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First Na lidar measurements of turbulence heat flux,
thermal diffusivity, and energy dissipation
rate in the mesopause region

Yafang Guo1 , Alan Z. Liu1,2 , and Chester S. Gardner2

1Center for Space and Atmospheric Research and Department of Physical Sciences, Embry-Riddle Aeronautical University,
Daytona Beach, Florida, USA, 2Department of Electrical and Computer Engineering, University of Illinois at
Urbana-Champaign, Urbana, Illinois, USA

Abstract Turbulence is ubiquitous in the mesopause region, where the atmospheric stability is low and
wave breaking is frequent. Measuring turbulence is challenging in this region and is traditionally done by
rocket soundings and radars. In this work, we show for the first time that the modern Na wind/temperature
lidar located at Andes Lidar Observatory in Cerro Pachón, Chile, is able to directly measure the turbulence
perturbations in temperature and vertical wind between 85 and 100 km. Using 150 h of lidar observations,
we derived the frequency (𝜔) and vertical wave number (m) spectra for both gravity wave and turbulence,
which follow the power law with slopes consistent with theoretical models. The eddy heat flux generally
decreases with altitude from about −0.5 Km s−1 at 85 km to −0.1 Km s−1 at 100 km, with a local maximum
of −0.6 Km s−1 at 93 km. The derived mean turbulence thermal diffusivity and energy dissipation rate
are 43 m2 s−1 and 37 mW kg−1, respectively. The mean net cooling resulted from the heat transport and
energy dissipation is −4.9±1.5 K d−1, comparable to that due to gravity wave transport at −7.9±1.9 K d−1.
Turbulence key parameters show consistency with turbulence theories.

1. Introduction

Vertical transport by turbulence plays a fundamental role in establishing the thermal structure, composition,
and circulation of the mesosphere/lower thermosphere (MLT) below the turbopause [e.g., Akmaev, 2001; Qian
et al., 2009; Zhu et al., 2010; Garcia et al., 2016; Meraner and Schmidt, 2016]. Turbulence is generated by wave
breaking in the MLT through mechanisms such as convective and dynamic instabilities [e.g., Hodges, 1969;
Lindzen, 1981; Zhao et al., 2003; Liu et al., 2004; Williams et al., 2006; Hecht et al., 2014]. This transport process
is described as a mixing effect characterized by diffusion coefficients (also called diffusivity). Many studies
have contributed to our knowledge of turbulence and its influence on the atmosphere. It is difficult to directly
measure turbulence in the upper atmosphere because the turbulent eddies are small, with scales ranging
from a few tens of meters to a few kilometers, and the temperature, wind, and density fluctuations associated
with them are too small to be observed from instruments. For the same reason, most atmospheric models
cannot resolve turbulence-scale motions, except with direct numerical simulation [Fritts et al., 2014].

The energy cascade process of turbulence is characterized by energy dissipation rate 𝜀, a measure of how fast
energy is dissipated to molecular scale. The transports of constituents, heat, momentum, and their mixing
effects along with the process are represented by the diffusion coefficients often denoted as kzz , kH, and kM,
respectively. Until now, only the diffusion coefficient for inert constituents (kzz) and turbulent energy dissipa-
tion rate (𝜀) have been measured, primarily by in situ observations of neutral density fluctuations and their
power spectra such as rocket-borne ionization gauges [e.g. ,Lübken, 1997; Das et al., 2009], by observations
of the expansion of chemiluminescent trails released by rockets [e.g., Bishop et al., 2004], and by measuring
the spectral broadening of radar pulses caused by turbulence-induced wind fluctuations [e.g., Fukao et al.,
1994; Hocking, 1996]. The ionization gauge and radar techniques use turbulence theory to relate the obser-
vations to kzz and 𝜀, while the rocket trail technique is a direct measurement of the turbulent mixing of
constituents. The thermal (kH) and momentum (kM) diffusion coefficients are usually inferred from kzz by ignor-
ing chemical effects and so that kH ≈kzz and by assuming a value for the turbulence Prandtl number Pr so
kM =kH∕Pr=kzz∕Pr. Because of the large variabilities of these turbulence parameters [Lübken et al., 1987], there
is still considerable uncertainty about their values in the MLT.
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In this paper we show the first direct measurements of turbulence heat flux and the associated thermal diffu-
sion coefficient with a narrowband Na wind and temperature lidar located at Andes Lidar Observatory (ALO)
in Cerro Pachón, Chile, (30.25∘S, 70.74∘W). The 150 h of lidar data from 19 nights of observations is used to
derive the turbulence fluctuations associated with temperature and vertical wind. Turbulence heat flux and
thus kH are derived to characterize the heat transport and heating/cooling effect by turbulence. Energy dis-
sipation rate and associated heating are also calculated. These are also compared with the heat flux from
dissipating gravity wave (GW) derived from the same data set. The capability to simultaneously measure both
the wave- and turbulence-induced heat transport processes can provide important insights on the relation-
ship between wave breaking and turbulence generation and their combined effects on the thermal balance
of the mesopause region.

2. Key Parameters of Turbulence

Turbulence transport is usually modeled as a diffusive process, a larger-scale analogue of molecular diffusion.
The vertical turbulence flux of sensible heat (w′T ′) is defined as the covariance between vertical wind (w′)
and temperature (T ′) perturbations induced by turbulence, where the primes denote perturbations and the
overbar denotes sample average over a period of time. The thermal diffusion coefficient kH is defined in terms
of the potential temperature 𝜃 as

w′𝜃′ = −kH
𝜕�̄�

𝜕z
= −kH

(
Γad + 𝜕T̄

𝜕z

)
�̄�

T̄
, (1)

where Γad = g∕Cp is the dry adiabatic lapse rate and 𝜃 is defined as

𝜃 = T(p0∕p)R∕Cp , (2)

and p is the atmospheric pressure, p0 = 1000 hPa, R = 287 m2 K−1 s−2 is the gas constant for dry air, Cp =
1003 m2 K−1 s−2 is the specific heat at constant pressure, and g=9.5 m s−2 is the gravitational acceleration at
the mesopause. By linearizing equation (2), multiplying by w′, we have

w′𝜃′

�̄�
= w′T ′

T̄
− R

Cp

w′p′

p̄
. (3)

For turbulence, since 𝜃′2∕𝜃2 ≈ T ′2∕T 2 [Tatarskii, 1971; Gavrilov et al., 2005], we assume that the second term
on the right is negligible [Becker and Schmitz, 2002]. Hence, with equation (1), kH can be expressed as

kH ≈ − w′T ′

Γad + 𝜕T̄∕𝜕z
= −

g

N2

w′T ′

T̄
, (4)

where the squared buoyancy frequency N2 is

N2 =
g
T

(
𝜕T
𝜕z

+
g

Cp

)
. (5)

Thus, kH can be calculated from measured w′T ′.

In addition to w′T ′, the variance profiles of w′ and T ′ (w′2 and T ′2) can also be directly calculated from lidar
measurements. These quantities have been applied to estimate turbulence parameters in observations based
on turbulence theories [e.g., Gavrilov et al., 2005; Clayson and Kantha, 2008; Alexander and Barnet, 2007; Zhang
et al., 2012]. Here we can use the variances and the turbulence heat flux measured from lidar to verify the
consistency between them. Weinstock [1981] showed that for stably stratified turbulence, 𝜀 can be related to
the variance of w′ as

𝜀 = C0w′2N, (6)

where C0 is a dimensionless constant with a theoretical value of C0 ≈𝛼−3∕2 ≈0.5 and 𝛼≈1.5 is the Kolmogorov
constant.
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With the assumption of kH ≈kzz , 𝜀 can be related to kH according to Weinstock [1978] as

kH ≈ 𝜋1∕2

4C0

𝜀

N2
. (7)

The variance of relative temperature perturbation T ′2 is also related to 𝜀 according to Gardner and Liu [2016]

T ′2

T̄ 2
≈ 4N

g2
𝜀. (8)

Using these equations, we can then derive 𝜀 from equation (6) and compare the measured w′2 and T ′2 with
those predicted by equations (7) and (8).

Similar to dissipating gravity waves, turbulent mixing also transports heat downward, which generally cools
the atmosphere. The associated heating rate is

− 1
�̄�

𝜕(�̄�w′T ′)
𝜕z

(9)

and can be combined with the heating rate due to turbulence energy dissipation 𝜀∕Cp to derive the net
heating or cooling of the atmosphere caused by turbulence.

3. Data Processing

The ALO Na Doppler lidar located in Cerro Pachón, Chile, uses the three-frequency technique [Krueger et al.,
2015] to measure line-of-sight wind, temperature, and Na density. The design architecture and performance
specifications for this instrument are summarized in Liu et al. [2016]. For this study we employed 150 h of
observations acquired during 19 nights when the lidar was pointed exclusively at zenith. The nights cover
campaigns on May 2014 (two nights), August 2014 (four nights), September 2014 (seven nights), and January
2015 (six nights). Photon count signals were obtained at a temporal resolution of 6 s and a vertical resolution
of 25 m. The procedures to derive turbulence fluctuations T ′ and w′ are described in detail by Gardner and Liu
[2014], and we describe it briefly here. The system equations that relate the photon counts to temperature and
wind are linearized, with the background quantities obtained by low-pass filtering the photon counts with a
2-D Hamming window (2.5 min and 500 m full width at half maximum) to retain fluctuations at gravity wave
scales larger than 5 min and 1 km, which are chosen based on the knowledge that the smallest GW vertical
(and horizontal) wavelengths are ∼1 km and the highest frequencies are near buoyancy frequencies in the
mesopause region [Blix et al., 1990; Gardner et al., 1993; Lu et al., 2015]. The residual counts are regarded as tur-
bulence fluctuations and used to derive T ′ and w′ based on an inversion of the linearized system equations.
An improvement was made from Gardner and Liu [2014] by considering the system equations for temperature
and wind metrics [Papen et al., 1995] only, without Na density. The inversion matrix is more robust, and the con-
taminations by large perturbations in Na densities due to sporadic Na layers are eliminated. A detailed method
description and explanations for choosing 1 km and 5 min as separation scales are given in the supporting
information.

Even though the signal levels acquired by the ALO Na lidar are high, at these high resolutions required to
resolve the turbulence fluctuations, the photon noise errors (Δw and ΔT) are still much larger than w′ and
T ′. For example, the root-mean-square (RMS) of w′ is about 2 m s−1, while the RMS photon noise errors
are 10 − 12 m s−1. However, since we are interested in measuring the second-order statistics of w′ and T ′

(viz., covariance and variances), not their instantaneous values, the significant photon noise can be reduced
by averaging long enough data to reduce the uncertainties of these statistics to acceptable levels.

Because the wind and temperature are derived from the same set of signals, their photon noises are correlated,
which introduces a significant bias to their covariance. This bias, however, can be easily eliminated by cross
multiplying measured temperature and vertical wind perturbations, T ′ +ΔT ′ and w′ +Δw, at two consecutive
samples instead of from the same sample [Gardner and Liu, 2014], because the photon noises at two different
times are uncorrelated. Variances of w′ and T ′ are also calculated with the same approach. A trade-off of this
approach is the time resolution reduced by a factor of 2 with an effective resolution of 12 s.
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Figure 1. (a) Vertical wave number (m) and (b) temporal frequency (𝜔) spectra of relative temperature perturbations
due to gravity waves (blue) and turbulence (red). Blue and red dashed lines represent the spectra predicted from
theoretical models; solid lines are measured from high-resolution lidar measurements; black dashed lines represent
the data used for fitting.

Although this technique eliminates the photon noise biases from the heat flux and variance calculations, unbi-
ased photon noise is still the dominant error source for the measurements reported here. The uncertainties
(in standard deviations) are

Std(Δw′T ′) =
√

ΔzΔt
2L𝜏

Std(Δw)Std(ΔT),

Std(ΔT ′2) =
√

2ΔzΔt
L𝜏

Var(ΔT),

Std(Δw′2) =
√

2ΔzΔt
L𝜏

Var(Δw), (10)

where L = 2.5 km is the vertical resolution of the final smoothed profiles and 𝜏 = 150 h is the averaging
period, while Δz = 100 m and Δt = 6 s are the sample resolutions of the turbulence heat flux and variances.
Note that the factor of 2 arises in the heat flux uncertainty because two instantaneous heat flux estimates can
be derived from the two sets of w′ and T ′ values measured during the adjacent time bins.

4. Turbulence Power Spectra

Several theoretical models have been developed for the gravity wave spectra, including the linear stability
[Dewan and Good, 1986], Doppler spreading theory [Hines, 1991], and the diffusive theory [Weinstock, 1990].
There are numerous observations of gravity wave spectra made with a variety of techniques including
balloon-borne sensors in the troposphere and lower stratosphere [e.g., Zhang et al., 2006], mesosphere-
stratosphere-troposphere radar [e.g., Fritts et al., 1988], VHF radar [e.g., VanZandt et al., 1991; Larsen et al., 1987],
and Na lidar [e.g., Senft and Gardner, 1991] in the mesosphere. Here we show that the Na lidar can extend the
spectra measurement into the turbulence scales.

The high-resolution ALO Na lidar measurements cover the ranges of frequency (𝜔) and vertical wave number
(m) that include both gravity wave and turbulence scales. The temporal and vertical resolutions are 60 s and
500 m for gravity waves and 6 s and 25 m for turbulence. The 𝜔 spectrum was calculated from temperature
perturbations on each night averaged from all altitudes, and the m spectrum was calculated in the 85–100 km
altitude range for each profile then averaged for the entire night. Figure 1 shows the comparison between
theoretical spectra (dashed colored lines) from theoretical models [Gardner and Liu, 2014] and the observa-
tional spectra (solid colored lines) from lidar measured fluctuations (i.e. relative temperature fluctuations).
The observed spectra were averaged from all nightly mean spectra after the noise floors were subtracted.
Slopes and their uncertainties were estimated by linear regression. Black dashed lines represent the data
points applied to the linear fitting. The buoyancy frequency N (∼2𝜋∕5 min) in the 𝜔 spectra plot represents
the separation between gravity waves and turbulence.

The gravity wave spectra agree well with the theoretical m−3 and 𝜔−2 power laws, with the slope for 𝜔 slightly
steeper than the theoretical value. In the turbulence spectra, the noise floor starts at about 10 km−1 (or 100 m)
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Figure 2. (a) Vertical eddy heat flux, (b) thermal eddy diffusion coefficient kH , and (c) energy dissipation rate 𝜀 calculated from lidar measurements.

in the m spectrum and 0.05 s−1 (or 20 s) in the 𝜔 spectrum. Both turbulence m spectrum and 𝜔 spectrum
are consistent with the theoretical value of −5∕3 with slopes of −1.73 ± 0.01 and −1.71 ± 0.14, respectively.
Overall, there is a good agreement between the measured and theoretical spectra. The fact that the slopes
can be clearly identified in the turbulence scales indicates that the ALO Na lidar is sensitive to turbulence
perturbations and can detect them well above the noise floor.

5. Turbulence Heat Flux and Thermal Diffusion Coefficient

The measured turbulence heat flux w′T ′ is shown in Figure 2a. It is negative throughout the region, indicating
that turbulent mixing transports heat downward. The magnitude in general decreases with increasing altitude
from about −0.5 Km s−1 at 85 km to −0.1 Km s−1 at 100 km, with a local maximum at 93 km of −0.6 Km s−1.
The kH profile shown in Figure 2b also exhibits a general decrease with increasing altitude, from 52 m2 s−1

at 85 km to 10 m2 s−1 at 100 km, with a local maximum of 71 m2 s−1 at 93 km. These measured kH values
are generally consistent with the kzz values measured by other techniques in other latitudes [e.g., Lübken,
1997; Das et al., 2009; Bishop et al., 2004] and larger than the kzz values used in WACCM (Whole Atmosphere
Community Climate Model) which has a maximum of about 20 m2 s−1 [Smith, 2012, Figure 7]. 𝜀was calculated
based on equation (6) and is shown in Figure 2c. The average 𝜀 between 85 and 100 km is about 37 mW kg−1,
which corresponds to an average heating rate of about 3.2 K d−1.

With the measured variances, we can examined the suitable value of C0 in equation (6). We calculated the
variances w′2 and T ′2 predicted by equations (7) and (8) using kH in Figure 2b and compared them with directly
measured variances. The Brunt-Väisälä frequency is calculated with the mean temperature by equation (5). We
found that when the theoretical value C0 =0.5 was used, the predicted variances are too small compared with
observed values. Weinstock [1981] obtained an empirical value of C0 =0.37 based on experimental data from
Heck et al. [1977]. We also found that using C0 = 0.37 gives a better agreement with the measured variances.
The results are plotted in Figure 3. Overall, the agreement is good for both T ′2 and w′2, and the differences are

Figure 3. (a) Turbulence-induced vertical wind variance and (b) turbulence-induced temperature variance measured
from lidar observations (blue) and calculated using the kH values (red) in Figure 2b and equation (8) with a C0 value
of 0.37.
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Figure 4. (a) Vertical gravity wave heat flux, (b) wave-induced vertical wind variance and (c) wave-induced temperature variance computed from the same lidar
measurements used to derive the turbulence parameters shown in Figure 2.

smallest around 93 km where the flux and kH are the largest. Our observation therefore supports the notion
that the actual C0 is likely less than 0.5 for the mesopause region.

To place the turbulence measurements in perspective, the profiles of gravity wave-induced heat flux, wind,
and temperature variances were also calculated from the same data set and plotted in Figure 4. As expected
the gravity wave sensible heat flux is also downward [Walterscheid, 1981]. Its magnitude is similar to the eddy
heat flux, but the profile shape is different. The gravity wave heat flux increases from about −0.4 Km s−1

at 85 km, reaching a maximum of about −0.9 Km s−1 near 89 km and then decreases to essentially zero
above 96 km. This behavior is similar to that observed at the Starfire Optical Range, NM (35.0∘N, 106.5∘W)
[Gardner and Liu, 2007]. The wave- and turbulence-induced vertical wind variances (Figures 3a and 4b) are
comparable, but the wave-induced temperature variance (Figure 4c) is about 50 times larger than the
turbulence-induced variance (Figure 3b). Although the magnitudes of temperature variances are much dif-
ferent, the overall profiles are similar. Both temperature variances exhibit maximum near 87 and 88 km and
minimum above 96 km. This is probably related to the convective or static stability of the atmosphere, which
is generally more stable above the mesopause where the vertical temperature gradient becomes positive.
The turbulence-induced temperature perturbations are strongest at about the same altitude range where
wave activity is the most energetic and are weakest where wave activity is the least energetic, which is
consistent with the notion that turbulence is mostly generated by wave breaking.

In terms of the thermal effect of turbulence, it is well known that the turbulent energy deposition induces
a heating to the background atmosphere. By using in situ rocket measurements, Lübken [1997] found out
that the heating rates corresponding to energy dissipation rate 𝜀 are stronger in summer mesopause and
much smaller in winter, varying from 1 K d−1 to 10∼20 K d−1. He also pointed out that this heating has to be

Figure 5. Atmospheric heating/cooling rates associated with
vertical heat transport by turbulence (equation (9)) and waves.

compensated by other cooling mechanisms.
While the cooling effect caused by gravity wave
downward heat transport has been studied with
simulations and observations [e.g., Gardner and
Yang, 1998; Gardner and Liu, 2007; Hickey et al.,
2011], the cooling caused by turbulence has only
been estimated by a few numerical simulations
[Liu, 2000; Zhu et al., 2010]. Our results show that
the downward heat flux induced by turbulence
induces a significant cooling effect to the MLT as
well. Shown in Figure 5 are the cooling/heating
rates due to turbulence and gravity wave heat
transport (equation (9)) and turbulent energy
dissipation. The flux convergence associated with
turbulence heat transport results in a cooling of
the atmosphere with an average of −8.1 K d−1.
This cooling more than balances the heating
caused by turbulent energy dissipation of about

GUO ET AL. EDDY HEAT FLUX AND THERMAL DIFFUSIVITY 5787
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3.2 K d−1 so that the total effect of turbulence is a cooling of the mesopause region of −4.9 K d−1. Wave-
induced heat transport also causes a more significant cooling between 87.5 and 98 km. However, the large
wave flux convergence below 87.5 km results in a strong heating of the atmosphere. Thus, the net effect of
gravity waves and turbulence between 85 and 100 km is primarily dynamical cooling, with a maximum of
about −32 K d−1 near 95 km and a mean of −12.8 K d−1.

6. Conclusion

The transport of heat, momentum, and constituents by turbulence diffusion in the MLT region plays a very
significant role in establishing the general circulation and thermal structure of atmosphere. It is well recog-
nized that different chemical species are well mixed by this eddy diffusion process below turbopause, and
the eddy diffusivity kzz is the same for all species. Currently, numerous ground-based and in situ observa-
tional techniques estimate kzz indirectly from measuring the energy dissipation rate (𝜀) with uncertainties
remain in estimating 𝜀 and determining the dependence of kzz on 𝜀. These uncertainties can affect the mea-
surements of kzz by 2–3 orders of magnitude [Vlasov and Kelley, 2014, 2015]. Also, the discrepancies between
these observational coefficients and coefficients used in general circulation models suggest the necessity for
a more effective way to determine kzz .

In this paper we showed that the Na wind/temperature lidar at ALO is now capable of detecting turbulence-
scale perturbations and providing direct measurements of the eddy heat flux and thermal diffusion coef-
ficient kH. For the first time, kH is directly derived from eddy heat transport. Other key parameters such as
the energy dissipation rate and the associated heating rate are also derived from the measurements without
resorting to complex turbulence theory. The measured kH has an average of 43 m2 s−1 and a maximum of
72 m2 s−1 at 93 km, and generally decreases with altitude above, which is consistent with some other results
of kzz measured by balloons and rockets. These results could provide significant references for the gravity
wave parameterization in general circulation models such as WACCM, in which the kzz varies between 10 and
20 m2 s−1 in the mesopause region [Smith, 2012], much less than our results.

Another advantage of this high-resolution lidar technique is that both turbulence and gravity waves pertur-
bations can be measured at the same time so that the transport induced by gravity wave and turbulence
can be easily compared, as well as the characteristics of both gravity waves and turbulence (i.e., variance).
Our results suggest that the downward heat fluxes are comparable for waves and turbulence, and the corre-
sponding net cooling rate of 12.8 K d−1 can bring substantial cooling effects to the mesopause region, which
was only studied by numerical simulations before.

The spectral analysis, along with the temperature and wind variance, that confirmed the consistency between
measured turbulent parameters and turbulence theory, also suggests that the value of the undetermined con-
stant C0 in the turbulence theory is likely to be smaller than the theoretical value of 0.5, supporting the value of
0.37 suggested by Weinstock [1981]. Note that it is not possible to have a clear-cut separation between gravity
waves and turbulence. In this analysis, our choice of 1 km is based both on past observational studies and our
spectral analysis (Figure 1a). Furthermore, the turbulence outer scale, estimated using equation (7) in Gardner
and Liu [2014] with our derived energy dissipation rate of about 40 mW/kg (Figure 2c) and N2 =4 × 10−4 s−2,
is about 700 m, which is consistent with the 1 km breakpoint between gravity waves and turbulence. These
results further prove that the lidar measurements can indeed capture at least a large portion of turbulence
fluctuations. This is an important advancement that will enable the studies of neutral atmosphere turbulence
processes and gravity wave dynamics and their impacts on the atmosphere in the MLT region.

Characterizing turbulence from observations has always been a challenge due to the large variation of gravity
wave activities. The turbulent parameters also exhibit strong seasonal variations [e.g., Lübken, 1997; Hall et al.,
1999; Sasi and Vijayan, 2001]. Thus, relatively long averaging periods (∼100 h) are necessary to measure tur-
bulence parameters, especially the second-order statistics such as flux and variance. The current ALO Na lidar
is equipped with 70 cm diameter telescopes and with a power-aperture product of 0.6 W m2, which is typ-
ical for modern lidar systems. Here in this work, we only use 150 h observational data on 19 nights. With
more data acquired through different seasons in the future, the results are expected to vary. By employing
larger telescope receiving systems with efficient optical designs [Smith and Chu, 2015] and higher power
lasers, the required averaging times and uncertainties can be reduced substantially, and the data will have a
more complete coverage of turbulence spectra. The current results show that even existing lidar systems are
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now capable of characterizing the seasonal variations of the vertical eddy heat transport and the diffusion
coefficient and its impacts on the thermal balance in the mesopause region.

Finally, assuming that the turbulence fluctuations are approximately isotropic, the radial wind variance would
be comparable to the vertical wind variance. Therefore, our results also indicate that it is possible for exist-
ing Doppler lidars to measure turbulence momentum flux and turbulent Prandtl number by using off-zenith
measurements to retrieve turbulence horizontal wind perturbations with the same data processing technique
used in this study.
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