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Abstract

The objective of this thesis is to analyze an effective control scheme for an asteroid

orbiting satellite. The thesis first summarizes the progress made in the dynamics

formulation of such satellites and then provides a theoretical framework for the control

system design. The control objective is to maintain a nadir pointing attitude on a

circular equatorial orbit. Using established control design techniques, feedback laws

are constructed to control both rotational and translational motion of the satellite

so that the control objective is achieved. Computer simulations are carried out to

illustrate the effectiveness of the control laws.
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Chapter 1

Introduction

1.1 Exploration of Small Solar System Bodies

Since the Italian astronomer Giuseppe Piazzi initially discovered asteroid Ceres in

1801, more than three hundred thousand asteroids have been found. Asteroids are

small solar system bodies and are made of rocks, ice, carbon, or metals. It is claimed

that the primary conditions of the chemical structure are relatively well kept in the

primitive asteroids in comparison with planets and moons since the asteroids are not

large enough to have crustal movement and are not weathered due to the lack of the

atmosphere. The clues to the source of the formation of the planets and the condi-

tions of the beginning of the solar system might be obtained once the technology to

analyze the asteroids is established. The asteroids are prospective places of mines and

human colonization due to their material structure. Asteroids might have materials

rare on the Earth. Heavy materials which are expensive to launch from the Earth

might be obtained from asteroids and used for the construction of spacecraft or space

structures. Some asteroids contain ice on their surfaces. The ice can be a source of

oxygen for air conditioning and hydrogen for fuelling space vehicles. In the future,

hydrogen might be also used in a nuclear fusion reactor. The orbits of some asteroids

1



CHAPTER 1. INTRODUCTION 2

pass between the Earth and Moon. This proposes that less energy is needed to reach

them than the Moon, which is also a possible source of the colonization and mining.

For these reasons, the interest in mission to the asteroids is increasing now.

A number of missions to asteroids and comets have already been operated by sev-

eral countries. Giotto was launched in 1985 by ESA. It flew by and surveyed Halley’s

Comet at a distance of 596 kilometers. The detailed shape, size, surface condition,

and chemical composition of the Halley’s nucleus and its tail were obtained. The

Near Earth Asteroid Rendezvous (NEAR) mission was operated by NASA. NEAR

Shoemaker which launched in 1996, had researched the asteroids 253 Mathilde and

433 Eros. It orbited Eros for a year at a distance between 20 and 40 kilometers and

obtained much information of the geomorphological features. In the end, it landed on

Eros successfully serving as a reference for future asteroid mission even though the

probe was not designed to do so. Hayabusa 1 was operated between 2003 and 2010 by

Japanese Aerospace Exploration Agency (JAXA). It studied 25143 Itokawa, collected

samples of the asteroid material, and returned to the Earth. The mission objective

of JAXA’s Hayabusa 2 is also sample return. In the Hayabusa 2 mission, the probe

makes a crater to obtain the inner material of an asteroid, 1999 Ju3. OSIRIS-REx is

NASA’s sample return mission and also examines the Yarkovsky effect which is caused

by the anisotropic emission of thermal photons. These photons have momentum and

affect the motion of rotating bodies in space. Sample return missions are valuable

because these samples can be analyzed with the latest technology. Analysis by the

equipment of the spacecraft is also useful but might be outdated because it takes years

to rendezvous with asteroids. Some missions are currently being operated. Rosetta

was planned by ESA to have long survey of the comet 46P/Wirtanen, but due to

an explosion accident of the Ariane 5 rocket in 2002, the destination was changed to

the comet 67P/Churyumov-Gerasimenko. The Rosetta probe was launched in 2004,
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Figure 1.1: Hayabusa landing on the asteroid Itokawa [7].

flew by the asteroids 2867 Steins in 2008 and 21 Lutetia in 2010 and is heading to its

destination and plans to drop the lander, Philae, onto the comet. The Dawn mission,

operated by NASA, was launched in 2007 and is now orbiting the asteroid 4 Vesta

and will leave for Ceres in 2012. Through the research on these two different types of

asteroids, the mystery of the beginning of the solar system might be understood more

deeply. The Dawn probe is scheduled to be the first artificial object to stay forever in

the asteroid belt which is the region between the orbits of Mars and Jupiter. ESA’s

Don Quijote is planned to launch in 2013 or 2015 and its mission is to deflect an

asteroid by crashing a spacecraft into the asteroid. Two space probes are used for

this mission. One is an orbiter which observes the effect of the impact and the other

is an impactor which crashes into the asteroid. This mission examines the possibility

of deflecting an asteroid on a collision course with the Earth. Due to the cancellation

of the US Constellation program which is a manned space flight program, interest in

the exploration of asteroids is increasing. In April 2010 president Obama announced

his space vision to send astronauts to an asteroid by 2025 [10].
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1.2 Analysis of the Orbital and Attitude Dynamics

Around a Small Solar System Body

With the increasing interest in missions to asteroids and comets, the necessity and

importance of orbital and attitude dynamics analyses of the small solar system bodies

are increasing in order to make these missions successful and useful. A number of

papers which examine the orbital and attitude dynamics of spacecrafts around aster-

oids have been published. Scheeres presented some orbital dynamics about asteroids

([1],[2],[12]) and estimated the parameters of some asteroids such as shape, grav-

ity, density, and rotation state ([5],[3]). Asteroids and comets have usually irregular

shapes and this leads to the complicated orbital and attitude dynamics in comparison

with approximately spherical bodies such as the Earth. The gravitational potential

of the irregular bodies is different from simple spherical bodies. For the irregular

bodies, the oblateness and the ellipticity have to be considered in the gravitational

potential and these values are dependent upon the shape of the asteroids and the

distribution of mass indide the asteroid. The gravitational potential analysis is used

in the majority of the papers about the motion of the spacecraft in orbit about an

asteroid ([1],[5],[2],[4],[6]). The gravity term C22 in the equation of the gravitational

potential represents the equatorial ellipticity of the central body. The asteroids and

comets have much greater values of C22 than that of the planets in the solar system

due to their shape. The planets usually have a spherical shape, but the small solar

system bodies have irregular shape ([5],[3],[4]). Scheeres showed the effects of the

gravity terms C20 and C30, which characterize the oblateness of the asteroids and

comets ([1],[5],[2]). The oblateness and ellipticity have the same meaning, the aspect

ratio of the oblate spheroid. In order to distinguish the equatorial from the polar

oblateness, the oblateness is used for the polar plane and the ellipticity is used for the

equatorial plane. Spacecrafts are disturbed by several factors such as the solar wind,
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the magnetic field of the planet, and the gravitational force of the other planets [5].

However these factors are negligibly small in the region close to asteroids. Therefore

most papers have assumed that the gravitational potential is the only external force

acting on the spacecraft ([1],[4],[9]). The pitch motion of a spacecraft in orbit around

433 Eros was identified by analyzing the equation of motion and the gravitational

potential by Misra and Panchenko [9]. The attitude motion of the spacecraft depends

heavily on the shape of the asteroid and the rotational state. Lagrange’s planetary

equations, which state the time derivative of the orbital elements have also been

examined to analyze the dynamics ([1],[2],[4],[14]).

1.3 Basic Information on 433 Eros

This thesis presents the orbital and attitude control of a spacecraft around the asteroid

433 Eros. The properties such as the density, the size, and the orbital elements of Eros

were obtained by NEAR Shoemaker. Eros was first discovered on August 13, 1898

by a German astronomer, Carl Gustav, and named after a god of love and beauty in

Greek mythology. It is the second largest near-Earth asteroid orbiting between the

orbits of the Earth and Mars. The average distance from the sun is 1.46 astronomical

units, which is two hundred and eighteen million kilometers. The orbital parameters

of Eros are shown in Table 1.1. The C10, C11 terms are zero because the origin of the

coordinate frame for this model is at the center of mass of the asteroid. The C21 term

is equal to zero since the z axis alines with the spin axis. All the parameters were

obtained from Jet Propulsion Laboratory data base [8] and from Sheeres’ paper [5].

Table 1.2 shows the position of Eros in cartesian coordinates and orbital elements at

the epoch February 14, 2000, 16:00:00 ET.
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Table 1.1: Properties of 433 Eros [8].

Parameter Value Unit
Size 34.4 × 11.2 × 11.2 km

Gravitational Parameter µ = GM 4.4631 × 10−4 km3/s2

Mass 6.687 × 1015 kg
Volume 2503 km3

Characteristic Length 9.933 km
Density 2.67 g/cm3

Normalized Principal Morment of Inertia Jxx 17.09 km2

Normalized Principal Morment of Inertia Jyy 71.79 km2

Normalized Principal Morment of Inertia Jzz 74.49 km2

Pole Right Ascension 11.369 deg
Rotation Rate 0.000331 rad/sec
Orbital Period 1.76 years

Gravitational Parameter C20 -0.0878
Gravitational Parameter C22 0.0439

Table 1.2: Estimates of Eros’s heliocentric orbit [5].

Epoch February 14, 2000, 16:00:00 ET
Element Value Unit

Cartesian
X -1.372619235 × 108 km
Y -1.404571499 × 108 km
Z -1.045890113 × 108 km

Ẋ +1.488152028 × 101 km/s

Ẏ -1.759628159 × 101 km/s

Ż -7.314516907 × 100 km/s
Orbital

Semi-Major Axis a 2.181658374 × 108 km
Eccentricity e 0.222764914 -
Inclination i 30.805595 deg

Argument of Perigee ω 138.798959 deg
Longitude of the Ascending Node Ω 342.384153 deg

True Anomaly η 107.814684 deg



CHAPTER 1. INTRODUCTION 7

Figure 1.2: 433 Eros [11].

1.4 Contribution of Thesis

This thesis presents an effective control scheme for a spacecraft orbiting the asteroid

433 Eros and provides a 3-D simulation. The thesis first summarizes the progress

made in the dynamics formulation and then provides a framework for the control

system design. Using established control techniques, methods are constructed to

control both rotational and translational motion of the spacecraft. A new quaternion

feedback control law is constructed using Lyapunov’s second method. Computer

simulations are carried out to illustrate the effectiveness of the control laws.

1.5 Organization of Thesis

The organization of the thesis is as follows: Chapter 2 summarizes the basics of Lya-

punov’s stability theory. In Chapter 3, we summarize the gravitational potential field

model of a nonspherical body. Chapter 4 introduces the translational and rotational
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dynamics of a spacecraft orbiting an asteroid. Chapter 5 is devoted to translational

and rotational control law design. Chapter 6 presents conclusions.



Chapter 2

Background on Lyapunov Stability

Theory

2.1 Introduction to Lyapunov’s Stability Theory

One of Aleksandr Lyapunov’s main contributions to control theory involves his method

of determining stability of nonlinear systems. Lyapunov’s stability criteria and theo-

rems play an important role in both the translational and rotational control schemes

developed in this thesis. In developing these control schemes, Lyapunov’s second

stability theorem and LaSalle’s invariance principle are used to prove that each con-

trol law is effective. This chapter briefly describes Lyapunov’s stability criteria and

summarizes the results on Lyapunov’s second stability method. For full details on

Lyapunov’s stability theory, see [13], [15].

Let x = (x1, x2, · · · , xn)T denote an n dimensional state vector and consider an

autonomous nonlinear dynamical system written in the form

ẋ = f(x), (2.1)

9
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where the f(x) function is considered to be continuously differentiable.

In this thesis an ”overdot” represents differentiation with respect to time, i.e. ẋ
∆
=

dx/dt. Let xe denote an equilibrium state defined as

f(xe) = 0. (2.2)

• The equilibrium state xe is said to be Lyapunov stable if for any ε > 0 there

exists a real positive number δ(ε, t0) such that

‖ x(t0)− xe ‖≤ δ(ε, t0) ⇒‖ x(t)− xe ‖≤ ε, for all t ≥ t0

where ‖ x ‖ denotes the Euclidean norm of a vector x;

‖ x ‖≡
√
xTx.

• The equilibrium state xe is said to be locally asymptotically stable if it is Lya-

punov stable as explained above and if

‖ x(t0)− xe ‖≤ δ(ε, t0) ⇒ x(t)→ xe as t → ∞.

• The equilibrium point xe is said to be globally asymptotically stable if both of

the above conditions are met for any initial conditions x(t0).

Essentially, if it can be shown that the control laws presented here provide global

asymptotic stability, then starting from any initial condition the system will reach

the desired equilibrium state.

Proving the stability of nonlinear systems with the basic stability definitions and
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Figure 2.1: Lyapunov Stable.

without resorting to local approximations can be quite tedious and difficult. Lya-

punov’s direct method provides a tool to make rigorous, analytical stability claims of

nonlinear systems by studying the behavior of a scalar, energy-like Lyapunov function.

Let E(x) be a continuously differentiable function defined on a domain D⊂ Rn ,

which contains the equilibrium state. Then we have the following definitions:

• E(x) is said to be positive definite if

E(xe) = 0 and E(x) > 0, for all x 6= xe in the domain D.

• E(x) is positive semidefinite in the same domain if

E(x) ≥ 0, for all x in the domain D as t → ∞.
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Negative definite and negative semidefinite are defined as: if −E(x) is negative defi-

nite or if −E(x) is negative semidefinite, respectively.

2.2 Lyapunov’s Second Stability Theorem

Consider the dynamical system (2.1) and assume that x is an isolated equilibrium

state. If a positive-definite scalar function E(x) exists in a region D around the

equilibrium state xe, with continuous first partial derivatives with respect to xi, see

below:

1. E(x) > 0 for all x 6= xe in the domain D, E(xe)=0.

2. Ė(x) ≤ 0 for all x 6= xe in the domain D.

Then the equilibrium point xe is stable.

In addition to the conditions 1 and 2,

3. the equilibrium point xe is locally asymptotically stable, if Ė(x) is not identically

zero along any solution of (2.1) other than the equilibrium point xe.

In addition to the condition 3,

4. the equilibrium point is globally asymptotically stable, i.e. x(t)→ xe as t→∞ for

any initial condition x(t0), if there exists in the entire state space a positive-

definite function E(x) which is radially unbounded, i.e. E(x)→ ∞ as ‖ x ‖

→ ∞.

Note that conditions 3 and 4 follow directly from LaSalle’s invariance principle.



Chapter 3

Gravitational Potential Field

Model

The development in this chapter follows that in [9].

3.1 Gravitational Potential Approximation

3.1.1 Gravitational Potential Field Models

The gravitational potential dU at a point P (representing the spacecraft position) by

the small elements dm is of the form

dU = G
dm

s
, (3.1)

where s = ||s|| and s is the position vector from the small element dm to the point

P . The position vector s can be expressed as

s = r − ρ, (3.2)

13
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Figure 3.1: Geometry

where ρ is the position vector of the small element dm from the center of mass of the

asteroid and r is the position vector of the point P from the asteroid center of mass

as shown in Figure 3.1.

The magnitude of the vector s can be expressed as

s = r(1− 2να + α2)1/2, (3.3)

where ν = cos γ and α = ρ/r if ρ/r < 1 or α = r/ρ if ρ/r > 1. γ is the angle between

ρ and r.

Using the binomial theorem, it can be obtained as

(1− 2να + α2)−
1
2 =

∞∑
k=0

Pk(ν)αk, (3.4)

for α < 1, where Pk(ν) denotes the Legendre polynomials, which are obtained as

P0(ν) = 1, (3.5)

P1(ν) = ν, (3.6)

Pn+1(ν) =
2n+ 1

n+ 1
νPn(ν)− n

n+ 1
Pn−1(ν). (3.7)
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Thus the gravitational potential of the small element dm can be rewritten as

dU = G
dm

r

∞∑
k=0

(ρ
r

)k
Pk(cos γ). (3.8)

Therefore the gravitational potential field of the asteroid be expressed as

U(r) = G
m

r
+
G

r

∞∑
k=1

∫∫∫ (ρ
r

)k
Pk(cos γ) dm. (3.9)

3.1.2 MacCullagh’s Approximation

If the distance between the point P and the center of mass is large compared with

the dimensions of the body, the gravitational potential can be approximated as

U(r) = G
m

r
+
G

r2

∫∫∫
ρ cos γ dm+

G

2r3

∫∫∫
ρ2(3 cos γ2 − 1) dm. (3.10)

If the origin C of the coordinate frame and the center of mass of the body are the

same, we can obtain ∫∫∫
ρ cos γ dm = 0. (3.11)

The moment of inertia about each axis is of the form

Jξξ =

∫∫∫
(η2 + ζ2) dm, (3.12)

Jηη =

∫∫∫
(ξ2 + ζ2) dm, (3.13)

Jζζ =

∫∫∫
(η2 + ξ2) dm, (3.14)

Jξξ + Jηη + Jζζ = 2

∫∫∫
ρ2 dm = 0, (3.15)

where ξ, η, and ζ are the coordinates of dm in the asteroid body fixed frame of

reference.
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Defining the moment of inertia of the body about the line connecting the center of

mass and the point P , we obtain

Jr =

∫∫∫
ρ2 sin2 γ dm. (3.16)

Therefore the potential (3.10) can be expressed in terms of moments of inertia as

U(r) = G
m

r
+

G

2r3
(Jξξ + Jηη + Jζζ − 3Jr). (3.17)

3.1.3 Spherical Harmonic Gravitational Potential

In the spherical coordinate system, the position vectors of dm and the point P ,

respectively, are

ρ = ρ(ρ, θ, φ), (3.18)

r = r(r, λ, δ). (3.19)

The small element dm can be expressed as

dm = D(ρ, θ, φ)ρ2 cos β dρ dφ dθ, (3.20)

where D(ρ, θ, φ) is the local density of the body.

Using the spherical trigonometry, cos γ can be expressed as

cos γ = sin δ sinφ+ cos δ cosφ cos (λ− θ). (3.21)

The associated Legendre function is

P j
k (ν) = (1− ν2)j/2

dj

dνj
Pk(ν), (3.22)
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Figure 3.2: Position vectors in spherical coordinates.

where the parameters j and k are referred to as the order and degree, respectively.

Zeroth-order Legendre function is defined as

P 0
k (ν) = Pk(ν), (3.23)

P j
k (ν) = 0, ∀j > k. (3.24)

Equation (3.21) can be rewritten in terms of the associated Legendre functions as

P1(cos γ) = P1(sin δ)P1(sinφ) + P 1
1 (sin δ)P 1

1 (sinφ) cos (λ− θ). (3.25)

Therefore the zeroth-order kth-degree Legendre function of cos γ can be written as

Pk(cos γ) = Pk(sin δ)Pk(sinφ) + 2
k∑
j=1

(k − j)!
(k + j)!

P j
k (sin δ)P j

k (sinφ) cos j(λ− θ). (3.26)
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Hence the gravitational potential can be written as

U(r) =
Gm

r
+
∞∑
k=1

1

rk+1

[
Ck0Pk(sin δ) +

k∑
j=1

P j
k (sin δ)

(
Ckj cos jλ+ Skj sin jλ

)]
,

(3.27)

where

Ck0 = G

∫∫∫
ρk+2D(ρ, θ, φ)Pk(sin θ) cos θ dρ dθ dφ, (3.28)

Ckj = 2G
(k − j)!
(k + j)!

∫∫∫
ρk+2D(ρ, θ, φ)P j

k (sin θ) cos (jφ) cos θ dρ dθ dφ, (3.29)

Skj = 2G
(k − j)!
(k + j)!

∫∫∫
ρk+2D(ρ, θ, φ)P j

k (sin θ) sin (jφ) cos θ dρ dθ dφ. (3.30)

The standard gravity field would be used for navigation operations about a small

body can be estimated from the radiometric data, combined with optimal data. The

usual specification of this field is truncated at some degree and order and is expressed

as

U(r) =
Gm

r

N∑
i=0

i∑
j=0

(r0

r

)i
P j
i (sin δ)[Cij cos jλ+ Sij sin jλ], (3.31)

where r0 is the characteristic length of the small body and

Ci0 =
Ci0

Gmri0
, Cij =

Cij

Gmri0
(for j 6= 0), Sij =

Skj
Gmri0

(3.32)

For many practical applications, the assumption of axial symmetry for a body is

reasonable. The gravitational potential of such bodies is given by

U(r) =
Gm

r

[
1−

∞∑
k=2

(r0

r

)k
JkPk(sin δ)

]
, (3.33)
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where Jk is the kth zonal harmonics.

The perturbing function is given by

R = −Gm
r

∑(r0

r

)k
JkPk(sin δ). (3.34)

Thus the perturbing acceleration can be written in spherical coordinates as

f = ∇R =
∂R

∂r
îr +

1

r

∂R

∂φ
îφ +

1

r cosφ

∂R

∂θ
îθ. (3.35)

3.2 Gravity-Gradient Torque

In this section, we made the following assumptions in deriving the equations of motion

following the development in [9]:

• The spacecraft is rigid.

• The external force acting on the spacecraft is only the gravitational attraction

of the asteroid.

• The rotation rate of the asteroid Ω is constant and rotating about the vector

K̂.

• The orbital motion of the spacecraft is described as a closed, planar, and periodic

orbit.

• The orbital motion of the spacecraft is not affected by attitude dynamics.

Thus the attitude motion can be described by Euler’s equation of motion of a rigid

body.

J1ω̇1 − (J2 − J3)ω2ω3 = M1, (3.36a)

J2ω̇2 − (J3 − J1)ω3ω1 = M2, (3.36b)
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J3ω̇3 − (J1 − J2)ω1ω2 = M3, (3.36c)

where Ji is the principal moments of inertia of spacecraft, ωi is the angular velocity

along the principal axes, and Mi is the external moment about the principal axes.

3.2.1 Coordinate Systems

• A set of three orthogonal unit vectors (Î , Ĵ , K̂) defines the inertial frame Fi.

• A set of three orthogonal unit vectors (̂i, ĵ, k̂) defines the asteroid body fixed

frame Fa. The vectors are aligned with the three centroidal principal axes of

the smallest, intermediate, and largest moments of inertia of the asteroid. The

vector k̂ points in the same direction as K̂ in this thesis.

• A set of three orthogonal unit vectors (ô1, ô2, ô3) defines the orbital frame Fo.

The origin of this frame is at the center of mass of the spacecraft. ô3 points

towards the center of mass of the asteroid, ô1 points towards the transverse

direction in the orbital plane, and ô2 = ô3 × ô1.

• A set of three orthogonal unit vectors (b̂1, b̂2, b̂3) defines the spacecraft body

fixed frame Fb and defined along the principal axes of the spacecraft.

• A set of three orthogonal unit vectors (êR, êλ, êδ) are associated with the spher-

ical coordinate system (R, λ, δ) as shown in Figure 3.4. Here λ and δ denote

the longitude and latitude of dm, respectively.

Rc is the position vector of the center of mass of the spacecraft (CMs) from the center

of mass of the asteroid (CMa). In the orbital frame Fo:

Rc = −Rc ô3. (3.37)
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Figure 3.3: Inertial frame and orbital frame in equatorial plane

Figure 3.4: Spacecraft body fixed frame, orbital frame, and asteroid body fixed frame.
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Let r denote the position vector of dm in CMs. In the spacecraft body fixed frame

Fb:

r = x b̂1 + y b̂2 + z b̂3. (3.38)

Denote by R the position vector of dm in CMa. In terms of r and Rc,

R = Rc + r. (3.39)

Throughout this thesis, we assume that R and Rc is much greater than r.

The C1(θ1) ← C2(θ2) ← C3(θ3) rotation sequence is used to obtain the rotation

matrix from the orbital frame Fo to the spacecraft body fixed frame Fb:

Fb = C1(θ1)C2(θ2)C3(θ3)Fo = CFo, (3.40)

where C is the direction cosine matrix and Ci is the rotation matrix of each rotation

C1(θ1) =


1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1

 , (3.41a)

C2(θ2) =


cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2

 , (3.41b)

C3(θ3) =


cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1

 . (3.41c)
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Thus the direction cosine matrix C can be obtained as
b̂1

b̂2

b̂3

 = C


ô1

ô2

ô3

 =


c2c3 c2s3 −s2

s1s2c3 − c1s3 s1s2s3 + c1c3 s1c2

c1s2s3 + s1s3 c1s2s3 − s1c3 c1c2



ô1

ô2

ô3

 , (3.42)

where ci
∆
= cos θi and si

∆
= sin θi.

The angular velocity vector ω of the spacecraft is represented in the spacecraft

body fixed frame Fb as

ω = ω1 b̂1 + ω2 b̂2 + ω3 b̂3 =
[
b̂1 b̂2 b̂3

]
ω1

ω2

ω3

 . (3.43)

The angular velocity can be obtained as
ω1

ω2

ω3

 =


θ̇1

0

0

+ C1(θ1)


0

θ̇2

0

+ C1(θ1)C2(θ2)


0

0

θ̇3

− η̇K̂, (3.44)

where η̇ is the instantaneous orbital rate in the K̂-direction.

For the equatorial motion, the vector K̂ can be expressed in the spacecraft body fixed

frame as

K̂ = −ô2 = −
(
c2s3 b̂1 + (s1s2s3 + c1c3) b̂2 + (c1s2s3 − s1c3) b̂3

)
. (3.45)
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Therefore the angular velocity can be written as
ω1

ω2

ω3

 =


1 0 −s2

0 c1 s1c2

0 −s1 c1c2



θ̇1

θ̇2

θ̇3

− η̇


c2s3

s1s2s3 + c1c3

c1s2s3 − s1c3

 . (3.46)

3.2.2 Gravitational Force

The gravitational potential (3.31) of an asteroid can be arranged as

U =
µ

R
[1 +

1

2

(r0

R

)2

C20(3 sin2 δ − 1) + 3
(r0

R

)2

C22 cos2 δ cos (2λ)

+
1

2

(r0

R

)3

C30 sin δ(5 sin2 δ − 3) + · · · ], (3.47)

Keeping only the most significant gravitational coefficients (C20 and C22) in the har-

monic expansion, the gravitational potential can be arranged as

U =
µ

R

[
1 +

1

2

(r0

R

)2

C20(3 sin2 δ − 1) + 3
(r0

R

)2

C22 cos2 δ cos (2λ)

]
, (3.48)

where r0 is the characteristic length of the asteroid, R is the distance of the orbiting

particle from CMa, and µ is the gravitational parameter of the asteroid and µ = GM .

The gravitational force acting on dm at a distance R from CMa can be obtained

by taking the partial derivative of the gravitational potential as

dF =

[
∂U

∂R
êR +

1

R cos δ

∂U

∂λ
êλ +

1

R

∂U

∂δ
êδ

]
dm

= dFR + dF λ + dF δ,

(3.49)
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where

dFR = −µdmR

|R|3

[
1 +

3

2

(r0

R

)2

C20(3 sin2 δ − 1) + 9
(r0

R

)2

C22 cos2 δ cos (2λ)

]
,

(3.50)

dF λ = −µdm[êδ ×R]

|R|3

[
6
(r0

R

)2

C22 cos δ sinλ

]
, (3.51)

dF δ = −µdmêδ
|R|2

[
3
(r0

R

)2

C20 sin δ cos δ − 6
(r0

R

)2

C22 sin δ cos δ cos (2λ)

]
. (3.52)

In the equatorial plane, the latitude δ is negligibly small because r � R,Rc. Thus

the gravitational force for equatorial orbits can be simplified as

dFR = −µdmR

|R|3

[
1− 3

2

(r0

R

)2

C20 + 9
(r0

R

)2

C22 cos 2λ

]
, (3.53)

dF λ = −µdm[êδ ×R]

|R|3

[
6
(r0

R

)2

C22 sinλ

]
, (3.54)

dF δ = 0. (3.55)

3.2.3 Gravity-Gradient Torque

The gravity-gradient torque on the spacecraft can be obtained as

M =

∫
r × dF =

∫
r × dFR +

∫
r × dF δ +

∫
r × dF λ. (3.56)



CHAPTER 3. GRAVITATIONAL POTENTIAL FIELD MODEL 26

By using the Binomial expansion, each component of the gravity-gradient torque in

the spacecraft body fixed frame Fb can be obtained as

M1 =
µ

R3
[(3 + 5φ)(J3 − J2)c1c

2
2s1 + 5χ(

2

5
J1c2s3

− (J1 − J2 + J3)(c1c2c3s1s2 + c2s
2
1s3)

+ (J2 − J3 + J1)(c1c2c3s1s2 − c2
1c2s3))], (3.57)

M2 =
µ

R3
[(3 + 5φ)(J3 − J1)c1c2s2 +

5

2
χ(

2

5
J2(s1s2s3 + c1c3)

− (J2 − J1 + J3)(c1c3s
2
2 + s1s2s3)− (J2 − J3 + J1)c1c

2
2c3)], (3.58)

M3 =
µ

R3
[(3 + 5φ)(J1 − J2)c2s1s2 +

5

2
χ(

2

5
J3(c1s2s3 − s1c3)

− (J2 − J1 + J3)(c1s2s3 − c3s1s
2
2) + (J1 − J2 + J3)c2

2c3s1)], (3.59)

where

φ =

(
−3

2
C20 + 9C22 cos 2λ

)(r0

R

)2

,

χ = 6C22 sin 2λ
(r0

R

)2

.



Chapter 4

Translational and Rotational

Dynamics

4.1 Translational Dynamics

4.1.1 Equations of Motion

In this section, we describe the translational dynamics of an asteroid orbiting space-

craft shown in Figure 4.1. The development here follows that in [15]. Let [X, Y, Z] and

[x, y, z] frames denote an inertial frame Fi and an asteroid body fixed frame Fa rotat-

ing with the angular velocity Ω = ΩK̂, respectively. Let F denote the translational

control force for the spacecraft. Then, the dynamic equations for the translational

motion of the spacecraft in the asteroid body fixed frame Fa are given by

mR̈ = m∇U + F , (4.1)

27
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Figure 4.1: Translational motion.

where R is the inertial position of the spacecraft in the asteroid frame, m is the

spacecraft mass, and U is the gravitational potential given as

U =
µ

R

[
1 +

1

2

(r0

R

)2

C20(3 sin2 δ − 1) + 3
(r0

R

)2

C22 cos2 δ cos (2λ)

]
. (4.2)

The sin δ, cos δ, and R terms can be expressed in terms of x, y, and z as

sin2 δ =
z2

R2
, (4.3)

cos2 δ =
x2 + y2

R2
, (4.4)

R2 = x2 + y2 + z2. (4.5)
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Thus, equation (4.2) can be expressed as

U = µ

[
R−1 +

3

2
r2

0C20z
2R−5 − 1

2
r2

0C20R
−3 + 3r2

0C22 cos (2λ)(x2 + y2)R−5

]
. (4.6)

The translational dynamics of the spacecraft in the asteroid body fixed frame Fa can

be rewritten as

mR̈ = m

(
∂U

∂x
î+

∂U

∂y
ĵ +

∂U

∂z
k̂

)
+ F , (4.7)

where

∂U

∂x
=− µxR−3[1 +

15

2
r2

0C20z
2R−4 − 3

2
r2

0C20R
−2

− 6r2
0C22 cos (2λ)R−2 + 15r2

0C22(x2 + y2) cos (2λ)R−4], (4.8)

∂U

∂y
=− µyR−3[1 +

15

2
r2

0C20z
2R−4 − 3

2
r2

0C20R
−2

− 6r2
0C22 cos (2λ)R−2 + 15r2

0C22(x2 + y2) cos (2λ)R−4], (4.9)

∂U

∂z
=− µzR−3[1− 9

2
r2

0C20R
−2 +

15

2
r2

0C20z
2R−4

+ 15r2
0C22(x2 + y2) cos (2λ)R−4]. (4.10)

Assuming that Ω is constant, the acceleration of the spacecraft R̈ also can be written

as

R̈ = a+ 2Ω× v + Ω× (Ω×R), (4.11)

where

a = [ẍ, ÿ, z̈]T , (4.12)

v = [ẋ, ẏ, ż]T , (4.13)

Ω = [0, 0, Ω]T . (4.14)
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Thus the acceleration can be written as

R̈ =


ẍ

ÿ

z̈

+ 2


−Ωẏ

Ωẏ

0

+


−Ω2x

−Ω2y

0

 . (4.15)

Using equations (4.1) and (4.11), the equations of motion can be obtained as

R̈ = a+ 2Ω× v + Ω× (Ω×R) = ∇U + F /m. (4.16)

In components these equations can be written as

ẍ−2Ωẏ − Ω2x = −µxR−3[1 +
15

2
r2

0C20z
2R−4 − 3

2
r2

0C20R
−2

− 6r2
0C22 cos (2λ)R−2 + 15r2

0C22(x2 + y2) cos (2λ)R−4] + Fx/m, (4.17)

ÿ+2Ωẋ− Ω2y = −µyR−3[1 +
15

2
r2

0C20z
2R−4 − 3

2
r2

0C20R
−2

− 6r2
0C22 cos (2λ)R−2 + 15r2

0C22(x2 + y2) cos (2λ)R−4] + Fy/m, (4.18)

z̈ =− µzR−3[1− 9

2
r2

0C20R
−2 +

15

2
r2

0C20z
2R−4

+ 15r2
0C22(x2 + y2) cos (2λ)R−4] + Fz/m. (4.19)

4.1.2 Matlab Simulation

The translational motion of the spacecraft is simulated using Matlab’s ode45 integra-

tor in the asteroid and inertial frames. The initial conditions were taken as

[x0, y0, z0] = [Rc, 0, 0] km, (4.20)

[ẋ0, ẏ0, ż0] =

[
0.0001,

√
µ

Rc

− ΩRc, 0.0001

]
km/sec, (4.21)
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where µ = 4.4631 × 10−4km3/s2 and Rc = 50 km. For the asteroid 433 EROS, the

most significant gravitational parameters are given by C20 = −0.0878, C22 = 0.0439,

the asteroid rotation rate is Ω = 3.31 × 10−4 rad/s, and the characteristic length of

the asteroid is r0 = 9.933 km. For a direct orbit, the longitude of the spacecraft is

calculated as λ = (η̇ − Ω)t. For an uncontrolled translational motion, the control

force F is set to be zero.

Figures 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 show the uncontrolled translational motions

of the spacecraft due to the nonuniform gravitational potential of the asteroid. In

the subsequent sections, we will develop effective feedback control laws to achieve a

circular equatorial orbit.
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Figure 4.2: Three dimensional uncontrolled spacecraft motion in the the asteroid
frame (Rc = 50 km).
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Figure 4.3: Two dimensional uncontrolled spacecraft motion in the asteroid frame
(Rc = 50 km).
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Figure 4.4: Uncontrolled spacecraft x, y, and z positions (Rc = 50 km).
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Figure 4.5: Three dimensional uncontrolled spacecraft motion in the the inertial frame
(Rc = 50 km).
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Figure 4.6: Two dimensional uncontrolled spacecraft motion in the inertial frame (Rc

= 50 km).
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Figure 4.7: Uncontrolled spacecraft X, Y , and Z positions (Rc = 50 km).
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4.2 Rotational Kinematics and Dynamics

4.2.1 Quaternions

The most commonly used sets of attitude parameters are the Euler angles. They

describe the attitude of one frame relative to another. The Euler angles provide a

compact, three-parameter attitude description whose coordinates are easy to visual-

ize. One major drawback of these angles is that they result in a geometric singularity.

Therefore, their use in describing large rotations is limited. Also, both the rotation

matrix and the kinematic equations are highly nonlinear and involve numerous com-

putations of trigonometric functions. Quaternions provide a four-parameter singu-

larity free representation that does not require the calculation of any trigonometric

functions. Quaternions, unlike Euler angles, use one axis called an “eigenaxis” to

rotate between coordinate systems. In this section, we first briefly review the atti-

tude kinematics and dynamics formulation used in this thesis to obtain the rotational

equations of motion for a group of spacecraft. For full details, the reader is referred

to [15].

4.2.2 Reference Frames and Rotations

Consider the orbital reference frame Fo, whose three constituent vectors are ô1, ô2,

and ô3. Let cos θ1, cos θ2, and cos θ3 be the direction cosines of a vector r as shown

in Figure 4.8. Then, we write

r = r(ô1 cos θ1 + ô2 cos θ2 + ô3 cos θ3), (4.22)

where r is the length of r. Now consider the spacecraft body fixed frame Fb, with

constituent vectors b̂1, b̂2, and b̂3. A relation between the two reference frames Fa
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Figure 4.8: Direction cosines between a vector r and the frame Fo.

and Fb can be written as: 
b̂1

b̂2

b̂3

 =


c11 c12 c13

c21 c22 c23

c31 c32 c33



ô1

ô2

ô3

 , (4.23)

where cij is the direction cosine between b̂i and ôj.

The matrix

C =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 (4.24)

is an orthonormal rotation matrix with the following properties:

CCT = CTC = I, det(C) = +1. (4.25)
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Figure 4.9: Geometry describing Euler’s theorem.

where I is the 3×3 identity matrix. The rotation matrix C relates components of a

given vector r in the frames F a and F b as rb = Cra.

4.2.3 Rotational Kinematics

Euler’s theorem states that the general rotation of a rigid body with one fixed point

is a rotation about an axis through that point. Figure 4.9 illustrates the geometry

pertaining to Euler’s theorem. Now consider an arbitrary vector r as shown in Figure

4.10. As Fo rotates about an axis e which is called an eigenaxis, by an angle θ which

is called an eigenangle, it will appear to an observer fixed in Fo that r is rotating

about e through an angle −θ; to this observer, the rotation corresponds to r → r′,

where

r′ = (e · r)e− e× (e× r) cos θ − e× r sin θ. (4.26)

Note that eTe=1. The components of r′ in Fb can then be written as

rb =
[
eeT + (I − eeT ) cos θ −E sin θ

]
ro. (4.27)
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Figure 4.10: Geometrical interpretation of the rotation matrix.

Thus, the rotation matrix can be expressed in terms of e and θ as

C = eeT +
(
I − eeT

)
cos θ −E sin θ, (4.28)

where E denotes the skew symmetric matrix satisfying e × r = Er, which is given

by

E =


0 −e3 e2

e3 0 −e1

−e2 e1 0

 . (4.29)

In full matrix form, the rotation matrix becomes

C =


cθ + e2

1 (1− cθ) e1e2 (1− cθ) + e3sθ e1e3 (1− cθ)− e2sθ

e2e1 (1− cθ)− e3sθ cθ + e2
2 (1− cθ) e2e3 (1− cθ) + e1sθ

e3e2 (1− cθ) + e2sθ e3e2 (1− cθ)− e1sθ cθ + e2
3 (1− cθ)

 , (4.30)
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where cθ
∆
= cos θ and sθ

∆
= sin θ.

Now quaternions (also called Euler parameters) can be defined as:

q1 = e1 sin (θ/2), (4.31)

q2 = e2 sin (θ/2), (4.32)

q3 = e3 sin (θ/2), (4.33)

q4 = cos (θ/2). (4.34)

Using the eigenaxis vector e = (e1, e2, e3)T , we define the vector part of the quaternion

q = (q1, q2, q3)T as

q = e sin (θ/2). (4.35)

Note that the quaternions are constrained by the following relationship:

qTq + q2
4 = q2

1 + q2
2 + q2

3 + q2
4 = 1. (4.36)

The rotation matrix C can be parameterized in terms of quaternions as

C =


1− 2 (q2

2 + q2
3) 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)

2 (q2q1 − q3q4) 1− 2 (q2
3 + q2

1) 2 (q2q3 + q1q4)

2 (q3q1 + q2q4) 2 (q3q2 − q1q4) 1− 2 (q2
1 + q2

2)

 . (4.37)

Let ω denote the angular velocity of the spacecraft body fixed frame Fb relative to

the inertial frame Fi expressed in the body frame. Then, the angular velocity of Fb
relative to the orbital frame Fo can be written as

ωr = ω + η̇o2 = ω + no2, (4.38)
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where o2 denotes the second column of the rotation matrix C. The attitude kine-

matics can now be written in terms of quaternions as

q̇ =
1

2
(q4I + q̃)ωr, (4.39)

q̇4 = −1

2
qTωr. (4.40)

4.2.4 Gravity-Gradient Torque in Terms of Quaternions

The direction cosine matrix (3.42) can be written in terms of quaternions as


b̂1

b̂2

b̂3

 =


1− 2(q2

2 + q2
3) 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) 1− 2(q2
1 + q2

3) 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q3q2 − q1q4) 1− 2(q2
1 + q2

2)



ô1

ô2

ô3

 . (4.41)

The inertial angular velocity ω of the spacecraft can be written in terms of quaternions

as 
ω1

ω2

ω3

0

 = 2


q4 q3 q2 q1

−q3 q4 −q1 q2

q2 q1 q4 q3

q1 −q2 −q3 q4




q̇1

q̇2

q̇3

q̇4

−


2(q1q2 + q3q4)

1− 2(q2
1 + q2

3)

2(q3q2 − q1q4)

0

 η̇. (4.42)
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The gravity-gradient torque components Mi in the spacecraft body fixed frame Fb
can be written in terms of quaternions as

M1 =
µ

R3
c

[2(3 + 5φ)(J3 − J2)(q2q3 + q1q4){1− 2(q2
1 + q2

2)}

+ 5χ(
2

5
J1(q1q2 + q3q4)− (J1 − J2 + J3)(q1q2 − q3q4){1− 2(q2

1 + q2
2)}

+ (J2 − J3 + J1)(q1q3 + q2q4)(q2q3 + q1q4))], (4.43)

M2 =
µ

R3
c

[2(3 + 5φ)(J1 − J3)(q1q3 − q2q4){1− 2(q2
1 + q2

2)}

+
5

2
χ(

2

5
J2{1− 2(q2

1 + q2
3)}+ 4(J2 − J1 + J3)(q1q3 + q2q4)(q1q3 − q2q4)

− (J2 − J3 + J1){1− 2(q2
2 + q2

3)}{1− 2(q2
1 + q2

2)})], (4.44)

M3 =
µ

R3
c

[4(3 + 5φ)(J2 − J1)(q1q3 − q2q4)(q2q3 + q1q4)

+ 5χ(
2

5
J3(q3q2 − q1q4)− 2(J2 − J1 + J3)(q1q2 − q3q4)(q1q3 − q2q4)

+ (J1 − J2 + J3){1− 2(q2
2 + q2

3)}(q2q3 + q1q4))]. (4.45)

4.2.5 Rotational Dynamics

We denote by τ the control torque vector in the spacecraft body fixed frame Fb. Then

the attitude dynamics of the spacecraft can be expressed as

Jω̇ + ω̃Jω = τ +M , (4.46)

where M is the gravity-gradient torque in the spacecraft body fixed frame Fb and J

is the inertia matrix for the spacecraft, which is given by

J =


J1 0 0

0 J2 0

0 0 J3

 . (4.47)
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and ω̃ is the skew-symmetric matrix formed from ω :

ω̃ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (4.48)

Clearly, ω̃Jω = ω × Jω and, thus, both notations can be used interchangeably.

Figures 4.11 displays the quaternions without the control torque. In the simulations,

the initial angular velocities are given by

ω1 (0) = ω2 (0) = ω3 (0) = 4× 10−5 rad/s. (4.49)

The initial quaternions for the spacecraft is given as follows:

[q(0), q4(0)] = [0.5, 0.5, 0.5, 0.5]T . (4.50)

For an uncontrolled rotational motion, the control torque τ is set to be zero.
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Figure 4.11: Quaternions for uncontrolled rotational motion.



Chapter 5

Translational and Rotational

Control

This chapter is devoted to the design of translational and rotational feedback control

laws. The control objective is to maintain a nadir pointing attitude on a circular

equatorial orbit.

5.1 Translational Control Law

Consider the problem of asteroid-stationary orbit design for 433 EROS. The desired

motion in the asteroid body fixed frame Fa is the equatorial motion and can be

obtained as

R∗ =


x∗

y∗

z∗

 =


Rc cos(η̇ − Ω)t

Rc sin(η̇ − Ω)t

0

 , (5.1)

47
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Ṙ
∗

=


ẋ∗

ẏ∗

ż∗

 =


−(η̇ − Ω)y∗

(η̇ − Ω)x∗

0

 , (5.2)

R̈
∗

=


ẍ∗

ÿ∗

z̈∗

 =


−(η̇ − Ω)2x∗

−(η̇ − Ω)2y∗

0

 . (5.3)

Here Rc denotes the radius of the circular orbit. The translational control problem

is then to design a feedback control law such that, starting from any initial position

R(0) and velocity Ṙ(0), the spacecraft is driven to R = R∗ and Ṙ = Ṙ
∗
. The

translational equation of motion of the spacecraft can be expressed as

Ṙ = V , (5.4)

R̈ = −2Ω× V −Ω× (Ω×R) +∇U + F /m, (5.5)

where F denotes the translational control force in the asteroid body fixed frame.

Define the error variables:

e =R−R∗, (5.6)

ė =Ṙ− Ṙ∗,

ë =R̈− R̈∗.

Consider the following controller

F = m
(
−∇U + 2Ω× V ∗ + Ω× (Ω×R)−Ke−Cė+ R̈

∗)
, (5.7)
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where C and K are symmetric positive definite matrices. The closed-loop error

dynamics are then given by

ë+Cė+Ke+ 2Ω× ė = 0. (5.8)

To prove that the control law achieves the control objective, consider the following

candidate Lyapunov function as introduced in sec 2.1,

E =
1

2
ėT ė+

1

2
eTKe. (5.9)

Taking the time derivative along the closed-loop trajectories yields

Ė = ėT ë+ ėTKe = −ėTCė. (5.10)

Clearly, Ė ≤ 0. Now it suffices to show that Ė is not identically zero along any

solution of other than the desired equilibrium e = 0, ė = 0. It is easily seen that if

the time derivative of the Lyapunov function is zero,

ė ≡ 0 ⇒ ë ≡ 0, (5.11)

which implies that

e = 0 (5.12)

as well, thus proving global asymptotic stability. This means that the proposed

feedback control law drives the system to the desired equilibrium from any e(0) and

ė(0). The feedback control law can be written in terms of original variables as

F = m
(
−∇U + 2Ω× V ∗ + Ω× (Ω×R)−K(R−R∗)−C(V − V ∗) + R̈

∗)
.

(5.13)
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The above feedback control force can be expressed in the spacecraft body fixed frame

as

F = CCaiF a. (5.14)

where C denotes the rotation matrix from the orbital frame to the spacecraft body

fixed frame given by equation (4.37) and Cai is the rotation matrix from the asteroid

body fixed frame to the orbital frame given by

Cai =


cos Ωt sin Ωt 0

− sin Ωt cos Ωt 0

0 0 1

 . (5.15)

5.2 Matlab Results

The translational control described above was simulated using Matlab’s ode45 inte-

grator; the control was applied in order to keep the spacecraft on a circular equatorial

orbit of radius Rc = 50 km. Figure 5.7 shows the control forces in x, y, and z di-

rection. The control force in z direction converges to zero by 0.005 orbits. Figures

5.1, 5.2, 5.3, 5.4, 5.5, and 5.6 show the results of the simulation that corresponds to

initial conditions

R(0) = [50, 5, 5]T km, (5.16)

Ṙ(0) = [0.0001, −0.01355, 0.0001]T km/s. (5.17)

Note that we set m = 100 kg, µ = 4.4631 × 10−4km3/s2. The control gain matrices

are

K =


1 0 0

0 1 0

0 0 1

× 10−2, C =


2 0 0

0 2 0

0 0 2

× 10−2. (5.18)
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Figure 5.1: Three dimensional controlled spacecraft motion in the the asteroid frame
(Rc = 50 km).
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Figure 5.2: Two dimensional controlled spacecraft motion in the asteroid frame (Rc

= 50 km).
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Figure 5.3: Controlled spacecraft x, y, and z positions (Rc = 50 km).
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Figure 5.4: Three dimensional controlled spacecraft motion in the the inertial frame
(Rc = 50 km).
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Figure 5.5: Two dimensional controlled spacecraft motion in the inertial frame (Rc

= 50 km).
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Figure 5.6: Controlled spacecraft X, Y , and Z positions (Rc = 50 km).
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Figure 5.7: Control force Fa.
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5.3 Rotational Control Law

In this section, we present a rotational feedback control law that achieves three-axis

stabilized nadir-pointing attitude. In other words, the control objective is to align the

spacecraft body fixed axes with the orbital reference axes. The desired attitude and

angular velocity are given by qd = 0, q4d = 1, ωd = −η̇e2, where e2 = (0, 1, 0)T is

the second standard basis vector in R3. Let ωe = ω−ωd denote the angular velocity

error. Since ωd is constant, we have ω̇e=ω̇. Now consider the rotational equations of

motion for the spacecraft given by the equations (4.39), (4.40), and (4.46). It can be

shown that the rotational equations of motion can be rewritten in terms of angular

velocity error as

Jω̇e + (ωe + ωd)× J(ωe + ωd) = τ +M , (5.19)

q̇ =
1

2
(q4ωe − ωe × q) + q × ωd, (5.20)

q̇4 = −1

2
ωTe q. (5.21)

where M is the gravity gradient torque. The goal now is to design a feedback control

τ for the spacecraft to achieve the desired attitude and the desired angular velocity.

Consider the following controller:

τ = −kJqe − cJωe + ω × Jω −M , (5.22)
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where k and c are positive control parameters. The closed-loop dynamics can be

written as

ω̇e = −kq − cωe, (5.23)

q̇ =
1

2
(q4ωe − ωe × q) + q × ωe, (5.24)

q̇4e = −1

2
qTωe. (5.25)

To prove that the control law (5.22) achieves the control objective, consider the

following candidate Lyapunov function:

E =
1

2k
ωTe ωe + qTq + (q4 − 1)2. (5.26)

The time derivative of E along the trajectories of this closed-loop system can be

computed as

Ė =
ωTe ω̇e
k

+ 2qT q̇ + 2(q4 − 1)q̇4, (5.27)

which simplifies to

Ė = − c
k
ωTe ωe ≤ 0. (5.28)

Now it suffices to show that Ė is not identically zero along any solution of the equa-

tions (5.23)-(5.25) other than the desired equilibrium ωe = 0. It can be easily seen

that if the time derivative of the Lyapunov function is zero,

ωe ≡ 0⇒ q̇ = 0, q̇4e = 0, ω̇e = 0, (5.29)

which implies

q = 0, q4 = 1, (5.30)
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as well, thus proving global asymptotic stability. This means that the proposed

control law achieves the objective.

5.4 Matlab Results

To test the effectiveness of the previously discussed control scheme, Matlab was used

to simulate the closed-loop response. The principal moments of inertias for the space-

craft are given by

J1 = 33 kg ·m2,

J2 = 33 kg ·m2,

J3 = 50 kg ·m2.

(5.31)

In the simulations, the initial angular velocities are given by

ω1 (0) = ω2 (0) = ω3 (0) = 4× 10−5 rad/s. (5.32)

The initial quaternions for the spacecraft is given as follows:

[q(0), q4(0)] = [0.5, 0.5, 0.5, 0.5]T . (5.33)

The control parameters are given by

k = 2, c = 1. (5.34)

Figures 5.8 displays the spacecraft rotational motion in terms of quaternions. q goes

to zero and q4 goes to 1. It can be seen that the desired orbit is achieved. Figures

5.9 displays the control torque in the asteroid frame.
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Figure 5.8: Quaternions for controlled rotational motion.
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Figure 5.9: Control torque τ .



Chapter 6

Conclusions

This thesis has focused on the design of effective control algorithms for an asteroid or-

biting spacecraft. The development has been carried out in particular for the asteroid

433 Eros. We have first summarized the progress made in the dynamics formulation

of such spacecrafts and showed that the controlled motion of such spacecrafts would

be adversely affected by the perturbation accelerations due to higher-order gravita-

tional coefficients such as C20 and C22. These terms characterize the oblateness and

the equatorial ellipticity of the asteroid.

After presenting the gravitational force and gravity-gradient torque expressions for

an asteroid, a theoretical framework has been developed for the control system design

to maintain a nadir pointing attitude on a circular equatorial orbit. Using Lyapunov-

based control design techniques, we have constructed feedback control laws to control

both rotational and translational motion of the spacecraft to achieve the control

objective. Computer simulations have been carried out to illustrate the effectiveness

of the feedback control laws.
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Chapter 7

Matlab Code

The code for the various simulations used in this thesis is given here.

7.1 Translational Motion MATLAB Code

7.1.1 Uncontrolled Translational Motion

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % FUNCTION of Translational Motion without control law

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 function xx = WOCOrbitalFunction(t,x,Rc)

6 %% parameters

7 % gravitational parameter of 433 Eros

8 myu = 4.4631*10ˆ-4; % kmˆ3 / sˆ2

9 % characteristic length of the asteroid

10 ro = 9.933; % km

11 % gravitational coefficients

12 C20 = -0.0878;
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13 C22 = 0.0439;

14 % angular velocity of the asteroid

15 omega = 3.31 * 10ˆ-4; % rad / sec

16 % period of the asteroid

17 p = 2* pi / omega; % sec

18 %velocity

19 v = sqrt(myu/Rc); % km / sec

20 %the orbital rate

21 eta = v/Rc; % rad / sec

22 % longitude of the SC

23 lamda = (eta - omega)*t; % rad

24

25 %% equation of motion

26 xx = [x(4);

27 x(5);

28 x(6);

29 2*omega*x(5) + (omegaˆ2)*x(1) ...

30 - myu*x(1)*Rcˆ(-3)*(1 + 7.5*roˆ2*C20*Rcˆ(-4)*x(3)ˆ2 ...

31 - 1.5*roˆ2*C20*Rcˆ(-2) - 6*roˆ2*C22*cos(2*lamda)*Rcˆ(-2) ...

32 + 15*roˆ2*C22*cos(2*lamda)*Rcˆ(-4)*(x(1)ˆ2+x(2)ˆ2));

33 -2*omega*x(4) + (omegaˆ2)*x(2) ...

34 - myu*x(2)*Rcˆ(-3)* (1 + 7.5*roˆ2*C20*Rcˆ(-4)*x(3)ˆ2 ...

35 - 1.5*roˆ2*C20*Rcˆ(-2) - 6*roˆ2*C22*cos(2*lamda)*Rcˆ(-2) ...

36 + 15*roˆ2*C22*cos(2*lamda)*Rcˆ(-4)*(x(1)ˆ2+x(2)ˆ2));

37 - myu*x(3)*Rcˆ(-3)* (1 - 4.5*roˆ2*C20*Rcˆ(-2) ...

38 + 7.5*roˆ2*C20*Rcˆ(-4)*x(3)ˆ2 ...

39 + 15*roˆ2*C22*cos(2*lamda)*Rcˆ-4*(x(1)ˆ2+x(2)ˆ2))];

40
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % SIMULATION of the translational motion without control law

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 clc

5 clear

6 close all

7

8 %% PARAMETERS

9 % Radius

10 Rc = 50; % km

11

12 % gravity parameter

13 myu = 4.4631*10ˆ-4; % kmˆ3 / sˆ2

14 % velocity

15 v = sqrt(myu/Rc); % km/sec

16 % orbital angular velocity

17 n = sqrt(myu/Rcˆ3); % rad/sec

18 % asteroid rotation rate

19 omega = 3.31 * 10ˆ(-4); % rad/sec

20 % mass of the spacecraft

21 m = 100; % kg

22 % time period

23 T = 2*pi/n; % sec

24 % time span

25 ts = [0 2*T]; % sec

26 %% initial conditions for position(x1,x2,x3) and velocities(x4,x5,x6)

27 x10 = Rc; % km

28 x20 = 0; % km

29 x30 = 0; % km
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30 x40 = 0.0001; % km/sec

31 x50 = -0.01355; % km/sec

32 x60 = 0.0001; % km/sec

33 % initial condition matrix

34 z0 = [x10 x20 x30 x40 x50 x60]’;

35

36 %% calculation in asteroid frame

37 [t, Q] = ode45(@(t,x) WOCOrbitalFunction(t,x,Rc), ts, z0);

38

39 for i = 1:length(t)

40 x1 = Q(i,1);

41 x2 = Q(i,2);

42 x3 = Q(i,3);

43 x4 = Q(i,4);

44 x5 = Q(i,5);

45 x6 = Q(i,6);

46 end

47

48 %% converting to the inertial frame

49 for i = 1:length(t)

50 X1(i) = Q(i,1)*cos(omega*t(i)) - Q(i,2)*sin(omega*t(i));

51 X2(i) = Q(i,1)*sin(omega*t(i)) + Q(i,2)*cos(omega*t(i));

52 X3(i) = Q(i,3);

53 end

54

55 %% Plot

56 %% asteroid frame

57 % 2D xy plot

58 figure(1)
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59 plot(Q(:,1),Q(:,2))

60 axis square

61 xlabel(’{\it x} (km)’)

62 ylabel(’{\it y} (km)’)

63 % x,y,z positions vs time

64 figure(2)

65 subplot(311)

66 plot(t/T,Q(:,1))

67 xlabel(’Orbital Phase’)

68 ylabel(’{\it x} (km)’)

69 subplot(312)

70 plot(t/T,Q(:,2))

71 xlabel(’Orbital Phase’)

72 ylabel(’{\it y} (km)’)

73 subplot(313)

74 plot(t/T,Q(:,3))

75 xlabel(’Orbital Phase’)

76 ylabel(’{\it z} (km)’)

77 % 3d plot

78 figure(3)

79 plot3(Q(:,1),Q(:,2),Q(:,3))

80 grid on

81 xlabel(’{\it x} (km)’)

82 ylabel(’{\it y} (km)’)

83 zlabel(’{\it z} (km)’)

84

85 %% inertial frame

86 % 2D XY plot

87 figure(4)
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88 plot(X1,X2)

89 axis square

90 xlabel(’{\it X} (km)’)

91 ylabel(’{\it Y} (km)’)

92 % X,Y,Z positions vs time

93 figure(5)

94 subplot(311)

95 plot(t/T,X1)

96 xlabel(’Orbital Phase’)

97 ylabel(’{\it X} (km)’)

98 subplot(312)

99 plot(t/T,X2)

100 xlabel(’Orbital Phase’)

101 ylabel(’{\it Y} (km)’)

102 subplot(313)

103 plot(t/T,X3)

104 xlabel(’Orbital Phase’)

105 ylabel(’{\it Z} (km)’)

106 % 3d plot

107 figure(6)

108 plot3(X1,X2,X3)

109 grid on

110 xlabel(’{\it X} (km)’)

111 ylabel(’{\it Y} (km)’)

112 zlabel(’{\it Z} (km)’)



CHAPTER 7. MATLAB CODE 70

7.1.2 Controlled Translational Motion

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % FUNCTION of the translational motion with control law

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 %% input variables

6 % Orbital Radius, Rc

7 % Control Parameters, k, c

8

9 function xx = ControlOrbitalFunction(t,x,Rc,k,c)

10 %% parameters

11 % gravitational

12 myu = 4.4631*10ˆ-4; % kmˆ3 / sˆ2

13 % angular velocity of the asteroid

14 omega = 3.31 * 10ˆ-4; % rad / sec

15 %velocity

16 v = sqrt(myu/Rc); % km/sec

17 % time derivative of true anomaly

18 n = sqrt(myu/Rcˆ3); % rad / sec

19 % The desired position

20 xs = Rc*cos(n*t); % km

21 ys = Rc*sin(n*t); % km

22 % asteroid rotation rate

23 omega = 3.31 * 10ˆ(-4); % rad/sec

24 % The angle

25 lambda = (omega + n)*t; % rad

26

27 %% equation of motion



CHAPTER 7. MATLAB CODE 71

28 xx = [x(4);

29 x(5);

30 x(6);

31 -c*x(4)-k*x(1)+2*omega*x(5)-2*omega*n*xs+k*xs-c*n*ys-(nˆ2)*xs;

32 -c*x(5)-k*x(2)-2*omega*x(4)-2*omega*n*ys+k*ys+c*n*xs-(nˆ2)*ys;

33 -k*x(3)-c*x(6)];

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % SIMULATION of the translational motion with control law

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 clc

5 clear

6 close all

7

8 %% Parameters

9 % Radius

10 Rc = 50; % km

11 % Control Parameters

12 k = 1*10ˆ-2;

13 c = 2*10ˆ-2;

14

15 % gravity parameter

16 myu = 4.4631*10ˆ-4; % kmˆ3 / secˆ2

17 % velocity

18 v = sqrt(myu/Rc); % km/sec

19 % asteroid rotation rate

20 omega = 3.31 * 10ˆ(-4); % rad/sec

21 % time derivative of true anomaly

22 n = sqrt(myu/Rcˆ3); % rad / sec
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23 % time period

24 T = 2*pi/n % sec

25 Tm = T/60

26 Th = Tm/60

27 Td = Th/24

28 % time span

29 ts = [0 2*T]; % sec

30

31 %% initial conditions for position(x1,x2,x3) and velocities(x4,x5,x6)

32 x10 = Rc; % km

33 x20 = 5; % km

34 x30 = 5; % km

35 x40 = 0.0001; % km/sec

36 x50 = v - omega*Rc; % km/sec

37 x60 = 0.0001; % km/sec

38 % initial condition matrix

39 z0 = [x10 x20 x30 x40 x50 x60]’;

40

41 %% calculation in asteroid frame

42 [t, Q] = ode45(@(t,x) ControlOrbitalFunction(t,x,Rc,k,c), ts, z0);

43 for i = 1:length(t)

44 x1 = Q(i,1);

45 x2 = Q(i,2);

46 x3 = Q(i,3);

47 x4 = Q(i,4);

48 x5 = Q(i,5);

49 x6 = Q(i,6);

50 end

51
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52 %% converting to the inertial frame

53 for i = 1:length(t)

54 X1(i) = Q(i,1)*cos(omega*t(i)) - Q(i,2)*sin(omega*t(i));

55 X2(i) = Q(i,1)*sin(omega*t(i)) + Q(i,2)*cos(omega*t(i));

56 X3(i) = Q(i,3);

57 end

58

59 %% Plot

60 %-------------------------------------------------------------------------

61 % Asteroid Frame

62 % 2D plot x vs y

63 figure(1)

64 plot(Q(:,1),Q(:,2))

65 axis square

66 xlabel(’{\it x} (km)’)

67 ylabel(’{\it y} (km)’)

68 % x,y,z positions vs # of orbit

69 figure(2)

70 subplot(311)

71 plot(t/T,Q(:,1))

72 xlabel(’Orbital Phase’)

73 ylabel(’{\it x} (km)’)

74 subplot(312)

75 plot(t/T,Q(:,2))

76 xlabel(’Orbital Phase’)

77 ylabel(’{\it y} (km)’)

78 subplot(313)

79 plot(t/T,Q(:,3))

80 xlabel(’Orbital Phase’)
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81 ylabel(’{\it z} (km)’)

82 % 3-D plot

83 figure(3)

84 plot3(Q(:,1),Q(:,2),Q(:,3))

85 grid on

86 xlabel(’{\it x} (km)’)

87 ylabel(’{\it y} (km)’)

88 zlabel(’{\it z} (km)’)

89 % z vs time

90 figure(4)

91 plot(t,Q(:,3))

92 xlabel(’Time (sec)’)

93 ylabel(’{\it z} (km)’)

94 %-------------------------------------------------------------------------

95 % Inertial Frame

96 % 2D plot X vs Y

97 figure(5)

98 plot(X1,X2)

99 axis square

100 xlabel(’{\it X} (km)’)

101 ylabel(’{\it Y} (km)’)

102 % X,Y,Z positions vs time

103 figure(6)

104 subplot(311)

105 plot(t/T,X1)

106 xlabel(’Orbital Phase’)

107 ylabel(’{\it X} (km)’)

108 subplot(312)

109 plot(t/T,X2)
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110 xlabel(’Orbital Phase’)

111 ylabel(’{\it Y} (km)’)

112 subplot(313)

113 plot(t/T,X3)

114 xlabel(’Orbital Phase’)

115 ylabel(’{\it Z} (km)’)

116 % 3D plot

117 figure(7)

118 axis square

119 plot3(X1,X2,X3)

120 grid on

121 xlabel(’{\it X} (km)’)

122 ylabel(’{\it Y} (km)’)

123 zlabel(’{\it Z} (km)’)

124 % Z vs time

125 figure(8)

126 plot(t,X3)

127 xlabel(’Time (sec)’)

128 ylabel(’{\it Z} (km)’)

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % SIMULATION of the control force (translational motion control)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 clc

5 clear

6 close all

7

8 %% Parameters

9 % Radius



CHAPTER 7. MATLAB CODE 76

10 Rc = 50; % km

11 % Control Parameters

12 k = 1/100;

13 c = 2/100;

14 % gravity parameter

15 myu = 4.4631*10ˆ(-4); % kmˆ3 / secˆ2

16 % velocity

17 v = sqrt(myu/Rc); % km/sec

18 % characteristic length

19 ro = 9.933; % km

20 % gravity harmonic parameters

21 C20 = -0.0878;

22 C22 = 0.0439;

23 % orbital angular velocity

24 n = sqrt(myu/Rcˆ3); % rad/sec

25 % asteroid rotation rate

26 omega = 3.31 * 10ˆ(-4); % rad/sec

27 % mass of the spacecraft

28 m = 100; % kg

29 % time period

30 T = 2*pi/n; % sec

31 % time span

32 ts = [0 2*T]; % sec

33 %% initial conditions for position(x1,x2,x3) and velocities(x4,x5,x6)

34 x10 = Rc; % km

35 x20 = 5; % km

36 x30 = 5; % km

37 x40 = 0.0001; % km/sec

38 x50 = v-omega*Rc; % km/sec
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39 x60 = 0.0001; % km/sec

40 % initial condition matrix

41 z0 = [x10 x20 x30 x40 x50 x60]’;

42

43 %% calculation in asteroid frame

44 [t, Q] = ode45(@(t,x) ControlOrbitalFunction(t,x,Rc,k,c), ts, z0);

45 for i = 1:length(t)

46 x1 = Q(i,1);

47 x2 = Q(i,2);

48 x3 = Q(i,3);

49 x4 = Q(i,4);

50 x5 = Q(i,5);

51 x6 = Q(i,6);

52 end

53

54 %% Calculation of the control force Fa

55 % defining the new parameter l

56 l = n - omega;

57

58 for i = 1:length(t)

59 % the distance A from CMa to SC

60 A = Q(i,1)ˆ2+Q(i,2)ˆ2+Q(i,3)ˆ2;

61 % The angle

62 lambda(i) = (omega + n)*t(i); % rad

63 % control force

64 Fa1(i) = m*(-myu*Q(i,1)*Aˆ(-1.5)*(1 + 7.5*roˆ2*C20*Q(i,3)ˆ2*Aˆ(-2) ...

65 - 1.5*roˆ2*C20*Aˆ(-1) - 6*roˆ2*C22*cos(2*lambda(i))*Aˆ(-1) ...

66 + 15*roˆ2*C22*(Q(i,1)ˆ2+Q(i,2)ˆ2)*cos(2*lambda(i))*Aˆ(-2)) ...

67 - 2*Rc*omega*l*cos(l*t(i)) - (omegaˆ2+k)*Q(i,1) + k*Rc*cos(l*t(i)) ...
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68 - c*Q(i,4) - c*Rc*l*sin(l*t(i)) - Rc*lˆ2*cos(l*t(i)));

69 Fa2(i) = m*(-myu*Q(i,2)*Aˆ(-1.5)*(1 + 7.5*roˆ2*C20*Q(i,3)ˆ2*Aˆ(-2 ) ...

70 - 1.5*roˆ2*C20*Aˆ(-1) - 6*roˆ2*C22*cos(2*lambda(i))*Aˆ(-1) ...

71 + 15*roˆ2*C22*(Q(i,1)ˆ2+Q(i,2)ˆ2)*cos(2*lambda(i))*Aˆ(-2)) ...

72 - 2*Rc*omega*l*sin(l*t(i)) - (omegaˆ2+k)*Q(i,2) + k*Rc*sin(l*t(i)) ...

73 - c*Q(i,5) + c*Rc*l*cos(l*t(i)) - Rc*lˆ2*sin(l*t(i)));

74 Fa3(i) = m*(-myu*Q(i,3)*Aˆ(-1.5)*(1 - 4.5*roˆ2*C20*Aˆ(-1) ...

75 + 7.5*roˆ2*C20*Aˆ(-1) ...

76 + 15*roˆ2*C22*(Q(i,1)ˆ2+Q(i,2)ˆ2)*cos(2*lambda(i))*Aˆ(-2)) ...

77 - k*Q(i,3) - c*Q(i,6));

78 end

79

80 %% Plot

81 % Asteroid Frame

82 figure(1)

83 subplot(311)

84 plot(t/T,Fa1)

85 xlabel(’Orbital Phase’)

86 ylabel(’{\it F_{x}} (N)’)

87 subplot(312)

88 plot(t/T,Fa2)

89 xlabel(’Orbital Phase’)

90 ylabel(’{\it F_{y}} (N)’)

91 subplot(313)

92 plot(t/T,Fa3)

93 xlabel(’Orbital Phase’)

94 ylabel(’{\it F_{z}} (N)’)
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7.2 Rotational Motion MATLAB Code

7.2.1 Uncontrolled Rotational Motion

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % FUNCTION of the rotational motion without control law in terms of

3 % quaternion

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5

6 %% input variables

7 % Orbital Radius, Rc

8

9 function Q = WOCRotationalFunction(t,x,Rc)

10

11 %% parameters

12 % Moment of inertia

13 J1 = 33;

14 J2 = 33;

15 J3 = 50;

16 J = [J1 0 0; 0 J2 0; 0 0 J3];

17 % The Gravit parameter of Eros

18 myu = 4.4631 * 10ˆ(-4); % kmˆ3/secˆ2

19 % the characteristic length

20 ro = 9.933; % km

21 % gravity hamonic parameter

22 C20 = -0.0878;

23 C22 = 0.0439;

24 % orbital angular velocity of the spacecraft

25 n = ((myu)/Rcˆ3)ˆ0.5; % rad/sec
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26 % asteroid rotation rate

27 omega = 3.31 * 10ˆ(-4); % rad/sec

28 % the angle

29 lamda = (omega + n)*t; % rad

30 % phi and xi

31 phi = (-3/2*C20+9*C22*cos(2*lamda))*(ro/Rc)ˆ2;

32 xi = 6*C22*sin(2*lamda)*(ro/Rc)ˆ2;

33

34 %% angular velocity

35 % current angular velocity

36 w = [x(5) x(6) x(7)]’; % rad/sec

37 % desired angular velocity

38 wd = [0 0 n]’; % rad/sec

39 % angular velocity error

40 we = w - wd; % rad/sec

41

42 %% quaternion

43 % current quaternion

44 % q = [x(1) x(2) x(3) x(4)]’;

45 % desired quaternion

46 qd = [0 0 sin(n*t/2) cos(n*t/2)]’;

47 % error quaternion

48 qe = [qd(4)*x(1) + qd(3)*x(2);

49 -qd(3)*x(1) + qd(4)*x(2);

50 qd(4)*x(3) - qd(3)*x(4);

51 qd(3)*x(3) + qd(4)*x(4)];

52

53 %% Gravity Gradient Torque

54 M1 = (myu/Rcˆ3)*((6+10*phi)*(J3-J2)*(x(2)*x(3) ...
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55 + x(1)*x(4))*(1-2*(x(1)*x(1) + x(2)*x(2))) ...

56 + 5*xi*(2/5*J1*(x(1)*x(2)+x(3)*x(4)) ...

57 + (J1-J3+J2)*(x(1)*x(2)-x(3)*x(4))*(1-2*(x(1)*x(1)+x(2)*x(2))) ...

58 - 2* (J3-J2+J1)*(x(1)*x(3)+x(2)*x(4))*(x(3)*x(2)+x(1)*x(4))));

59 M2 = (myu/Rcˆ3)*((6+10*phi)*(J1-J3)*(x(1)*x(3)-x(2)*x(4)) ...

60 *(1-2*(x(1)*x(1)+ x(2)*x(2))) ...

61 + 5/2*xi*(2/5*J2*(1-2*(x(1)*x(1)+x(3)*x(3))) ...

62 + 4*(J2-J1+J3)*(x(1)*x(3)+x(2)*x(4))*(x(1)*x(3)-x(2)*x(4)) ...

63 - (J2-J3+J1)*(1-2*(x(2)*x(2)+x(3)*x(3)))*(1-2*(x(1)*x(1)+x(2)*x(2)))));

64 M3 = (myu/Rcˆ3)*((12+20*phi)*(J2-J1)*(x(1)*x(3)-x(2)*x(4)) ...

65 *(x(2)*x(3)+x(1)*x(4)) ...

66 + 5*xi*(2/5*J3*(x(2)*x(3)-x(1)*x(4)) ...

67 - 2*(J2-J1+J3)*(x(1)*x(2)-x(3)*x(4))*(x(1)*x(3)-x(2)*x(4)) ...

68 + (J1-J2+J3)*(1-2*(x(2)*x(2)+x(3)*x(3)))*(x(2)*x(3)+x(1)*x(4))));

69

70 % differential equations

71 Q = [0.5*(x(4)*x(5) - x(6)*x(3) + x(7)*x(2));

72 0.5*(x(4)*x(6) - x(7)*x(1) + x(5)*x(3));

73 0.5*(x(4)*x(7) - x(5)*x(2) + x(6)*x(1));

74 -0.5*(x(5)*x(1) + x(6)*x(2) + x(7)*x(3));

75 M1/J1;

76 M2/J2;

77 M3/J3];

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % SIMULATION of the Rotational Motion without control law in terms of

3 % quaternion

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 clc
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6 clear

7 close all

8

9 %% Parameters

10 % Radius

11 Rc = 50; % km

12

13 % gravity parameter

14 myu = 4.4631*10ˆ-4; % kmˆ3 / secˆ2

15 % orbital angular velocity

16 n = sqrt(myu/Rcˆ3); % rad/sec

17 % asteroid rotation rate

18 omega = 3.31 * 10ˆ(-4); % rad/sec

19 % mass of the spacecraft

20 m = 100; % kg

21 % time period

22 T = 2*pi/n; % sec

23 % time span

24 ts = [0 T]; % sec

25

26 %% initial conditions

27 % quaternions(x1,x2,x3) and angular velocities(x4,x5,x6)

28 x10 = 0.5;

29 x20 = 0.5;

30 x30 = 0.5;

31 x40 = 0.5;

32 x50 = 4*10ˆ(-4);

33 x60 = 4*10ˆ(-4);

34 x70 = 4*10ˆ(-4);
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35 % initial condition matrix

36 z0 = [x10 x20 x30 x40 x50 x60 x70]’;

37

38 %% calculation in asteroid frame

39 [t, Q] = ode45(@(t,x) WOCRotationalFunction(t,x,Rc), ts, z0);

40

41 for i = 1:length(t)

42 x1 = Q(i,1);

43 x2 = Q(i,2);

44 x3 = Q(i,3);

45 x4 = Q(i,4);

46 x5 = Q(i,5);

47 x6 = Q(i,6);

48 x7 = Q(i,7);

49 end

50

51 theta = 2*acos(Q(:,4));

52

53 %% plot

54 % q1

55 subplot(411)

56 plot(t/T,Q(:,1))

57 xlabel(’Orbital Phase’)

58 ylabel(’{\it q_1}’)

59 % q2

60 subplot(412)

61 plot(t/T,Q(:,2))

62 xlabel(’Orbital Phase’)

63 ylabel(’{\it q_2}’)
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64 % q3

65 subplot(413)

66 plot(t/T,Q(:,3))

67 xlabel(’Orbital Phase’)

68 ylabel(’{\it q_3}’)

69 % q4

70 subplot(414)

71 plot(t/T,Q(:,4))

72 xlabel(’Orbital Phase’)

73 ylabel(’{\it q_4}’)

7.2.2 Controlled Rotational Motion

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % FUNCTION of the rotational motion with control law

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 %% input variables

6 % Orbital Radius, Rc

7 % Control Parameters, k, c

8

9 function Q = ControlRotationalFunction(t,x,Rc,c,k)

10

11 % Moment of inertia

12 J1 = 33;

13 J2 = 33;

14 J3 = 50;

15 J = [J1 0 0; 0 J2 0; 0 0 J3];
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16 % The Gravit parameter of Eros

17 myu = 4.4631 * 10ˆ(-4); % kmˆ3/secˆ2

18 % the characteristic length

19 ro = 9.933; % km

20 % gravity hamonic parameter

21 C20 = -0.0878;

22 C22 = 0.0439;

23 % orbital angular velocity of the spacecraft

24 n = ((myu)/Rcˆ3)ˆ0.5; % rad/sec

25 %% angular velocity

26 % current angular velocity

27 w = [x(5) x(6) x(7)]’; % rad/sec

28 % desired angular velocity

29 wd = [0 0 n]’; % rad/sec

30 % angular velocity error

31 we = w - wd; % rad/sec

32

33 % asteroid rotation rate

34 omega = 3.31 * 10ˆ(-4); % rad/sec

35 %the angle

36 lamda = (omega + n)*t; % rad

37 % phi and xi

38 phi = (-3/2*C20+9*C22*cos(2*lamda))*(ro/Rc)ˆ2;

39 xi = 6*C22*sin(2*lamda)*(ro/Rc)ˆ2;

40

41 %% quaternion

42 % current quaternion

43 %q = [x(1) x(2) x(3) x(4)]’;

44 % desired quaternion
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45 qd = [0 0 sin(n*t/2) cos(n*t/2)]’;

46 % error quaternion

47 qe = [qd(4)*x(1) + qd(3)*x(2);

48 -qd(3)*x(1) + qd(4)*x(2);

49 qd(4)*x(3) - qd(3)*x(4);

50 qd(3)*x(3) + qd(4)*x(4)];

51

52 %% Gravity Gradient Torque

53 M1 = (myu/Rcˆ3)*((6+10*phi)*(J3-J2)*(x(2)*x(3) ...

54 + x(1)*x(4))*(1-2*(x(1)*x(1)+ x(2)*x(2))) ...

55 + 5*xi*(2/5*J1*(x(1)*x(2)+x(3)*x(4)) ...

56 + (J1-J3+J2)*(x(1)*x(2)-x(3)*x(4))*(1-2*(x(1)*x(1)+x(2)*x(2))) ...

57 - 2* (J3-J2+J1)*(x(1)*x(3)+x(2)*x(4))*(x(3)*x(2)+x(1)*x(4))));

58 M2 = (myu/Rcˆ3)*((6+10*phi)*(J1-J3)*(x(1)*x(3)-x(2)*x(4)) ...

59 *(1-2*(x(1)*x(1)+ x(2)*x(2))) ...

60 + 5/2*xi*(2/5*J2*(1-2*(x(1)*x(1)+x(3)*x(3))) ...

61 + 4*(J2-J1+J3)*(x(1)*x(3)+x(2)*x(4))*(x(1)*x(3)-x(2)*x(4)) ...

62 - (J2-J3+J1)*(1-2*(x(2)*x(2)+x(3)*x(3)))*(1-2*(x(1)*x(1)+x(2)*x(2)))));

63 M3 = (myu/Rcˆ3)*((12+20*phi)*(J2-J1)*(x(1)*x(3)-x(2)*x(4)) ...

64 *(x(2)*x(3)+x(1)*x(4)) + 5*xi*(2/5*J3*(x(2)*x(3)-x(1)*x(4)) ...

65 - 2*(J2-J1+J3)*(x(1)*x(2)-x(3)*x(4))*(x(1)*x(3)-x(2)*x(4)) ...

66 + (J1-J2+J3)*(1-2*(x(2)*x(2)+x(3)*x(3)))*(x(2)*x(3)+x(1)*x(4))));

67

68 % differential equations

69 Q = [0.5*(x(4)*x(5) - x(6)*x(3) + x(7)*x(2));

70 0.5*(x(4)*x(6) - x(7)*x(1) + x(5)*x(3));

71 0.5*(x(4)*x(7) - x(5)*x(2) + x(6)*x(1));

72 -0.5*(x(5)*x(1) + x(6)*x(2) + x(7)*x(3));

73 -k*qe(1) - c*x(5) + M1/J1;



CHAPTER 7. MATLAB CODE 87

74 -k*qe(2) - c*x(6) + M2/J2;

75 -k*qe(3) - c*(x(7)-n) + M3/J3];

76

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % FUNCTION of the rotational motion with control law

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 %% input variables

6 % Orbital Radius, Rc

7 % Control Parameters, k, c

8

9 function Q = ControlRotationalFunction(t,x,Rc,c,k)

10

11 % Moment of inertia

12 J1 = 33;

13 J2 = 33;

14 J3 = 50;

15 J = [J1 0 0; 0 J2 0; 0 0 J3];

16 % The Gravit parameter of Eros

17 myu = 4.4631 * 10ˆ(-4); % kmˆ3/secˆ2

18 % the characteristic length

19 ro = 9.933; % km

20 % gravity hamonic parameter

21 C20 = -0.0878;

22 C22 = 0.0439;

23 % orbital angular velocity of the spacecraft

24 n = ((myu)/Rcˆ3)ˆ0.5; % rad/sec

25 %% angular velocity
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26 % current angular velocity

27 w = [x(5) x(6) x(7)]’; % rad/sec

28 % desired angular velocity

29 wd = [0 0 n]’; % rad/sec

30 % angular velocity error

31 we = w - wd; % rad/sec

32

33 % asteroid rotation rate

34 omega = 3.31 * 10ˆ(-4); % rad/sec

35 %the angle

36 lamda = (omega + n)*t; % rad

37 % phi and xi

38 phi = (-3/2*C20+9*C22*cos(2*lamda))*(ro/Rc)ˆ2;

39 xi = 6*C22*sin(2*lamda)*(ro/Rc)ˆ2;

40

41 %% quaternion

42 % current quaternion

43 %q = [x(1) x(2) x(3) x(4)]’;

44 % desired quaternion

45 qd = [0 0 sin(n*t/2) cos(n*t/2)]’;

46 % error quaternion

47 qe = [qd(4)*x(1) + qd(3)*x(2);

48 -qd(3)*x(1) + qd(4)*x(2);

49 qd(4)*x(3) - qd(3)*x(4);

50 qd(3)*x(3) + qd(4)*x(4)];

51

52 %% Gravity Gradient Torque

53 M1 = (myu/Rcˆ3)*((6+10*phi)*(J3-J2)*(x(2)*x(3) ...

54 + x(1)*x(4))*(1-2*(x(1)*x(1)+ x(2)*x(2))) ...
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55 + 5*xi*(2/5*J1*(x(1)*x(2)+x(3)*x(4)) ...

56 + (J1-J3+J2)*(x(1)*x(2)-x(3)*x(4))*(1-2*(x(1)*x(1)+x(2)*x(2))) ...

57 - 2* (J3-J2+J1)*(x(1)*x(3)+x(2)*x(4))*(x(3)*x(2)+x(1)*x(4))));

58 M2 = (myu/Rcˆ3)*((6+10*phi)*(J1-J3)*(x(1)*x(3)-x(2)*x(4)) ...

59 *(1-2*(x(1)*x(1)+ x(2)*x(2))) ...

60 + 5/2*xi*(2/5*J2*(1-2*(x(1)*x(1)+x(3)*x(3))) ...

61 + 4*(J2-J1+J3)*(x(1)*x(3)+x(2)*x(4))*(x(1)*x(3)-x(2)*x(4)) ...

62 - (J2-J3+J1)*(1-2*(x(2)*x(2)+x(3)*x(3)))*(1-2*(x(1)*x(1)+x(2)*x(2)))));

63 M3 = (myu/Rcˆ3)*((12+20*phi)*(J2-J1)*(x(1)*x(3)-x(2)*x(4)) ...

64 *(x(2)*x(3)+x(1)*x(4)) + 5*xi*(2/5*J3*(x(2)*x(3)-x(1)*x(4)) ...

65 - 2*(J2-J1+J3)*(x(1)*x(2)-x(3)*x(4))*(x(1)*x(3)-x(2)*x(4)) ...

66 + (J1-J2+J3)*(1-2*(x(2)*x(2)+x(3)*x(3)))*(x(2)*x(3)+x(1)*x(4))));

67

68 % differential equations

69 Q = [0.5*(x(4)*x(5) - x(6)*x(3) + x(7)*x(2));

70 0.5*(x(4)*x(6) - x(7)*x(1) + x(5)*x(3));

71 0.5*(x(4)*x(7) - x(5)*x(2) + x(6)*x(1));

72 -0.5*(x(5)*x(1) + x(6)*x(2) + x(7)*x(3));

73 -k*qe(1) - c*x(5) + M1/J1;

74 -k*qe(2) - c*x(6) + M2/J2;

75 -k*qe(3) - c*(x(7)-n) + M3/J3];

76

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % SIMULATION of the Control Torque of the Rotational Motion

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 clc

5 clear

6 close all
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7

8 %% PARAMETERS

9 % Radius

10 Rc = 50; % km

11 % Control Parameters

12 k = 2;

13 c = 1;

14 % time span

15 ts = [0 20]; % sec

16

17 % Moment of inertia

18 J1 = 33;

19 J2 = 33;

20 J3 = 50;

21 J = [J1 0 0; 0 J2 0; 0 0 J3];

22 % The Gravit parameter of Eros

23 myu = 4.4631 * 10ˆ(-4); % kmˆ3/secˆ2

24 % the characteristic length

25 ro = 9.933; % km

26 % gravity hamonic parameter

27 C20 = -0.0878;

28 C22 = 0.0439;

29 % orbital angular velocity of the spacecraft

30 n = ((myu)/Rcˆ3)ˆ0.5; % rad/sec

31

32 %% initial conditions for quaternions(x1,x2,x3)

33 % and angular velocities(x4,x5,x6)

34 x10 = 0.5;

35 x20 = 0.5;
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36 x30 = 0.5;

37 x40 = 0.5;

38 x50 = 4*10ˆ(-4); % rad/sec

39 x60 = 4*10ˆ(-4); % rad/sec

40 x70 = 4*10ˆ(-4); % rad/sec

41 % initial condition matrix

42 z0 = [x10 x20 x30 x40 x50 x60 x70]’;

43

44 %% calculation in asteroid frame

45 [t, Q] = ode45(@(t,x) ControlRotationalFunction(t,x,Rc,k,c), ts, z0);

46

47 for i = 1:length(t)

48 x1 = Q(i,1);

49 x2 = Q(i,2);

50 x3 = Q(i,3);

51 x4 = Q(i,4);

52 x5 = Q(i,5);

53 x6 = Q(i,6);

54 x7 = Q(i,7);

55 end

56

57 %% Calculate the Control Torque

58 % asteroid rotation rate

59 omega = 3.31 * 10ˆ(-4); % rad/sec

60

61 for i = 1:length(t)

62 %the angle

63 lambda(i) = (omega + n)*t(i); % rad

64 phi(i) = (-3/2*C20+9*C22*cos(2*lambda(i)))*(ro/Rc)ˆ2;



CHAPTER 7. MATLAB CODE 92

65 xi(i) = 6*C22*sin(2*lambda(i))*(ro/Rc)ˆ2;

66 %% quaternion

67 % q = [Q(i,1) Q(i,2) Q(i,3)];

68 % q4 = Q(i,4);

69 % desired quaternion

70 qd = [0 0 sin(n*t(i)/2) cos(n*t(i)/2)]’;

71 % error quaternion

72 qe = [qd(4)*Q(i,1) + qd(3)*Q(i,2);

73 -qd(3)*Q(i,1) + qd(4)*Q(i,2);

74 qd(4)*Q(i,3) - qd(3)*Q(i,4)];

75 qe4 = qd(3)*Q(i,3) + qd(4)*Q(i,4);

76 %% angular velocity

77 % current angular velocity

78 w = [Q(i,5) Q(i,6) Q(i,7)]’; % rad/sec

79 % desired angular velocity

80 wd = [0 0 n]’; % rad/sec

81 % angular velocity error

82 we = w - wd; % rad/sec

83 % skew symmetric w

84 ws = [0 -Q(i,7) Q(i,6);

85 Q(i,7) 0 -Q(i,5);

86 -Q(i,6) Q(i,5) 0];

87

88 % gravity gradient torque

89 M1(i) = (myu/Rcˆ3)*((6+10*phi(i))*(J3-J2)*(Q(i,2)*Q(i,3) ...

90 + Q(i,1)*Q(i,4))*(1-2*(Q(i,1)*Q(i,1) + Q(i,2)*Q(i,2))) ...

91 + 5*xi(i)*(2/5*J1*(Q(i,1)*Q(i,2)+Q(i,3)*Q(i,4)) ...

92 + (J1-J3+J2)*(Q(i,1)*Q(i,2)-Q(i,3)*Q(i,4)) ...

93 *(1-2*Q(i,1)*Q(i,1)+Q(i,2)*Q(i,2))) ...
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94 - 2* (J3-J2+J1)*(Q(i,1)*Q(i,3)+Q(i,2)*Q(i,4)) ...

95 *(Q(i,3)*Q(i,2)+Q(i,1)*Q(i,4)));

96 M2(i) = (myu/Rcˆ3)*((6+10*phi(i))*(J1-J3)*(Q(i,1)*Q(i,3) ...

97 - Q(i,2)*Q(i,4))*(1-2*(Q(i,1)*Q(i,1) + Q(i,2)*Q(i,2))) ...

98 + 5/2*xi(i)*(2/5*J2*(1-2*(Q(i,1)*Q(i,1)+Q(i,3)*Q(i,3))) ...

99 + 4*(J2-J1+J3)*(Q(i,1)*Q(i,3)+Q(i,2)*Q(i,4)) ...

100 *(Q(i,1)*Q(i,3)-Q(i,2)*Q(i,4)) ...

101 - (J2-J3+J1)*(1-2*(Q(i,2)*Q(i,2)+Q(i,3)*Q(i,3))) ...

102 *(1-2*(Q(i,1)*Q(i,1)+Q(i,2)*Q(i,2)))));

103 M3(i) = (myu/Rcˆ3)*((12+20*phi(i))*(J2-J1)*(Q(i,1)*Q(i,3) ...

104 - Q(i,2)*Q(i,4))*(Q(i,2)*Q(i,3)+Q(i,1)*Q(i,4)) ...

105 + 5*xi(i)*(2/5*J3*(Q(i,2)*Q(i,3)-Q(i,1)*Q(i,4)) ...

106 - 2*(J2-J1+J3)*(Q(i,1)*Q(i,2)-Q(i,3)*Q(i,4))...

107 *(Q(i,1)*Q(i,3)-Q(i,2)*Q(i,4)) ...

108 + (J1-J2+J3)*(1-2*(Q(i,2)*Q(i,2)+Q(i,3)*Q(i,3))) ...

109 *(Q(i,2)*Q(i,3)+Q(i,1)*Q(i,4))));

110

111 % gravity gradient torque

112 M(1,i) = M1(i);

113 M(2,i) = M2(i);

114 M(3,i) = M3(i);

115 %% Compute the control torque, tau

116 tau(:,i) = -k*J*qe - c*J*we + ws*J*w - M(:,i);

117 % each component of tau

118 t1(i) = tau(1,i);

119 t2(i) = tau(2,i);

120 t3(i) = tau(3,i);

121

122 end
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123

124 %% plot

125 subplot(311)

126 plot(t,t1)

127 xlabel(’Time (sec)’)

128 ylabel(’\tau_x (Nm)’)

129 subplot(312)

130 plot(t,t2)

131 xlabel(’Time (sec)’)

132 ylabel(’\tau_y (Nm)’)

133 subplot(313)

134 plot(t,t3)

135 xlabel(’Time (sec)’)

136 ylabel(’\tau_z (Nm)’)
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