
Publications 

7-25-2014 

Nonadiabatic Heating in Magnetic Reconnection Nonadiabatic Heating in Magnetic Reconnection 

Xuanye Ma 
University of Alaska, Fairbanks, max@erau.edu 

Antonius Otto 
University of Alaska, Fairbanks 

Follow this and additional works at: https://commons.erau.edu/publication 

 Part of the Astrophysics and Astronomy Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Ma, X., & Otto, A. (2014). Nonadiabatic Heating in Magnetic Reconnection. Journal of Geophysical 
Research: Space Physics, 119(7). https://doi.org/10.1002/2014JA019856 

This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in 
Publications by an authorized administrator of Scholarly Commons. For more information, please contact 
commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/publication
https://commons.erau.edu/publication?utm_source=commons.erau.edu%2Fpublication%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=commons.erau.edu%2Fpublication%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1002/2014JA019856
mailto:commons@erau.edu


Journal of Geophysical Research: Space Physics

RESEARCH ARTICLE
10.1002/2014JA019856

Key Points:
• Slow shocks are the major entropy

source for reconnection
• Entropy strongly increases for low

plasma beta
• Petschek reconnection is the

maximum possible situation for
entropy increase

Correspondence to:
X. Ma,
xma2@alaska.edu

Citation:
Ma, X., and A. Otto (2014), Nona-
diabatic heating in magnetic
reconnection, J. Geophys. Res.
Space Physics, 119, 5575–5588,
doi:10.1002/2014JA019856.

Received 4 FEB 2014

Accepted 2 JUL 2014

Accepted article online 5 JUL 2014

Published online 25 JUL 2014

Nonadiabatic heating in magnetic reconnection
Xuanye Ma1 and Antonius Otto1

1Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA

Abstract Plasma transport process as a fundamental problem in magnetospheric physics is often
associated with strong nonadiabatic heating. At the magnetopause, observations show an increase of
specific entropy (i.e., S = p∕𝜌𝛾 ) by 2 orders of magnitude from the magnetosheath into the magnetosphere.
In the near-Earth magnetotail, particle injection requires strongly entropy depleted plasma bubbles, and
their evolution can be strongly modified in the presence of nonadiabatic heating. In this study, one of the
critical plasma transport mechanisms, magnetic reconnection, is investigated as a nonadiabatic process in
the framework of MHD. It is important to examine whether magnetic reconnection can provide sufficient
nonadiabatic heating to explain the observed plasma properties and to identify plasma conditions that
allow such strong nonadiabatic heating. We demonstrate that the entropy can indeed strongly increase
associated with magnetic reconnection provided that the plasma beta (i.e., the ratio of thermal to magnetic
energy density) is low in the inflow region of reconnection.

1. Introduction

Magnetic reconnection is a fundamentally important process in space physics, because it converts the
stored magnetic energy into the kinetic energy and changes the magnetic topology such that plasma can
be transported across magnetic boundaries [Dungey, 1961; Parker, 1957; Sweet, 1958]. It occurs in the pres-
ence of sufficiently large antiparallel magnetic field components. At the dayside magnetopause, magnetic
reconnection is the prime mechanism for a transfer of magnetic flux and energy into the magnetosphere
during periods of southward interplanetary magnetic field (IMF). During times of northward IMF, magnetic
reconnection occurs at higher latitudes [Kessel et al., 1996]. The concept of magnetic reconnection is based
on the breakdown of the so-called “frozen-in” condition. In Petschek’s reconnection model [Petschek, 1964],
the frozen-in condition breaks in a tiny diffusion region, which is bound by inflow and outflow regions. The
inflow and outflow regions are separated by two pairs of slow shocks (see Figure 1), where the plasma is
mostly accelerated by the j × B force and magnetic energy is converted into bulk and thermal energy.

The energy conversion is one of the most important aspects of magnetic reconnection. This process can also
be considered as a nonadiabatic process, which can be characterized by a variety of computable plasma
entropy measures [Balasis et al., 2009; Kaufmann and Paterson, 2009]. In this study, we focus on the so-called
“specific entropy,” S = p∕𝜌𝛾 , where p is the plasma thermal pressure, 𝜌 is the plasma density, and 𝛾 = 5∕3 is
the ratio of specific heats [Birn et al., 2006, 2009]. Hereafter, we simply refer to this quantity as entropy. Note
that a value of 𝛾 = 5∕3 corresponds to 3 degrees of freedom for the motion of charged particles. In the MHD
description, entropy is an invariant in the absence of Ohmic or viscous heating and shocks. Nevertheless,
in the context of magnetic reconnection, the breakdown of ideal MHD by local dissipation also implies a
breakdown of the entropy conservation. A significant entropy increase in Petschek’s model may be provided
by the two pairs of slow shocks bounding the outflow regions. These represent the major entropy sources,
as will be demonstrated in this study for different types of reconnection geometries.

It is believed that magnetic reconnection is the dominant process for southward IMF conditions. For
northward IMF conditions, reconnection driven by nonlinear Kelvin-Helmholtz modes at the low-latitude
boundary layer and high-latitude reconnection become more important [Scholer and Treumann, 1997].
On the other side, satellite observations show that ions in the Earth’s plasma sheet become cold and dense
during prolonged periods of northward IMF, which has been attributed to the massive transport of the
solar wind or magnetosheath ions into the plasma sheet [Fujimoto et al., 1997]. There are two components
of plasma in this cold dense plasma sheet, a hot distribution, which is considered a remnant of the origi-
nal plasma sheet plasma, and a cold distribution, which is believed to be of magnetosheath origin [Wang
et al., 2007]. The typical flank magnetosheath ion density and temperature for fast solar wind conditions
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Figure 1. Illustration of the Petschek reconnection geometry.
(top) Length scales assumed in Petschek’s model and (bottom)
illustration of the diffusion region and the attached slow shocks
[Otto, 2012].

are about 5 cm−3 and 50 eV. For slow solar
wind conditions, the ion density and tempera-
ture are about 8 cm−3 and 10 eV [Borovsky and
Cayton, 2011]. Density and temperature for the
cold plasma component are about 0.5 cm−3

and 500 eV [Wang et al., 2007], which yield
an entropy increase of about 1 to 2 orders of
magnitude compared to the magnetosheath.
Therefore, the plasma entry process is accom-
panied with strong nonadiabatic heating. One
may expect that this nonadiabatic heating
is mainly caused by magnetic reconnection,
because reconnection is believed to be the
prime mechanism for this entry process. How-
ever, studies by Birn et al. [2006, 2009] and Wing
and Johnson [2009] demonstrated that entropy
appears more or less unchanged after recon-
nection. This raises the important question,
can magnetic reconnection provide any signif-
icant nonadiabatic heating? Directly related is
the issue of any specific conditions, for which
significant nonadiabatic heating may occur.

Here we present a systematic study of the entropy changes in magnetic reconnection based on analytical
theory and numerical MHD simulation. The numerical methods are introduced in section 2. In section 3,
we discuss entropy sources in different subregions in a Petschek-type reconnection geometry. For applica-
tions to the actual magnetospheric boundary, the influence of a guide field, of an asymmetry in the inflow
regions, and of the shear flow are discussed in section 4. Section 5 presents a summary and discussion.

2. Numerical Model

The full set of the resistive MHD equations and its numerical solver have been discussed by Otto [1990]. In
the computations all quantities are normalized to the typical values, that is, the length scales L to a typical
length L0, the density 𝜌 to 𝜌0 = n0m0 with the number density n0 and the ion mass m0, the magnetic field B
to B0, the velocity V to the typical Alfvén velocity VA = B0∕

√
𝜇0𝜌0, the thermal pressure p to P0 = B2

0∕
(

2𝜇0

)
,

and the time t to a typical Alfvén transit time TA = L0∕VA. To enclose MHD equations, one can use either the
entropy equation (1)

𝜕h
𝜕t

= −∇ ⋅ (hV) + 𝛾 − 1
𝛾

h1−𝛾𝜂j2, (1)

where h = (p∕2)1∕𝛾 or the energy equation (2):

𝜕w
𝜕t

= −∇ ⋅
[(

w + 1
2

pt

)
V − (V ⋅ B)B + 𝜂j × B

]
, (2)

where w =
[
𝜌v2 + B2 + p∕ (𝛾 − 1)

]
∕2 is the total energy density of the plasma, and pt =

(
p + B2

)
is the total

pressure. Note that in this normalization, the unitless entropy is S = p∕ (2𝜌𝛾 ). The difference between the
energy equation and the entropy equation will be discussed in section 3.1.1.

We present the results from four selected two-dimensional simulations to study the entropy enhancement
for typical magnetic reconnection configurations using a symmetric reference case and including char-
acteristic variations in terms of the magnetic field, plasma flow, and symmetry of the configuration. The
simulation domain is a rectangular box with |x| ≤ 20, and 0 ≤ y ≤ 80, and is resolved by using 323 × 353
grid points with a nonuniform grid in both directions. To sufficiently resolve the diffusion region, the best
resolution is set to 0.025 and 0.1 in the x and y direction in the diffusion region. Free boundary conditions
(𝜕n = 0, where 𝜕n is the partial derivative in the direction normal to the boundary) are applied to the x
maximum and minimum boundary and y maximum boundary. The y minimum boundary is determined by
symmetry properties of the MHD equations [Otto et al., 2007]. The initial equilibrium is a one-dimensional
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Table 1. Values of the Simulation
Parameters

Case 𝜌0 𝛿𝜌 Bg Vzi p∞

A 1 0 0 0 0.1
B 1.5 0.5 0 0 0.025
C 1 0 1 0 0.1
D 1 0 0 0.5 0.1

modified Harries sheet [Harris, 1962], which is given by
B = tanh(x)êy + Bgêz , V = Vzi tanh(x)êz , p = p∞ + 1 − B2

y ,
𝜌 = 𝜌0 + 𝛿𝜌 tanh(x), where the parameters Bg, Vzi, and 𝛿𝜌 are
used to introduce a guide field, flow shear, and density asymme-
try. The values of all parameters are listed in Table 1. To trigger
Petschek-type magnetic reconnection (except case B), we use a
localized resistivity given by

𝜂 = 𝜂0

[
1 − exp (−t∕𝜏)

]
cosh−1(x) cosh−1(y) + 𝜂b, (3)

where 𝜂0 = 0.05, 𝜏 = 5, and the small background resistivity 𝜂b = 0.002.

Case A is the reference case. At the real magnetopause, the magnetosheath density is about 10 times larger
than the magnetospheric density. Therefore, it is important to investigate this asymmetry for the entropy
production. In the simulation (case B), we set p∞ = 0.025, 𝜌0 = 1.5, and 𝛿𝜌 = 0.5, which yields to 𝜌MSP ∶
𝜌MSH = 1 ∶ 2, where 𝜌MSP refers to the magnetosphere (x < 0) density, and 𝜌MSH is the magnetosheath (x > 0)
density. We only localized the resistivity along the y direction, because the diffusion region may move along
the x direction:

𝜂 = 𝜂0

[
1 − exp (−t∕𝜏)

]
cosh−1(y) + 𝜂b. (4)

At dayside magnetopause, a guide field or a large perpendicular shear flow is always present. The influ-
ence of a guide field and of shear flow on the entropy production is investigated in the cases C and
D, respectively.

3. Symmetric Petschek Reconnection

Figure 2 shows the thermal pressure (left) at t = 150 for Case A. In the inflow region, the pressure is about
0.1 (the reddish region in Figure 2), which yields an initial inflow region plasma beta of 0.1. In the outflow
region, the pressure increases to about unity (the greenish region in Figure 2). Black lines are magnetic field
lines (contours for the z component of the vector potential). The strongly bend magnetic field lines at the
transition between inflow and outflow regions illustrates the presence of a strong surface current, and the
inspection of the plasma properties (section 3.1) of the inflow and outflow regions demonstrates that this
boundary represents a slow switch-off shock. Black arrows represent the flow velocity. The inflow veloc-
ity only has a normal component (x direction) with a relatively small magnitude, and it carries flux into the
outflow region. The fast jetting plasma in the outflow region reaches the inflow Alfvén speed, which indi-
cates that reconnection is well developed. There are three subregions [La Belle-Hamer et al., 1995] that can
be identified in the outflow region. The diffusion region is located at the origin (x = y = 0), and it is barely
visible in Figure 2, which is consistent with the assumption of a small diffusion region in Petschek’s model
[Petschek, 1964]. The steady outflow region (y < 50 in Figure 2) is bounded by a pair of slow shocks being
characterized by the thin current layers. And the nonsteady bulge region (y > 50 in Figure 2) is the transition
region between the fast reconnection jet and the unperturbed plasma.

3.1. The Dominant Entropy Source: Slow Shocks at the Steady Outflow Region
The transition between the inflow and outflow regions is almost one-dimensional, because the angle of the
shocks with the y axis is small, and the transition represents the matching of the two asymptotic plasma
conditions of the inflow regions by MHD waves and discontinuities (the so-called “Riemann problem” [Lin
and Lee, 1993]). In Figure 2 (right), we present a profile of this transition layer (x ≥ 0 part of the cut, due to
the symmetry), where the cut is taken from the blue line in Figure 2 (left). The five panels in Figure 2 (right)
show the profiles of the plasma density, thermal pressure, normalized entropy, S∕S0, the magnetic field By

component, and current density z component. Here S0 = 0.05 is the inflow region entropy. The depletion
of the density in the vicinity of the y axis, (shaded in gray and labeled as D in Figure 2) is a contact disconti-
nuity and its cause will be discussed in section 3.2. The large current density is consistent with the switch off
of the magnetic field, which indicates that these current layers represent the slow switch-off shock layers.
These shock layers are shaded in gray and labeled S in Figure 2. A slow shock in the reconnection layer of the
dayside magnetopause has for instance been observed by ISEE 2 spacecraft [Walthour et al., 1995].
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Figure 2. (left) The thermal pressure p at t = 150 for Case A. Black lines are the magnetic field lines (contours for the
z component of the vector potential), and black arrows indicate the flow velocity V. (right) The five panels show the
profiles of the plasma density, thermal pressure, normalized entropy, S∕S0, magnetic field By component, and current
density jz component, which are taken from the blue line in Figure 2 (left). The red dashed lines are the results from the
Rankine-Hugoniot (RH) relations. The black dashed line is the total pressure. The slow shock and density depletion layer
are shaded in gray and labeled S and D, respectively.

The plasma density, thermal pressure, and entropy strongly increase through the shock layers, while the
total pressure (black dashed line in the pressure plot) remains constant across the shock layers. The prop-
erties of the slow switch-off shock can be described by the so-called “Rankine-Hugoniot (RH) relations,”
which are inferred from MHD equations (enclosed by energy equation) with homogeneous assumption for
both upstream and downstream. Here we list the compression ratio, the ratio of downstream and upstream
pressure and the corresponding ratio of the entropy for slow switch-off shocks:

𝜌d

𝜌u
= 1 + 1

𝛾𝛽 + 𝛾 − 1
, (5)

pd

pu
=

𝜌d

𝜌u

(
1 + 𝛾 − 1

𝛾𝛽

)
, (6)

Sd

Su
=
(
𝜌d

𝜌u

)1−𝛾 (
1 + 𝛾 − 1

𝛾𝛽

)
, (7)

where the index d and u indicate the downstream and upstream, respectively, and 𝛽 = pu∕B2
u is the

upstream plasma beta. Figure 3 presents the compression ratio, the ratio of downstream and upstream
pressure, and the corresponding ratio of the entropy as a function of upstream plasma beta by using
dash-dotted, dashed, and solid lines, respectively. Note that all the ratios increase with decreasing upstream
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Figure 3. The ratio of downstream and upstream density
(dash-dotted line), pressure (dashed line), and entropy (solid line) as
a function of upstream plasma beta for the slow switch-off shock.

plasma beta, and the maximum plasma
compression is 2.5, which means that the
plasma entropy can increase significantly
if the upstream plasma beta is sufficiently
small. For 𝛽 < 10−2, the entropy ratio
between outflow and inflow regions Sd∕Su is
greater than 20.

To compare the theoretical results with the
two-dimensional simulation results, we
labeled the downstream results from the RH
relations by the red lines in Figure 2. It shows
that right after slow shock (downstream
region), all quantities are consistent with
the theoretical results, although density
increases further deeper into the outflow
region. This is possibly because fluid ele-
ments deep in the outflow region have
entered much closer to the diffusion region
at a location or time when the slow shock
had not been fully developed. We carry out
a one-dimensional simulation of the Rie-
mann problem. This has the advantage of
much higher resolution and short execution

times. In this study, one-dimensional simulations are also used to compare the influence of different forms
of the equation of state which closes the MHD equations.
3.1.1. Difference Between Energy Equation and Entropy Equation
The entropy equation (1) and the energy equation (2) are commonly used to model magnetic reconnection
and other plasma problems. However, the RH conditions are based on the set of ideal MHD equations using
energy conservation. Therefore, it is important to understand the implications of using the entropy equation
(1) in resistive MHD particularly for applications involving nonadiabatic heating in magnetic reconnection.

The slow shock transition can be simulated in a one-dimensional configuration by adding a small constant
Bn component in the Harries sheet [Lin and Lee, 1993, 1999; Wu and Lee, 2000; Ma and Otto, 2013]. The ini-
tial conditions are given by B = Bnêx + tanh(x)êy , V = 0, 𝜌 = 1, and initial plasma thermal pressure is
determined by total pressure balance. Figure 4 presents the results from the one-dimensional simulation
with the upstream plasma beta of 0.1. The three panels show the density (top), the thermal pressure (mid-
dle), and the entropy (bottom). The dashed and dash-dotted lines are the simulation results by using the
entropy equation and energy equation, respectively. As a reference, the theoretical results from the RH rela-
tions (equations (5)–(7)) are labeled by the solid lines. For convenience, we have transformed the system to
the shock frame. Thus, x > 0 is the upstream (inflow region) and x < 0 is the downstream (outflow region).
Figure 4 shows that energy conservation yields correct jump relations; however, using the entropy equation
generates an artificial density increase and an insufficient entropy change. Note that this density increase
associated with the shock using entropy conservation satisfies mass conservation.

Clearly energy and entropy conservations generate different shock properties in ideal MHD (𝜂 = 0). The
entropy increase through the shock is due to the energy conservation and does not require explicit Ohmic
heating. However, the use of entropy conservation in ideal MHD strictly maintains entropy conservation and
the resulting “slow shock equivalent” discontinuity is violating energy conservation. For resistive MHD (𝜂 ≠
0), the entropy equation (including the resistive term in equation (1)) allows entropy to increase through
Ohmic heating. This can be shown clearly by combining the entropy equation and the continuity equation,
which yields to

dS
dt

= d
dt

(
p

2𝜌𝛾

)
= (𝛾 − 1)

𝜂j2

𝜌𝛾
, (8)

where d∕dt = 𝜕t + V ⋅ ∇. Equation (8) indicates that a correct approximation to the slow shock solution is
possible in the presence of sufficient Ohmic heating, which requires a very high resolution of the boundary
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Figure 4. MHD slow shocks with upstream plasma beta of 0.1, and
Δx = 0.04. The three panels show (top) the density, (middle) the ther-
mal pressure, and (bottom) the entropy. The dashed and dash-dotted
lines are the simulation results by using the entropy equation and
energy equation, respectively. As the reference, the theoretical results
from the RH relations are indicated by the solid lines.

between inflow and outflow regions in
a numerical simulation. One can esti-
mate the width of this resistivity layer 𝛿
by integrating both sides of equation (8)

ΔS = (𝛾 − 1)
𝜂j2

𝜌𝛾
Δt, (9)

where ΔS = Sd − Su ≈ Sd = pd𝜌
−𝛾
d ∕2 =

𝜌
−𝛾
d ∕2, 𝜌 = 𝜌d , j ≈ B∕𝛿 = 1∕𝛿, Δt =

𝛿∕vn, and vn = vAn ≈ Bn∕
√
𝜌u = Bn,

which yields

𝛿 ≈ 2(𝛾 − 1)𝜂∕Bn. (10)

For the width of the shock current sheet
if the dissipation is determined by a
constant resistivity. This estimate uses
normalized upstream values of B = 1,
𝜌 = 1, and p = 𝛽B2 = 0.1. In the cases of
𝜂 = 2×10−3 and 1×10−3, and Bn = 0.025,
𝛿 ≈ 0.1 and 0.05, respectively. The fol-
lowing results test equation (10) based
on these parameters.

Figure 5 shows the compression ratio
𝜌d∕𝜌u (top) and entropy ratio Sd∕Su

(bottom) as a function of the grid sepa-
ration Δx in the one-dimensional slow

shock simulation by using the entropy equation. The solid lines indicate the theoretical results from the RH
relations. A result from the energy equation by using resistivity 𝜂 = 2 × 10−3 is labeled by stars. The circle
and square markers are the results by using resistivity 𝜂 = 2 × 10−3 and 1 × 10−3, respectively. Figure 5 shows
that the results from the entropy equation converge to the theoretical results for increasing resolution as
indicated by our estimate for the required width of the current layer. However, a much higher resolution
(20 times higher) has to be used for the simulation to achieve 90% of the correct entropy increase. The result
demonstrates that the entropy equation with the resistive term can be used to model reconnection, but its
use requires a large numerical effort to achieve an acceptable nonadiabatic heating. Therefore, the use of
the energy equation appears much more appropriate for simulations involving shocks for all cases where
the expected entropy increase is large.
3.1.2. Estimate of the Entropy Increase in the Magnetic Reconnection
It is demonstrated that slow switch-off shocks generate strong nonadiabatic heating for low upstream
(inflow) plasma beta using analytical theory and simulation. However, this conclusion is based on
one-dimensional shock configurations. To extend this argument to two-dimensional magnetic reconnection
and more general inflow conditions including asymmetries requires a more general estimate. In magnetic
reconnection, pressure balance implies

pi + B2
i = po + B2

o, (11)

where i and o indicate the inflow and outflow region, respectively. Therefore, the entropy increase can be
expressed as

So

Si
=

po

𝜌
𝛾
o

𝜌
𝛾

i

pi
=

(
pi + B2

i − B2
o

pi

)(
𝜌i

𝜌0

)𝛾

. (12)

Since B2
o ≥ 0, and 𝜌i < 𝜌0, due to compression, it follows that

So∕Si < 1 + 1∕𝛽i, (13)
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Figure 5. The (top) compression ratio, 𝜌d∕𝜌u, and (bottom) entropy ratio,
Sd∕Su, as a function of the grid separation, Δx, from the one-dimensional
slow shock simulation by using the entropy equation. The solid lines
indicate the theoretical results from the RH relations. A result for the
energy equation by using resistivity 𝜂 = 2 × 10−3 is labeled by a star. The
circle and square markers are the results by using resistivity 𝜂 = 2 × 10−3

and 1 × 10−3, respectively.

where 𝛽i is the inflow plasma beta. The
physical interpretation is straightfor-
ward. The pressure balance determines
that the thermal pressure in the out-
flow region and the thermal pressure
ratio between outflow and inflow
regions are large if the pressure is
very small in the inflow region. Thus,
large entropy increases are possible
only for very small plasma beta in the
inflow region.

In case A, the entropy increase is consis-
tent with the RH relation (equation (7)
gives So∕Si = 2.95). The estimate for
entropy increase (equation (13)) gives
an overestimate So∕Si < 11, because
it does not take the compression into
account. In the steady outflow region,
the thermal pressure is almost identical
with the total pressure (see the sec-
ond panel in Figure 2 (right)), which is
consistent with our assumption. Fur-
thermore, we hypothesize that for the
same inflow plasma beta 𝛽 , this is the
maximum possible entropy increase,
i.e., the presence of shear flow or mag-
netic guide field cannot increase the
entropy above this value.

3.2. Other Entropy Sources: The Diffusion Region and the Weak Fast Shock
The diffusion region is critical for the magnetic reconnection. In this region, the resistive term in Ohm’s law
is dominant, and nonadiabatic heating is prominent. Since the pressure is determined by total pressure bal-
ance with the inflow region, the density must decrease to balance the increasing plasma temperature. The
low-density plasma is convected along stream lines. Due to the symmetry, the central streamline is the y
axis, which is consistent with the result in Figure 2. This density depletion layer has also been reported in
other reconnection simulations [Ma and Bhattacharjee, 2001; Hesse et al., 2001; Shay et al., 2001; Pritchett,
2001; Yang et al., 2006]. However, the typical width of the diffusion region is on the order of an ion inertia
scale for Hall physics and even smaller (electron inertia scale or gyroscale) in a kinetic model, which is neg-
ligible compared with macroscales of the whole system. Thus, we argue that the nonadiabatic heating in
the diffusion region occupies a very small volume in a real space plasma and only a tiny fraction of the total
plasma transported into the outflow region is actually going through the diffusion region. Therefore, only
a small fraction of the plasma transported into the magnetosphere would be exposed to this nonadiabatic
heating source.

The plasma in the steady outflow region is accelerated to the inflow region Alfvén speed by the slow
switch-off shock. However, the plasma in the nonsteady bulge region moves at a velocity significantly lower
than Alfvén speed. Due to the compression and heating, the acoustic speed in the outflow region can be
lower than the velocity of the outflow jet. Therefore, it is possible for the fast shock to exist in the transition
from the steady outflow to the bulge [Zenitani and Miyoshi, 2011] (in Figure 2, y ∈ (50, 55)). To characterize
these fast shocks, we estimate the outflow region Mach number Mo = Vo∕cso, where Vo is outflow speed,

which equates to the inflow Alfvén speed VAi
= Bi∕

√
𝜌i, and cso =

√
𝛾po∕

(
2𝜌o

)
is the outflow acoustic

speed. The pressure in the outflow region can be represented by the magnetic field in the inflow region from
pressure balance po = pi + B2

i . By using the jump condition for density in a switch-off shock (equation (5)),
we find

Mo =
√

2∕
(
𝛾𝛽i + 𝛾 − 1

) ≤ √
3. (14)
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Figure 6. (left) The normalized entropy at t = 100 for Case B. Black lines are the magnetic field lines. (right) The five
panels show the profiles of the thermal pressure, normalized entropy, magnetic field By component, current density jz
component, and velocity Vy component, which are taken from the magenta line in Figure 6 (left). The total pressure is
presented by a dashed line. The estimated value of Bo from equation (18) is indicated by a red dashed line.

This Mach number does not take into account the shock speed. Therefore, the actual Mach number is
smaller, and a weak fast shock is not expected to be a significant source for the entropy increase. We note
that in the high-resolution simulation by Zenitani and Miyoshi [2011], the maximum velocity of outflow jet
in this fast shock region is higher than the inflow region Alfvén speed. However, the entropy remains almost
constant across this fast shock.

4. More General Configurations

Although we have mostly discussed Petschek reconnection, the conclusions drawn from the estimate
for the entropy increase (equation (13)) apply to more general and asymmetric configurations. In this
section, we will discuss three different reconnection configurations, which more closely reflect to the real
magnetopause geometry.

4.1. Asymmetric Density
An asymmetric configuration, with different densities and an inflow plasma beta of 0.025, is examined in
case B. The normalized entropy S∕S0 at t = 100 is presented in Figure 6 (left), where S0 is the initial mag-
netosheath side entropy (x > 0), which is 2𝛾 ≈ 3.17 times lower than magnetospheric entropy, due to
the different densities. However, on both sides of the outflow region, entropy increases about 4 times com-
pared to its original value. The magnetic field lines (the black contours in Figure 6 (left)) indicate that the
slow shock on the magnetosheath side is replaced by an intermediate shock [Yong and Lee, 1990]. For a bet-
ter illustration of the outflow, Figure 6 (right) shows profiles of the thermal pressure, normalized entropy,
magnetic field By component, current density jz component, and velocity Vy component, which are taken
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from the magenta line in Figure 6 (left). The current density is higher on the magnetosheath side than
on the magnetospheric side, which is consistent with the larger rotation of magnetic field on the mag-
netosheath side. This is caused by the larger inertia of the higher density magnetosheath material which
requires a larger j × B force to change the momentum and accelerate the plasma into the outflow region
[La Belle-Hamer et al., 1995]. This also generates a nonzero outflow magnetic field Bo = By ≠ 0, which con-
tributes to the total pressure in the outflow region. The outflow total pressure (labeled by the dashed line in
the first panel of Figure 6 (right)) is larger than the thermal pressure. Compared with the result from the RH
relations, the entropy increase in the asymmetric case is less than the corresponding symmetric case.

The rigorous manner to determine By in the outflow region is to solve the Riemann problem [Lin and Lee,
1993, 1999]. However, a reasonable estimate of By in the outflow region can be obtained by assuming an
approximately constant outflow velocity [La Belle-Hamer et al., 1995], which is consistent with the fifth panel
in Figure 6 (right). From the momentum equation and ignoring the pressure gradient along the y direction,
we have

𝜌
dvy

dt
= jzBx . (15)

By integrating both sides from the inflow region to outflow region

Δvy = ∫
outflow

inflow

jzBx

𝜌
dt, (16)

where dt = dx∕|vx| and vx = VAx = Bx∕
√
𝜌, which yields

Δvy = ±∫
outflow

inflow

jz√
𝜌

dx = ±
Bo − Bi√

𝜌
. (17)

The “±” is determined by whether Bx is parallel or antiparallel to the shock normal direction. Here Bi and
Bo are the tangential magnetic field components on the inflow and outflow sides at the outflow boundary.
This equation ignores compressibility if the density is interpreted as the density in the respective inflow
region. Alternatively, the density can be interpreted as suitable average density at the respective boundary,
which, however, scales with the inflow density, inasmuch as the maximum compression is 2.5. We apply this
equation to both sides of the boundary, which yields to

Bi − Bo√
𝜌1

=
Bo + Bi√

𝜌2

Bo = 1 − r
1 + r

Bi, (18)

where 𝜌1 and 𝜌2 refers to the density of the two inflow regions (or a suitably averaged density if plasma
compression is considered), and r =

√
𝜌1∕𝜌2. Equation (18) shows that the magnitude of B0 is always smaller

than Bi , and Bo vanishes, if the density is symmetric (𝜌1 = 𝜌2). Interchanging 𝜌1 and 𝜌2 changes the sign of
Bo. The simulation result in Figure 6 uses a density ratio of r =

√
2 for the inflow regions, and Bo is indicated

by red dashed line in the third panel in Figure 6 (right), which shows a good agreement with the simulation
result. Combining equations (18) and (12), we obtain

So

Si
< 1 + 1

𝛽

4r

(1 + r)2
, (19)

where Si can be the entropy on either side. This relation (19) implies a reduction of the entropy increase in
the presence of density asymmetry for the same inflow plasma beta.

4.2. Magnetic Shear
Magnetic reconnection without guide field is a singular situation in space plasma systems. A guide field
component is present almost everywhere at the dayside magnetopause. In a two-dimensional configura-
tion, the guide field component (Bz component in this study) does not change the reconnection dynamics
significantly, because it can be considered as an additional pressure and is convected by the plasma. This Bz

component often increases in the outflow region, which may cause the reduction of the entropy increase
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Figure 7. (left) The normalized entropy at t = 150 for Case C. Black lines are the magnetic field lines. (right) The five
panels show the profiles of the normalized entropy, plasma beta, two components of the tangential magnetic field Bt1
and Bt2, and the total tangential magnetic field, which are taken from the magenta line in Figure 7 (left).

in the outflow region. Figure 7 shows the results from Case C, where the initial configuration is the same
as in Case A, except for the addition of a uniform guide field Bz = 1. Figure 7 (left) is the normalized
entropy S∕S0 at t = 150, where S0 is the inflow entropy. It shows that the outflow entropy is about 1.5 times
higher than the inflow entropy, which is lower than in Case A. To better understand this transition region,
a rigorous treatment is to solve the Riemann problem [Lin and Lee, 1993, 1999]. Lin and Lee [1993] demon-
strated that the switch-off shock is replaced by a rotational discontinuity and a slow shock for a symmetric
guide field, which is consistent with the observational results [Biernat et al., 1998] and is also seen in our
two-dimensional simulation. The five panels in Figure 7 (right) show the profiles of the normalized entropy,
plasma beta, two components of the tangential magnetic field Bt1 and Bt2, and the total tangential mag-

netic field Bt =
√

B2
y + B2

z , which are taken from the magenta line in Figure 7 (left). Due to the symmetry, we

only show the x ≥ 0 part of the cut. For a better representation of the rotational discontinuity, we rotate the
frame by an angle 𝜃 = arctan

(
1∕Bg

)
∕2 = 𝜋∕8, thus

Bt1 = Bz cos 𝜃 + By sin 𝜃

Bt2 = −Bz sin 𝜃 + By cos 𝜃.

The rotational discontinuity layer is shaded in dark gray and labeled R, where Bt1 is almost constant and Bt2

changes from +0.5 to −0.5. Theoretically, the rotational discontinuity does not involve an entropy increase.
However, the presence of the resistivity replaces the rotational discontinuity by an intermediate shock,
thus leading to an increase in entropy and decrease in the total magnetic field, which is consistent with
the results in Figure 7. The slow shock layer is shaded in light gray and labeled S, where the total tangential
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Figure 8. (left) The normalized entropy at t = 110. Black lines are the magnetic field lines. (right) The five panels show
the profiles of the normalized entropy, plasma beta, two components of the tangential magnetic field Bt1 and Bt2, and
the total tangential magnetic field, which are taken from the magenta line in Figure 8 (left).

magnetic field strongly deceases. This remnant magnetic field, however, is still larger than the y component
of the magnetic field By in the inflow region. The larger By field implies a smaller increase of the thermal
pressure in the outflow region, and for this reason, a reduction in the entropy increases. Therefore, Case C
demonstrates that the presence of a guide field reduces the entropy increase.

4.3. Magnetic Reconnection With Shear Flow
Large shear flow always exists close to the magnetopause, due to the solar wind velocity. This sheared flow
general has components along the y and z directions, and here we consider shear along the z (invariant in
the two-dimensional configuration) direction. Flow shear along the y direction has an effect similar to den-
sity asymmetry in that it generates a configuration similar to density asymmetry with a nonzero By in the
outflow region [La Belle-Hamer et al., 1995]. For flow shear along the z direction, the frozen-in condition
implies a drag of reconnected magnetic field lines into opposite directions on the two sides of the outflow
region, which generates a Bz component. This Bz component contributes an additional magnetic pressure
to the total pressure in the steady outflow region. This mechanism is demonstrated in Case D, where the
initial configuration is the same as in Case A, except for the perpendicular flow shear. In Case D, the total
perpendicular velocity jump is equal to the Alfvén speed. Figure 8 (left) shows the normalized entropy S∕S0

at t = 110, where S0 is the inflow entropy. The figure shows that the outflow entropy is about twice the
inflow entropy, which is lower than in Case A. Similar to the guide field case, the presence of the shear flow
replaces the switch-off shock by an intermediate shock and a slow shock [Sun et al., 2005]. The five panels in
Figure 8 (right) show the profiles of the normalized entropy, plasma beta, two components of the tangential
magnetic field Bt1 and Bt2, and the total tangential magnetic field, which are taken from the magenta line
in Figure 7 (left). Due to the symmetry, we only show the x ≥ 0 part of the cut. For a better representation
of the intermediate shock, we rotated the frame by an angle 𝜃 = 𝜋∕4. The entropy increases through the
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intermediate shock layer and the slow shock layer. Again, the magnetic pressure in the outflow region
reduces the thermal pressure and the entropy increase.

5. Summary and Discussion

The plasma entropy measure p∕𝜌𝛾 is a useful physical quantity to identify adiabatic and nonadiabatic pro-
cesses in a physical system, and satellite observations demonstrate that the access of solar wind plasma to
the Earth’s magnetosphere involves strong nonadiabatic heating. Magnetic reconnection is often suggested
as the dominant process for this transport of plasma into the magnetosphere. In this study, we focus mainly
on Petschek-type magnetic reconnection, and we demonstrate that entropy can strongly increase only
when the plasma 𝛽 ≪ 1 by means of theoretical analysis and numerical simulation using one-dimensional
and two-dimensional configurations. Key arguments for this 𝛽 limitation are (1) that the compression rate
is usually around unity (𝜌d∕𝜌u = (1)) and (2) that the thermal pressure is limited by the total pressure
in an approximately pressure balanced system. A large entropy increase in such a total pressure balanced
system requires a very small thermal pressure (compared to magnetic pressure) in the inflow region. It can
be expected that the beta limitation for the entropy increase is applicable also to kinetic models of recon-
nection as long as such models satisfy approximate total pressure balance and plasma compression of
order unity.

The more specific quantitative estimates of entropy changes are mostly based on applications of steady
state reconnection. Frequently, reconnection is considered to be a time-dependent process (such as the for-
mation of magnetic flux transfer events (FTEs) [Russell and Elphic, 1978, 1979] or plasmoids in the terrestrial
magnetosphere [Hones et al., 1984; Moldwin and Hughes, 1992]). It is trivial that a steady state assumption
is always violated on sufficiently large spatial or temporal scales. A steady state is defined by the condition
that system changes are slow (time scale 𝜏r) compared to typical wave travel times 𝜏L across the system.
For a reconnection geometry, this implies 𝜏L << 𝜏r with 𝜏L = d∕V , (d is the width of the outflow region
and V is the speed of group velocity of typical wave), and 𝜏r = r (dr∕dt)−1 is characterized by the change
of the reconnection rate r. For instance, the scale size of typical FTEs [Kawano and Russell, 1996] or typi-
cal plasmoids in the magnetotail [Ieda et al., 1998; Imber et al., 2011] requires several minutes of sustained
fast reconnection. The Alfvén speed in these region is typically 100 to several 100 km s−1, such that typical
wave travel times are of the order of 10 s, i.e., much shorter than the required duration of fast reconnec-
tion. It is also noted that the asymmetric current layers for magnetopause reconnection and for large-scale
solar wind reconnection events [Eriksson et al., 2009] appear reasonably consistent with basic predictions by
MHD reconnection.

In two-dimensional MHD magnetic reconnection, the entropy increase occurs mostly through the shock
layers. Such shocks do not exist or are modified in the presence of kinetic physics [Lin and Lee, 1993; Lin,
2001; Hesse et al., 2008; Ma and Otto, 2013; Zenitani et al., 2013], which may involve additional entropy
sources/sinks. However, kinetic models are still governed by the fundamental conservation laws (i.e., mass,
energy, and momentum conservation). Therefore, the asymptotic behavior on sufficiently large scales of the
transition from the inflow to the outflow region should be somewhat consistent with the MHD shock predic-
tion provided that the plasma remains sufficiently isotropic. This is an ultimately unresolved problem worthy
of a more detailed large-scale kinetic study.

Other entropy sources include the small reconnection diffusion region which can heat plasma locally. How-
ever, it has no volume filling effect because of its microscopic (ion or electron inertia scale) size. A fast shock
may exist in the transition region between steady outflow region and nonsteady bulge region, when the
inflow plasma beta is low. However, the Mach number is too small (marginally above 1), such that the fast
shock is not expected to be a major entropy source.

For more realistic configuration, density asymmetry leads to By ≠ 0 in the outflow region which reduces
the entropy increase. The presence of a guide field and a perpendicular shear flow also reduce the entropy
increase in the outflow region. This reduction of nonadiabatic heating is caused the replacement of the
switch-off shock in the steady outflow region by a rotational discontinuity (or intermediate shock) and a
slow shock, which does not switch off the tangential component of the magnetic field for both configura-
tions. Therefore, any asymmetry, guide field, or shear flow increases the magnetic field magnitude in the
outflow region and reduces the thermal pressure increase from the inflow to the outflow regions, which
results in a lower entropy increase than in the symmetric (Petschek) situation.
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The presented results demonstrate that magnetic reconnection can indeed generate a strong nonadiabatic
heating. However, the condition for this is a sufficiently small plasma 𝛽 ≪ 1. Typical magnetosheath condi-
tions imply a plasma beta of order 0.1 to 1. This is insufficient to explain the observed entropy increase of at
least 1 to 2 orders of magnitude between the magnetosheath and the magnetosphere. It is also noted that
reconnection causes plasma compression where the original magnetosheath densities are already too high
in comparison with plasma sheet. A subsequent adiabatic expansion would lower the temperature of the
plasma far below values observed in the magnetosphere. Therefore, it is concluded that additional physics
is required to explain density and temperature of the plasma sheet. Such physics can include the following:
(1) plasma conditions that are not typical magnetosheath. For instance, density and plasma beta are
typically significantly lower in the plasma depletion layer just outside of the magnetopause, (2) plasma
conditions that are modified by additional processes such of Kelvin-Helmholtz instability, and (3) other pro-
cesses that contribute to the plasma entry, such as diffusion or other microphysical processes [Johnson and
Wing, 2009].

There are two additional highly important applications for low-beta reconnection. In the magnetotail lobes
(similar in other magnetospheres such as the giant planets), the plasma beta is extraordinarily low. Here
reconnection of lobe magnetic field can be expected to increase the entropy very significantly by orders
of magnitude. Observations indicate that bursty earthward directed flows are likely entropy-depleted flux
tubes, which are generated by lobe reconnection because of the low lobe plasma beta [Angelopoulos et al.,
1992; Birn et al., 2011]. However, observations indicate that only few of these flows have a sufficiently low
flux tube entropy to reach geosynchronous distances where particle injection is observed during substorms
[Sergeev et al., 2012; Kim et al., 2012; Dubyagin et al., 2011]. A significant nonadiabatic heating in the outflow
region is a critical element to better understand the penetration depth of such reconnection flows [Lyons et
al., 2009]. The second application is reconnection in the solar corona where again the plasma beta is very
low, and magnetic reconnection can potentially increase the plasma entropy by orders of magnitude.
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