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Abstract
 
Due to the requirement to maintain and improve the safety record of commercial air trans-
portation in the United States (U.S.) despite increasing traffic, several proactive safety 
programs have been introduced in recent years.  Among these proactive safety programs 
is a form of Flight Data Monitoring (FDM) known in the U.S. as Flight Operational Quality 
Assurance (FOQA).  FOQA is a program utilizing quantifiable, objective data collected 
from the air carrier aircraft’s data recording system.  The data is then analyzed to identify 
trends and other indicators of potential safety problems.  With few exceptions, FOQA data 
analysis has been rudimentary, often limited to relatively simple statistical methods.  The 
purpose of this study was to introduce a method in which current FOQA methodology 
can be enhanced with the more sophisticated quality and statistical concepts found in Six 
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Sigma – a structured, data-driven approach built upon to eliminating defects through the 
reduction of variation in processes.  A general introduction to both FOQA and Six Sigma is 
provided, along with a hypothetical exemplar case study using Six Sigma methodology on 
a FOQA problem, i.e., tail strikes during takeoff.

The U.S. air transportation system is considered one of the safest forms of 
transportation in the world (NASA, 2004).  Airline safety departments have devel-
oped and implemented numerous proactive safety initiatives over the past sev-
eral years such as the Advanced Qualification Program (AQP), Flight Data Moni-
toring (FDM), Aviation Safety Action Program (ASAP), Internal Evaluation Program 
(IEP), and the Voluntary Disclosure Reporting Program (VDRP), with the primary 
intent to improve safety. However, additional gains may be possible by imple-
menting a widely utilized and highly regarded quality program known as Six 
Sigma.  This research provides an overview of one of the most significant proac-
tive safety, airline-oriented flight data monitoring programs - Flight Operations 
Quality Assurance (FOQA), and Six Sigma.  With that background established, 
an exemplar case study of the application of Six Sigma principles to a FOQA 
problem is then presented.  

Airline Safety

  Throughout most of the aviation industry’s history, the primary method of 
research concerning the mitigation of risk has been reactive, that being post-
event analyses of incidents and accidents.  Many significant advances in safety 
have resulted from this methodology: decreases in serious wake turbulence 
encounters due to greater in-trail spacing, improved cargo compartment smoke 
detection systems, transponder-based intruder conflict alerting systems, improved 
windshear detection systems at airports, to name but a few.  The list of advances 
is long indeed, and proves the worth of rigorous post-accident investigation 
(NTSB, 2004).  However, by the 1990s, investigators and regulators alike were 
coming to the realization that there was a limit to the effectiveness of post-hoc 
fixes to safety problems, and that limit was based upon relatively simple math.  

Figure 1 depicts the accident rates per 100,000 flight hours for U.S. sched-
uled air carriers operating under 14 CFR 121 from 1985 through 2004 (NTSB, 
2005).  Although the accident rate is somewhat uneven year to year, the linear fit 
line (indicated at a value of approximately .22 accidents per 100,000 flight hours) 
suggests that the rate has stabilized despite an increase in the number of flights.  
Nevertheless, Weener (1990) hypothesized that if the current rate remained the 
same, a significant rise in the number of hull losses would occur, thus empha-
sizing the necessity for proactive safety methodologies such as FOQA.  
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Figure 1.  Accident Rates Per 100,000 Flight Hours, 1985 through 2004, for U.S. 
Air Carriers Operating Under 14 CFR 121, Scheduled Service (Airlines).

Flight Operations Quality Assurance

FOQA, a term coined by the Flight Safety Foundation (FSF) in the early 
1990s, is a form of FDM where flight related parameters are collected and ana-
lyzed for the purposes of monitoring and improving flight operations with a poten-
tial byproduct being the enhancement of flight safety.  FOQA methodology has 
involved:    
 1.   Selecting parameters to monitor and defining events.
 2.    Capturing, retrieving, and analyzing recorded flight data  to  
  determine if the pilot, the aircraft’s systems, or the aircraft itself  
  deviated from typical operating norms. 

 3.   Identifying trends or singular anomalies.  
 4. Taking remedial steps to correct problems.  
 5.  Continuously monitoring the effectiveness of actions taken. 

The advantage of data monitoring has been evident due its prevalence in 
various industries other than aviation.  For example, automotive engineers utilize 
telemetry to monitor multiple aspects of a car’s design and performance.  For-
mula One teams feed off telemetry information to determine whether changes 
made to a car’s setup, results in higher performance.  Hospitals utilize this tech-
nology to monitor patients’ health with information logged for the detection of 
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unwanted trends.  Complex modern systems such as high-tech manufacturing 
plants, subway networks, nuclear power plants, and power grids have utilized 
data monitoring to understand the processes that occur throughout the system.

FOQA is unique among other proactive airline safety initiatives in that it has 
been the sole utilizer of objective, quantitative data.  Depending upon the capa-
bilities of the aircraft involved, FOQA collects parameters from hundreds of sen-
sors located throughout the structure that feed analog and digital input to recording 
equipment onboard.  On a typical Boeing 757 manufactured 15 years ago, for 
example, 200 to 300 parameters can be recorded and stored each second.  
Sophisticated airplanes produced today are capable of capturing over 2,000 
parameters per second (Phillips, 2002).  Pilot control inputs, control surface posi-
tions, engine performance parameters, avionics information, and numerous other 
parameters have been recorded throughout the duration of the flight.  FOQA ana-
lysts then routinely probe the data to monitor and detect trends in the operation of 
the aircraft, to determine if exceedances (i.e., an event that exceeds predeter-
mined thresholds) have occurred, and to assess the efficiency of operations.  By 
detecting trends and patterns, it is possible to correct potential problems before 
they occur.   

Using advanced flight data analysis software such as the SAGEM Analysis 
Ground Station (AGS), FOQA analysts have been able to examine individual 
flights or aggregated data from numerous flights tracked over time so that statis-
tical trending, through robust reporting and animation modules, can be performed.  
An aggregate study might examine, for example, the number of unstabilized 
approaches at a particular airport per month over the last 12 months.  This type 
of analysis provides potentially valuable information, especially in terms of 
whether the airline’s performance is improving, holding constant, or deteriorating.  
This look at aggregate exceedances over time provides airline managers with a 
new perspective on potential problems that would not otherwise be apparent.  
Based on the trend analysis, airline managers can take corrective action to reduce 
or eliminate detected exceedances by focusing on the root causes and making or 
recommending changes.

In spite of the availability of both internal and external sources of information 
coupled with increasingly sophisticated computational technology, many airline 
managers could gain from additional knowledge and training in the use of quality 
and statistical tools necessary to reap the maximum advantage from these potent 
sources of information.  In a survey conducted by the GAIN working group, it was 
revealed that most safety personnel have not received much, if any, formal training 
directed at the effective use of analytical tools (Global Aviation Information Net-
work, 2001).  The report revealed that some sophisticated tools are being used, 
for example, one airline reported using a tool called Procedural Event Analysis 
Tool, another reported employing Reason’s model and root cause analysis, and 
several airlines perform flight data analysis and trending using internal databases 
(Global Aviation Information Network, 2001).  What may be most noteworthy 
regarding the list of tools used is the absence of well-established quality tools and 
processes such as control charts, Pareto charts, scatter diagrams, cause and 
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effect diagrams, and many other quality management tools (Stolzer & Halford, 
2004).   FOQA’s effectiveness has been determined by the ability of the user to 
properly determine aspects of a flight operation to be monitored, maximizing the 
flight data analysis software’s potential, formulating analysis results that are 
meaningful to upper management and other stakeholders (such as pilots), and 
finally, implementing proper frameworks to remedy and monitor any potentially 
dangerous trends.  The purpose of this work is to assert that FOQA’s effective-
ness and, thus, airline safety may be enhanced by the application of Six Sigma 
methods.  Six Sigma is a disciplined, data-driven approach to eliminating defects 
via the reduction of variance.  To understand these methods more thoroughly, a 
rudimentary discussion of distribution, variation, and Six Sigma as a manage-
ment system is presented.    

Six Sigma

In the early and mid-1980s, Motorola engineers developed the concept of Six 
Sigma – including the standard itself, the methodology and the cultural change 
associated with it – to provide greater resolution in measuring and decreasing 
defects.  Six Sigma is credited with helping Motorola save billions of dollars by 
optimizing many processes throughout the company related to manufacturing 
and other sectors (Motorola, 2004).  Inspired by Motorola’s success, hundreds of 
companies around the world have adopted Six Sigma as a way of doing busi-
ness.   

The fundamental objective of the Six Sigma methodology is the implementa-
tion of a data-driven strategy that focuses on variation reduction and process 
improvement through the application of Six Sigma improvement projects.  By 
determining the degree of variation present in an existing process, one has been 
able to determine its capability by referring to the standard normal distribution, 
where measures of dispersion can be correlated with probabilities of failure, and 
parts per million (ppm) defectives. 

 
Distribution  

In a standard normal distribution (also known as the “bell curve” or Gaussian 
distribution), the area under the curve has represented the percentage and thus 
the probabilities of values contained within and beyond each standard deviation.  
In fundamental statistics one learns that for a distribution of Mean (µ) = 0 and σ = 
1, approximately 68% of values are contained within ±1σ around the mean, ~96% 
of the cases within ±2σ around the mean, and ~99.7% of the cases within ±3σ 
around the mean.  Therefore, a process capability established at 2σ would result 
in an acceptable rate of ~96% and a probable “defect” (out of specifications) rate 
of ~4%; out of every 100 outputs, probability theory states that approximately four 
will be defective.

Variation
According to Park (2003), the two forms of variation, common cause and 

special cause, are the primary foes of quality control.  Common cause variation is 
known as naturally occurring variation, where the sources of variation form a 
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stable and repeatable distribution over time.  Such a process is ‘in control’.  Spe-
cial causes of variation, on the other hand, refers to those instances where an 
external element causes the overall process distribution to shift erratically causing 
it to be ‘out of control’.  For example, if a basketball player with a historical shot 
percentage of .800 were to attempt 100 in any given day, the conversion rate will 
naturally and expectedly vary with an  ~80% success rate.  However, during this 
process if a special cause is introduced, such as another player attempting to 
block the shot, this will likely significantly reduce the shooter’s ability to convert 
the free throws.  The identification of variation – being able to differentiate between 
common and special causes – and reduction or elimination of special cause vari-
ation are critical elements in ensuring that a process remains standardized and 
under control.

Prior to the mid-1980s, Motorola was operating at 4σ, but desired a higher 
standard to account for variations in the process over time (Harry, n.d.).  Motorola 
engineers determined that once a long-term process is no longer centered at the 
specified target (design specification) due to a variation of ±1.5σ, the rate of 
defects increases and the capability to produce results within specifications is 
hampered.  This results in a process at 2.5σ (4σ – 1.5σ = 2.5σ) resulting in each 
output having greater variability from one another.  In order to account for varia-
tion, a process spread of 6σ was suggested to preserve the process under spec-
ifications even if a shift of 1.5σ were to occur (6σ – 1.5σ = 4.5σ).  By establishing 
a standard of 6σ from the outset, the process is still highly standardized even if it 
shifts, thus leaving the process at 4.5σ (Swinney, n.d.).  The exact reason why a 
shift of 1.5σ was assumed and how such a value was arrived upon has been a 
topic of contention.  Some have argued that in a properly monitored process, 
such a shift would have been detected immediately and controlled.  The accuracy 
of the 3.4 ppm figure (see Table 1) assuming a 1.5σ shift has also been under 
scrutiny (Voelkel, 2004).  Nevertheless, Motorola’s assessment of 1.5σ stood and 
has been considered the baseline ‘standard’ approximation with Six Sigma charts 
reporting values with this shift in mind. The bottom line is that Motorola acknowl-
edged the existence of some form of variation, whether it is .5σ or 1.5σ, regard-
less of how controlled a process might be.  Table 1 illustrates the percentage of 
acceptable values and its defective rates with and without shift according to sigma 
levels.

Table 1
Six Sigma Process With Shift and Without Shift (Adapted from Park, 2003).

Sigma
 Process 

Level

With Shift of 1.5σ Without Shift

Acceptance Rate (%) Defective Rate 
(ppm) Acceptance Rate (%) Defective Rate (ppm)

1σ 30.23280 697,672  68.26894 317,311

2σ 69.12300 308,770  95.44998 45,500

3σ 93.31890 66,811  99.73002 2,700

4σ 99.37900 6,210  99.99366 63.4

5σ 99.97674 233  99.99994 0.57

6σ 99.99966 3.4  99.9999998 0.002
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As an example of a process shift, if an item has an original specification of 
50mm, with a tolerance of +/- 2mm, and if the process goal is 3σ, the item is 
free to vary +/- 0.6mm (52mm - 48mm / 6σ = 0.6mm) up to a limit of 51.8mm or 
48.2mm before it approaches and exceeds the threshold of being considered 
‘defective’.  Further, if the process drifts by say, 1σ, it will degrade to a 2σ level 
(52mm - 48mm / 4σ = 1mm) resulting in a less standardized overall process 
distribution with an increased number of defectives (Figure 2).

In order to proactively avoid the negative consequences of a process shift, 
one would attempt to establish a process of 6σ (52mm - 48mm / 12σ = 0.3mm), 
resulting in a leptokurtic (low variation) distribution (Figure 3).  Thus, even if 
the process were to drift slightly, the overall process is still highly standardized, 
increasing the probability that the number of defectives remain minimal.  To 
reiterate, the purpose of Six Sigma is to attain a high process quality via stan-
dardization through the minimization of variation.  Further, the most success-
ful approach has been where one shifts away from reactively fixing something 
once a defective is identified, to proactively identifying and controlling causes of 
variation, which in turn results in a lower rate of defectives.  By achieving such a 
standard, productivity and customer satisfaction is increased and so is profitabil-
ity in some cases (Velocci, 1998).

Figure 2. High variability distribution with several scores away from the target 
specification.

Figure 3. Low variability distribution, scores are closer to specification.

Six Sigma Management System

Motorola management considered Six Sigma a paradigm shift in the way the 
company operated at all levels.  By involving management in the new quality 
thought process, a top down approach becomes possible, where all employees 
are trained and educated in the concept of quality and the need for the identifica-
tion of causes of variation and controlling those causes (Motorola, 2004).  By 

Six Sigma Applied to Flight Ops Quality Assurance



The International Journal of Applied Aviation Studies18

having all levels involved, emphasis is placed on teamwork – where multiple 
teams throughout the company via their respective team leaders have a singular 
goal of satisfying the requirements of all respective stakeholders who are recipi-
ents of whatever process output.  These processes include anything from payroll 
to document processing, shipping, and even marketing.  The result was that Six 
Sigma has evolved from an operationally focused metric into a management 
system.

Although process standardization is the goal, Six Sigma is distinctive in that 
it provides a structure in which to attain reduction in variation through the process 
improvement methods.  DMAIC (Define, Measure, Analyze, Improve, and Con-
trol) is the typical tool used for making such improvements.  

DMAIC  
DMAIC has been defined as a ‘rigorous, structured, and disciplined’ approach 

to process improvement (Rath & Strong, 2003).  The tools contained within 
DMAIC are simple but effective, and have been available in one form or another 
in several previous quality methodologies such as Total Quality Management.

According to Park (2003), Six Sigma is simply an evolution of Total Quality 
Management (TQM), which in turn was built upon Total Quality Control (TQC), 
Statistical Quality Control (SQC), and Quality Control (QC).  Whereas TQM and 
earlier quality methodologies provided a multitude of statistical tools aimed at 
achieving and maintaining a high level of quality, Six Sigma has provided a struc-
tured framework in which these tools may be more effectively used.  Figure 4 lists 
some of the most commonly utilized tools in each phase. 

Figure 4.  Typical quality tools employed throughout the DMAIC process (Adapted 
from Rath & Strong, 2003).
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The following is a general overview of the major objectives in each step of the 
framework provided by Six Sigma:

Define. This phase involves a systems engineering approach, where the pur-
pose and scope are defined together with background and historical information.  
Study goals are defined and so are limitations as to how far the study is to go and 
what it can bring to the overall operation.  A stakeholder analysis is also per-
formed, where each of those involved (in an airline setting this may include man-
agers, analysts, pilots, maintenance) defines what such a study is expected to 
accomplish for them. 

Measure. The priority in this step is placed on the improvement effort.  His-
torical information and other data relevant to the subject at hand are gathered.  
Using this information, the source of the problem is identified for further analyses.  
The current process sigma is also determined at this point.

Analyze. Based on the current process performance and knowledge of the 
source of the problem as determined in the previous phase, the focus then shifts 
towards identifying root causes.  Root causes can range from poor communica-
tion between departments, lack of resources allocated to the wrong places, and 
even the wrong data being collected.  Techniques such as Design of Experiments 
(DOE) could potentially identify variables that were initially unforeseen.  Data 
mining is yet another breakthrough technique in the quest to identify causal fac-
tors and trends among a multitude of data.

Improve. In this step, candidate solutions are introduced and implemented.  
The purpose is to verify that the proposed improvements solve the issue at hand.  
Some issues might be resolved completely without further intervention; however, 
others require even deeper understanding.  In some cases, a lot of data is present 
and experiments can be done to determine the complexity of the issue.   

Control. Suggested solutions in the previous step are prepped for implemen-
tation.  The focus of this step is standardization, which will ultimately result in a 
decrease in variation and, thus, a higher sigma process level. 

The application of the DMAIC framework has been successful across many 
industries, regardless of the processes involved.  And though they do not use 
these specific terms themselves, the FOQA Rule (14 CFR, Part 13) and the asso-
ciated guidance provided to FAA Inspectors responsible for oversight of FOQA 
programs (HBAT 00-11) both indicate a requirement that mature FOQA programs 
possess the attributes of continuous improvement (that DMAIC inherently sup-
ports).  It is in the Measure and Analyze steps of DMAIC that Six Sigma tech-
niques offer the greatest power. 

Six Sigma Applied to Flight Ops Quality Assurance
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An Exemplar Case Study of Six Sigma Techniques Applied to a 
FOQA Study on Tail Strikes

The parameters recorded during flight allow for a FOQA air carrier to monitor 
adherence to standard flight protocols.  Each parameter can be monitored for 
variance based on set tolerance thresholds as determined by the air carrier upon 
appropriate validation.  For example, a target value of 165 knots could be estab-
lished for a certain phase of flight, with a maximum allowable variation of ±10 
knots.  Any exceedance (which in Six Sigma terms can be considered a ‘defect’) 
of these limits is flagged as an ‘event’, which is differentiated by severity levels.  
Therefore, a recorded parameter of 172 knots might be considered a level 1 
severity event, while an exceedance of 180 knots could be considered a severity 
3.

When excessive numbers of severity 1 and 2 events are detected by the FDM 
software, airline managers might elect to re-evaluate the tolerances since they 
might be too strict.  However, when a severity 3 is detected, it usually points to a 
potentially dangerous violation of standard procedures; thus, they usually warrant 
close examination.  If an airline continues to detect excessive numbers of severity 
3 or other events after adjusting severity thresholds, the potential for an incident 
or accident may be indicated.   

FOQA’s proactive nature means that it functions by concentrating on level 1 
and 2 events, proactively implementing remedial action and standardizing the 
operations in order to avoid level 3 events from occurring.  In the U.S., commer-
cial air transportation is already highly standardized and level 3 events are rare, 
but they do occur.  Examples of level 3 events are tail strikes during takeoff, and 
overshooting or undershooting runways during final approach due to energy mis-
management.  The rarity of these events makes it problematic to utilize rate-
based methods that depend on events that have already occurred in order to 
estimate the chances of any future occurrences. 

To illustrate, for an air carrier operating thousands of flights per month, FOQA 
trend data will be increasingly abundant with commonly occurring events such as 
speed or pitch violations.  As data is collected and analyzed, the distribution will 
eventually become normalized, allowing for proper predictive statistics.  However, 
for extremely rare events such as tail strikes, the distribution will not likely be 
normal, but rather highly skewed due to the extended amount of time without any 
occurrence.  There will not be enough data to support proper predictive statis-
tics.

Tail Strikes
Tail strikes are serious events with historically low rates of occurrence.  Some 

tail strikes are so severe that they are declared accidents due to the extensive 
damage to the aircraft.  These can prove costly in many ways, such as in mainte-
nance costs and damage to an air carrier’s reputation.   

As a hypothetical example of how Six Sigma techniques could aid a FOQA 
study, a newly formed air carrier is interested in the topic of tail strikes during 
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takeoff and what Six Sigma techniques can offer.  Assuming the carrier has been 
operating at a rate of 500 flights per month, the flight safety department would like 
to determine the probability of a tail strike occurring during takeoff based on a 
year’s worth of data gathered via the FOQA program.  The aircraft manufacturer 
established that a tail strike could occur if the takeoff angle reaches a certain 
critical angle with the main undercarriage oleo fully compressed.  The air carrier 
established as a standard procedure a rate of rotation after takeoff of 2 to 3 
degrees per second to a pitch attitude of 15 degrees.   

Historically, tail strikes during takeoff have involved several different vari-
ables.  Some of the most commonly attributed causal factors are:

1. Improperly trimmed stabilizer
2. Improper rotation speed
3. Improper flight director use
4. Excessive rate of rotation

No tail strikes have yet occurred, and the air carrier would like to minimize as 
much as possible the chances of one happening.  Utilizing Six Sigma’s DMAIC 
methodology, the air carrier would like to determine what its current process level 
is and what the probabilities are of a tail strike during takeoff given its current 
process capability.  This study is presented below according to the DMAIC struc-
ture. 

Define. During the define phase, the underlying motivation was to idetify 
methods in avoiding any embarrassing and costly events from occurring.  Tail 
strikes during takeoff are the FOQA topic selected and the decision was made to 
focus on one aircraft. The objective is to determine the current process level and 
the potential for future tail strikes.

Measure. The aircraft is fully FOQA equipped. Based on relevant parameter 
data, it was determined that the mean for the parameter ‘Max Takeoff Pitch’ of all 
flights up to this point was 15.5 degrees and the standard deviation was 1.67, 
thus establishing the process sigma at 3.89 with an exceedance rate of .005% - 
equivalent to a potential of one tail strike every 19,951 flights with ~39 months 
between each occurrence. 

Analyze. The calculations indicate that the air carrier is due to experience a 
tail strike in about two more years of operation if no change is made.  Therefore, 
several different scenarios are considered.  For example, if the mean (average 
max takeoff pitch) of 15.5 degrees is maintained, but the standard deviation is 
decreased to 1.5, the exceedance rate would improve to .0007% (equivalent to a 
process sigma of ~4.33).  Thus, approximately one tail strike every 134,127 flights 
is expected, equivalent to ~268 months before the event is due to occur.

 
Another scenario would be if the mean were decreased to 14.5 and the stan-

dard deviation maintained at 1.67.  This would result in a process sigma of 4.49, 
where the exceedance rate of .0004% would be equal to approximately one tail 
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strike every 280,817 flights, equivalent to ~561 months before one is due to occur.  
Hence, it is clear that even slight improvements in standardization significantly 
decrease the probability of a tail strike occurrence.   Additionally, if the standard 
deviation remained the same, but the mean of the scores improved, significant 
reductions in the probability of a tail strike occurrence is also possible.

Naturally, one should not adopt a false sense of security by depending solely 
on these predictive rates, as the nature of probability theory dictates that the 
events can occur more or less frequently than expected.  However, since proba-
bility is based on what is likely to occur, a prudent airline will try to get the odds on 
its side.  Finally, this approach is only one of several factors that have a bearing 
in determining the likelihood of a tail strike.  There have also been efforts by air-
craft manufacturers such as Boeing’s implementation of the ‘tail strike protection 
application’ within the flight control system software of the B777-200LR and 
300ER variants (Louthain, 2005).  This demonstrates the current interest in every 
sector within the aviation industry in flight safety.

Improve. Given the analyses of possible scenarios, stakeholders are pre-
sented with various solutions.  These may include forming an informational cam-
paign for the pilots demonstrating that even slight improvements in standardiza-
tion and adherence to flight procedures can significantly decrease the likelihood 
of a serious event occurring. Another choice would be modifying current standard 
flight procedures to reduce the pitch attitude from 15 degrees to 14 degrees and, 
thus, significantly reducing the chances of a tail strike occurring (even if the stan-
dard deviation remained constant).  

It is worth noting that given the complexity of flight operations, the possibility 
of creating unintended consequences is an important factor to keep in mind when 
exploring improvement strategies.  For example, the reduction of initial rotation 
pitch attitude described above might result in compromised obstacle clearance or 
noise abatement.  As with any intervention strategy, a full consideration of the 
consequences is necessary before proceeding with the plan.  Once having 
defined the potential effects of the intervention, wise use of FOQA can give valu-
able information on all of those effects, as the DMAIC process proceeds from 
Improvement to Control.

Control. Whichever solution is chosen, relevant data can be continuously 
monitored to verify the effectiveness of the changes undertaken utilizing tools 
such as process control charts.  This hypothetical case study is only one of sev-
eral possible studies an air carrier could perform with an existing FOQA program 
by adopting Six Sigma techniques.  Advanced methods such as data mining and 
design of experiments (DOE) could also provide a deeper insight into tail strikes.  
For example, what is the relationship between energy and tail strikes?  Also, are 
there any other monitored aircraft parameters that might have potential influence 
in a tail strike occurrence?  Future possibilities also include data mining the Avia-
tion Safety Action Program (ASAP) database and correlating the information with 
FOQA databases. 
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Discussion

Flight Operations Quality Assurance has been one of the most highly regarded 
and potentially effective airline safety initiatives to emerge in the past 20 years.  It 
is a program based on quantifiable, objective data collected from the air carrier 
aircraft’s data recording system.  On some modern aircraft, over 2000 parameters 
each second are recorded.  The FOQA system uses expert software to analyze 
the data from individual flights of interest, or aggregated data from multiple flights 
in order to examine trends that may affect safety.  Unfortunately, with very few 
exceptions, the analysis of FOQA data has been limited to relatively simple sta-
tistical methods.  It has been surmised that the application of more sophisticated 
quality and statistical methods may increase the effectiveness of the program and 
the air carrier’s return on investment (Stolzer & Halford, 2004).  

Six Sigma is a structured, data-driven approach to eliminating defects.  The 
primary objective of the Six Sigma methodology is the implementation of a data-
based strategy that focuses on variation reduction and process improvement 
through the application of Six Sigma improvement projects.  DMAIC – Define, 
Measure, Analyze, Improve, and Control – is the method used to engage in pro-
cess improvement.  It was asserted that Six Sigma methods might be effectively 
used in FOQA programs, especially for addressing very infrequently occurring 
events.  

An exemplar case study was presented using Six Sigma’s DMAIC method-
ology on a safety problem, i.e., tail strikes during takeoff.  The process sigma was 
calculated to be 3.89 with an exceedance rate of .005%, which equates to a 
potential for one tail strike every 19,951 flights with ~39 months between each 
occurrence.  The effect on the process sigma of varying the mean and standard 
deviation was explored.  Stakeholders were presented with various solutions to 
decrease the probability of a tail strike from occurring.

A disciplined quality approach to improving safety is needed in the airline 
industry.  Airlines would benefit by increasingly embracing and employing quality 
principles in designing, implementing, and managing safety programs, including 
FOQA.  Six Sigma is one quality-based program that may be used to increase the 
effectiveness of FOQA, particularly for process improvement initiatives.  Whether 
an airline employs Six Sigma or various other methods in its safety improvement 
efforts, quality in airline safety must be the goal.  
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