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Abstract

Modeling biological processes, such as algae growth, is an area of ongoing research.
The ability to understand the multitude of parameters that influence this system
provides a platform for better understanding the dynamics of microalgae growth.
Empirical modeling efforts look to understand sources of driving nutrients that influ-
ence harmful algal blooms (HABs). These harmful algal blooms are dense aggregates
that have an increasingly negative impact on local economics, marine and freshwater
systems, and public health. They result from a high influx of nitrogen and nutrients
that drive the algae biomass to exponentially grow. This growth blocks out the sun,
potentially releases dangerous toxins, and suffocates marine life, damaging ecosys-
tems, especially in Florida.
Modeling microalgae behavior and growth is complex due to its nonlinear behavior
and coupled variables. Recently, cultivating oleaginous microalgae for biofuel produc-
tion has been another region of ongoing research, especially application of observer
theory to estimate internal parameters that are not easily measured in algal systems.
Linear observer theory has generally been applied to algae growth systems to esti-
mate internal parameters that are beyond hardware sensor capabilities, but they are
still severely limited. Nonlinear observer theory application to biological systems is
still relatively new. This thesis explores the application of a nonlinear observer based
off sliding mode to an algae system. Sliding mode is derived from modern control
theory and is based off variable structure control. An algae system is modeled using
the widely accepted Droop model for algae growth and a linear and nonlinear sliding
mode observer is developed for the system to estimate internal nitrogen within the
algae biomass.
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Chapter 1

Introduction

1.1 Modeling Biological Systems

Modeling biological systems is extremely dynamic and complex. Researchers look
to develop both empirical and numerical methods to describe biological systems and
events in order to understand the reason a system functions in a particular manner.
The layout for this chapter includes a discussion on empirical modeling efforts of
biological systems in aquatic environments, with a focus on nutrient origins. Following
this, the second subsection of this chapter looks at numerical models for biological
systems with first discussing large scale predator-prey systems and then moving to
discuss models for microbiological systems focusing on algal systems. This chapter
then concludes with a brief discussion of general observer theory and a discussion for
the motivation of this thesis.

1.1.1 Empirical Modeling

Empirical modeling of biological systems in aquatic environments, especially along
the coast, strongly depends on understanding where nutrients originate and how they
are transported. Empirical models depend on relentless sample taking over a wide
surface area thereby making studies extremely challenging and time consuming. For
example, ecological modeling in applications for risk assessment work to understand
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current ecosystem patterns, processes and functions in order to predict future con-
ditions. Spatially explicit models are used and in order to predict future conditions,
ecosystem modelers need to take different scales of ecological organizations and its
complexity into account. The protocols need to be designed to consider the host of
parameters specific to that ecosystem [26].
Riverine and coastal eutrophication from natural and human derived nutrients such
as carbon, nitrogen, and phosphorus, among others, have a major impact on bio-
logical systems located in the Gulf of Mexico[31]. Modeling nutrient transport and
the effects it has on the Gulf’s biological systems is a major source of research due
to the current Red Tide that is plaguing the Gulf. Empirical modeling efforts focus
primarily on nutrient loads, which reflect the rate of the delivery of nutrients from
water and/or air sheds[27].

Watershed Modeling

Watersheds are regions where the water from all nearby land area drains into one
stream, lake, or river that it surrounds. The Mississippi River watershed is the largest
watershed in the United States where all the water collected along the watershed will
flow into the Gulf of Mexico which can be seen in Figure 1.1
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Figure 1.1: Mississippi Watershed River System [48]

This watershed collects all the nutrients, including bioactive nitrogen, from the Plains
which will flow into the Gulf of Mexico making the Gulf extremely prone to biological
events such as algal blooms[2].
Changes such as an increase in agricultural production and energy consumption have
resulted in massive mobilization of bioactive nutrients such as nitrogen, phosphorus,
and carbon in the global hydrological cycle. With the increase of fertilizer use, the rate
of biologically active nitrogen that enters into the global watershed has increased[46].
Modeling efforts focus on developing relationships between nutrient loading sources
into the watershed around the U.S and nutrient outputs into the Gulf. SPARROW
is one model(discussed below) that is used by the EPA and other research efforts in
conjunction with other local models to develop correlations between nutrient sources
and their final destination[27].
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SPARROW

A popular empirical model, SPARROW (Spatially Referenced Regressions On Wa-
tershed attributes) estimates the amount of a contaminant that is transported from
an inland watershed to larger bodies of water by combining monitoring data with
information on watershed characteristics and sources of contaminants. SPARROW
uses a statistically estimated nonlinear regression relationship to describe spatially
referenced watershed and channel characteristics as known as predictors to instream
loads(response)[45]. The equations in SPARROW describe the average rate of move-
ment of material, such as nutrients,through watersheds from sources on land to stream
channels, then downstream through these various stream channels. SPARROW can
predict long-term mean annual instream nitrogen loads as a function of nitrogen
sources, nitrogen attenuation on the landscape, and nitrogen losses that occur within
the streams shown as

Linstream = Lcatchmenti + Lupstreami
(1.1)

Where the load at downstream node i is denoted as Linstream, the original load within
the catchment i is Lcatchment, and Lupstgream is the generated load within the catch-
ments for upstream reaches and is transported to the downstream node of each i by
use of the stream network[31]. SPARROW can be used to describe water quality con-
ditions, identify sources of nutrients/containments, simulate alternative conditions,
as well as assist with research efforts.

Nutrient Impact on Water Quality

Using large-scale modeling efforts such as SPARROW, the EPA establishes water
quality standards that provide recommendations to states, tribes, and territories in
order to maintain their local water systems. These standards attempt to look at all
possible chemicals, nutrients, and pollutants that can enter the water systems and
establish allowable limits. The two most closely monitored nutrients in the state
of Florida are Total Nitrogen (TN) and Total Phosphorus (TP) and depending on
the water type and location, these limits will vary. They are calculated as Annual
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Geometric Means (AGM) that cannot be exceeded more than once in a three year
period. The lowest TN limit is in the Upper Keys as 0.18mg/L of nitrogen with the
highest limit in the West/Central river systems of 1.65mg/L with samples collected
monthly[3].

1.1.2 Numerical Modeling

Predator-Prey Models

Species in a biological system will compete for resources, evolve and/or disperse for
the survival of the species and what influences that objective. These systems are
usually described by predator-prey models where they usually display loss-win inter-
actions [14] Take two populations with reference to time, t, described by x(t) and
y(t) where x and y represent prey and predator population numbers respectively. A
general predator-prey model takes the time derivatives of x(t) and y(t) respectively
and a model of interacting populations is described by two autonomous differential
equations,

ẋ = f(x, y) (1.2)

ẏ = g(x, y) (1.3)

where f(x, y) and g(x, y) are respective per capita growth rates for the two species.

Lotka-Volterra

One of the earliest models in mathematical ecology is the Lotka-Volterra model il-
lustrating one of the simplest forms of predator-prey interactions based on a linear
per-capita growth rate.

ẋ

x
= b− py (1.4)
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ẏ

y
= rx− d (1.5)

Where b denotes the growth rate of species x, prey, in the absence of interaction
with the predator, y. The impact of predation on ẋ

x
is described by p, and d is the

removal rate by either death or emigration of the predator without interaction with
the prey. The net growth of the predator population in response to the size of the
available prey population is described by rx, giving the model to be[47]

ẋ = (b− py)x (1.6)

ẏ = (rx− d)y (1.7)

This model was independently derived by Alfred James Lotka and Vito Volterra in
1925 and 1926, respectively [14].

Kolmogorov Equations

Kolmogorov generalized Lotka-Volterra where instead of a first approximation of real
rates of increase, he considered the most general case possible

ẋ = S(x, y) ẏ = W (x, y) (1.8)

and developed a postulate stating that if the rate increases S and W are continu-
ously differentiable, basic conditions can be applied which will provide a more realistic
predator-prey interaction description[47]. Kolmorogov presents a set of conditions

∂S

∂y
< 0,

∂W

∂y
< 0 (1.9)

where the second does not satisfy Lotka-Volterra and a third condition

W (K, 0) > 0 (1.10)

where the equilibrium, (K, 0), is only composed of prey, not predators which will
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imply that there is at least one equilibrium with coexistence of both the predator and
prey species[47]. Kolmogorov also noticed that his conditions become invalid once the
prey population density becomes extremely small, also known as the "Allee Effect"
where the rate of increase, for example of a prey population, can decrease and become
negative if the density of the population is too small [47].

1.2 Modeling Microbiological Processes

1.2.1 Monod Model

Another approach discussing predator-prey interaction looks at microorganisms such
as bacteria that take in nutrients. The Monod Model is a mathematical model for
growth of microorganisms named after Jacques Monod who proposed using an equa-
tion to relate microbial growth rates in an aqueous environment to the concentration
of a limiting nutrient. These organisms are influenced by a limited uptake rate and the
Jacob-Monod model looks at the kinetic growth of microorganisms under a substrate
limited condition shown below [20].

ds

dt
=
−ksx
ks + s

(1.11)

dx

dt
= y

ksx

ks + s
− bx (1.12)

where, s is the growth limiting substrate concentration, x is the biomass concentra-
tion, k is the maximum specific uptake rate of the substrate, ks is the half saturation
constant for growth, y is the yield coefficient, and b is the decay coefficient [20].
Unlike large scale predator-prey models, the Monod model[41] illustrates kinetics of
growth of micro-organisms under that substrate limited condition. This was quanti-
tatively defined by Monod in 1949. The Monod kinetic model has a wide application
to wastewater treatment, bioremediation, as well as other various applications to en-
vironmental modeling[20].
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Algae Systems

Algae are simple photosynthetic aquatic organisms that have many types of life cy-
cles. They can range from microscopic (microalgae), to larger seaweeds (macroalgae)
such as giant kelp that live off the coast of California [43]. Unlike other plants, mi-
croalgae do not have roots, stems, or leaves. They adapt well to their environment.
Algal diversity and abundance vary based on environment. As terrestrial plant abun-
dance and diversity primarily depend upon temperature and precipitation, aquatic
plants such as algae are influenced primarily by light and nutrients. When there is an
abundance of nutrients in the water, algal cell numbers will become great enough to
produce visible patches called "blooms"[42] which can have adverse effects on local
ecological systems.

Modeling Algae Growth

Since algae only need sunlight, water, carbon dioxide, and some inorganic nutrients,
algal biomass can grow very quickly and modeling this growth can be extremely
complex. Understanding how algae grow is essential to pursue the use of this taxa in
biofuel production, food production and supplementation as well as to try to prevent
Harmful Algal Blooms (HAB).
Autotrophic microalgae and cyanobacteria use photons as an energy source to fix
carbon dioxide. These microorganisms have recently received specific attention in
the framework of renewable energy[9]. Microalgae have a high photosynthetic yield
compared to terrestrial plants and this leads to a potentially large algal biomass pro-
duction [16]. After the biomass is nitrogen starved, it can reach a very high lipid
content which can be converted into biofuel [9].

Harmful Algal Blooms

Harmful Algal Bloom, also known as HABs, are characterized by the proliferation and
occasional dominance of an algal species in an ecosystem. These microalgal species
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increase in abundance until their pigments color the water and change its natural
state. HABs can either be toxic or nontoxic depending upon if the microalgae species
releases any toxins. Non-toxic HAB species can cause damage to ecosystems because
of the sheer biomass that is formed during a bloom; which can cause oxygen deple-
tion, an alteration in the local habitat, and potential displacement of local aquatic
life. Algae can enter gills of fish and other invertebrates and smother corals as well
as other submerged vegetation. Toxic HABs have an adverse affect on both marine
ecosystems and human life. Toxins can cause illness and death to humans, birds and
other sea life through a transfer of toxins in the food web [5].

Figure 1.2: Red Tide off the Florida Gulf Coast on August 24, 2018 [51]

Recently, Florida has been plagued by HABs in the Gulf of Mexico in the form of
what is commonly known as "Red Tide" shown in Figure 1.2 which is caused by a
species of microalgae called Karenia brevis that persists along the South Gulf Coast of
Florida. The primary cause of algal blooms comes from nutrient pollution. Primary
nutrients that drive growth are nitrogen and phosphorus and have the capability to
push algae toward unrestrained growth. It is important to understand where these
driving nutrients originate.
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1.2.2 Nitrogen Fixation

Natural Nitrogen Fixation

Nitrogen Fixation is a naturally occurring process and is essential for some forms
of life because inorganic nitrogen compounds are required for biosynthesis of plants
and other life forms. This process involves taking nitrogen in the Earth’s atmosphere
in the form of N2 and converts it into ammonia (NH3) or other molecules that can
be consumed by living organisms [34]. This fixation frees nitrogen atoms from their
triply bonded diatom form N ≡ N and then allows them to be used in multiple ways.
Nitrogen can be fix biologically or non-biologically. Non-biological nitrogen fixation
occurs when lightning in the air converts atmospheric nitrogen and oxygen into ni-
trogen oxides NOx where these nitrogen oxides can react with water to make various
acids such as nitric acid or nitrous acid that will seep into the soil to make nitrate
which is then consumed by plants[30]. Biological nitrogen fixation was discovered by
Hermann Hellriegl and Martinus Beijerinck and occurs when atmospheric nitrogen is
converted into ammonia by nitrogenase (metallo)enzymes giving the overall reaction

N2 + 16ATP + 8e− → 2NH3 +H2 + 16ADP + 16Pi (1.13)

ATP is the organic chemical adenosine triphosphate which provides energy to drive
cellular processes where energy is used and the product adenosine diphosphate is
formed. One process is nitrogen fixation. There are certain microorganisms that fix
nitrogen, such as legumes and diazotrophs as well as cyanobacteria. Cyanobacteria
under the domain of diazotrophs inhabit almost all illuminated environments on Earth
and play a vital role in fixing nitrogen as part of the nitrogen cycle. They are primarily
responsible for naturally introducing nitrogen into biological systems [8].

Synthetic Nitrogen Fixation

Nitrogen fixation naturally occurs due to the nitrogen cycle described in the above
sub-section. However, nitrogen entry into the ecosystem has exponentially increased
post-World War II due to using nitrogen and phosphorus fertilizer for agriculture.
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The increase in human population causes an increase in the demands for food and
energy, which drives the need to synthetically fix nitrogen for plant growth. This has
dramatically increased the rate of nutrient export to coastal wasters via watersheds
[27]. The Mississippi Watershed Basin Figure 1.1 encompasses a lot of farmland in
the United States, causing nitrogen rich fertilizer to drain into the watershed and
flow to the Mississippi River and into the Gulf Coast[1]. The excessive nutrient loads
trigger an overgrowth of algae that lead to blooms in the Gulf of Mexico.

Figure 1.3: Annual Total Nitrogen Loads in the Mississippi/Atchafalaya River Basin
Transported to the Gulf of Mexico from 1980-2015 [1]

The EPA monitors nitrogen loads which is presented in Figure 1.3. Average Total
Nitrogen loads range from a high of 2,200,00 metric tons of nitrogen in 1983 and
has been on a decreasing trend where annual nitrogen load averages fall to about
1,300,000 metric tons in 2015. Models such as SPARROW and others used from the
USDS and Texas A & M University have assisted the EPA to determine total nutrient
loads [1], specifically nitrogen and help establish water quality standards.
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Biofuel Production

Biofuels from microalgae show a promising area of research. Understanding their
growth and applying numerical models to determine the change in a growing system
will allow for an efficient method to determine the performance of newer biofuels.
Microalgae show a promising source of biomass for sustainable energy production.
This photosynthetic microorganism can accumulate a large amount of neutral lipids
used in biodiesel production, as well as carbohydrates. The driving environmental
conditions such as the availability of light and nutrients such as nitrogen influence mi-
croalgal growth as well as its biochemical composition[38]. The process for converting
algal biomass into fuel is simply put: the algae is grown, harvested, dewatered then
the oil is extracted so the lipids can be converted to biodiesel while the remaining
algae is fermented and converted into bioethanol.

Droop Model

The Monod kinetic model demonstrates microorganism growth and decay with re-
gards to introducing the limited uptake rate. Microalgae growth does not follow this
trend. Microalgae are known for their ability to uncouple the uptake of nutrients,
such as inorganic nitrogen, phosphorus, micronutrients, etc., from growth. Meaning,
the classic Monod model where nutrient uptake and growth are proportional, can no
longer be applied [9].
The Droop model writes

ṡ = Dsin − ρ(s)x−Ds (1.14)

q̇ = ρ(s)− µ(q)q (1.15)

ẋ = µ(q)x−Dx (1.16)

where s is the limiting dissolved inorganic nitrogen in the form of nitrate or ammonia,
q is the internal nitrogen cell quota, and x is the biomass which is related to the
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internal concentration of the limiting element[9]. The growth rate µ of the algal
biomass x is coupled to the internal concentration of the limiting nutrient. Droop
introduces his internal nitrogen cell quota q which is a function of the amount of
nitrogen per biomass unit [23]. The absorption rate, ρ(s), is described by Michael-
Menten kinetics [9], [15] shown

ρ(s) = ρm
s

x+Ks

(1.17)

and s is the is the limiting dissolved inorganic nitrogen, Ks is the half saturation
constant for the substrate uptake and the maximum uptake rate is denoted as ρm.
The growth rate based on the Droop function

µ(q) = µ̃(1− Qo

q
) (1.18)

where µ̃ is the growth rate at hypothetical infinite quota, while the minimal cell quota
is denoted as Qo. The Droop model demonstrates that for a consistent initial condi-
tion, the internal quota will stay larger than the minimal cell quota therefore allowing
the growth rate to always stay positive[9],[50].

1.3 Parameters and State Estimations

A primary limitation for estimating parameters and monitoring systems is due to
the difficulty of measuring all components of the model that include its states and
parameters. Very few sensors exist that are reliable and affordable and can be used
to take measurements in real time to obtain desired values for difficult to measure
parameters. Other methods are extremely difficult and their complicated and so-
phisticated operations normally do not outweigh the need to use them for obtaining
measurements. In control theory, there is a method for state estimation which is
known as observers. Observers can be built instead to obtain estimations of desired
measurements based off inputs and outputs of the system.
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Figure 1.4: Demonstration of a state observer applied to a system. [33]

This state vector feedback design offers advantages in regards to system performance
and analysis. Unfortunately, the disadvantage in this system is the system state vector
is not readily available for direct measurement. Therefore, the control function cannot
be evaluated and either the control scheme for the system will have to be abandoned or
a substitute state vector needs to be found. State observer technique is derived from
control theory and is an algorithm for estimating the states of the system when only
some outputs and inputs are available[20] illustrated in Figure 1.4. Observer theory
is very well developed for linear systems. Basic structure consists of the system made
with some additional inputs that are used to steer the output of the observer to the
measured output of the estimated system [20]. After some time, the state of the real
system is approximately equal to the state of the observer which will give estimates
of the variable not easily measured.

1.4 Motivation and General Problem Statement

The goal of this thesis is to apply the general theory of observers, specifically nonlinear
observer theory, to a nonlinear biological system modeled by Droop’s formulation for
microalgal growth in order to observe internal parameters in the system.



Chapter 2

Mathematical Methods

This chapter will go into a detailed discussion of the model used as well as provide a
more specific discussion of linear observer theory and nonlinear observer theory. The
linear stability, nonlinear stability and observability of the system are explored. This
chapter then concludes with a detailed discussion on the three observers used for the
model.

2.1 Model Discussion

Original Model

The original model in Equations 2.1, 2.2, and 2.3 from [10] demonstrate growth of an
algal biomass using a nutrient concentration under the nitrate form NO−

3 In order
to couple the nutrient uptake rate λ and the growth rate µ, Droop introduced a cell
quota q(t, x) which is defined as the amount of internal nutrients per biomass unit:
q = C2

C1 . As a result, the following three nonlinear coupled equations are presented
below [10]:

∂ρC1

∂t
+
∂ρuC1

∂x
+
∂ρwC1

∂z
= µC1

(
∂2C1

∂x2
+
∂2C1

∂z2

)
+ ρ(µ(q, I)C1 −RC1) (2.1)

15
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∂ρC2

∂t
+
∂ρuC2

∂x
+
∂ρwC2

∂z
= µC2

(
∂2C2

∂x2
+
∂2C2

∂z2

)
+ ρ(λ(C3, q)C1 −RC2) (2.2)

∂ρC3

∂t
+
∂ρuC3

∂x
+
∂ρwC3

∂z
= µC3

(
∂2C3

∂x2
+
∂2C3

∂z2

)
− ρ(λ(C3, q))C1 (2.3)

where C1 is the algal biomass (gCm−3), C2is nitrogen concentration contained in
the algal biomass(gNm−3), and C3 is nutrient concentration (gNm−3) [10]. R is a
constant loss factor representing the daily respiration and mortality of the biomass.
The intra-cellular quota is

µ(q) = µ̄(1− Qo

q
) (2.4)

and the hypothetical growth rate is defined as µ̄, and Qo is the minimum internal
quota that is required for growth.
The nitrate uptake rate, λ(C3)is a function of external nitrate [10][40]

λ(C3) = λ̄
C3

C3 +K3

(2.5)

where the half saturation constant is denoted asK3 and λ̄ is the maximum uptake rate.

Light intensity, I, is computed

I(z) = Ioe
−ψ(C2,I∗,z) (2.6)

where

ψ(C2, I∗, z) =

∫ z

0

(aγ(I∗)C2(z) + b)dz (2.7)

with I∗ being the average (space and time) light in the water column the day before
and Io is the light intensity hitting the water’s surface. It is assumed that Io is periodic
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with a fundamental period being one day.

Io = Imaxo (0, sin(2πt)) (2.8)

When light is incorporated into the algae growth model for this thesis, it is as-
sumed light is hitting the algae on the surface of the water and it is periodic and will
follow Equation 2.8.
Equations 2.1, 2.7, and 2.8 modeled from [44] can expand the growth rate to now
take into account light intensity

µ(q, I) = µ̃
I

I +KsI + I2

KiI

(1− Qo

q
) (2.9)

where µ̃,KsI , KiI are three given constants [10]
In order to avoid infinite substrate (NO3) uptake in the dark a down regulation of
the internal quota of the uptake rate is included which is described below [10]

λ(C3, q) = λ̄
C3

C3 +K3

(1− q

Ql

) (2.10)

where the maximum achievable quota in the system is denoted as Ql.
This model includes advection and diffusion terms denoted as the second order deriva-
tives in the three main equations with the corresponding diffusion coefficients (µC1 , µC2 , µC3)
and fluid velocities (u,w) along the x and z direction [10].
This complex biological model is coupled with a 2D hydrodynamic model representing
free surface fluid flow that is set into motion by a paddlewheel.

Simplifications and Assumptions to the Original Model

It is first assumed the system is non-translating and diffusing, where the terms ∂ρuC1

∂x
+

∂ρwC1

∂z
, ∂ρuC

1

∂x
+ ∂ρwC2

∂z
,and ∂ρuC3

∂x
+ ∂ρwC3

∂z
on the left-hand side are set to zero and the

second order partial derivatives ∂2C1

∂x2
+ ∂2C1

∂z2
, ∂

2C2

∂x2
+ ∂2C2

∂z2
, and ∂2C3

∂x2
+ ∂2C3

∂z2
on the right-

hand side can also be set to zero.
The density (ρ) is also assumed to be constant. In order to simplify the model, light
intensity will be grouped into one variable I where this describes the growth of the
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algae on the surface of the water and light intensity is only hitting the algae on the
surface following a periodic day/night cycle.

Simplified Model

With these assumptions the model can be simplified to a system of ODEs and then
converted into state-space notation which yields the following three nonlinear coupled
differential equations that describe the biological system:

ẋ1 = µ(q, I)x1 −Rx1 (2.11)

ẋ2 = λ(q, I)x1 −Rx2 (2.12)

ẋ3 = −λ(q, I)x1 +N (2.13)

where ẋ1 is the time-rate growth of micro-algae biomass and ẋ2 and ẋ3 describe the
time-rate growth and consumption of nitrogen and nutrient concentration respec-
tively.
Light intensity is periodic, Equation 2.9 can be simplified into one variable, γ.

γ = µ̃
I

I +KsI + I2

KiI

(2.14)

Combining the previous assumptions, the following simplified model 2.15, 2.16, and
2.17 is

ẋ1 = γ

(
1− Qox1

x2

)
x1 −Rx1 (2.15)

ẋ2 = λ̄

(
x3

x3 +K3

)(
1− x2

Qlx1

)
x1 −Rx2 (2.16)

ẋ3 = −λ̄
(

x3

x3 +K3

)(
1− x2

Qlx1

)
x1 +N (2.17)
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Where N is a control nutrient input into the system to sustain growth within the
system. Parameter inputs for the system are shown in Table A.1.

2.2 Results From Theory of Dynamical Systems

This section will describe the necessary mathematical tools that will be used on the
microalgal system.

2.2.1 Stability and Equilibrium

In general, an equilibrium is defined as a constant solution of a dynamical system.
Specifically, for a system of ordinary differential equations where a nonlinear system
of the form

ẋ = f(x, t) (2.18)

where x is the state vector such that x ∈ Rn, and the equilibra x∗ can be found by
solving the algebraic equation so that

f(x∗, t) = 0 (2.19)

for all of t[52].

2.2.2 Stability of an Equilibrium

When analyzing a nonlinear system, is important to test the system’s equilibrium for
stability. Currently Equations 2.15, 2.16, and 2.17 are in a nonlinear dynamic form
described in 2.19 where x = x1.....x

T
n is a state vector with an equilibrium point x∗

where

f(x∗, t) = 0 (2.20)

for all of t.



CHAPTER 2. MATHEMATICAL METHODS 20

If an equilibrium point is isolated it will have Lyapunov stability if for any ε > 0 a
real positive number will exist δ(ε, to) for all t ≥ to which gives

‖x(t0)− x∗‖ ≤ δ ⇒ ‖x(t)− x∗‖ ≤ ε (2.21)

where the Euclidean norm of the vector x is denoted as ‖x‖

‖x‖ =
√
xTx (2.22)

The isolated equilibrium point is locally asymptotically stable if it has the previous
Lyapunov stability and

‖x(to)− x∗‖ ≤ δ ⇒ x(t)→ x∗ (2.23)

when t→∞.
The isolated equilibrium point will be globally asymptotically stable if it holds the
above Lyapunov stability and demonstrates

x(t)→ x∗ (2.24)

for any initial condition x(to) as well as t→∞.

Stability Analysis of Linear Systems

A linear system 2.25, will be stable about the equilibrium point x∗ ≡ 0 if all the
eigenvalues of the matrix A have non-positive real parts and no repeated eigenvalues
on the imaginary axis [52]. When a linearized system described as

ẋ = Ax (2.25)

is said to be unstable if any of the eigenvalues have a positive real part or the eigen-
values are repeated [52]. This stability analysis plays an important role when the
stability of a nonlinear dynamic system is considered.
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Nonlinear System Stability Analysis

There are two methods for analyzing the stability of a nonlinear system. The first is
through the method of linearizion. Let x∗ be the equilibrium of 2.18, then introducing
x̄ = x− x∗ we can have ˙̄x = f(x̄+ x∗, t). For small x̄ using a Taylor series expansion
of f we have

˙̄x ≈ ∂f

∂x
(x∗, t)x̄ (2.26)

or
˙̄x = A(t)x̂ (2.27)

which is linearized version of the nonlinear system 2.18. Assuming that A(t) is a
constant matrix we can use the linear system stability analysis to obtain stability
conditions for the nonlinear system 2.18. If the linearized system is asymptotically
stable then the corresponding equilibrium of the nonlinear system is also asymptoti-
cally stable. The second method is through the use of the Lyapunov function. When
the nonlinear system is evaluated at x∗ the system will approach zero. If in a finite
neighborhood D of x∗ there exists a positive-definite scale function E(x) > 0, also
known as a Lyapunov function, with continuous first partial derivatives with respect
to x and xt, such that its derivative is negative in D, then the equilibrium x∗ is
asymptotically stable. Moreover, Ė(x) ≤ 0 for all x 6= x∗ for all t. If Ė(x) > 0

for all x 6= x∗ then the equilibrium point is unstable. The equilibrium point will
be considered Lyapunov stable. If the condition Ė(x) is not identically zero along
any solution of x for other than the equilibrium point then that equilibrium point is
locally asymptotically stable. If also the entire state space of a positive-definite func-
tion E(x) that is radically unbounded, E(x)→∞ as |x| → ∞ then the equilibrium
point will be globally asymptotically stable for any initial condition [52].

Equilibria of the System Describing Algal Growth

Solving the third order ODE in 2.11, 2.12, and 2.13 presents a solution that does not
change with time. This equilibrium of the system, when put back into the system, will
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produce a steady state result. The stability of these equilibrium points are evaluated
by determining the eigenvalues of the Jacobian matrix A in 2.32. The real part of
the eigenvalue needs to be negative and non repeating, giving the system asymptotic
stability. This method is used to evaluate the stability of a nonlinear system.

Figure 2.1: Equilibrium of System With a Small Disturbance

When the equilibrium points are used as initial conditions in the system, it will stay
in that steady state. When this equilibrium is disturbed say at x(t = 0) = x∗ + de

instead of x(t = 0) = x∗ the system will jump but then head towards convergence
near the equilibrium, as demonstrated in Figure 2.1.
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2.2.3 Linearization of the Algae Growth Model System

The system described by 2.19 is linearized and the Jacobian matrix A is built with
the following equilibrium points.

x∗1 =
N

λ̄
(

x∗3
x∗3+K3

)(
1− α

Ql

) (2.28)

x∗2 = αx∗1 (2.29)

x∗3 =
RαK3

λ̄
(

1− α
Ql

)
−Rα

(2.30)

where
α =

γQo

γ −R
. (2.31)

The equilibrium points were applied to the Jacobian Matrix A

A =



∂F1

∂x1

∂F1

∂x2

∂F1

∂x3

∂F2

∂x1

∂F2

∂x2

∂F2

∂x3

∂F3

∂x1

∂F3

∂x2

∂F3

∂x3


(2.32)

where the system specific Jacobian is

A =


γ − 2Qox1

x2
−R −2Qox1x2−Qox12

x22
0

λ̄x3
x3+K3

− λ̄x3
(x3+K3)Ql

−R λ̄x1K3

(x3+K3)2
− λ̄Qlx2K3

((x3+K3)Ql)2

− λ̄x3
x3+K3

λ̄x3
x3+K3

− λ̄x1K3

(x3+K3)2
+ λ̄Qlx2K3

((x3+K3)Ql)2

 (2.33)

so the eigenvalues for the system can be computed.
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2.2.4 Sliding Mode Phenomenon in Dynamical Systems

Sliding mode phenomenon was first discovered in variable structure control systems,
but recently other applications of sliding mode have been used. This section provides
an explanation on sliding mode and will discuss how it will be used for designing
observers and how this observer will be applied to an algal system. Sliding mode
was first implemented as a high speed switched feedback, a form of discontinuous
nonlinear control, and was applied to alter the dynamics of a nonlinear system by use
of a high-frequency "switching control" [49]. Sliding mode will be explained using a
first order system. Given a system

ẋ = −Msgn(x) M > 0 (2.34)

where

sign(x) =

{
−1 x ≤ 0

+1 x > 0
(2.35)

if the initial condition xo > 0 then x(t) = −Mt + xo so x(t) will decrease until
x(t) = 0. If xo < 0 then x(t) = Mt + xo and x(t) will increase until it reaches zero
too as can be shown in Figure 2.2.
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Figure 2.2: State trajectories for ˙̂x = −sign(x) [17]

This application of the discontinuous control signal forces the system to slide along
a cross section of the system’s normal behavior [25]. In practical implementation of
a system (for example using discretization) the sign function will be switching from
+1 to −1 with a sampling frequency and x(t) ≈ 0 for t ≥ t1.
Now apply this to a nonlinear system f(x) such that

ẋ = −Msgn(x) + f(x) |f | < M (2.36)

the same will happen if |f | < M where x(t) = 0 for t ≥ t1. Consider a nonlinear
system with a control described by

ẋ = f(t, x) +B(t, x)u(x, t), x ∈ Rn, u ∈ Rm B ∈ Rnxm (2.37)
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with a switching feedback control law

ui =

{
u+
i (t, x) σ(x) > 0

u−i (t, x) σ(x) < 0 i = 1, ....m
(2.38)

ui can be expressed as

ui =
u+
i + u−i

2
+
u+
i − u−i

2
sgn(σi) (2.39)

Meaning that after some time, x(t) ≡ 0 when t ≥ t1. All trajectories from any initial
conditions will converge to zero and there are no trajectories leaving zero. that means
without loss of generality we can always assume

ui = −Msgn(σi) (2.40)

or
u = −M(t, x)sgn(σ) sgn(σ) = [sgn(σ1), ..., sgn(σm)]T (2.41)

The problem is to find such switching function σ(x) so that σ(x(t)) ≡ 0 for t ≥ t1

is the sliding surface and it leads to x(t) → 0 where t → ∞ as illustrated in Figure
2.3.
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Figure 2.3: Sliding mode control for an on and off control system [33]

Equivalent Control

When sliding mode starts at σ(x) ≡ 0 the discontinuous control is switching with
high frequency. The average value of this control is called equivalent control. Differ-
entiating σ along the system trajectory using the chain rule we have

σ̇ =
∂σ

∂t
+
∂σ

∂x
ẋ =

∂σ

∂t
+
∂σ

∂x
f(x, t) +

∂σ

∂x
B(x, t)ueq (2.42)

If σ(x(t)) ≡ 0 then σ̇ ≡ 0 so

∂σ

∂t
+
∂σ

∂x
f +

∂σ

∂x
Bu = 0 (2.43)

If
∂σ

∂x
B(x, t) is nonsingular for all of x and t, then ueq can be computed as

ueq = −[
∂σ

∂x
B(x, t)]−1(

∂σ

∂t
+
∂σ

∂x
f(x, t)) (2.44)

This equation can be used to extract new information about unmeasured disturbances
or unmeasured states. On one hand ueq can be obtained by finding the average of
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discontinuous functions, on the other hand 2.42allows us to express the unknown
qualities using ueq.

2.3 Linear System Observer Theory

In many control systems, designs are usually based off the state vector feedback where
the system’s inputs are functions only of the current state vector[37]. Given a linear
system of the form

ẋ = Ax+Bu xεRn (2.45)

for example, 2.45 full state feedback allowing to stabilize x to zero is

u = −Kx̂ uεRr (2.46)

But in many cases full state vector is no accessible but on some output

y = Cx yεRm (2.47)

is available. The problem is to calculate x(t) while measuring only y(t). Whether
y(t) has enough information about x(t) is a question of observability.

2.3.1 System Observability

Consider a linear time invariant system in state-space of the form,

ẋ = Ax+Bu (2.48)

y = Cx (2.49)

where x ∈ Rn u ∈ Rr and y ∈ Rm and y describes the output vector for the measured
states.
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In order to determine the observability of the system, equations 2.48 and 2.49 can be
tested with an observability matrix (rn x n) of the form

O =



C

AC

A2C
...

An−1C


(2.50)

The system is observable when O is full rank n [52]. In case for the system de-
scribed in Equations 2.11,2.12, and 2.13, where n = 3 for the system, the rank of the
observability matrix must also be 3 in order for the system to be observable.

2.3.2 Linear State Observers

The idea of the observer is to use system model with additional correction terms based
on the measured output of the system. Looking at an asymptotic state observer in
the form,

ˆ̇x = Ax̂+Bu+ L(y − Cx̂) (2.51)

where x̂ describes the estimate of x, and L denotes a gain matrix with dimensions
n x r, this is known as a Luenberger Observer. The corresponding error between the
actual state and estimated state to be,

x̄ = x− x̂. (2.52)

The estimate error equation for x̄, can then be described as,

˙̄x = (A− LC)x̄ (2.53)

In order to drive the error, x̄ to zero, the eigenvalues of (A−LC) need to have negative
real parts [52]. An example of a Luenberger observer is shown in Figure 2.4
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Figure 2.4: Block diagram of a Luenberger Observer[7] [33]

This observer does not take into account measurement noise and parameter uncertain-
ties. It does however, demonstrate estimation error stability under optimal conditions
[7].

Proportional-Integral Observer

We know the Luenberger observer focuses on correcting the estimations with a term
related to the difference between the actual outputs and predicted outputs as shown
in 2.52. The Proportional Integral, or PI observer will use the integral of the error
term[11] where the PI observer for the system in 2.51 will be re written as

ˆ̇x = Ax(t) +Bu(t) +KI(y − Cx̂(t)) +Kp

∫ t

0

(y(τ)dτ − Cx̂(τ)) (2.54)

and where the error equation is now

ex = x− x̂ eω =

∫ t

0

(y − Cx̂)dτ (2.55)

so now (
ėx
ėω

)
=

(
A+KIC KP

C 0

)(
ex(t)

eω(t)

)
(2.56)
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where the gains KI and KP can be chosen to ensure stable error dynamics[6],[11].This
integrator will give the observer of the system more robustness in order to deal with
the modeling uncertainties and the inherent measurement noise.

2.3.3 Kalman-Bucy Filter

Kalman filters are extremely popular for state estimation of linear systems since they
are very similar to a Luenberger observer, but they utilize a time-varying gain. This
will allow the variance in the error estimate to be minimized[11]. Given the observable
system

˙̂x(t) = Ax(t) +Bu(t) + w(t); x(to) = xo (2.57)

and
y(t) = Cx(t) + v(t) (2.58)

where the centered white noises, or Gaussian perturbations, of the system are rep-
resented by w(t) and v(t) [4] and assuming the initial distribution is also Gaussian
with initialization described as

E(xo) = x̃o; E((xo − x̃o)(xo − x̃o)T ) = Po (2.59)

the Kalman-Buchy filter gives the state estimation vector to be optimal in a quadratic
sense of E||x− x̂||2 → E(x̂)

˙̂x(t) = Ax̂(t) +Bu(t) +K(t)[y(t)− Cx̂(t)]; x̂(to) = x̂o (2.60)

with the covariance error propagation

P (t) = E[(x− ˆx)(x− x̂)T ] (2.61)

so
Ṗ (t) = AP (t) + P (t)AT − P (t)CTR(t)−1CP (t) +Q(t) (2.62)
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where Q(t) and R(t) are Gaussian covariances with respect to w(t) and v(t) [11]. the
gain, K(t), can be computed to be

K(t) = P (t)CTR(t)−1 (2.63)

This filter can be applied when matrices A and C are time dependent[11] Sliding
mode can be used for state estimation and can be applied to linear and nonlinear
systems.

2.3.4 Sliding Mode Observer for Linear System

Sliding Mode observer uses a discontinuous function of the difference between outputs
of the system and the observer. In the linear case, instead of a linear correcting term
like the Luenberger observer, it uses a discontinuous feedback function based on the
output of the linear function with a discontinuous function[18] shown as

˙̂x = Ax̂+Bu+ Lsign(y − Cx̂) (2.64)

where y is described in equation 2.49; using the gain matrix L sliding will occur in the
system 2.64 on the manifold y−Cx̂ = 0, and it will become equivalent to the reduced
order observer[18], where sign is a high speed feedback discontinuous function that
will drive the state of a system to a predetermined sliding surface in sate-space shown
as[22],
The linear sliding mode observer was introduced by [21] and has been well developed
for the case of linear systems. The observer has a structure composed of the system
model with additional inputs that are used to steer the output of the observer to the
measured output of the estimated system.
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Figure 2.5: Block Diagram of a Linear Sliding Mode Observer
[33]

Shown in Figure 2.5 with the observability condition, the system and the state of the
observer are approximately equal to the state of the real-life system, thereby providing
estimates of the variables that are not measured directly[20].
There are many approaches to applying observers to nonlinear systems, this sliding
mode approach is one that can be applied to a variety of systems.

2.4 Nonlinear Observer Theory

Originally nonlinear observers were developed based on the idea of variable structure
control for the use of detecting disturbances in complex systems[24]. In practice,
having all state variables available for direct measurement is extremely rare. For the
case of linear systems, observers have been developed extensively in the form of Lu-
enberger observers as well as PI observers and Kalman-Buchy filters. In the field of
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nonlinear systems, a nonlinear observer design is considerably more challenging and
has been the center of attention in a lot of research practices.
For nonlinear continuous-time systems, observers such as the extended Luenberger
observer and the Extended Kalman Filter have been used. These approaches are very
robust when disturbances are implemented and measurement noise is monitored. For
the case of continuous-time state estimation from discrete-time measurement, a two
stage implementation can be used. The predictor state reconstructs the state vector
by validating the numerical integration methods to drive the guaranteed numerical
evaluation of the solution to the ODEs at determined measurement time steps[29].The
correction stage consisting of the feasible domain of the measured output and the
simulated output are compared in order to minimize the estimated state vector from
the prediction stage. The second stage looks at a continuous-time state estimation
for continuous-time measurements, where a closed loop interval observer takes the
model’s parameters’ uncertainties into account. A lower and upper bound are com-
puted for the state vector, which limits all possible state vectors generated by the
uncertainty in the system and are consistent with the measured data[29].

2.4.1 Extended Kalman Filter

The most popular state estimator for nonlinear systems is the extended Kalman
filter, which is based on the model linearization along the estimated trajectory that
will make it suboptimal [39], [28]. In the case of a continuous-discrete system with
additive noise shown as

ẋ(t) = f(x(t), u(t)) + η(t) y(tk) = h(x(tk)) + ε(tk) (2.65)

where (xt) = x0, η(t) and ε(tk) are normally distributed white noises. The corre-
sponding estimation of the state vector is [11]

˙̂x(t) = f̂(x̂(t)) +K(t)[y(t)− h(x̂(t))] x̂(to) = x̂o (2.66)

The extended Kalman filter will provide an estimation of the mean and covariance
matrix of the state vector and its equations[28]. This example does not take into
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account parameter and input uncertainties.

2.4.2 Nonlinear Sliding Mode Observer

Now consider a nonlinear system of the form,

ẋ = f(x, t) (2.67)

where y is the output vector measurements

y = h(x) (2.68)

where x ∈ Rn. y ∈ Rm where m = 1 with

f(x) =



f1(x)

f2(x)

f3(x)
...

fn(x)


(2.69)

The sliding mode observer can be designed in terms of the estimated states of the
system. In order to estimate the state in system 2.67 by measurements in 2.68 the
observer takes the following form[19].

ˆ̇x =

[
∂H(x)

∂x
(x̂)

]−1

M(x̂)sgn(V (t)−H(x)) (2.70)

Where H(x) is a column vector that is built as an output function for h(x) and its
corresponding Lie derivatives

H(x) =



h1(x)

h2(x)

h3(x)
...

hn(x)


=



h(x)

Lfh(x)

Lf
2h(x)
...

Lf
n−1h(x)


=



h(x)
∂h1(x)
∂x

f(x)
∂h2(x)
∂x

f(x)
...

∂hn−1(x)
∂x

f(x)


(2.71)



CHAPTER 2. MATHEMATICAL METHODS 36

where Lif is the ith Lie derivatives applied to equation 2.68 which is the output
function along system f [19]. The following M(x̂) matrix is a diagonal nxn matrix
of gains shown with positive elements mi(x), i = 1, ..., n[18].

M(x̂) =



M1(x̂)

M2(x̂)

M3(x̂)

Mn(x̂)


(2.72)

Mi(x̂) > 0 must be large enough to progress towards sliding mode [35].
V (t) is shown to be

V (t) =



v1(t)

v2(t)

v3(t)
...

vn(t)


=



y(t)

[L1(x̂)sign(v1(t)− h1(x̂))]eq

[L2(x̂)sign(v2(t)− h2(x̂))]eq
...

[Ln(x̂)sign(vn−1(t)− hn−1(x̂))]eq


(2.73)

This method possess two drawbacks. First, the observer vector V (t) is determined
by each successive step of taking the equivalent value, which potentially leads to
chattering noise produced by a finite frequency of the feature switching in the sliding
mode observer [35]. The other features is the Jacobian matrix, H(x̂) and ∂H(x̂)

∂x
, must

stay nonsingular in order to be invertible[35]. The non-singularity of the Jacobian is
actually the observability condition.
The observer convergence can be proved by considering the modified error

e(t) = H(x)−H(x̂) (2.74)

using 2.67 and 2.68 we obtain

ė =
∂H

∂x
(x)ẋ− ∂H

∂x
(x̂) ˙̂x =

∂H

∂x
(x)f(x)− ∂H

∂x
(x̂)

[
∂H

∂x
(x̂)

]−1

(2.75)
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which is
ė =

∂H

∂x
(x)f(x)−M(x)sgn(V (t)−H(x̂) (2.76)



ė1

ė2

...
ėi
...

ėn−1

ėn


=



ḣ1(x)

ḣ2(x)
...

ḣi(x)
...

ḣn−1(x)

ḣn(x)


−M(x̂)sgn(V (t)−H(x̂(t))) =



h2(x)

h3(x)
...

hi+1(x)
...

hn(x)

Lnfh(x)


−



m1sgn(v1(t)− h1(x̂(t)))

m2sgn(v2(t)− h2(x̂(t)))
...

misgn(vi(t)− hi(x̂(t)))
...

mn−1sgn(vn−1(t)− hn−1(x̂(t)))

mnsgn(vn(t)− hn(x̂(t)))


(2.77)

As long asm1(x̂) ≥ |h2(x(t)) the first row in the error dynamics ė1 = h2−m1(x̂)sgn(e1)

will be sufficient enough as a condition to enter e1 = 0 for a sliding mode in finite
time. Along the e1 = 0 surface, the corresponding v2(t) = [m1(x̂sgn(e1)]eq equivalent
control will be equal to h2(x) and so v2(t) − h2(x̂) = h2(x) − h2(x̂) = e2, where the
second row in the error dynamics ė2 = h3(x̂) − m2(x̂)sgn(e2) will enter the e2 = 0

sliding mode in finite time [19]. Where along the ei = 0 surface, the corresponding
vi+1 = [...]eq equivalent control will be equal to hi+1(x), so as long asmi+1 ≥ hi+2(x(t))

the (i+ 1)th row in the error dynamics will enter ei+1 = 0 sliding mode in finite time
[19]. When the gainsmi are large, all observer estimated states reach the actual states
in the finite time. Meaning, increasing mi will allow for faster convergence in any
desired finite time as long as each hi(x(0)) function can be bounded [19], emphasizing
the Jacobian of H(x) must be invertible.

2.4.3 Problem Setup

The goal of this thesis is to apply a nonlinear sliding mode observer to estimate pa-
rameters such as algae biomass, internal nitrogen, and external nutrients described
by Droop’s model for microalgae growth derived from a 2D coupled hydrodynamic
and biological model described in [10].
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Simulation Parameters

Parameters used to model algae growth can be found in Table A.1 located in Appendix
A. The controlled external nitrate values used for the model first had initial conditions
set to 9µgN/m3, but unfortunately this does not produce algae concentrations that
resemble the model in [10] When the initial conditions into the model are changed, for
example, using 20gC/m3 for biomass and 5gN/m3 for internal nitrogen and external
nitrates the system will respond in a more realistic manner that closely follow [10].

Model Validation

The algae growth model is compared with concentration values described in [10]. Af-
ter removing the spatially dependent terms and assuming the algae is sitting on the
surface of the water, the growth curve presented in the results still falls on the same
order of magnitude as [10].
When analyzing the observability and stability of the equilibrium of the 3rd order non-
linear system, the rank of the concatenated matrix O needs to match the rank of the
system in order for the system to be observable and the equilibrium need to be locally
asymptotically stable. The stability of the nonlinear system was analyzed through
the method of linearization and when the eigenvalues of the Jacobian matrix of the
linearized system have all negative and non-repeating real parts the linearized system
is globally asymptotically stable and the nonlinear system is locally asymptotically
stable.



Chapter 3

Results

3.1 Simplified Droop Model Results

The simulation results for the simplified Droop Model derived from [10] are presented.
The system illustrated by Equations 2.15,2.16, and 2.17 are solved using Euler’s
method with a sufficiently small time step dt was needed to provide fast parameter
modeling in the system over the span of ten days. The simulation results for the
simplified model are presented below.

39
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Figure 3.1: Algae growth demonstrated by Droop’s Model

The algae growth in Figure 3.1 represents growth simulated in a petri dish under a
growth lamp. The initial conditions for this growth are the equilibrium of the system
with some small disturbance de = 0.001. The corresponding internal nitrogen and
external nutrients are presented in Figures 3.2 and 3.3
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Figure 3.2: Internal nitrogen growth closely follows algae biomass growth

Figures 3.1 and 3.2 show the relationship between the algae biomass and the internal
nitrogen. As the biomass grows the internal nitrogen will follow. Figure 3.3 shows
the decrease in the available nutrients as the algae consumes them.



CHAPTER 3. RESULTS 42

Figure 3.3: External nitrates (NO−
3 ) decrease when consumed by microalgae

Figures 3.1, 3.2, and 3.3 have initial conditions that are a small deviation, de, from
the equilibrium point. The equilibrium points are extremely small, on the order of
magnitude of milligrams of carbon for biomass and milligrams of nitrogen for internal
nitrogen and external nitrates.
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Figure 3.4: Algae biomass concentrations are more representative to nature

Figure 3.4 shows a more realistic representation of aglal concentrations and more
closely follows [10]. This helps demonstrate the validity of the model where the growth
of the algae is more representative of a natural growth given a flow of nutrients.

Figure 3.5: Internal Nitrogen
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The amount of internal nitrogen in the biomass grew as well with higher initial con-
ditions such as 5

gN

m3
.

Figure 3.6: External Nitrate

When the new initial conditions are applied, the system demonstrates a more rep-
resentative growth that follows [10]. When EPA water quality limits for allowable
external nitrates in a water system are used for N , the system shows a realistic
growth and response where the nitrates will be consumed after about four days and
the algae will continue to grow as it consumes its internal nitrogen.

3.2 State Observers Applied to Microalgae System

This section will focus on the results from applications of linear observers and the
algal system’s response to disturbances from the equilibria.
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3.2.1 Linear State Observer

State observers applied to the system in 2.15 2.16, and 2.17 are presented. Algae
biomass, internal nitrogen and external nitrates were observed. In the following fig-
ures, the black line represents the linear observer estimate of the observed parameter
using a Luenberger Observer. The observer gains in L were found using the "acker"
function in MATLAB which uses Ackermann’s formula [32] to calculate the gains.
The magenta line shows the linear sliding mode observer and red shows the system
in it’s steady state.

Figure 3.7: Linear State Observer for Biomass

The linear observer estimate for biomass in 3.7 takes the longest to converge towards
the equilibria region while the linear sliding mode observer takes less time to converge.
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Figure 3.8: Linear State Observer for Internal Nitrogen

Figure 3.8 does not show successful convergence within ten days. However, if the
time period is increased to about one thousand days, the system will converge and is
shown in Figure 3.9.
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Figure 3.9: Linear State Observer for Internal Nitrogen Showing Convergence

Estimation of external nutrients show the linear sliding mode observer converges faster
than the Luenberger observer.



CHAPTER 3. RESULTS 48

Figure 3.10: Linear State Observer for External Nutrients

Overall, the linear observers applied to a biological system that model algae biomass,
internal nitrogen concentration, and nutrient concentration shows that the system
converges fast for biomass and external nutrients but takes an extremely long time for
internal nitrogen to converge. Since the goal of an observer is to have fast convergence
towards the model, i.e. in a few days compared to the thousand days, this is not ideal
for a linear observer. This demonstrates the need for the use of a nonlinear observer
that is more robust to have a fast convergence towards the model. Figures 3.7, 3.8,
and 3.10 illustrate the use of a linear Luenberger observer and a linear sliding mode
observer applied to the linearized model demonstrating the success of applying linear
state observers to a linearized system.
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3.2.2 Nonlinear Sliding Mode Observer

Applying the nonlinear sliding mode observer to the system described in 2.15, 2.16,
2.17 where this system is of the form

ẋ = f(x) (3.1)

Where f(x) can be noted as

f(x) =


F1(x)

F2(x)

F3(x)

 =


ẋ1

ẋ2

ẋ3

 =


γ

(
1− Qox1

x2

)
x1 −Rx1

λ̄

(
x3

x3 +K3

)(
1− x2

Qlx1

)
x1 −Rx2

−λ̄
(

x3

x3 +K3

)(
1− x2

Qlx1

)
x1 +N

 (3.2)

Constructing the H(x) vector

H(x) =



h1(x)

h2(x)

h3(x)
...

hn(x)


=



h(x)

Lfh(x)

Lf
2h(x)
...

Lf
n−1h(x)


=



h(x)
∂h1(x)

∂x
f(x)

∂h2(x)

∂x
f(x)

...
∂hn−1(x)

∂x
f(x)


(3.3)

where the components of H(x) are computed below

h1(x) = x2 (3.4)

h2(x) =
∂h1(x)

∂x
f(x) = F2 (3.5)

h3(x) =
∂h2(x)

∂x
f(x) =

∂x2

∂x1

F1 +
∂x2

∂x2

F2 +
∂x2

∂x3

F3 (3.6)
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The computation for the Jacobian of H(x) is shown below where
∂H(x)

∂x
is of the

form

∂H(x)

∂x
=


0 1 0
∂F2

∂x1

∂F2

∂x2

∂F2

∂x3
∂

∂x1

h3(x)
∂

∂x2

h3(x)
∂

∂x3

h3(x)

 (3.7)

where

∂

∂x1

h3(x) =
λ̄x3

x3 +K3

[
γ − 2γx1

x2

− 2R

]
+

λ̄

(x3 +K3)2

[
−λ̄x2

3

Ql

− 2λ̄K3x1x3

+NK3

]
+

2λ̄K3x3

Ql(x3 +K3)3
(3.8)

∂

∂x2

h3(x) = 2Rx2 +
λ̄x3

x3 +K3

[
γQox

2
1

x2
2

+
R

Ql

]
+

λ̄

Ql(x3 +K3)2

[
λ̄x2

3

Ql

−NK3

]
+

2λ̄K3x3

Ql(x3 +K3)2

[
x1 −

x2

Ql

]
(3.9)

∂

∂x3

h3(x) =
λ̄K3

(x3 +K3)2
[−2γx1 − γQoK3x

2
1 − 2Rx1 +Rx2]

+
λ̄K3

Ql(x3 +K3)2
[−2x2

1x3 +Rx2 + 2Nx2] +
2λ̄2K3x2x3

Q2
l (x3 +K3)2

+
λ̄K3(x3 −K3)

(x3 +K3)3
[x2

1 −N ] +
2λ̄2K3x1x2(K3 − 2x3)

Ql(x3 +K3)4

− λ̄
2K3x

2
2(K3 − 2x3)

Q2
l (x3 +K3)4

(3.10)

Since the inverse of 3.7 cannot be easily determined, an estimation of the inverse of
3.7 can be calculated using a transformation. Since the system is of the form

˙̂x = f(x) (3.11)
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where
y = h(x) = x2 (3.12)

the system can be transformed into an estimated state space where

y = y1

ẏ = y2 (3.13)

ÿ = y3

so

ẏ1 = y2

ẏ2 = y3 (3.14)

ẏ3 = g(y1, y2, y3)

where H(x) will still be

H(x) =


h(x)

Lfh(x)

L2
fh(x)

 =


y1

y2

y3

 (3.15)

where the sliding mode observer is still of the form

˙̂x = Lsgn(Ŷ −H(x̂)) (3.16)

such that Ŷ is

˙̂y1 = L1sgn(y − ŷ1) = v2

˙̂y2 = L2sgn(y − ŷ2) = v3 (3.17)
˙̂y3 = L3sgn(y − ŷ3) = v4
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where the goal is to estimate y then find x by finding L such that Ŷ → H(x̂). This
gives the result shown in Figure 3.11.

Figure 3.11: Sliding Mode Observer applied to internal nitrogen

The nonlinear sliding mode observer developed for this thesis successfully observed
parameters of a simplified Droop Model describing algal growth. The trajectory of the
observer makes sense, because the observer starts at zero, while the internal nitrogen
has initial conditions, the observer will then successfully converge to the internal
nitrogen and follow it. This takes less than a day compared to the linear observers
used for internal nitrogen, which took approximately a thousand days.

3.3 Other Analysis

Monte Carlo simulations can be used to generate random disturbances to look at a
system’s response. Usually these random objects are introduced through computer
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simulations in order to solve deterministic problems, which involves random sampling
from certain probably distributions and can be applied to natural systems to see how
a natural system responds to various disturbances[36]. A Monte Carlo simulation was
applied to the biomass model with a uniformly distributed randomized disturbance
from the equilibrium to observe the model’s response.

Figure 3.12: Monte Carlo simulation showing a distribution of biological model based
off random inputs into the system.

The simulation results in Figure 3.12 show the system’s response to randomized dis-
turbances to the initial conditions. This was simulated over the system that illustrated
the low algae concentration, meaning, the concentrations for algal biomass would not
be measurable in an open system. This shows the system’s behavior around the region
near the equilibrium is normal.
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Conclusion and Discussion

Simulation of Algae Growth

Figures 3.1, 3.2, and 3.3 describe algal growth with initial conditions that are near
the equilibrium region. These values are very low, with initial concentration for
algae biomass starting at approximately 0.04

gC

m3
and only growing up till 0.35

gC

m3
.

These concentration values do not fall on the same order of magnitude for algae
concentrations in [10] nor are they representative of the growth that occurs naturally.
Figures 3.4, 3.5, and 3.6 demonstrate algae growth the more closely follows [10],
where the concentration values are on the same order of magnitude. This represents
algae growth more naturally, especially since the initial conditions start at higher
concentration values.

Discussion on System Sensitivity to Parameter and Initial Condition Changes

PDEs describing naturally occurring systems are extremely complicated. In order
to develop models describing these systems, usually they are simplified in to an nth
order ODE that are typically extremely nonlinear with each parameter coupled with
the others. This simplification makes the system extremely sensitive to small param-
eter changes as well as changes to initial conditions. This occurred with the above
simplified algal system. Initially the starting conditions were the equilibria of the sys-
tem. When some small deviation was introduced the system would respond within

54
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one or two orders of magnitude. When a small control input N was used, the system
responded normally, but when a larger N value was used, especially values from EPA
water quality standards, the system would become oversensitive and break. It would
not model the growth accurately. In order to incorporate the EPA water quality
standard values for N, the initial conditions needed to change where they followed
the initial conditions set in [10]. Once this was done, the system responded with the
realistic concentrations described in Figures 3.4, 3.5, and 3.6.
Lorenz describes this type of system sensitivity as the "butterfly effect" where a over-
simplified system that is chaotic or near chaotic will be extremely sensitive to small
changes to parameters or initial conditions and will cause a major change in the sys-
tem. He experienced this with upper atmospheric weather modeling and his system
of PDEs were simplified to a third order ODE.
Understanding parameter sensitivity occurs in systems describing natural systems is
important so certain parameters do not reach unrealistic values such as what hap-
pened in 3.1, 3.2, and 3.3.

Observers Applied to Algae System

Linear observer theory has been applied for parameter estimation in biological pro-
cesses in depth for the understanding of algal growth systems. Nonlinear observer
theory is still being explored. This thesis is one application of nonlinear observer
theory by using a nonlinear sliding mode observer. This application shows potential
for parameter estimation of nutrients for predicting algal blooms as well as observing
growth for biological processes for biofuel.

4.1 Future Work

4.1.1 Improve Model

In order to improve the model the assumptions made beforehand need to be added
back in: such as adding back light attenuation over water depth. The advection and
diffusion terms can be added back and assume the algae is translating through the
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water’s surface in the x and z direction. As well as add in the hydrodynamic model
described in [10] and couple with the algal growth system.

4.2 Implications of Research

Algae growth has caught a lot of attention due to recent blooms along the coast of
California and Florida as well as its use for biofuel production. This section looks at
how this thesis has the potential to be applied to these areas of research.

Harmful Algal Bloom Modeling

Massive research efforts are focusing on methods to predict, prevent, and manage
HABs. Any location with bodies of water can be subjected to these blooms and their
negative impacts have both negative health and economic consequences. Empirical
modeling efforts such as SPARROW can be used to help predict nutrient loads into
water regions such as the Gulf Coast that are more susceptible to blooms as well as
help prevent nutrient overload into sensitive bodies of water.
One method could be applying observers to a system based on a few measured inputs.
This will allow researchers to estimate those parameters that are not easily measured
and can help predict other parameters such as internal quotas and determine if a
harmful bloom will occur or if the algal species is in equilibrium with its environment.

Biofuel Development Modeling

Algae has been closely looked at for use as an alternative fuel source. There is a
need for renewable carbon neutral biofuels that can replace petroleum-based fuels
in order to mitigate greenhouse gases that are being released into the atmosphere.
Microalgae are photosynthetic microorganisms that are capable of converting sunlight,
water, carbon dioxide, and other nutrients into a biomass. That biomass produces
oleaginous lipids that can be used in biofuel production [16].
Research in this area is already being conducted, and should continue to focus on
optimizing the lipid production from algal biomass. Application of observer theory
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can help estimate the amount of lipids that will be produced based on estimations of
algal biomass concentrations as an example.
One effort focuses on utilizing readily available algae from present HABs. Scientists at
Sandia National Labs are looking to harness the already deadly harmful algal blooms
to create a renewable, domestic fuel source. Instead of establishing algae farms,
this effort will focus on collecting the algae polluting California’s coastal waters and
converting this algae into biofuel[13].
Observer Theory is expanding into new areas of research that focus on biological
processes. One major area is looking at state parameter estimation of algae biological
processes in order to estimate parameters that are important for biofuel production.
Parameters such as internal nitrogen quotas and lipid content are difficult to measure;
but efforts from [7],[11],[12], [28], [29] and many more have the goal to apply state
observers for parameter estimation in algal growth for biofuel production so we can
be one step closer to removing our dependency on petroleum-based fuel in the future.
This Master’s Thesis looks to apply a nonlinear sliding mode observer to a simplified
algal growth model in order to contribute to this active area of research.



Appendix A

Parameters Used for Algal Growth

Simulation

Parameter Value Unit Description

µ̃ 1.7 day−1 growth rate
Qo 0.050 gN.gC−1 minimum internal nutrient quota required for growth
Ql 0.25 gN.gC−1 maximum achievable quota
KiI 295 µmol.m−2s−1 derived constant
KsI 70 µmol.m−2s−1 derived constant
λ̄ 0.073 gN.gC−1day−1 maximum uptake rate
K3 0.0012 gN.m−3 half saturation constant
R 0.0081 day−1 biomass decay
Io,max 500 µmol.m−2s−1 max incident light
N 0.17→ 1.7 gN.m−3 controlled nitrate (NO3) input

Table A.1: Parameter values used for model
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MATLAB Code

Algae Model

• Equilibrium Points & Test Stability
• Nonlinear Model
• Plot

%Rebecca Griffith

%Algae Model Main Code

clear all

close all

% clc

tic

%SET PARAMETERS

global T K3 R Imax KsI KiI Qo Ql maxUR mu N dt u B

T = 10; % [Days] Time Observed

K3 = 0.0012; % [gN/m^3] Half Saturation Rate

R = 0.0081; % [1/day] Mortality rate per day

Imax = 500; % [umol/m^2s] Light Intensity @ surface

KsI = 70; % [umol/m^2s] Derived constant

KiI = 295; % [umol/m^2s] Derived constant
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Qo = 0.050; % [gN/gC] Minimum internal nutrient quota required for growth

Ql = 0.25; % [gN/gC] Max achievable quota

maxUR = 0.073; % [gN/gCday] Max uptake rate (lambda bar)

mu = 1.7; % [1/day] Constant Derived

N = 1.2; % [gN/m^3] Constant Nutrient Input Rate:

dt = 0.0001; %[s] time step

u = N; %[gN/m^3/day] Control, the constant nutrient input rate

B = [0 0 1]’; %control (nutrient input)

de = 0.01; % Deviation from Equiliberium

[Light] = LightModel(T,Imax); %LIGHT MODEL

Equilibrium Points & Test Stability

gam = (mu*Imax)/(Imax + KsI + (Imax^2/KiI)); %easier to make a const. gamma in equations

alpha = (Qo*gam)/(gam-R);

B = (R*alpha)/(1 - (alpha/Ql));

[x1star,x2star,x3star,A] = EquilibriumPoints(gam,alpha,B);

A;

eigenvalues = eig(A)

fprintf(’x1star: %f \n’,x1star);

fprintf(’x2star: %f \n’,x2star);

fprintf(’x3star: %f \n’,x3star);

eigenvalues =

1.0e+05 *

-1.3977

-0.0000

-0.0000
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x1star: 2922.940630

x2star: 148.148148

x3star: 0.000009

Nonlinear Model

Initial Conditions

x1(1) = 20; %gC/m^3 Biomass

x2(1) = 5; %gN/m^3 Internal N

x3(1) = 5 + N; %gN/m^3 External NO3

% x1(1) = x1star + de %gC/m^3 Biomass

% x2(1) = x2star + de %gN/m^3 Internal N

% x3(1) = x3star + de %gN/m^3 External NO3

i = 0;

tnl = 0;

q(1) = x2(1)/x1(1);

for i=1:(T/dt)

% NONLINEAR EQUATIONS WTIH NO SMO AND LIGHT

gam(i) = (mu*Light(i))/(Light(i) + KsI + (Light(i))^2/KiI); %easier to make a const. gamma in equations

%time progression

tnl(i+1)=tnl(i)+dt;

%NO NEGATIVES

if x1(i) < 0,

x1(i) = 0;

end

if x2(i) < 0,

x2(i) = 0;
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end

if x3(i) < 0,

x3(i) = 0;

end

q(i) = x2(i)/x1(i); %internal nutrients per biomass unit

% if q(i) = Inf,

% q(i) = 0;

% end

% Nitrate Uptake Rate Calculation (x)

lambda = maxUR*(x3(i)/(x3(i) + K3))*(1 - (q(i)/Ql));

%Macroalgae Growth Rate Calculation (x)

GrowthRate(i) = (gam(i)*(1-(Qo/q(i))));

%Nonlinear Equations build F(x) WITH NO LIGHT

x1(i+1)=x1(i)+dt*(GrowthRate(i)*x1(i)-R*x1(i));

x2(i+1)=x2(i)+dt*(lambda*x1(i)-R*x2(i));

x3(i+1)=x3(i)+dt*(-(lambda*x1(i)) + N);

q(i+1) = q(i)+dt;

%NO NEGATIVES

end

Plot

%BIOMASS

figure(1)

plot(tnl,x1)

xlabel(’Day’)

ylabel(’Biomass(gC/m^3)’)

title(’Algae Biomass’)
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%NITROGEN

figure(2)

plot(tnl,x2)

xlabel(’Day’)

ylabel(’Nitrogen (gN/m^{3})’)

title(’ Internal Nitrogen’)

%NUTRIENT

figure(3)

plot(tnl,x3)

xlabel(’Day’)

ylabel(’Nutrients(gN/m^{3})’)

title(’External Nitrate (NO_{3})’)

Light

light calculation

function [Light] = LightModel(T, dt, Imax);

global T K3 R Imax KsI KiI Qo Ql maxUR mu N dt u B

Imin = 0;

hr = linspace(0, 2*pi, (T/dt)*24);

Light = Imax*sin(T*hr);

Light(Light<0) = Imin;

end

Linear State Observer

Contents

• Equlibrium points
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• Jacobian Matrix A

% Rebecca Griffith

%Equlibrium and Linearization with Jacobian A matrix

clear all

close all

clc

%Inputs

K3 = 0.0012; % [gN/m^3] Half Saturation Rate

R = 0.0081; % [1/day] Mortality rate per day

Imax = 500; % [umol/m^2s] Light Intensity @ surface

KsI = 70; % [umol/m^2s] Derived constant

KiI = 295; % [umol/m^2s] Derived constant

Qo = 0.050; % [gN/gC] Minimum internal nutrient quota required for growth

Ql = 0.25; % [gN/gC] Max achievable quota

maxUR = 0.073; % [gN/gC/day] Max uptake rate (lambda bar)

mu = 1.7; % [1/day] Constant Derived

N = 0.000009; % [gN/m^3] Constant Nutrient Input Rate

Equlibrium points

%constants

gam = (mu*Imax)/(Imax + KsI + (Imax^2/KiI));

alpha = (Qo*gam)/(gam-R);

B = (R*alpha)/(1 - (alpha/Ql));

%equlibrium points

x3star = B*K3/(maxUR-B) %External Nitrates/Nutrients

beta = maxUR*(x3star/(x3star+K3)); %another constant

x1star = N/(beta*(1-(alpha/Ql))) % Biomass

x2star = alpha*x1star %Internal Nitrogen
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x3star =

8.5250e-06

x1star =

0.0219

x2star =

0.0011

Jacobian Matrix A

%parts of matrix A: where A = [A11 A12 A13; A21 A22 A23; A31 A32 A33]

A11 = gam - ((2*Qo*x1star)/(x2star)) - R;

A21 = (maxUR*x3star)/(x3star+K3);

A31 = -(maxUR*x3star)/(x3star+K3);

A12 = -(((2*Qo*x1star*x2star) - Qo*x1star^2)/(x2star^2));

A22 = -((maxUR*x3star)/((x3star + K3)*Ql)) - R;

A32 = (maxUR*x3star)/((x3star + K3)*Ql);

A13 = 0;

A23 = (((maxUR*x1star)*(x3star+K3) - (maxUR*x1star*x3star))/((x3star+K3)^2)) -...

((((maxUR*x2star*Ql)*(x3star+K3) - (maxUR*x2star*x3star*Ql))/(((x3star+K3)*Ql)^2)));

A33 = -(((maxUR*x1star)*(x3star+K3) - (maxUR*x1star*x3star))/((x3star+K3)^2)) +...

(((maxUR*x2star*Ql)*(x3star+K3) - (maxUR*x2star*x3star*Ql))/(((x3star+K3)*Ql)^2));

A = [A11 A12 A13; A21 A22 A23; A31 A32 A33]

[V, D] = eig(A)
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T=10;

dt=0.0005;

t(1)=0;

e(:,1)=[1.1*x1star, 0.9*x2star, 1.1*x3star]’;

C=[0 1 0];

P=[-2; -3; -4]’;

L=(acker(A’,C’,P))’

L1 =[0.0692 0.0051 -0.0001]’

eh(:,1)=[0 0 0]’;

ehh(:,1)=[0 0 0]’;

k=1;

y(1)=0;

while t(k) < T,

t(k+1)=t(k)+dt;

e(:,k+1)=e(:,k)+dt*A*e(:,k);

y(k+1)=C*e(:,k);
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%linear observer

eh(:,k+1)=eh(:,k)+dt*(A*eh(:,k)+L*(y(k+1)-C*eh(:,k)));

%SM observer

ehh(:,k+1)=ehh(:,k)+dt*(A*ehh(:,k)+L1*sign(y(k+1)-C*ehh(:,k)));

k=k+1;

end

figure

plot(t,e(1,:)+x1star,’b’,t,eh(1,:)+x1star,’k’,t,ehh(1,:)+x1star,’m’,t,t*0+x1star,’r’)

%axis([0 T -0.02 0.06])

grid

legend(’Location’,’best’,’Algal Biomass’, ’linear observer estimate of biomass’, ’linear sliding mode observer estimate of biomass’, ’steady state biomass (x^*_1)’)

xlabel(’Day’)

ylabel(’Algae Biomass (gC/m^{3})’)

figure

plot(t,e(2,:)+x2star,’b’,t,eh(2,:)+x2star,’k’,t,ehh(2,:)+x2star,’m’,t,t*0+x2star,’r’)

%axis([0 T -0.1 1])

grid

legend(’Location’,’best’,’Internal Nitrogen’, ’linear observer estimate of internal nitrogen’, ’linear sliding mode observer estimate of internal nitrogen’, ’steady state of internal nitrogen (x^*_2)’)

xlabel(’Day’)

ylabel(’Internal Nitrogen (gN/m^{3})’)

figure

plot(t,e(3,:)+x3star,’b’,t,eh(3,:)+x3star,’k’,t,ehh(3,:)+x3star,’m’,t,t*0+x3star,’r’)

%axis([0 10 0.00001 0.00002])

grid
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legend(’Location’,’best’,’External Nutrients’, ’linear observer estimate of external nutrients’, ’linear sliding mode observer estimate of external nutrients’, ’steady state of external nutrients ( x^*_3)’)

xlabel(’Day’)

ylabel(’External Nutrients in the form of NO_{3} (gN/m^{3})’)

figure

subplot(3,1,1)

plot(t,e(1,:)+x1star,’r’,t,t*0+x1star,’b’)

axis([0 T 0.0 0.06])

xlabel(’Day’)

ylabel(’Biomass(gC/m^3)’);

legend(’Location’,’best’,’With disturbance’,’At equlibrium’)

title(’System convergence towards equilibrium’)

subplot(3,1,2)

plot(t,e(2,:)+x2star,’r’,t,t*0+x2star,’b’)

axis([0 T 0.9e-3 2.3e-3])

xlabel(’Day’)

ylabel(’Internal Nitrogen(gN/m^3)’)

legend(’Location’,’best’,’With disturbance’,’At equlibrium’)

subplot(3,1,3)

plot(t,e(3,:)+x3star,’r’,t,t*0+x3star,’b’)

axis([0 T -0.00001 0.00002])

xlabel(’Day’)

ylabel(’External Nutrients(gN/m^3)’)

legend(’Location’,’best’,’With disturbance’,’At equlibrium’)

A =

-1.3814 17.4904 0

0.0005 -0.0102 1.0483

-0.0005 0.0021 -1.0483
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V =

-1.0000 0.9996 0.9969

0.0015 0.0204 0.0783

-0.0014 -0.0202 -0.0003

D =

-1.4068 0 0

0 -1.0249 0

0 0 -0.0081

L =

1.0e+03 *

-3.6681

0.0066

0.0100

L1 =

0.0692

0.0051

-0.0001
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Eqlibrium Points

%Determine and test Equilibrium Points

function [x1star,x2star,x3star,A] = EquilibriumPoints(gam,alpha,B)

global T K3 R I KsI KiI Qo Ql maxUR mu N L dt u

%equlib consts.

x3star = B*K3/(maxUR-B);

beta = maxUR*(x3star/(x3star+K3));

x1star = N/(beta*(1-(alpha/Ql)));

x2star = alpha*x1star;

% Test Equilibrium Point

q = x2star/x1star; %internal nutrients per biomass unit

%Nitrate Uptake Rate Calculation

lambda = maxUR*(x3star/(x3star + K3))*(1 -(q/Ql));

%Macroalgae Growth Rate Calculation

GrowthRate = gam*(1-(Qo/q));

%Test equations: should be 0 as an output when equilibrium pts are plugged

%in

f1= GrowthRate*x1star- R*x1star;

f2= lambda*x1star - R*x2star;

f3= -lambda*x1star + N;

%Matrix A with Equlibrium pts plugged in: make matrix A easier to

%troubleshoot

%parts of matrix A: (row,column)

A11 = gam - ((2*Qo*x1star)/(x2star)) - R;

A21 = (maxUR*x3star)/(x3star+K3);

A31 = -(maxUR*x3star)/(x3star+K3);

A12 = -(((2*Qo*x1star*x2star) - Qo*x1star^2)/(x2star^2));
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A22 = -((maxUR*x3star)/((x3star + K3)*Ql)) - R;

A32 = (maxUR*x3star)/((x3star + K3)*Ql);

A13 = 0;

A23 = (((maxUR*x1star)*(x3star+K3) - (maxUR*x1star*x3star))/((x3star+K3)^2)) -...

((((maxUR*x2star*Ql)*(x3star+K3) - (maxUR*x2star*x3star*Ql))/(((x3star+K3)*Ql)^2)));

A33 = -(((maxUR*x1star)*(x3star+K3) - (maxUR*x1star*x3star))/((x3star+K3)^2)) +...

(((maxUR*x2star*Ql)*(x3star+K3) - (maxUR*x2star*x3star*Ql))/(((x3star+K3)*Ql)^2));

A = [A11 A12 A13; A21 A22 A23; A31 A32 A33];

%eigenvalues of A. They should be less than 0 for stability

eval = eig(A);

Nonlinear Sliding Mode Observer

Contents

• Equilibrium Points & Test Stability
• SLIDING MODE OBSERVER

clear all

close all

% clc

%SET PARAMETERS

global T K3 R Imax KsI KiI Qo Ql maxUR mu N L dt u B

T = 10; % [Days] Time Observed

K3 = 0.0012; % [gN/m^3] Half Saturation Rate

R = .0081; % [1/day] Mortality rate per day

Imax = 500; % [umol/m^2s] Light Intensity @ surface

KsI = 70; % [umol/m^2s] Derived constant

KiI = 295; % [umol/m^2s] Derived constant

Qo = 0.050; % [gN/gC] Minimum internal nutrient quota required for growth

Ql = 0.25; % [gN/gC] Max achievable quota

maxUR = .073; % [gN/gCday] Max uptake rate (lambda bar)
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mu = 1.7; % [1/day] Constant Derived

N = 0.000009; % [gN/m^3/day] Constant Nutrient Input Rate: DON’T CHANGE THIS

dt = 0.00001; %[s] time step

u = N; %[gN/m^3/day] Control, the constant nutrient input rate

B = [0 0 1]’; %control (nutrient input)

Equilibrium Points & Test Stability

gam = (mu*Imax)/(Imax + KsI + (Imax^2/KiI)); %easier to make a const. gamma in equations

alpha = (Qo*gam)/(gam-R);

B = (R*alpha)/(1 - (alpha/Ql))

[x1star,x2star,x3star,A] = EquilibriumPoints(gam,alpha,B);

A;

eigenvalues = eig(A)

fprintf(’x1star: %f \n’,x1star);

fprintf(’x2star: %f \n’,x2star);

fprintf(’x3star: %f \n’,x3star);

%When eigenvalues of A are negative the system is stable at the equilibrium

%points

%Equilibrium Points

B =

5.1494e-04

eigenvalues =

-1.4068

-1.0249
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-0.0081

x1star: 0.021922

x2star: 0.001111

x3star: 0.000009

SLIDING MODE OBSERVER

%ICs:

de = 0.00009*100;

%no deviation

xnl1(1) = x1star + de;

xnl2(1) = x2star +de;

xnl3(1) = x3star + de;

%with deviation

xnlh1(1) = x1star + de;

xnlh2(1) = x2star + de;

xnlh3(1) = x3star + de;

yh1(1)=0;

yh2(1)=0;

yh3(1)=0;

v1(1)=0;

v2(1)=0;

v3(1)=0;

v4(1)=0;

L1=0.01;

L2=1;

L3=10;
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eps1=0.001;

eps2=0.00001;

eps3=0.1;

H1(1) = 0;

H2(1) = 0;

H3(1) = 0;

i = 0;

tnl = 0;

v(1)=0;

xdoth = [0; 0; 0];

% NONLINEAR EQUATIONS WTIH SMO

gam = (mu*Imax)/(Imax + KsI + (Imax^2/KiI)); %easier to make a const. gamma in equations

alpha = (Qo*gam)/(gam-R);

for i=1:(T/dt)

%time progression

tnl(i+1)=tnl(i)+dt;

%for x

q(i) = xnl2(i)/xnl1(i); %internal nutrients per biomass unit

% Nitrate Uptake Rate Calculation (x)

lambda = maxUR*(xnl3(i)/(xnl3(i) + K3))*(1 - (q(i)/Ql));

%Macroalgae Growth Rate Calculation (x)

GrowthRate = (gam*(1-(Qo/q(i))));

%Nonlinear Equations build F(x)

xnl1(i+1)=xnl1(i)+dt*(GrowthRate*xnl1(i)-R*xnl1(i));

xnl2(i+1)=xnl2(i)+dt*(lambda*xnl1(i)-R*xnl2(i));

xnl3(i+1)=xnl3(i)+dt*(-(lambda*xnl1(i)) + N);
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% SLIDING MODE OBSERVER

%BUILD H(x)

%Top row: H1 = y1

H1(i+1) = xnl1(i)+dt*(xnl2(i));

%Middle Row: H2 = y2

H2(i+1) = H2(i)+dt*((lambda*xnl1(i)-R*xnl2(i)));

%Bottom Row: H3 = y3

H3(i+1) = (((maxUR*xnl3(i)/(xnl3(i)+K3))*xnl1(i))+ (((-maxUR*xnl3(i)/(xnl3(i)+K3))-R)*xnl2(i))+...

((maxUR*(xnl3(i)+K3)*xnl1(i)-maxUR*xnl1(i)*(xnl3(i)^2))/((xnl3(i)+K3)^2))-(Ql*maxUR*xnl2(i)*(xnl3(i)+K3)-maxUR*Ql*xnl2(i)*xnl3(i))/((Ql^2)*(xnl3(i)+K3)^2))*xnl3(i);

%Build V

v1(i+1) = xnl2(i); %equivalent value 1

v2(i+1)=L1*sat((v1(i)-yh1(i))/eps1); %equivalent value 2

v3(i+1)=L2*sat((v2(i)-yh2(i))/eps2); %equivalent value 3

v4(i+1)=L3*sat((v3(i)-yh3(i))/eps3);

% Build Yh

yh1(i+1)=yh1(i)+dt*v2(i+1);

yh2(i+1)=yh2(i)+dt*v3(i+1);

yh3(i+1)=yh3(i)+dt*v4(i+1);

%sgnSigma=[sat((yh1(i)-H1(X))/eps, sat((yh2(i)-H2(X))/eps,sat((yh3(i)-H3(X))/eps]’;

% L=L0*inv(dH/dx)
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% L=L0*(dH/dx)’

% XXh(i+1)=XXh(i)+dt*L*sgnSigma:

V(:,i) = [v1(i); v2(i); v3(i)];

%xdoth(:,i+1) = xdoth(:,i)+dt*(inv(dH(:,:,i))*[v2(i) v3(i) v4(i)]’);

end

%Plot Nonlinear Model

%MODEL WITH NO OBSERVER

figure(1)

plot(tnl,xnl1)

xlabel(’Day’)

ylabel(’Biomass (gC/m^{3})’)

title(’Biomass Model’)

figure(2)

plot(tnl,xnl2)

xlabel(’Day’)

ylabel(’Nitrogen (gN/m^{3})’)

title(’Nitrogen Model’)

figure(3)

plot(tnl,xnl3)

xlabel(’Day’)

ylabel(’Nutrients (gN/m^{3})’)

title(’Nutrient Model’)

% SMO
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figure(4)

plot(tnl,xnl2,tnl,yh1)

xlabel(’Day’)

ylabel(’Nitrogen(gN/m^{3})’)

legend(’Nitrogen Model’,’Observer’)

title(’SMO’)

%COMPARE H AND YH

figure(5)

plot(tnl,H1,tnl,yh1)

xlabel(’time’)

legend(’y1’,’yh1’)

title(’y1 and yh1’)

figure(6)

plot(tnl,H2,tnl,yh2)

xlabel(’time’)

legend(’y2’,’yh2’)

title(’y2 and yh2’)

figure(7)

plot(tnl,H3,tnl,yh3)

xlabel(’time’)

legend(’y3’,’yh3’)

title(’y3 and yh3’)
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