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Dispersive waves in microstructured solids

A.Berezovskia,∗, J.Engelbrechta, A.Saluperea, K.Tamma, T.Peetsa,
M.Berezovskib

aCentre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology,

Akadeemia tee 21, 12618 Tallinn, Estonia
bDepartment of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Rd,

Worcester, MA, 01609, USA

Abstract

The wave motion in micromorphic microstructured solids is studied. The math-

ematical model is based on ideas of Mindlin and governing equations are derived

by making use of the Euler-Lagrange formalism. The same result is obtained by

means of the internal variables approach. Actually such a model describes inter-

nal fields in microstructured solids under external loading and the interaction of

these fields results in various physical effects. The emphasis of the paper is on

dispersion analysis and wave profiles generated by initial or boundary conditions

in a one-dimensional case.

Keywords: microstructured solids, wave propagation, dispersion

1. Introduction

Widely used materials in contemporary technological world like composites,

functionally graded materials, polycrystalline solids, granular materials, etc., all

have inherent microstructures at different scales. Additionally, high-frequency
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excitations are common in modern technology. In this case, wavelengths of

excitations are comparable with internal scales in materials. Consequently, mi-

crostructural effects must be taken into account, especially when modeling and

analyzing dynamical phenomena.

Microstructural effects are observed in wave propagation in solids when the

wavelength of a travelling signal becomes comparable with the scale of material

heterogeneities (Gonella, Greene and Liu, 2011). The influence of microstruc-

ture on wave propagation clearly manifests itself in the wave dispersion that

alters both the shape and the velocity of propagating waves. Wave propagation

in heterogeneous solids has been a subject of considerable research for many

years. However, microstructural details are rarely taken into account in large-

scale structural dynamics or dynamic impact simulations. The reason is the

enormous complexity of wave phenomena in highly heterogeneous media.

There exist distinct approaches to the description of microstructural effects

on wave propagation in solids. The first one is focused on the determining so-

called effective properties of a material. It is expected that these averaged or

smoothened properties reflect in some global sense the response of specimens of

the material to external loads. Homogenization methods (Santosa and Symes,

1991; Chen and Fish, 2001; Fish and Fan, 2008) represent a pure mathematical

asymptotic multiple-scale procedure under assumption of the validity of classical

wave equation.

Another approach to model dispersion effects returns to the Born–vonKármán

model for the one-dimensional atomic chain (Born and von Kármán, 1912). It
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is the basis for derivation of higher-order dispersive wave equations by a con-

tinualization procedure (Metrikine and Askes, 2002; Fish et al., 2005; Askes et

al., 2008; Andrianov et al., 2010, e.g.). Dispersive wave equations obtained by

continualization and homogenization are discussed and unified by Berezovski et

al. (2011).

A very straightforward approach to involve microstructural effects into the

description of wave propagation is provided by higher order or generalized theo-

ries of elastic continua (Mindlin, 1964; Eringen and Suhubi, 1964). Generalized

theories of continua extend conventional continuum mechanics by incorporating

the micromotion into consideration. The micromorphic continuum description

has enlarged the application area of continuum theory to the microscopic space

and time scales (Wang and Lee, 2010). The well-established framework for

higher grade and higher order theories is, however, accompanied by too many

usually undetermined phenomenological coefficients.

The microcontinuum field theories are intended to provide a systematic ex-

tension of the continuum description of materials, some characteristic length

scales of which are associated with their microstructure. We focus our atten-

tion on the micromorphic theory which is well suited to account for scale effects

caused by the inherent microstructure (Forest, 2009). The basic model follows

Mindlin (1964) who introduced material elements as cells able to deform inde-

pendently of the main body. The governing equations are derived by making

use of the Euler-Lagrange formalism (Engelbrecht et al., 2005).

The purpose of this paper is not to present a detailed overview on general-
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ized theories of continua but to focus on the one-dimensional wave motion in

microstructured solids based on mathematical models which in our view reflect

best the main characteristics of physical effects in such solids. We would like

to demonstrate that the description of wave motion in microstructured solids

is improved by introducing internal fields due to internal variables combining

continuum mechanics with thermodynamics. The main emphasis will be on

the analyzes or in other words on ”how does it work”. The paper is actu-

ally a synthesis of recent studies which has been focused on wave motion in

microstructured solids.

The paper is organized as follows. In Section 2, generic mathematical models

for dispersive wave equations are discussed. Their structure depends on assump-

tions concerning the free energy. Several possible simplifications of governing

equations are presented in Section 3, and feasible extensions are demonstrated in

Section 4. Section 5 is devoted to the dispersion analysis of obtained models to-

gether with numerical solutions of typical initial and boundary value problems.

These results are mostly based on research within graduate studies (Peets, 2011;

Tamm, 2011) in order to synthesize a general view. Conclusions and final re-

marks are presented in the last Section.

2. Dispersive wave equation in one dimension

The structure of the dispersive wave equation is explicitly seen from the

one-dimensional setting. Here we construct governing equations following first

Mindlin (1964) and Engelbrecht et al. (2005) and then following the concept of
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dual internal variables (Ván et al., 2008).

In the spirit of Mindlin (1964), we consider a continuum equipped by de-

formable cells characterized by the microdeformation ϕ. Note that in this simple

one-dimensional case, ϕ is a scalar quantity. This additional degree of freedom

together with the macrodisplacement u forms a quadratic potential energy W

which can be specified as (Engelbrecht et al., 2005)

W =
ρ0c

2

2
u2x +Aϕux +

1

2
Bϕ2 +

1

2
Cϕ2

x, (1)

where c is the longitudinal wave speed, and coefficients A,B, and C are material

parameters characterizing microstructure influence. The LagrangianL = K−W

can be constructed by intoducing the kinetic energy (Capriz, 1989)

K =
ρ0
2
u2t +

I

2
ϕ2
t , (2)

where I is the measure of microstructure inertia. It must be stressed that

in the multi-dimensional case the microinertia tensor appears, which must be

analyzed with care to avoid the incompatibility with the standard mechanics of

rigid bodies (Mariano, 2008)).

By making use of Euler-Lagrange equations (for details, see (Engelbrecht

et al., 2005)), the balance laws are obtained for macroscopic and microscopic

scales

ρ0utt = ρ0c
2uxx +Aϕx, (3)

Iϕtt = Cϕxx −Aux −Bϕ. (4)

Equations of motion (3) and (4) can be combined into a single dispersive wave
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equation

utt = c2uxx +
C

B

(

utt − c2uxx
)

xx
−
I

B

(

utt − c2uxx
)

tt
−

A2

ρ0B
uxx. (5)

For any particular material the parameters A,B,C, I should be specified as

well as corresponding initial and boundary conditions for a given geometry and

loading.

A slightly more general model for microstructure can be obtained by consid-

ering the microdeformation ϕ as an internal variable complemented by its dual

counterpart ψ (an auxiliary internal variable). Following the concept of dual

internal variables (Ván et al., 2008), we consider the free energy W as a general

sufficiently regular function of the strain, temperature, two internal variables

ϕ, ψ and their space derivatives

W =W (ux, θ, ϕ, ϕx, ψ, ψx). (6)

In this case the equations of state define the macrostress σ, the entropy S,

microstresses η and ζ, and interaction forces τ and ξ as follows:

σ :=
∂W

∂ux
, S := −

∂W

∂θ
, τ := −

∂W

∂ϕ
, η := −

∂W

∂ϕx
,

ξ := −
∂W

∂ψ
, ζ := −

∂W

∂ψx
.

(7)

In the isothermal case the dissipation inequality reduces to the intrinsic part

depending only on internal variables (Berezovski et al., 2009, 2011)

Φ = (τ − ηx)ϕt + (ξ − ζx)ψt ≥ 0. (8)

It is easy to see that the following choice of governing equations for internal

variables

ϕt = R(ξ − ζx), ψt = −R(τ − ηx), (9)

6



where R is an appropriate constant, leads to zero dissipation. This means that

dissipation inequality (8) is satisfied automatically with governing equations (9).

Keeping a quadratic free energy dependence in the form

W =
ρ0c

2

2
u2x +Auxϕ+A′uxϕx +

1

2
Bϕ2 +

1

2
Cϕ2

x +
1

2
Dψ2, (10)

we see that the considered free energy function is the one-dimensional reduction

of the general micromorphic strain energy density (Mindlin, 1964), where the

product of the microdeformation ϕ and its gradient is replaced by the square

of the second internal variable ψ. The corresponding macro- and microstresses

follow from the equations of state

σ =
∂W

∂ux
= ρ0c

2ux +Aϕ+A′ϕx, (11)

η = −
∂W

∂ϕx
= −A′ux − Cϕx, (12)

as well as the interactive internal force

τ = −
∂W

∂ϕ
= −Aux −Bϕ. (13)

Accordingly, the balance of linear momentum results in

ρ0utt = ρ0c
2uxx +Aϕx +A′ϕxx, (14)

and the governing equation for the primary internal variable ϕ has the form

(Berezovski et al., 2011)

Iϕtt = Cϕxx +A′uxx −Aux −Bϕ, (15)

if we use the same notation for the measure of microinertia as previosly. Here

I = 1/(R2D). It must be stressed that governing equation (15) follows from
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dissipation inequality (8) by applying choice (9). Therefore, this approach is

thermodynamically consistent.

The latter equations of motion can be combined in the single dispersive wave

equation (Berezovski et al., 2011)

utt = c2uxx +
C

B

(

utt − c2uxx
)

xx
−
I

B

(

utt − c2uxx
)

tt
+
A′2

ρ0B
uxxxx −

A2

ρ0B
uxx.

(16)

Dispersive wave equation (16) is sufficiently general to cover all existing one-

dimensional microstructure models (Berezovski et al., 2011). In fact, with A = 0

it is equivalent to ”causal” model by Metrikine (2006), while with A′ = 0 it is

reduced to the Mindlin-type model by Engelbrecht et al. (2005) (cf. Eq. 5). The

Maxwell-Rayleigh model of anomalous dispersion (Maugin, 1995) corresponds

to the choice A = 0, A′ = 0, and C = 0, and more classical linear version of

the Boussinesq equation for elastic crystals and the Love-Rayleigh equation for

rods accounting for lateral inertia (cf. Maugin (1995)) can be obtained choosing

A = 0, I = 0, C = 0 and A = 0, I = 0, ρc2C = A′2, respectively.

Dispersive wave equation (16) can be also represented in terms of distinct

wave operators

utt −

(

c2 −
A2

ρ0B

)

uxx =
C

B

(

utt −

(

c2 −
A′2

ρ0C

)

uxx

)

xx

−
I

B

(

utt − c2uxx
)

tt
.

(17)

Introducing the wave speed related to the microstructure

c21 =
C

I
, (18)
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we can identify corrections to wave velocity due to couplings as follows:

c2A =
A2

ρ0B
, c4A′ =

A′2

ρ0I
, (19)

and represent dispersive wave equation (17) as

utt−
(

c2 − c2A
)

uxx = p2c21

(

utt −

(

c2 −
c4A′

c21

)

uxx

)

xx

−p2
(

utt − c2uxx
)

tt
, (20)

with p2 = I/B. All three wave operators in Eq. (20) are different and reflect

characteristics of macro- and microstructure and their coupling.

As one can see, Mindlin-type dispersive wave equation (5) and unified disper-

sive wave equation (16) differ from each other only by the single term containing

the fourth-order space derivative. This leads, however, to three distinct wave

operators in Eq. (20) instead of two of them in Eq. (5).

Unified dispersive wave equation (16) and/or Mindlin-type dispersive wave

equation (5) are basic material models for the analysis of 1D problems including

further simplification (Section 3) or extension (Section 4). As far as the classical

wave equation is considered as the cornerstone for wave dynamics of homoge-

neous media, these models allow to demonstrate specific dispersion effects which

are characteristic to microstructured materials.

3. Model simplifications

3.1. Reduction by the slaving principle

Governing equations (16) or (20) include several wave operators which de-

scribe the motion in macro- and microscale. It is possible to distinguish leading

operators by using the slaving principle (Porubov, 2003). By means of series
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representation and the slaving principle (for details, see (Engelbrecht et al.,

2005)) we get finally

utt −
(

c2 − c2A
)

uxx = p2c2A
(

utt − c21uxx
)

xx
. (21)

Equation (21) reflects clearly the hierarchical character of wave propagation in

microstructured materials following Whitham (1974). Indeed:

(i) if pcA is small then the terms in the r.h.s. are negligible; if p cA is large

then, vice versa, the terms in the l.h.s. are negligible and the wave characteristics

are governed by properties of microstructure;

(ii) the wave speed in the compound material is affected by the microstruc-

ture (c2 versus c2− c2A) and only A = 0 (no coupling) excludes this dependence;

(iii) the influence of the microstructure is, as expected, characterized by

dispersive terms of the fourth-order (uttxx and uxxxx).

The nonlinear governing equations will be presented in Section 4.3. The

comparison of model equations (16) and (21) will be given in Section 5.2.

3.2. One-wave asymptotics

The model equation derived in Section 2.1. actually generalizes the clas-

sical wave equation which describe two waves – one propagating to the right,

another – to the left. There exist powerful methods which allow to derive so-

called evolution equations describing just the propagation of one wave along the

chosen characteristics. These asymptotic (reductive perturbation) methods are

described in details, for example by Engelbrecht (1983). Applying the reductive

perturbation method for Eq. (5) the following evolution equation is derived
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(Peets et al., 2008; Randrüüt et al., 2009):

vT +
c2A − c21
c2A

vXXX = 0, (22)

where v = UX , U(X,T ) = u/l, X = (x − cAt)/L, T = cAlt/2L
2, and L and l

are macroscale and microscale, respectively.

Equation (22) is the linearized Korteweg-de Vries (KdV) equation. If the

reductive perturbation method is applied for the hierarchical equation (21) then

the result will be the same Eq. (22). This means that basic Eq. (16) and its

asymptotic (hierarchical) approximation (21) yield the evolution equation in the

same form. The case of nonlinear models will be dealt in Section 4.3.

4. Model extensions

Microstructure model (14)–(15) allows not only the reduction, but also the

extension in various directions. The most desired extensions regard to several

microstructures and to nonlinear effects.

4.1. Double microstructure

The extension of microstructure model (14)–(15) to the case with two mi-

crostructures can be achieved in different ways. The first one is the “hierarchy

of microstructures”(Engelbrecht et al., 2006). In this case, the coupling of the

corresponding microstructure hierarchy may be represented schematically as

follows (Fig. 1).

This means that only the motion of the first microstructure is coupled with

the macromotion, and the motion of the second microstructure is coupled with

11
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Figure 1: Hierarchical microstructures.

that of the first one. In this case, the free energy is dependent on two internal

variables ϕ1 and ϕ2 as follows:

W =
ρ0c

2

2
u2x +A1ϕ1ux +

1

2
B1ϕ

2
1 +

1

2
C1(ϕ1)

2
x+

+A12(ϕ1)xϕ2 +
1

2
B2ϕ

2
2 +

1

2
C2(ϕ2)

2
x.

(23)

This leads to expressions of stresses in the form

σ =
∂W

∂ux
= ρ0c

2ux +A1ϕ1,

η1 = −
∂W

∂(ϕ1)x
=− C1(ϕ1)x −A12ϕ2, η2 = −

∂W

∂(ϕ2)x
= −C2(ϕ2)x,

(24)

and to interactive internal forces

τ1 = −
∂W

∂ϕ1
= −A1ux −B1ϕ1, τ2 = −

∂W

∂ϕ2
= −A12(ϕ1)x −B2ϕ2. (25)

Accordingly, equations of motion take the form

ρ0utt = σx = ρ0c
2uxx +A1(ϕ1)x, (26)

I1(ϕ1)tt = τ1 − (η1)x = C1(ϕ1)xx −A1ux −B1ϕ1 +A12(ϕ2)x, (27)

I2(ϕ2)tt = τ2 − (η2)x = C2(ϕ2)xx −A12(ϕ1)x −B2ϕ2, (28)

where I1 and I2 are appropriate internal inertia measures. The very same model

is presented by Pastrone (2010) including nonlinear terms at the macroscopic

level.
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Another example of possible coupling of macromotion and microstructures

can be constructed by means of the representation of the free energy dependence

as the sum of two similar contributions (cf. (Berezovski et al., 2010))

W =
ρ0c

2

2
u2x+A1ϕ1ux +A′

1(ϕ1)xux +
1

2
B1ϕ

2
1 +

1

2
C1(ϕ1)

2
x +

1

2
D1ψ

2
1+

+A2ϕ2ux +A′

2(ϕ2)xux +
1

2
B2ϕ

2
2 +

1

2
C2(ϕ2)

2
x +

1

2
D2ψ

2
2 ,

(29)

where ψ1 and ψ2 are auxiliary internal variables (cf. Eq. (10)). In the considered

case, both equations of motion for microstructures are coupled with the balance

of linear momentum for the macromotion, but not coupled with each other.

This is illustrated in Fig. 2.

Figure 2: Concurrent microstructures.

Corresponding stresses are determined as follows:

σ =
∂W

∂ux
= ρ0c

2ux +A1ϕ1 +A2ϕ2 +A′

1(ϕ1)x +A′

2(ϕ2)x, (30)

η1 = −
∂W

∂(ϕ1)x
= −A′

1ux − C(ϕ1)x, ζ1 = −
∂W

∂(ψ1)x
= 0, (31)

η2 = −
∂W

∂(ϕ2)x
= −A′

2ux − C(ϕ2)x, ζ2 = −
∂W

∂(ψ2)x
= 0, (32)

as well as interactive internal forces:

τ1 = −
∂W

∂ϕ1
= −A1ux −B1ϕ1, τ2 = −

∂W

∂ϕ2
= −A2ux −B2ϕ2. (33)

13



Accordingly, equations of motion take the form

ρ0utt = ρ0c
2uxx +A1(ϕ1)x +A2(ϕ2)x +A′

1(ϕ1)xx +A′

2(ϕ2)xx, (34)

I1(ϕ1)tt = C1(ϕ1)xx +A′

1uxx −A1ux −B1ϕ1, (35)

I2(ϕ2)tt = C2(ϕ2)xx +A′

2uxx −A2ux −B2ϕ2. (36)

The doubling of the number of coefficients in the double microstructure model in

comparison to the single microstructure complicates the quantitative analysis of

the model. Nevertheless, it can be qualitatively analyzed by studying dispersion

curves (see Section 5.1.2).

4.2. Nonlinearities

In Section 2, the free energyW was determined with the accuracy of quadratic

terms (see expressions (1) and (10)). In order to model physical nonlinearities,

cubic terms should also be taken into account. Then instead of Eq. (1) we have

to consider a more general free energy function

W =
ρ0c

2

2
u2x +Aϕux +

1

2
Bϕ2 +

1

2
Cϕ2

x +
1

6
Nu3x +

1

6
Mϕ3

x, (37)

where terms with coefficients N and M are responsible for the nonlinearity in

the macro- and microscale, respectively. Then system of equations (3) and (4)

is transformed to

ρ0utt = ρ0c
2uxx +Aϕx +Nuxuxx, (38)

Iϕtt = Cϕxx −Aux −Bϕ+Mϕxϕxx. (39)

14



By using the asymptotic procedure like it was done for deriving Eq. (20), here

system of Eqs. (38), (39) yields (for details see (Engelbrecht et al., 2006))

utt −
(

c2 − c2A
)

uxx −
µ

2

(

u2x
)

x
= p2c2A

(

utt − c21uxx
)

xx
+
λ

2

(

u2xx
)

xx
. (40)

where µ and λ are combinations of material and geometrical parameters. Al-

ternatively, Eq. (40) can be written in terms of deformation v = ux

vtt −
(

c2 − c2A
)

vxx −
µ

2

(

v2
)

x
= p2c2A

(

vtt − c21vxx
)

xx
+
λ

2

(

v2x
)

xxx
. (41)

Both Eqs. (40) and (41) belong to the family of Boussinesq-type equations

(Christov et al. (2007), Engelbrecht et al. (2011)). Comparing Eqs. (40) and

(41) with Eq. (20), it is clear that in the latter case the wave operators are

nonlinear and reflect the influence of nonlinearities in macro- and microlevel.

The corresponding nonlinear evolution equation derived on the basis of slaving

principle is the following (Randrüüt et al., 2009):

vT +
c2N
2c2A

(v2)X +
c2A − c21
c2A

vXXX +
lc2M
2Lc2A

(v2X)XX = 0, (42)

where

c2N =
N

ρ
, c2M =

MA

IBL
. (43)

This is a modified KdV equation with two nonlinear terms: (i) the second term

in l.h.s of Eq. (42) reflects the nonlinearity in the macroscale; (ii) the fourth

term reflects the nonlinearity in the microscale. If cM = 0 then Eq. (42) reduces

to the classical KdV equation. It is certainly possible to transform Eq. (42)

into the standardized form (Randrüüt and Braun, 2010)

qt + 6qqx + qxxx + 3k(q2x)xx = 0 (44)

15



after suitable transformation of dependent and independent variables. Note

that here q is related to deformation v.

5. Dispersion analysis

5.1. Dispersion relations

5.1.1. Single microstructure

The presence of higher-order derivatives in Eqs. (20) and (21) indicates the

influence of dispersion. Dispersion relations can be derived by assuming the

solution in the form of harmonic waves

u(x, t) = ûei(kx−ωt), (45)

with the wave number k, the frequency ω, and the amplitude û.
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Figure 3: Dispersion curves in case of cgr < cph (cA = 0.8c, c1 = 0.2c).
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Figure 4: Dispersion curves in case of cgr > cph (cA = 0.8c, c1 = 0.8c).

Introducing expression (45) into Eqs. (20) and (21), we obtain

ω2 =
(

c2 − c2A
)

k2 + p2
(

ω2
− c2k2

) (

ω2
− c21k

2
)

, (46)

ω2 =
(

c2 − c2A
)

k2 − p2c2A
(

ω2
− c21k

2
)

k2, (47)

respectively. In order to simplify our discussion, we assume A′ = 0.

Preliminary analysis shows immediately that in the long wave limit (pck ≪

1) both dispersion relations (46) and (47) provide the same limiting speed

cR = (c2 − c2A)
1/2, which means that wave propagation in the medium with

microstructure is slower than in the case without microstructure (Peets et al.,

2008). This is direct consequence of the inclusion of the microstructure (Mindlin,

1964). In the short wave limit (pck ≫ 1) full dispersion relation (46) provides

two modes of wave propagation – one with the speed c1 characteristic to the

17



microstructure and the other with the elastic wave speed c of the medium with-

out microstructure. As hierarchical model (47) is an approximated one, in the

short wave limit only the speed c1 appears in this model.

The typical dispersion curves are shown in Figs. 3 and 4. Dispersion re-

lation (46) which corresponds to full Eq. (20) is represented by solid lines

and consists of two branches – acoustic (lower branch) and optical (upper

branch). Dispersion relation (47) which corresponds to approximated Eq. (21)

is represented by dotted lines while dashed lines correspond to asymptotic lines

ω = k, ω = c1k/c, ω = cRk/c.
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Figure 5: Group (solid line) and phase (dashed line) speed curves against the frequency,

cA = 0.3c, c1 = 0.2c.

In general, the dispersion type following the acoustic dispersion branch can

be either normal (cgr < cph, see Fig. 3) or anomalous (cgr > cph, see Fig. 4).

Here cgr and cph denote group and phase speed, respectively. The dispersion
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Figure 6: Group (solid line) and phase (dashed line) speed curves against the wave number,

cA = 0.3c, c1 = 0.2c.

type of the optical branch in our case is always normal. The phase speed

(cph = ω/k) and the group speed (cgr = ∂ω/∂k) reveal dispersion effects even

more explicitly.

The phase and group speeds are depicted in Fig. 5 (against the frequency)

and in Fig. 6 (against the wave number). While the asymptotic value of acoustic

phase speed curve approaches gradually the value c1/c, the group speed curve

changes faster, initially assuming the value that is lower than c1/c and then

approaching this value. In the case of very strong normal dispersion (i.e. cR ≫

c1), the group velocity curve assumes a value that is very close to zero before

approaching the asymptotic value c1/c. the effect becomes more subtle when

cR ≈ c1.

It is interesting to compare the accuracy of dispersion relation (47) which
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Figure 7: Behaviour of the group speed curves for Eqs. (20) (solid line) and (21) (dashed line)

against the frequency, cA = 0.2c, c1 = 0.3c.

corresponds to hierarchical approximation (21) against dispersion relation (46)

which corresponds to full equation (20). In some cases the difference could be

rather large like in the case shown in Fig. 7. Obviously, the differences depend

on material properties. Peets et al. (2008) have shown that in this context the

main parameters are velocity ratios cA/c and c1/c.

The ranges of parameters are shown in Fig. 8 where values of speeds obtained

from both relations agree within 5% error (the area between dashed lines) and

within 10% error (the area between solid lines) at k = 1.5/pc. The behaviour for

higher values of k is similar; only the area of good agreement becomes narrower.

When k becomes very large, the area of good agreement becomes larger (Peets

et al., 2008).

The physical situation studied above is similar to cases analysed by Papargyri-

Beskou et al. (2009) who also have included microstructural and micro-inertial
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terms into governing equations. Here, however, the clear analysis of both

branches of dispersion curves gives more insight to the understanding of the

importance of micro-inertial terms (see also (Wang and Sun, 2002)).

5.1.2. Double microstructure

In case of hierarchical (Eqs. (26)–(28)) and concurrent (Eqs. (34)–(36))

microstructures the dispersion relations are certainly more complicated. Instead

of relation (46) we get the following

(c2k2 − ω2)(c21k
2
− ω2 + ω2

1)(c
2
2k

2
− ω2 + ω2

2)−

− c2A12ω
2
2k

2(c2k2 − ω2)− c2A1ω
2
1k

2(c22k
2
− ω2 + ω2

2) = 0,

(48)

(c2k2 − ω2)(c21k
2
− ω2 + ω2

1)(c
2
2k

2
− ω2 + ω2

2)+

+ c2A2ω
2
2k

2(c21k
2
− ω2 + ω2

1)− c2A1ω
2
1k

2(c22k
2
− ω2 + ω2

2) = 0,

(49)

respectively, for the hierarchical and concurrent models.
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Figure 9: Comparison of dispersion curves of Eqs. (48) – solid lines, (49) – dashed lines, (51)

– dotted lines. Here cA1 = cA2 = cA12 = 0.4c, c1 = 0.5c, c1 = 0.3c.

Here parameters

c21 =
C1

I1
, c22 =

C2

I2
, c2A1 =

A2
1

ρ0B1
, c2A2 =

A2
2

ρ0B2
, ω2

1 =
B1

I1
, ω2

2 =
B2

I2
,

(50)

have been introduced.

In addition, it is possible that two concurrent microstructures which are

described by free energy function (29) influence also each other. Then free

energy function (29) should be enlarged by a term A12ϕ1xϕ2 – cf. free energy

function (23). Then the dispersion relation reads

(c2k2 − ω2)(c21k
2
− ω2 + ω2

1)(c
2
2k

2
− ω2 + ω2

2) + c2A12ω
2
2k

2(−c20k
2 + ω2)−

− c2A1ω
2
1k

2(c22k
2
− ω2 + ω2

2)− c2A2k
2ω2

2(c
2
1k

2
− ω2 + ω2

1) = 0,

(51)
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with c2A12 = A2
12/I1B2.

Dispersion curves for all cases (48), (49), and (51) are shown in Fig. 9.

We limit ourselves to the case with ω1 = 1, ω2 = 2, c1/c > c2/c. It is seen

immediately that while the behaviour of hierarchical model (48) and concurrent

model (49) is quite similar, concurrent model with coupled microstructures (51)

departs drastically from others in the region of medium-range wavelengths. It

can therefore be concluded that the coupling between the microstructures has

a significant effect on the dispersion in that region. The detailed analysis of all

features of dispersion curves is presented by Peets (2011).

The models analysed above describe the physical situation clearly on the

basis of the interaction of physical constituents (see Section 3). If the micro-

displacement is described by a series representation (Huang and Sun, 2008)

then dispersion curves have also several branches like in Fig. 9, but in this

context correction factors are needed to adjust phase velocities of higher wave

modes.

5.2. Wave profile analysis

The numerical simulation for boundary and initial value problems demon-

strates clearly the influence of dispersion effects on wave profiles (Tamm, 2011;

Peets, 2011). Here we show only a couple of typical cases.

(i) linear case, sinusoidal boundary conditions for system of equations (14),

(15) with A′ = 0. The frequency of the boundary excitation is limited to the

range where only acoustic dispersion exists (dimensionless frequency is less than

1, see Fig. 10a), although due to coupling effects in the course of propagation

23



the influence of the optical branch can be seen.
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Figure 10: (a) - phase (dotted lines) and group (solid lines) speed curves and (b) wave profile at

60 time steps. Here cA = 0.6c, c1 = 0.5c, dimensionless frequency for the boundary condition

is equal 0.8.

The Laplace transform technique is used with the inverse transform accom-

plished numerically (for details see Peets (2011)). A typical wave profile is shown

in Fig. 10b. This wave profile can roughly be divided into two parts – high am-

plitude acoustic one and low amplitude optical part. Points denoted as ”front

acoustic” and ”front optical” are related to maximal asymptotic speeds derived

from the acoustic and optical dispersion curves, respectively. Point denoted as

”main group” is related to the group speed of the dimensionless frequency 0.8

which is the frequency of the harmonic boundary condition.

For convenience we also divide the acoustic part into the main part, which

has the amplitude almost equal to unity (the wave profile up to the point ”main

group”), and the medium amplitude part (the wave profile between the points

”main group” and ”front acoustic”).

The main acoustic part travels at the group speed 0.53c corresponding to
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Figure 11: Group speed curves (a) and wave profiles for Heaviside-type boundary conditions

at 40 time steps (b). Solid line - Eq. (20), dashed line - Eq. (21). Here cA = 0.9c, c1 = 0.3c.
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Figure 12: Group speed curves (a) and wave profiles for Heaviside-type boundary conditions

at 50 time steps (b). Solid line - Eq. (20), dashed line - Eq. (21). Here cA = 0.7c, c1 = 0.3c.

the dimensionless frequency 0.8 at given material parameters (Fig. 10a). The

approximate dimensionless wavelength can be estimated from Fig. 10b by mea-

suring the distance between the two adjacent wave crests. The measured dimen-

sionless wavelength for main acoustic part 5.40 is in good agreement with the

dimensionless wave length 5.44 given by the dispersion analysis. The medium

amplitude acoustic part travels at the group speed 0.8c which corresponds to

the highest asymptotic value of the acoustic dispersion branch (Fig. 10a). As at

the given frequency there are differences in phase and group speeds, the medium
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amplitude part is slightly out of phase (Fig. 10b).
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Figure 13: Group speed curves (a) and wave profiles for Heaviside-type boundary conditions

at 40 time steps (b). Solid line - Eq. (20), dashed line - Eq. (21). Here cA = 0.1c, c1 = 0.7c.

The optical part of the wave profile is a low amplitude part that travels at

the asymptotic speed of the optical dispersion branch which is equal to unity.

This high frequency and low amplitude optical part reflects the effect of the

optical dispersion branch. The amplitude of the optical part depends on the

frequency of the boundary excitation.

(ii) linear case, Heaviside-type boundary conditions with A′ = 0 for full

equation (20) and its hierarchical approximation (21). The solutions are ob-

tained in the similar way to the case (i). Typical wave profiles are shown in

Figs. 11 – 13.

It can be seen that regardless of the differences in wave profiles, hierarchical

model (21) provides good approximation of full model (20) (see Figs. 11 and

12). However the wave profile corresponding to Eq. (21) departs from full model

(20) when cA/c → 0 (Fig. 13). The low amplitude oscillations in front of the

main pulse in Figs. 11 and 12 reflect the influence of the optical dispersion
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Figure 14: Formation of train of solitons for B0 = 0.02, K = 5500, profiles plotted at every

1500 time steps.

branch.

(iii) nonlinear case, sech2-type initial conditions for hierarchical equation

(41). The solution is obtained by the pseudospectral method (Salupere, 2009;

Tamm, 2011). The presence of both nonlinearities and dispersion in Eq. (41)

indicates to the possibility of emergence of solitary waves. While the classical

soliton equations (like KdV equation) are of the one-wave equations, Eq. (41)

is of the Boussinesq-type (Christov et al., 2007; Engelbrecht et al., 2011) and

describes the waves propagating to the right and to the left. Starting from the

localized initial conditions

v(x, 0) = v0sech
2B0(x− x0), (52)
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Figure 15: Interaction of solitons – time-slice plot.

where v0 is the amplitude of initial excitation and parameter B0 is related to

the width of the initial pulse and using periodic boundary conditions

v(x, t) = v(x+ 2Kkπ, t), (53)

where K is the number of 2π periods within a space domain and k = 1, 2, . . .

the emerging soliton trains are shown in Fig. 14 (cf. Engelbrecht et al. (2011)).

Indeed in this case two trains of solitons emerge propagating to the right

and to the left. To the best of the authors’ knowledge, such a description was

shown first by Engelbrecht et al. (2011) within the same model but with different

parameters resulting in different trains.

(iv) interactions of solitons. According to the classical definition of solitons,

every soliton should restore its amplitude (and speed) after interaction with
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other solitons. While the KdV-type equation permits to model only the process

of overtaking of solitons, here the Boussinesq-type model permits also to analyse

the head-on collision. First, it must be stressed that due to the nonlinearity

at the microscale, the emerging solitons are asymmetric. This is shown by

numerical calculations (Tamm, 2011) and also by the analysis of Eq. (44) – see

Randrüüt and Braun (2010). The numerical calculations demonstrate that the

interaction of solitons is not fully elastic (Fig. 15).

The presence of radiation is clearly seen and that is why the notion of soli-

tons in this case can be used only conditionally. This is also demonstrated by

Khusnutdinova et al. (2009) in the case of models derived from lattice dynamics.

On the other hand, however, it is known that single solitary waves modeled by

Eq. (41) exist (Janno and Engelbrecht, 2005). The interaction of solitary waves

are of importance in many Boussinesq-type systems (Christov et al., 2007; Mau-

gin, 2011). However, a more detailed analysis of interaction processes is needed

like it is done for KdV-type (one-wave) systems.

6. Final remarks

The aim of the paper was to analyse the structure and properties of the

micromorphic-type microstructure model for describing the wave motion. As

described above, the model reflects the influence of the internal structure on

the macromotion of solids in a sufficiently general way. Actually this model

describes internal fields in solids under external loading and the interaction of

these fields results in various physical effects.
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Main results described in this paper can be formulated as follows:

• The resulting microstructure model depends on the form of the free en-

ergy dependence. The dispersive wave equation can be represented in

terms of distinct wave operators (20) describing the motion of macro- and

microstructure. The scale parameters govern the wave motion indicating

the relative strength of one wave operator or another (Engelbrecht et al.,

2006). Approximation (21) is an excellent example of a simple hierar-

chical structure of wave operators in Whitham’s sense (Whitham, 1974),

while dispersive wave equation (20) has a mixed type of hierarchy which

depends on rates of change in time or in space.

• The coupling between macro- and micromotion is governed by the corre-

sponding mixed product terms in the free energy function. The influence

of the coupling manifests itself not only in dispersion effects, but also in

the changes of macroscopic velocity. This effect is demonstrated also by

numerical simulation of 2D wave propagation (Engelbrecht et al., 2005).

• If physical nonlinearities are included into the free energy function, then

the resulting governing wave equation is of the Boussinesq type. The nu-

merical solution of this two-wave equation demonstrates the emergence of

soliton trains propagating in 1D case to the right and to the left (Tamm,

2011). The one-wave approximation results in an evolution equation which

belongs to the KdV-family (Randrüüt and Braun, 2010). Their soliton-

type solutions exhibit asymmetry caused by the nonlinearities on the mi-
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croscale.

• The generalization of the microstructure model on the multiscale case

(Berezovski et al., 2010; Peets, 2011) is natural either for hierarchical mi-

crostructures or for concurrent microstructures. The resulting dispersive

wave equation includes sixth order terms. In contrast to models derived

from lattice dynamics, the higher order terms always form the correspond-

ing wave operators (Engelbrecht et al., 2006).

• The specific features of group speed changes against frequencies are clearly

reflected in changes of wave profiles. Precursors of main wave travel faster

than the main pulse and their speed is determined by the properties of

the optical branches of dispersion curves (Peets, 2011).

• The physical parameters of materials used for deriving the governing equa-

tions must be determined for applications. For models described in this

paper, Janno and Engelbrecht (2011) have proposed several algorithms on

the basis of direct measurements of phase and group velocities of harmonic

waves or wave packets as well as the distortion of solitary waves. This

mathematically well-posed approach enlarges the possibility of contempo-

rary non-destructive testing and opens new avenues of research, especially

with tight connection with atomic calculations (Chen et al., 2004; Zeng et

al., 2006; Maranganti and Sharma, 2007).

Finally, we hope that the detailed analysis of dispersion curves and cor-

responding wave profiles described in the paper could serve as a tool for the
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further applications of microstructured solids under dynamical excitations.
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Randrüüt, M., Braun, M., 2010. On one-dimensional solitary waves in mi-

crostructured solids. Wave Motion, 47, 217–230.

Salupere,A., Tamm,K., Engelbrecht, J., 2008. Numerical simulation of inter-

action of solitary deformation waves in microstructured solids. Int. J. Non-

Linear Mech. 43, 201–208.

Salupere,A., 2009. The pseudospectral method and discrete spectral analysis,

in: Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Math-

36



ematical Methods. Quak,E., Soomere,T., (Eds.), Springer, Heidelberg, pp.

301–333.

Santosa,F., and Symes,W.W., 1991. A dispersive effective medium for wave

propagation in periodic composites. SIAM J. Appl. Math. 51, 984–1005.

Tamm,K., 2011. Wave propagation and interaction in Mindlin-type microstruc-

tured solids: numerical simulation. Theses of Tallinn University of Technology.

B, Thesis on natural and exact sciences. Tallinn: TUT Press, 183 pp.

Ván, P., Berezovski,A., Engelbrecht, J., 2008. Internal variables and dynamic

degrees of freedom. J. Non-Equilib. Thermodyn., 33, 235–254.

Wang,X., Lee, J.D. 2010. Micromorphic theory: a gateway to nano world. Int.

J. Smart Nano Mater. 1, 115–135.

Wang, Z.-P. and Sun, C.T. 2002. Modeling micro-inertia in heterogeneous ma-

terials under dynamic loading. Wave Motion 36, 473–485.

Whitham, G.B., 1974. Linear and Nonlinear Waves. New York, Wiley.

Zeng,X. Chen,Y. Lee, J. D. 2006. Determining material constants in nonlocal

micromorphic theory through phonon dispersion relations. Int. J. Engng Sci.

44, 1334–1345.

37


	Dispersive Waves in Microstructured Solids
	Scholarly Commons Citation
	Authors

	Berezovski et al-revised2.dvi

