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Abstract

Comprehensive numerical simulations (reviewed in Dissipative Solitons, Akhmediev
and Ankiewicz (Eds.), Springer, Berlin, 2005) of pulse solutions of the cubic–quintic
Ginzburg–Landau Equation (CGLE), a canonical equation governing the weakly non-
linear behavior of dissipative systems in a wide variety of disciplines, reveal various
intriguing and entirely novel classes of solutions. In particular, there are five new
classes of pulse or solitary waves solutions, viz. pulsating, creeping, snake, erupting,
and chaotic solitons. In contrast to the regular solitary waves investigated in numerous
integrable and non–integrable systems over the last three decades, these dissipative
solitons are not stationary in time. Rather, they are spatially confined pulse–type
structures whose envelopes exhibit complicated temporal dynamics. The numerical
simulations also reveal very interesting bifurcations sequences of these pulses as the
parameters of the CGLE are varied.

In this paper, we address the issues of central interest in the area, i.e., the conditions
for the occurrence of the five categories of dissipative solitons, as well the dependence
of both their shape and their stability on the various parameters of the CGLE, viz. the
nonlinearity, dispersion, linear and nonlinear gain, loss and spectral filtering parame-
ters. Our predictions on the variation of the soliton amplitudes, widths and periods
with the CGLE parameters agree with simulation results.

First, we elucidate the Hopf bifurcation mechanism responsible for the various pul-
sating solitary waves, as well as its absence in Hamiltonian and integrable systems
where such structures are absent. Next, we develop and discuss a variational for-
malism within which to explore the various classes of dissipative solitons. Given the
complex dynamics of the various dissipative solutions, this formulation is, of necessity,
significantly generalized over all earlier approaches in several crucial ways. Firstly, the
starting formulation for the Lagrangian is recent and not well explored. Also, the trial
functions have been generalized considerably over conventional ones to keep the shape
relatively simple (and the trial function integrable!) while allowing arbitrary temporal
variation of the amplitude, width, position, speed and phase of the pulses.
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In addition, the resulting Euler–Lagrange equations are treated in a completely
novel way. Rather than consider the stable fixed points which correspond to the well–
known stationary solitons or plain pulses, we use dynamical systems theory to focus
on more complex attractors viz. periodic, quasiperiodic, and chaotic ones. Periodic
evolution of the trial function parameters on stable periodic attractors yield solitons
whose amplitudes and widths are non–stationary or time dependent. In particular,
pulsating and snake dissipative solitons may be treated in this manner. Detailed re-
sults are presented here for the pulsating solitary waves — their regimes of occurrence,
bifurcations, and the parameter dependences of the amplitudes, widths, and periods
agree with simulation results. Snakes and chaotic solitons will be addressed in subse-
quent papers. This overall approach fails only to address the fifth class of dissipative
solitons, viz. the exploding or erupting solitons.

1 Introduction

The cubic–quintic complex Ginzburg–Landau equation (CGLE) is the canonical equation
governing the weakly nonlinear behavior of dissipative systems in a wide variety of disciplines
[1]. In fluid mechanics, it is also often referred to as the Newell–Whitehead equation after
the authors who derived it in the context of Bénard convection [1, 2].

As such, it is also one of the most widely studied nonlinear equations. Many basic prop-
erties of the equation and its solutions are reviewed in [3, 4], together with applications to
a vast variety of phenomena including nonlinear waves, second–order phase transitions, su-
perconductivity, superfluidity, Bose–Einstein condensation, liquid crystals and string theory.
The numerical studies by Brusch et al [5,6] which primarily consider periodic traveling wave
solutions of the cubic CGLE, together with secondary pitchfork bifurcations and period dou-
bling cascades into disordered turbulent regimes, also give comprehensive summaries of other
work on this system. Early numerical studies [7, 8] and theoretical investigations [9, 10] of
periodic solutions and secondary bifurcations are also of general interest for our work here.

Certain situations or phenomena, such as where the cubic nonlinear term is close to zero,
may require the inclusion of higher–order nonlinearities leading to the so–called cubic–quintic
CGLE [11]. This has proved to be a rich system with very diverse solution behaviors. In par-
ticular, a relatively early and influential review by van Saarloos and Hohenberg, also recently
extended to two coupled cubic CGL equations [12,13], considered phase–plane counting ar-
guments for traveling wave coherent structures, some analytic and perturbative solutions,
limited comparisons to numerics, and so–called “linear marginal stability analysis” to select
the phase speed of the traveling waves.

Among the multitude of other papers, we shall only refer to two sets of studies which will
directly pertain to the work in this article. The first class of papers [14–18] used dynamical
systems techniques to prove that the cubic–quintic CGLE admits periodic and quasi–periodic
traveling wave solutions.

The second class of papers [19, 20], primarily involving numerical simulations of the full
cubic–quintic CGL PDE in the context of Nonlinear Optics, revealed various branches of
plane wave solutions which are referred to as continuous wave (CW) solutions in the Op-
tics literature. More importantly, these latter studies also found various spatially confined
coherent structures of the PDE, with envelopes which exhibit complicated temporal dynam-
ics. In [20], these various structures are categorized as plain pulses (or regular stationary
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solutions), pulsating solitary waves, creeping solitons, slugs or snakes, erupting solitons, and
chaotic solitons depending on the temporal behavior of the envelopes. In addition, note
that the speed of the new classes of solutions may be zero, constant, or periodic (since it is
determined by boundary conditions, the speed is an eigenvalue, and it may be in principle
also quasiperiodic or chaotic, although no such cases appear to have been reported). All
indications are that these classes of solutions, all of which have amplitudes which vary in
time, do not exist as stable structures in Hamiltonian systems. Even if excited initially,
amplitude modulated solitary waves restructure into regular stationary solutions [21]. Ex-
ceptions to this rule are the integrable models where the pulsating structures are nonlinear
superpositions or fundamental solutions [22]. Hence, these classes of solutions are novel and
they exist only in the presence of dissipation in the simulations of [20]. Also, secondary
complete period doubling cascades of the pulsating solitons leading as usual to regimes of
chaos are also found. This last feature for numerical solutions of the full cubic–quintic PDE
is strongly reminiscent of the period doubling cascades found in [5,6] for period solutions of
the traveling wave reduced ODEs of the cubic CGLE.

In this context, we note that numerous attempts have been made to extend the well–
developed concept of soliton interactions in integrable, conservative systems [23] to more
realistic active or dissipative media which are governed by non–integrable model equations.
The reason is that the complicated spatio–temporal dynamics of such coherent structure solu-
tions are governed by simple systems of ordinary differential equations, or low–dimensional
dynamical systems, rather by the original complex nonlinear partial differential equation
model. Hence, various theoretical approaches may be brought to bear on these ODEs.

There are situations [11, 23–25] where this approach is appropriate, particularly where
the dynamics of various active or dissipative systems is primarily governed by localized co-
herent structures such as pulses (solitary waves) and kinks (fronts or shocks). Such coherent
structures could also be information carriers, such as in Optics. Since such structures corre-
spond to spatial modulations, they are also often referred to spatially–localized “patterns”.
The speeds and locations of the coherent structures may vary in a complex manner as they
interact, but their spatial coherence is preserved in such situations. It is tempting to apply
this approach to any system which admits pulse and/or kink solutions, but caution is neces-
sary. Coherent structures may be transitory when they are unstable to small disturbances in
their neighborhood. Also, only some of them may be actually selected, due to such stability
considerations.

Another relevant feature of dissipative systems is that they include energy exchange
with external sources. Such systems are no longer Hamiltonian, and the solitons in these
systems are also qualitatively different from those in Hamiltonian systems. In Hamiltonian
systems, soliton solutions appear as a result of balance between diffraction (dispersion) and
nonlinearity. Diffraction spreads a beam while nonlinearity will focus it and make it narrower.
The balance between the two results in stationary solitary wave solutions, which usually
form a one parameter family. In dissipative systems with gain and loss, in order to have
stationary solutions, the gain and loss must be also balanced. This additional balance results
in solutions which are fixed. Then the shape, amplitude and the width are all completely
fixed by the parameters of the dissipative equation. This situation is shown schematically
in Fig. 1. However, the solitons, when they exist, can again be considered as “modes” of
dissipative systems just as for nondissipative ones.

To briefly recapitulate, the numerical results on dissipative solitons [20, 26] indicate:
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Hamiltonian Systems       Dissipative Systems

  Family of Soliton Solutions       Fixed Soliton Solutions

Diffraction
   or
Dispersion

Diffraction
   or
Dispersion

Loss

Nonlinearity              Gain                 Nonlinearity

Figure 1: Qualitative difference between the soliton solutions in Hamiltonian and dissipative
systems

(a) five new classes of stable amplitude modulated solutions unique to dissipative systems,
and
(b) interesting bifurcation sequences of these solutions as parameters are varied.

In addition, a question of great interest [26] is the effect of the system parameters viz.
dispersion/nonlinearity/linear and nonlinear gain and loss/spectral filtering on both the
structure and the stability of these new classes of dissipative solitons. This last feature was
repeatedly mentioned by many speakers in the multi–day session on Dissipative Solitons at
the 4th IMACS Conference on Nonlinear Waves held in Athens, Georgia in April 2005.

The above then defines the main themes to be explored in this paper. We focus on the is-
sues of central interest in the area, i.e., the conditions for the occurrence of the five categories
of dissipative solitons, as well the dependence of both their shape and their stability on the
nonlinearity, dispersion, linear and nonlinear gain, loss and spectral filtering parameters.

In the language of the Los Alamos school, the fully spatiotemporal approach followed
here may be said to be the “collective coordinates” formulation. In other words, we consider
a pulse or solitary wave at any time as a coherent collective entity (or coordinate). This
solitary wave is then temporally modulated. The spatial approach proposed, and explored,
in this paper is the variational method. However, the method is very significantly and non–
trivially generalized from all earlier applications to deal with our novel classes of dissipative
solitary waves. We are very grateful to David Kaup, Jianke Yang and Roberto Camassa for
discussions on these formulations.

We would also like to particularly cite David Kaup’s recent work, talks and conversa-
tions stressing the power, versatility and accuracy of the variational technique in constructing
regular and embedded solitons of various complicated χ2 − χ3 systems. These were instru-
mental in focusing our attention on this method, and attempting to extend its use to new
classes of dissipative solitons. Given this setting, in Section §3 we develop and discuss a
variational formalism within which to explore the various classes of dissipative solitons. As
mentioned, this is significantly generalized over earlier formulations in several crucial ways.
Firstly, the starting formulations for the Lagrangian are recent [27] and not well explored.
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Also, after extensive discussions with David Kaup, the trial functions have been general-
ized considerably over conventional ones to keep the shape relatively simple (and the trial
function integrable!) while allowing arbitrary temporal variation of the amplitude, width,
position, speed and phase of the pulse. In addition, the resulting Euler–Lagrange equations
are treated in a completely novel way. Rather than consider on the stable fixed points which
correspond to the well–known stationary solitons or plain pulses, we use dynamical systems
theory to focus on more complex attractors viz. periodic, quasiperiodic, and chaotic ones.
Periodic evolution of the trial function parameters on a stable periodic attractor would yield
solitons whose amplitudes are non–stationary or time dependent. In particular, pulsating,
snaking (and less easily, creeping) dissipative solitons may be treated using stable periodic
attractors of various trial function parameters. Chaotic evolution of the trial function pa-
rameters would yield chaotic solitary waves. This approach fails only to address the fifth
class of dissipative solitons, viz. exploding or erupting solitons.

The remainder of this paper is organized as follows. In Section §2 we elucidate the
new mechanism responsible for the various classes of pulsating solitary wave solutions in
dissipative systems, viz. the possibility of Hopf bifurcations. This also explains the absence
of pulsating solitary waves in Hamiltonian and integrable systems. Section §3 details the
recent variational formulation for dissipative systems, as well as the novel generalized trial
functions to be employed in modeling the pulsating solitary waves. Hopf bifurcations in
the Euler–Lagrange equations of Section §3 are detailed in Section §4. Periodic evolution
of the trial function parameters on stable periodic attractors resulting from supercritical
Hopf bifurcations, when substituted back into the trial function, yield pulsating solitary
waves. Within this framework, we also comprehensively explore: a. the cascade of period
doubling bifurcations observed in the simulations of the CGLE, and b. the effect of the
various parameters in the CGLE on the shape (amplitude, width and period) and domain
of existence of the pulsating solitary waves. Sections §5 and §6 discuss extensive numerical
results for the plain pulsating solitons, and Section §7 summarizes the results and conclusions.

Various other topics concerning solutions of the CGLE have also been considered recently
[28–36].

2 Nonexistence of Hopf Bifurcations in Hamiltonian

Systems: Connections to Pulsating Solitons

We shall consider the cubic–quintic CGLE in the form [11]

∂tA = εA+ (b1 + ic1)∂2
xA− (b3 − ic3)|A|2A− (b5 − ic5)|A|4A (2.1)

noting that any three of the coefficients (no two of which are in the same term) may be set
to unity by appropriate scalings of time, space and A.

It is widely reported [21, 37] and generally accepted that Hamiltonian systems, as well
as integrable systems which are a subclass, do not admit pulsating solitary wave solutions.
If excited initially, pulsating solitons in Hamiltonian and integrable systems re–shape them-
selves and evolve into regular stationary waves. The only exceptions are pulsating structures
comprising nonlinear superpositions of stationary solitons in integrable systems [22].
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In addition, the regimes of the pulsating solitons in the CGLE are very far from the
integrable nonlinear Schrödinger equation limit. This fact, and the great diversity of pulsat-
ing solitons in the CGLE, both indicate a new mechanism which is operative in dissipative
systems in the creation of these pulsating structures.

The primary point of this paper is that Hopf bifurcations are the new mechanism re-
sponsible for the occurrence of these pulsating solitons in dissipative systems, and we shall
analyze both plain pulsating solitons and snakes via this mechanism. However, in order to
establish that Hopf bifurcations are indeed the operative mechanism creating the various
pulsating solitons in dissipative systems, we first proceed to prove their absence in Hamil-
tonian systems. This will also explain the above–mentioned absence of pulsating solitons in
Hamiltonian and integrable systems.

For a Hamiltonian system with Hamiltonian H, the particular evolution equations may
be represented in canonical form as [38].

iΨζ =
δH

δΨ?

iΨ?
ζ = −δH

δΨ
. (2.2)

These may be further combined into

i~̇x = L∇~xH(~x) (2.3)

where ˙ denotes δ/δζ,
~x = [Ψ,Ψ?], (2.4)

I is the n× n unit matrix, and L is the symplectic gradient of H(~x)

L =

(
0 I
−I 0

)
. (2.5)

Equation (2.3) follows from

i

(
Ψ̇

Ψ̇?

)
=

(
0 I
−I 0

)(
∇ΨH
∇Ψ?H

)
which is identical to (2.2).

The fixed (or equilibrium or critical ) points of (2.3) satisfy

∇~xH(~x) = 0, (2.6)

or equivalently

δH

δΨ?
= 0,

δH

δΨ
= 0.

Using the standard representation

H =
1

2
〈Ψζ ,Ψζ〉+ V (Ψ) (2.7)
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for the Hamiltonian, this implies
~∇ΨV = 0

or
δV

δΨ
= 0. (2.8)

At a fixed point ~x0 = [Ψ0,Ψ0
?], the Jacobian matrix of (2.3) is

J(~x0) = LH (2.9)

where

H ≡

[
δ2H

δxiδxj

]
~x0

=

(
V 0
0 I

)
(2.10)

from (2.7). Here

V =

[
δ2V

δΨiδΨj

]
~x0

(2.11)

Hence, we have

J(~x0) =

(
0 I
−I 0

)(
V 0
0 I

)
=

(
0 I
−V 0

)
(2.12)

whose eigenvalues λ satisfy the characteristic equation

|V + λ2I| = 0 (2.13)

Since the matrix V is symmetric, its eigenvalues are real and the solutions λ of (2.13)
are thus either real or purely imaginary. Thus, as claimed earlier, Hopf bifurcations cannot
occur in Hamiltonian systems. The introduction of dissipation allows the occurrence of Hopf
bifurcation and, as we shall model in the remainder of this paper, introduces the various
pulsating solitary wave structures which occur in the CGLE.

3 The Generalized Variational Formulation

In this section we develop a general variational formulation to address the pulsating solitons
on all parameter ranges. As mentioned earlier, we shall need to generalize previous variational
approaches in several crucial ways.

First, the starting formulation of the Lagrangian for dissipative NLPDEs is relatively of
recent vintage [27] and neither widely known or widely explored. We are grateful to David
Kaup for digging into his encyclopedic body of work and pointing us to this. An alternative,
complex formulation of the Lagrangian for dissipative NLPDEs has been recently employed
by Skarka [39] to investigate conventional stationary solitons only.
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3.1 Formulation

Proceeding as in [27], the Lagrangian for the cubic–quintic CGLE (2.1) may be written as

L = r∗
[
∂tA− εA− (b1 + ic1)∂2

xA+ (b3 − ic3)|A|2A+ (b5 − ic5)|A|4A
]

+ r
[
∂tA

∗ − εA∗ − (b1 − ic1)∂2
xA
∗ + (b3 + ic3)|A|2A∗ + (b5 + ic5)|A|4A∗

]
(3.1)

Here r is the usual auxiliary equation employed in [27] and it satisfies a perturbative evolution
equation dual to the CGLE with all non–Hamiltonian terms reversed in sign.

The second key assumption involves the trial functions A(t) and r(t) which have been
generalized considerably over conventional ones to keep the shape relatively simple and the
trial functions integrable. To this end, we choose single–humped trial functions of the form:

A(x, t) = A1(t)e−σ1(t)2[x−φ1(t)]2eiα1(t) (3.2)

r(x, t) = e−σ2(t)2[x−φ2(t)]2eiα2(t) (3.3)

Here, the A1(t) is the amplitude, the σi(t)’s are the inverse widths, φi(t)’s are the positions
(with φi(t)/t being phase speeds, φ̇i(t) the speed) and αi(t)’s are the phases of the solitons.
All are allowed to vary arbitrarily in time. For now, the chirp terms are omitted for simplicity.
Substituting (3.2)/(3.3) in (3.1) the effective or averaged Lagrangian is

LEFF =

∫ ∞
−∞

Ldx = 2
√
π

{
− e

−σ1(t)
2σ2(t)

2[φ1(t)−φ2(t)]
2

σ1(t)
2+σ2(t)

2

[σ1(t)2 + σ2(t)2]
1
2

εA1(t) cos[α1(t)− α2(t)]

+
e
− 3σ1(t)

2σ2(t)
2[φ1(t)−φ2(t)]

2

3σ1(t)
2+σ2(t)

2[
3σ1(t)2 + σ2(t)2

] 1
2

A1(t)3

[
b3 cos[α1(t)− α2(t)] + c3 sin[α1(t)− α2(t)]

]

+
e
− 5σ1(t)

2σ2(t)
2[φ1(t)−φ2(t)]

2

5σ1(t)
2+σ2(t)

2[
5σ1(t)2 + σ2(t)2

] 1
2

A1(t)5

[
b5 cos[α1(t)− α2(t)] + c5 sin[α1(t)− α2(t)]

]

+
e
−σ1(t)

2σ2(t)
2[φ1(t)−φ2(t)]

2

σ1(t)
2+σ2(t)

2[
σ1(t)2 + σ2(t)2

] 5
2

[
cos[α1(t)− α2(t)][σ1(t)2 + σ2(t)2]2Ȧ1(t)

+A1(t)

(
− 2σ1(t)2σ2(t)2

[
b1 cos[α1(t)− α2(t)]− c1 sin[α1(t)− α2(t)]

][
− σ2(t)2

+σ1(t)2[−1 + 2σ2(t)2[φ1(t)− φ2(t)]2]
]
− α̇1(t) sin[α1(t)− α2(t)][σ1(t)2 + σ2(t)2]2

−σ1(t)σ̇1(t) cos[α1(t)− α2(t)]
[
σ1(t)2 + σ2(t)2 + 2σ2(t)4[φ1(t)− φ2(t)]2

]
−2φ̇1(t)σ1(t)2σ2(t)2[φ1(t)− φ2(t)][σ1(t)2 + σ2(t)2] cos[α1(t)− α2(t)]

)]}
(3.4)

Since (3.4) reveals that only the relative phase α(t) = α1(t)− α2(t) of A(x, t) and r(x, t)
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is relevant, we henceforth take

α1(t) = α(t)

α2(t) = 0 (3.5)

with no loss of generality.
Also, for algebraic tractability, we have found it necessary to assume

σ2(t) = mσ1(t) ≡ mσ(t). (3.6)

While this ties the widths of the A(x, t) and r(x, t) fields together, the loss of generality is
acceptable since the field r(x, t) has no real physical significance.

For reasons of algebraic simplicity, we may also scale the positions according to:

φ1(t) = φ(t)

φ2(t) = 0, (3.7)

although this assumption may easily be relaxed. In fact, we may expect that it may be
necessary to relax (3.7) for certain classes of dissipative solitons.

Finally, for real solutions (note that the numerical results in [20,26] pertain to |A(x, t)|),
we may make the additional assumption

α(t) = 0 (3.8)

when desired, although this too may be easily relaxed.
Hence, using all assumptions, (i.e. (3.5)–(3.7) in (3.4)), the effective Lagrangian (3.4)

may be written in a simpler but still general form

LEFF = 2
√
π

{
A1(t)

σ(t)

[
− e

−m
2σ(t)2φ(t)2

1+m2

[1 +m2]
1
2

ε cosα(t)

+
e
− 3m2σ(t)2φ(t)2

3+m2

[3 +m2]
1
2

A1(t)2
[
b3 cosα(t) + c3 sinα(t)

]
+
e
− 5m2σ(t)2φ(t)2

5+m2

[5 +m2]
1
2

A1(t)4
[
b5 cosα(t) + c5 sinα(t)

]]

+
e
−m

2σ(t)2φ(t)2

1+m2

[1 +m2]
5
2σ(t)2

[
(1 +m2)2 cosα(t)σ(t)Ȧ1(t)

−A1(t)

(
4m4σ(t)5φ(t)2

[
b1 cosα(t)− c1 sinα(t)

]
+(1 +m2)2σ(t)α̇(t) sinα(t) + (1 +m2)σ̇(t) cosα(t)

−2m2(1 +m2)σ(t)3
[
b1 cosα(t)− c1 sinα(t)

]
+2m4σ̇(t)σ(t)2φ(t)2 + φ̇(t)φ(t) cosα(t)

)]}
(3.9)
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4 Framework for Investigation of Euler–Lagrange

Equations for Pulsating Solitons

4.1 Variational Equations

For plain pulsating solitons, the speed is always zero [20,26] and we take

φ1(t) = φ2(t) = 0. (4.1)

However, we need not, in general invoke (3.8), since the solution of (2.1) must be complex.
Therefore, the trial functions (3.2) and (3.3) become

A(x, t) = A1(t)e−σ(t)2x2eiα(t) (4.2)

r(x, t) = e−σ(t)2 (4.3)

Substituting the last two equations into (3.9), and by choosing m = 1, the simplified effective
Lagrangian becomes

LEFF =

√
π

6σ(t)2

[
6A1(t)3σ(t)

(
b3 cosα(t) + c3 sinα(t)

)
+
√

2

(
2
√

3A1(t)5σ(t)
(
b5 cosα(t) + c5 sinα(t)

)
+6Ȧ1(t)σ(t) cosα(t)− 6A1(t)σ(t) sinα(t)

(
c1σ(t)2 + α̇(t)

)
−3A1(t) cosα(t)

(
σ̇(t) + 2εσ(t)− 2b1σ(t)3

))]
(4.4)

We are left with three parameters A1(t), σ(t) and α(t) in LEFF . Varying these parameters
(3.4), we obtain

∂LEFF
∂ ? (t)

− d

dt

(∂LEFF
∂?̇(t)

)
= 0,

where ? refers to A1, σ, or α. Solving for ?̇(t) as a system of three equations,

Ȧ1(t) = f1[A1(t), σ(t), α(t)]

σ̇(t) = f2[A1(t), σ(t), α(t)]

α̇(t) = f3[A1(t), σ(t), α(t)], (4.5)

where the fi are complicated nonlinear functions of the arguments.

4.2 Hopf Bifurcations

The general strategy for investigating pulsating solitons and their bifurcations within the
variational framework is as follows. The Euler–Lagrange equations (4.5) are treated in a
completely novel way. Rather than consider the stable fixed points which correspond to the
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well–known stationary solitons or plain pulses, we use Hopf bifurcation theory to focus on
periodic attractors. Periodic evolution of the trial function parameters on stable periodic
attractors yield the pulsating soliton whose amplitude is non–stationary or time dependent.

We derive the conditions for the temporal Hopf bifurcations of the fixed points. The
conditions for supercritical temporal Hopf bifurcations, leading to stable periodic orbits of
A1(t), σ(t), and α(t) may be evaluated using the method of Multiple Scales. These are the
conditions or parameter regimes where exhibit stable periodic oscillations, and hence stable
pulsating solitons will exist within our variational formulation. Note that, as is easy to verify
numerically, periodic oscillations of A1(t), σ(t), and α(t), correspond to a spatiotemporal
pulsating soliton structure of the |A(x, t)| given by (3.2).

The fixed points of (4.5) are given by a complicated system of transcendental equations.
These are solved numerically to obtain results for each particular case.

For a typical fixed point, the characteristic polynomial of the Jacobian matrix of a fixed
point of (4.5) may be expressed as

λ3 + δ1λ
2 + δ2λ+ δ3 = 0 (4.6)

where δi with i = 1...3 depend on the system parameters and the fixed points. Since these
are extremely involved, we omit the actual expressions, and evaluate them numerically where
needed.

To be a stable fixed point within the linearized analysis, all the eigenvalues must have neg-
ative real parts. Using the Routh–Hurwitz criterion, the necessary and sufficient conditions
for (4.6) to have Re(λ1,2,3) < 0 are:

δ1 > 0, δ3 > 0, δ1δ2 − δ3 > 0. (4.7)

On the contrary, one may have the onset of instability of the plane wave solution occurring
in one of two ways. In the first, one root of (4.5) (or one eigenvalue of the Jacobian) becomes
non–hyperbolic by going through zero for

δ3 = 0. (4.8)

Equation (4.8) is thus the condition for the onset of “static” instability of the plane wave.
Whether this bifurcation is a pitchfork or transcritical one, and its subcritical or supercritical
nature, may be readily determined by deriving an appropriate canonical system in the vicinity
of (4.8) using any of a variety of normal form or perturbation methods.

One may also have the onset of dynamic instability (“flutter” in the language of Ap-
plied Mechanics) when a pair of eigenvalues of the Jacobian become purely imaginary. The
consequent Hopf bifurcation at

δ1δ2 − δ3 = 0 (4.9)

leads to the onset of periodic solutions of (4.5) (dynamic instability or “flutter”).

4.3 Effects of system parameters on shape of the Pulsating Soliton

Also, within the regimes of stable periodic solutions, we comprehensively investigate:

a. the effects of the nonlinearity/dispersion/linear and nonlinear gain/loss spectral filter-
ing on the shape and structure of the pulsating solitons given by (3.2), and

11



Figure 2: Plain pulsating soliton that shows period doubling, b3 = −0.785

b. the period doubling sequences of the pulsating solitons given by (3.2) as the above
system parameters are varied.

To study the effects of system parameters on the shape and the stability of the Pulsating
Soliton, we integrate (4.2)–(4.3) numerically in Mathematica for different sets of the various
system parameters within the regime of stable periodic solutions. The resulting periodic time
series for A1(t), σ(t) and α(t) and are then simply inserted in (3.2) whose spatiotemporal
structure (|A(x, t)| versus x and t) may be plotted. As the various system parameters within
the stable regime are varied, the effects of the pulsating soliton amplitude, width, and phase
will be studied.

4.4 Investigation of period doubling

Pulsating solitons can exhibit more complicated behaviors as one of the parameters changes.
Simple pulsations can be transformed by period doubling and period quadrupling as the pa-
rameter changes further. This phenomena occurs due to the bifurcations at certain bound-
aries in the parameter space.

To study the period doubling bifurcation sequences of the pulsating solitons, we will
use the standard numerical diagnostics [40]. In other words, a stable pulsating soliton will
be constructed as above for a set of parameters in the stable regime. One parameter (the
“distinguished bifurcation parameter”) will then be varied and the effect on the periodic
orbits for A1(t), σ(t) and α(t) will be studied. If these period double (or subharmonics
appear in the power spectral density [40]), note that this would result in an approximate
temporal period doubling of |A(t)| given by (3.2). This is precisely what is observed in the
numerical simulations of Akhmediev et al [20], as we can see in Figures 2 and 3. In his
simulations, as b3 is varied the plane pulsating soliton experienced almost period doubling.
Further varying of b3 produced almost period quadrupling.

In the next Section we shall implement the above procedure and also will make detailed
comparisons between our work that of Akhmediev et al [20,26].

5 Results for the General Plane Pulsating Soliton

An example of a plain pulsating soliton, obtained by us via independent simulations on (2.1),
is shown in Figure 4 using the trial functions (4.2) and (4.3). It has a different shape at each
time t, since it evolves, but it recovers its exact initial shape after a period.

12



Figure 3: Plain pulsating soliton that shows period quadrupling, b3 = −0.793

Figure 4: Plain pulsating soliton for b3 = −0.66 and ε = −0.1
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To derive the conditions for occurrence of stable periodic orbits of A1(t), σ(t), and α(t),
we proceed as follows.

First, we fix a set of system parameters b1 = 0.08, b5 = 0.1, c1 = 0.5, c3 = 1, c5 = −0.1.
Then, we solve numerically the system of transcendental equations (4.5), which are the
equations of the fixed points. By the Ruth–Hurwitz conditions, the Hopf curve is defined as
δ1δ2 − δ3 = 0. This condition, along with the equations of the fixed points leads to onset of
periodic solutions of (4.5) as we will see next.

On the Hopf bifurcation curve we obtain that b3 = −0.216825, and ε = −0.345481, while
the fixed points are A1(0) = 0.954712, σ(0) = 0.917093, and α(0) = −0.181274. Using these
values of b3 and ε , we integrate numerically the systems of 3 ODEs (4.5), using as initial
conditions the three values of the fixed points. Hopf bifurcations occur in this system leading
to periodic orbits.

Next, we may plot the time series of the periodic orbit for the amplitude A1(t), and,
as expected, we noticed that the amplitude was very small, since it is proportional to the
square root of the distance from the Hopf curve.

To construct pulsating solitons with amplitudes large enough, we had to move away from
the Hopf curve, as much as possible, but at the same time to be sure not to be outside of
the parameters ranges for the existence of the pulsating soliton. That could be achieved by
varying one or more of the system parameters. First, we varied ε slowly away from the Hopf
curve. Repeating the above procedure to construct a plane pulsating soliton, we noticed
that the pulsating soliton still had very small amplitudes A1(t), of magnitude only of 10−4.
Therefore, we decided to vary another parameter, b3, which stands for the cubic gain when
negative. We found that the domain of existence for the pulsating soliton as a function of b3

was [−0.2531943,−0.1424], passing through the Hopf curve value of b3 = −0.216825. Within
this range, we varied b3, and studied the effects on the shape and the stability, as well as
the various bifurcations that lead potentially to period doubling and quadrupling. For the
largest value of b3, i.e. b3 = −0.1424, we numerically integrate in Mathematica the three
differential equations (4.5), and we plot the periodic orbit, which is shown in Figure 5.

The resulting periodic time series for A1(t), σ(t), and α(t) from Figure 6 are then simply
inserted in (4.2) whose spatiotemporal structure (|A(x, t)| or phase A(x, t) versus x and t)
is plotted in Figure 7. As the various system parameters c1, c3, c5, b1, b5 within the stable
regime are varied, the effects of the pulsating soliton amplitude, width, position, phase speed
(and, less importantly, phase) may also be studied, and this is discussed subsequently.

Repeating the above, we also show the orbit and the plane pulsating soliton for the
smallest value of b3 = −0.2531943 in Figures 8 and 9.

Next, we consider the detailed effects of varying the parameter b3. For the chosen values of
the system parameters of b1 = 0.08, b5 = 0.1, c1 = 0.5, c3 = 1, c5 = −0.1, and ε = −0.345481,
with the fixed points A1(0) = 0.954712, σ(0) = 0.917093, and α(0) = −0.181274, from (4.5)
and (4.9), the Hopf bifurcation occurs at

b3Hopf = −0.216825 (5.1)

First, let us consider values of b3 greater that b3Hopf . There is a stable and robust periodic
orbit to this side which becomes larger and deforms as b3 is increased up to −0.1424. A
representative periodic orbit is in Figure 5.

Next, moving to values smaller than b3Hopf , we see a clean, periodic orbit which slowly
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grows in size as b3 is made more negative. The periodic orbit, time series, and solitary waves
are qualitatively similar to those for b3 > b3Hopf .

However, more interesting dynamics is seen as b3 is decreased further. The periodic orbit
goes unstable via a very rapid, complete cascade of period–doubling bifurcations between
b3 = −0.25, and b3 = −0.2516. In Figure 10 we show the period doubled orbit for b3 =
−0.2516. The orbit at b3 = −0.2531943 after many more period doublings is shown in Figure
8. The corresponding solitary wave solution is shown in Figure 9. Notice that this feature
agrees with the sequence of period doublings for pulsating solitons seen by Akhmediev et al
[20]. Note also that one may track the complete cascade of period doublings using software
such AUTO or DERPER, or using the schemes of Holodniok and Kubicek [41].

Next, we shall consider the effect of all the various parameters in the CGLE (2.1) on the
shape (amplitude, width, period) and stability of the pulsating solitary wave. This is a key
feature of interest that was repeatedly mentioned by many speakers in the multi–day session
on Dissipative Solitons at the 4th IMACS Conference on Nonlinear Waves held in Athens,
Georgia in April 2005, as there are no existing theoretical guidelines or predictions about
this at all.

In considering the parameter effects on the solitary wave shape and period, note that the
wave is a spatially coherent structure (or a “collective coordinate” given by the trial function)
whose parameters oscillate in time. Hence, the temporal period of the pulsating soliton is the
same as the period T of the oscillations of A1(t), σ(t), and α(t) on their limit cycle. As for
the peak amplitude and peak width of the pulsating wave, these are determined by the peak
amplitude A1p of A1(t), and the reciprocal of the peak amplitude σp of σ(t) respectively, i.e.
at any time t when the amplitude is maximum, the width will be minimum, and vice versa.

Keeping the above in mind, we vary the parameters of the CGLE in turn and we observe
the resulting effects on A1p (the peak amplitude), σp (the inverse width), and T (the temporal
period) of the pulsating soliton:

a. For increased b1, the values of A1p, σp, and T all increase.
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Figure 10: The periodic orbit for b3 = −0.2516

b. Increasing b5 augments all of A1p, σp, and T .

c. Raising c1 increases A1p, σp, and T .

d. Incrementing c3 decreases all of A1p, σp, and T .

e. Augmenting c5 causes a decrease in A1p, σp, and T .

f. Raising ε causes A1p, σp, and T to fall.

The above constitute our detailed predictions of the various parameters in the CGLE
on the amplitude, inverse width, and temporal width of the pulsating solitons. We have
verified that each set of predictions a.–f. above agree when the corresponding parameter is
varied in the solitary wave simulation for the full PDE shown in Figure 4. Note also that
A1(t) and σ(t) are always in phase, so that A1p and σp occur simultaneously. Thus, the
pulsating solitons are tallest where they have least width. This is completely consistent with
our simulation in Figure 4, as well as those in [20,21].

Finally, in the next section, we briefly discuss a simpler alternative trial function ansatz.

6 Real Pulsating Solitons

For plain pulsating solutions, the speed is always zero [20, 26]. In attempting to find the
simplest trail function ansatz we also invoke (3.8), since we want a real pulsating soliton.
Therefore, the trial functions (3.2) and (3.3) become

A(x, t) = A1(t)e−σ(t)2x2 (6.1)
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r(x, t) = e−σ(t)2 (6.2)

Substituting the last two equations into (3.9), and by choosing m = 1, the simplified effective
Lagrangian becomes

LEFF =

√
π

6σ(t)2

(
6A1(t)3σ(t)b3 +

√
2

(
2
√

3A1(t)5σ(t)b5

+6Ȧ1(t)σ(t)− 3A1(t)
(
σ̇(t) + 2εσ(t)− 2b1σ(t)3

)))
(6.3)

The Euler–Lagrange equations obtained by varying A1(t), and σ(t) parameters are

∂LEFF
∂σ(t)

− d

dt

(∂LEFF
∂σ̇(t)

)
=

= −
√
π

6σ2(t)

[
2A1(t)3

(√
6b5A1(t)2 + 3b3

)
− 6
√

2A1(t)
(
ε+ b1σ(t)2

)
+ 3
√

2Ȧ1(t)
]

= 0 (6.4)

∂LEFF
∂A1(t)

− d

dt

(∂LEFF
∂Ȧ1(t)

)
=

=

√
π

6σ2(t)

[
2A1(t)2σ(t)

(
5
√

6b5A1(t)2 + 9b3

)
− 6
√

2σ(t)
(
ε− b1σ(t)2

)
+ 3
√

2σ̇(t)
]

= 0 (6.5)

Solving the above equations for Ȧ1(t), and σ̇(t), we obtain

Ȧ1(t) = −1

3
A1(t)

(
− 6ε+ 3

√
2b3A1(t)2 + 2

√
3b5A1(t)4 − 6b1σ(t)2

)
σ̇(t) = −1

3
σ(t)

(
− 6ε+ 9

√
2b3A1(t)2 + 10

√
3b5A1(t)4 + 6b1σ(t)2

)
(6.6)

Considering a typical fixed point, the characteristic polynomial of the Jacobian matrix
of a fixed point (6.6) may be expressed as

λ2 + δ1λ+ δ2 = 0 (6.7)

where

δ1 = −4ε+ 6
√

2b3A1(t)2 +
20√

3
b5A1(t)4 + 4b1σ(t)2 (6.8)

δ2 = 4ε2 − 12
√

2b3εA1(t)2 + 18b2
3A1(t)4 − 40√

3
εA1(t)4 + 20

√
6b3b5A1(t)6 +

100

3
b2

5A1(t)8

−8b1εσ(t)2 + 36
√

2b1b3A1(t)2σ(t)2 +
200√

3
b1b5A1(t)4σ(t)2 − 12b2

1σ(t)4 (6.9)
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From the Routh–Hurwitz conditions, the requirement to have Hopf bifurcation is to have
δ1 = 0 and δ2 > 0. However, we will show that the real plane pulsating soliton cannot
undergo Hopf bifurcation.

At a fixed point of (6.6), we have

ε =
√

2b3A1(t)2 +
√

3b5A1(t)4

σ(t)2 = − 1

6b1

(
3
√

2b3A1(t)2 + 4
√

3b5A1(t)4
)
, (6.10)

and substituting the above into (6.8),(6.9), we obtain

δ1 = 0

δ2 = −32

3
A1(t)4

(
3b2

3 + 4
√

6b3b5A1(t)2 + 12b2
5A1(t)4

)
. (6.11)

Now, it is obvious to see that δ2 ≤ 0 since 3b2
3 +4
√

6b3b5A1(t)2 +12b2
5A1(t)4 > 0 for all A1(t),

because its discriminant 4 = −48b2
3b

2
5 < 0. Hence Hopf bifurcation does not occur, probably

because the real solution (6.1) is too rudimentary and, in particular, because it represents a
real solution.

7 Conclusions and Discussions

In conclusion, we have developed a comprehensive theoretical framework for analyzing the full
spatiotemporal structure of pulsating solitary waves in the complex, cubic–quintic Ginzburg–
Landau equation. This includes elucidating the mechanism operative in creating these new
classes of solitons in dissipative systems, as well as their absence in Hamiltonian and inte-
grable systems where only stationary solitons are observed to occur.

The specific theoretical modeling includes the use of a recent variational formulation
and significantly generalized trial function for the solitary waves solutions. In addition,
the resulting Euler–Lagrange equations are treated in an entirely different way by looking at
their stable periodic solutions (or limit cycles) resulting from supercritical Hopf bifurcations.
Oscillations of their trial function parameters on these limit cycles provide the pulsations
of the amplitude, width, and phase of the solitons. The model also allows for detailed
predictions regarding the other issue of central interest for the pulsating solitons, viz. the
effect of each of the system parameters on the amplitude, width, period, and stability of the
solitary waves.

Also, given the generality of the theoretical framework developed in this paper, it provides
a platform for the detailed modeling of the snake and chaotic solitary waves as well. These
are the focus of current work in this area.
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