-reconstructed. More complex
non-linear preprocessing schemes could no doubt be devised,
but the strength of PCA is its analytic simplicity and its ro-
bustness.

The automated classifiers presented in this paper have
been used to produce classifications for several thousand
stars which do not have classifications listed in the MHD
catallogue. These will be presented in a future paper (Bailer-
Jones 1998).
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