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ABSTRACT 

Digital content created by picture recording devices is often stored internally on the source device, 
on either embedded or removable media. Such storage media is typically limited in capacity and 
meant primarily for interim storage of the most recent image files, and these devices are 
frequently configured to delete older files as necessary to make room for new files. When 
investigations involve such devices and media, it is sometimes these older deleted files that would 
be of interest. It is an established fact that deleted file content may persist in part or in its 
entirety after deletion, and identifying the nature of file fragments on digital media has been an 
active research area for years. However, very little research has been conducted to understand 
how and why deleted file content persists ( or decays) on different media and under different 
circumstances. The research reported here builds upon prior work establishing a methodology for 
the study of deleted file decay generally, and the application of that methodology to the decay of 
deleted files on traditional computing systems with spinning magnetic disks. In this current work, 
we study the decay of deleted image files on a digital camera with removable SD card storage, and 
we conduct preliminary experiments for direct SD card and USB storage. Our results indicate that 
deleted file decay is affected by the size of both the deleted and overwriting files, overwrite 
frequency, sector size, and cluster size. These results have implications for digital forensic 
investigators seeking to recover and interpret file fragments. 

Keywords: digital forensics; digital trace; file fragment; residual content; deleted data 

persistence; deleted file decay 
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1. INTRODUCTION 

The use and operation of digital devices creates 
associated digital traces: files and data on 
storage devices, data in volatile memory, 
network traffic, Windows registry keys, CPU 
register values, etc. These traces, in whole and 
in part, are used by digital forensics 
investigators to infer and reconstruct past 
events, and are also harvested by criminal 
actors to collect private information. The 
persistence and decay of digital traces over 
time varies based on the type of trace, the 
storage or processing medium, and other 
inadvertent or deliberate activity which may 
damage or destroy the trace. While some 
traces may remain intact over time, most 
deleted or otherwise released content is altered, 
destroyed, and disassociated over time due to 
normal system operation and deliberate 
obfuscation activity. The current state of 
practice in digital forensics accepts that traces 
and trace fragments may or may not be 
available. Analysts are able to reason over the 
traces that are available, and in specific cases 
may attempt to explain the cause and 
significance of trace presence or absence; 
however, the state of the art has not 
addressed, in a rigorous and generalizable 
manner, the question of why trace or trace 
fragments do or do not persist or decay. 

Most digital traces, such as allocated files, 
configuration settings, running processes, or 
network traffic are designed to persist while 
they are allocated or in use; however, once de
allocated, no longer active, or passed to 
another process, these traces are subject to 
decay, modification, and destruction. For 
example, a file is stored on a magnetic hard 
disk or solid-state media in groups of sectors 
called clusters. A sector is the smallest unit 
that a block device can read or write in a 
single operation, and a cluster is the smallest 
unit that a file system can allocate or de
allocate. Clusters are often multi-sector and 
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aligned, but not necessarily. When a file is 
deleted , the file system marks the clusters 
storing the data as available for future use as 
needed, but does not typically alter any of the 
original file data in those clusters. The 
operating system and its file system may 
eventually overwrite some or all of the media 
sectors used to store the original file. As a 
result some or all of the deleted file will be 

' destroyed, while other parts may remain intact 
for an indefinite period of time. Tools exist to 
"undelete" files when the data remains intact, 
file carving techniques (Ravi et al, 2016) (Yi et 
al , 2015) (Garfinkel, 2007) can recover full or 
partial files after deletion, and forensic 
investigators regularly recover full and partial 
traces from media. While solid state hard disks 
(SSDs) and thumb drives may use the same 
file systems as magnetic hard disks, the 
underlying operation of these devices is 
significantly different. The flash memory of 
SSDs and thumb drives has an additional 
processing layer, called the Flash Translation 
Layer (FTL) , which is designed to optimize the 
reliability, performance, and lifetime of the 
device. FTL implementations are generally not 
published and vary across vendors and device 
types, although recent work reverse engineers 
the firmware of flash implementations to 
reconstruct data (Zhang, 2015). The FTL and 
associated device logic implement wear leveling 
( writing to all locations an even number of 
times) , TRIM (preemptively erasing storage 
locations so they are ready for a subsequent 
write), and proactively rearrange the data 
within the storage device. As a result, deleted 
file persistence on magnetic and flash devices is 
significantly different , although TRIM 
implementations are quite fragile and 
frequently do not work as designed (Gubanovis 
& Afonin, 2014), leaving more data available 
for recovery than expected. 

To help visualize deleted file decay and 
partial trace recovery, a deleted BMP image 
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file was repeatedly rendered as sectors of the 
original file were overwritten. This sequence of 
images is shown in Figure 1, where 100% of 
the sectors are intact on the left, and sectors 
are overwritten going from left to right until 
only 15% of the original sectors remain intact 
for the rightmost image. The BMP image 
format is most suitable for such recovery, as 
file contents map directly to the image layout, 
although other work (Sencar & Memon, 2009) 
(Uzun & Sencar, 2015) has shown that partial 
image recovery from other image formats is 

Figure 1. Rendering deleted BMP file as it decays 

2. RELATED WORK 

Fairbanks and Garfinkel (2012) posited factors 
which might affect the persistence of deleted 
file content. This paper is predated by other 
work observing the effects of data persistence 
but not attempting to explain it beyond the 
immediate case. In chapter 7 of their 2005 
book "Forensic Discovery," Farmer and 
Venema ( 2005) published experimental data 
and partial explanations for the persistence of 
deleted file information. While useful, the 
experiments were limited in scope, and the 
discussion sought to explain the observed 
persistence given aspects of their particular 
test system rather than computer systems in 
general. As noted by Venema elsewhere (Reust 
& Fried burg, 2006) , " ... persistence of deleted 
file content is dependent on file system, 
activity, and amount of free space (a complex 
relationship)." Roussev and Quates (2012) 
tangentially show the effects of data 
persistence in a case study of the M57 dataset. 
The case study focused on content triage using 
similarity digests, but the paper includes a 
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possible as well. For arbitrary file types, work 
by Garfinkel and McCarrin (2015) investigates 
the probative potential of file fragments. The 
work presented here helps to understand the 
factors affecting deleted file decay on flash 
media, and is relevant to digital forensic 
investigations as practitioners extend their 
capabilities beyond whole file recovery and into 
partial file recovery and interpretation. 

graph of deleted file data persistence for a 
specific example (see Figure 1 on page S66 of 
that publication). The decay effect, observed 
as an almost linear reduction in deleted file 
content over a matter of days, is explained by 
the user deleting the files and continuing to 
use the system normally. Had the user in this 
case employed a well-implemented secure 
deletion tool, as discussed in ( Joukov et al, 
2006) and elsewhere, the original file data 
locations would have been overwritten and 
rendered irrecoverable immediately upon 
deletion. Such tools typically do not address 
the possibility of data remnants in locations 
other than the primary storage clusters, 
meaning that remnant recovery is possible 
even in the face of secure deletion. An 
example of this is when a new copy of a file is 
made during the modification process and the 
original version is then deleted. Although the 
new version will be securely erased, the 
persistence of the clusters that constituted the 
original version is unknown. This can also 
happen in the absence of file modification due 
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to drive defragmentation. The challenge in 
such cases, and m any experiment or 
investigation without ground truth, is how to 
establish that a remnant is part of a specific 
original file vs. a false positive, a situation 
which is discussed in (Garfinkel et al, 2010). 
The work proposed here will track the sectors 
of a deleted file in place, although integrating 
this with other work finding and reasoning 
over deleted file fragments found in any 
location is a logical next step and will lead to a 
more complete model of deleted file 
persistence. 

Factors affecting deleted file persistence 
noted by Fairbanks and Garfinkel include 
device types, especially the difference between 
magnetic and flash storage. Bell and 
Boddington (2010) wrote one of the first 
complete analyses of this effect for solid state 
drives. Later work, including ( Casey & 
Turnbull, 2011) (Huang et al, 2015) , discussed 
the impact of flash memory for digital forensics 
in the context of mobile devices and the 
recovery of fragmented files. Fairbanks and 
Garfinkel also suggest that file type may affect 
deleted file persistence, suggesting email 
databases as an example. As early as 2007, 
(Stahlberg et al, 2007) and (Litchfield, 2007) 
discussed deleted data persistence in databases 
and how this differs from normal file deletion. 
More recently, Conrad et al (2009) discussed 
deleted data persistence in the context of 
forensic analysis of a Sony PlayStation 
Portable. The rapid rise in cloud 
infrastructure, especially multi-tenant clouds, 
has generated interest m deleted data 
persistence in such environments where 
multiple entities share a common underlying 
infrastructure. Govan (2013) presents a 
detailed analysis of data remanence for several 
applications, and concludes that the effects are 
conflicting: deleted data may be replicated in 
multiple locations and so will be more 
recoverable, while the frequent writing of data 
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and lack of transparency will inevitably modify 
or destroy deleted file traces or at least call 
into question their integrity. 

The work presented here is related to, but 
distinct from, efforts to identify the filetypes of 
recovered file fragments, work that has been 
ongoing for over 10 years (Li et al , 2006) 
(Calhoun & Coles, 2008) (Roussev & Quates, 
2013). These efforts are aimed at identifying 
the type of file from which a fragment 
originated, whereas we are studying the factors 
affecting the decay of the original file into the 
fragments that are eventually recovered. 
Similarly, our work supports the development 
of deterministic approaches in digital forensics 
(Nagy et al, 2015), but is not itself a 
deterministic reasoning approach. While 
considerable effort has been spent to process 
full and partial digital traces, little work has 
been directed at understanding the 
mechanisms driving the decay of full traces 
into partial traces. 

3. APPROACH AND 
lVlETHODOLOGY 

We developed and implemented a methodology 
to track the decay of deleted file contents over 
time. We first capture multiple sequential 
images of a device's stored data, where files to 
be tracked are deleted between the first two 
images (images O and 1). Files known to the 
file system in image O but not in image 1 are 
the deleted files. Once identified, we use image 
0 to record the sector locations and original 
contents of those files (sectors) prior to 
deletion. We then track the contents of the 
original file's sectors over the remaining 
images, identifying if, when, and which sectors 
of each deleted file were changed. This 
approach is based on the differential analysis 
ideas articulated by Garfinkel et al (2012). The 
file and sector change data is then processed to 
form and test hypotheses as to which factors 
affect deleted file decay, and to design 
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additional experiments. This process is 
summarized in Figure 2 and detailed m the 
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text that follows. 

I 5Ystem to I ,.... delet:+ I syStem t i I ,....activit~ I 5Ystem t 2 I ,....activit~ I 5Ystem t 3 I ,.... , , , • ~ 
Step 1: capture ( files ( ( ( 
sequential snapshots 
of a single system at 

different times ············ Limage0J ················· [Bag~ · ················· ~ ··· ················ ~ ····················· E5 

/ 

L p2:differential analysi~ ~ \ / ~ 
to identify deleted files 

Step 4: record contents of origina l 
file locations at each snapshot 

Step 3: record locations 
and original contents of 
to-be-deleted files Step 5: analyze recorded data to establish persistence 

of each de leted artifact, in whole and in part 

Step 1: Record sequential images of the raw 
hard disk contents for a single system over 
time. Files may be created prior to the first 
image at tO, but the first image must include 
the files to be deleted and tracked as allocated 
files, and the files to track must be deleted 
between image O and image 1. 

Step 2: Determine which files were deleted by 
comparing the allocated files in image 1 and 
image O; files allocated in image O and not in 
image 1 are considered deleted. Deleted file 
information includes file name, file size, and 
the sectors allocated to the file in image 0. 

Step 3: Record a cryptographic hash of the 

contents of the data sectors in image O (before 
deletion) for each deleted file. 

Step 4 : Record a hash of the contents of those 
same sectors for all other images (image 1 to 
image N). 

Step 5: Use the stored data to analyze deleted 

file decay, i.e. , when did the contents (sectors) 
of each file change and why. 

We use a publicly available Python 
implementation of this methodology developed 
by Jones and Khan ( 201 7). The 
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implementation assumes a series of disk images 
in raw format and a filesystem supported by 
The Sleuth Kit1 (fiwalk). The implementation 
comes in two parts. The first program, 
adiff.py, processes the raw images and 
populates a sqlite3 database with sector hashes 
for each deleted file and image. The second 

program, trace_ file. py, processes the sqlite3 
database from adiff.py and produces one or 
more output items: data, graphs, and console 
displays representing deleted file decay. 

For these experiments, we used FTK 
Imager and the *nix dd command to collect 
device and media raw images. Each device was 
prepared prior to any file activity according to 
the test design. Depending on the experiment, 
preparation included erasing old data, 
reformatting the device, wiping the data on the 
device, and/ or configuring sector and cluster 
sizes. Files were then written to the media and 
a raw image of the media contents was 
recorded (image 0). Files were then deleted 
according to the specific experiment, where 
deletion may have been initiated by direct user 
action or by the system as a result of user 

1 http: //www.sleuthkit.org/ sleuthkit / desc.php 
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action (such as letting the media fill up and 
continue to write new files). Another raw 
image of the media contents was recorded after 
file deletion (image 1). Additional activity was 
then executed per the experiment design, and 
raw images of the media content were taken at 
designed intervals (images 2, 3, ... ). The raw 
images were then processed using the 
implementation noted above to produce decay 
curves and raw decay data for each file. A 
sample decay curve for several files is shown in 
Figure 3, where the x-axis represents 
sequential media image identifiers, and the y
axis represents the % of the original file that 
remains intact at each image. Images are not 
necessarily taken at regular intervals, so the x
axis should be interpreted as representing 
experiment-specific activity and not equal time 
intervals. The % intact value is a fraction of 
the original file's sectors that remain 
unchanged. Raw output data consists of the 
per-file decay data as rows of comma-separated 
values, suitable for additional processing. The 
per-experiment sqlite database was also 
retained, allowing for additional queries and 
subsequent analysis based on characteristics 
such as file size, file type, file name and path, 
etc. 

0~o --~--=-, ---!:3~-~4 __ .....,._---J~ 
"""'0~ ID C<"'tui!!n<iOI) 

Figure 3. Sample Deleted File Decay Curves 
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4. RESULTS 

We conducted two sets of experiments using 
the methodology described above. The first set 
of experiments used a security camera with SD 
card storage, and the second set of experiments 
used SD cards and USB sticks mounted on a 
Windows workstation. 

4.1 Camera Experiment Results 

A FosCam security camera was configured 
with 4 GB SD card storage, pointed out of a 
window, and pictures were taken automatically 
every few seconds until the media filled at 

' 
which point a raw image of the SD card 
storage was taken. The camera continued to 
take pictures, and by design began deleting 
and overwriting the original picture files. 
Images of the SD card media were taken at 
regular intervals as the device continued to 
take new pictures and the contents of the 
original picture files were repeatedly 
overwritten. A total of 4401 files were written 
over the original files. Figure 4 shows the new 
( overwriting) file sizes over time. Files are 
named and stored sequentially, so are ordered 
chronologically by name. Larger files were 
created as light and activity filled the camera's 
field of view in the morning, which occurred 
about 1/ 3 of the way into the graph. 
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Image Size over capture Time 

VI 

0 
t 
Q) "" V\ 

0 

' ~~.~ij~~!i~~§i~~~i~i~~~§~s~f~~!~~~e~~!~~!!E§!~~~f~i~!!~~~i§!~~~i~~~ii~~~~liij~!5~!~ 
File Order 

Figure 4. File size over time for overwriting camera files 

Figure 5 shows individual deleted file 
persistence based on the order in which the file 
was originally written. These are the 157 files 
that were overwritten by the 4401 files in 
Figure 4. Note that the scales of Figure 4 and 
Figure 5 are not aligned; the files that were 
overwritten and tracked were stored 
sequentially on the media, and the overwriting 
files were stored sequentially as well , but we 
overwrote the original files multiple times. It is 
true that File 1 in both figures started at the 
same offset on the media, but varying file sizes 
means they don't necessarily end at the same 
offset. Consequently, File 2 in both graphs 
does not necessarily start or end at the same 
offset, etc. The percent persistence value (y
axis of Figure 5) is the final persistence of each 
file after multiple overwrites. The oscillating 
pattern (periodically ranging from -0% to 
- 50%) over sequential images may be 
explained by variation in the size of the 
overwriting files and the cluster size storing the 
deleted files. We used a cluster size of 32 kB 
(64 512-byte sectors), and the overwriting files 
oscillated around a cluster boundary (128 
sectors, or two clusters). Overwriting files 
slightly smaller than two clusters would 
overwrite almost all of the data in the second 
and final cluster, whereas overwriting files 
slightly larger than two clusters would 
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overwrite very little of the data in the third 
and final cluster. 
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File Persistence over capture time 
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Figure 5. Persistence over time for deleted camera files 

Figure 6 shows the distribution of deleted 
file persistence after one round of overwriting. 
Each line in the graph represents the 
persistence of one file , prior to deletion on the 
left-side y-axis and after the first overwrite on 
the right-side y-axis. At this early point, after 
one overwrite, the persistence of the deleted 
files ranges from -0-50% with some files 
persisting at 100% ( the values on the right-side 
y-axis). As the overwriting continued using 
different file sizes and multiple overwrites 
( about 25 in total), the distribution of deleted 
file persistence coalesced around 0% or 50%, 
with none of the values in between ( as 
indicated in Figure 5) . It appears that the 
relationship between original ( deleted) file 
sizes, overwriting file sizes, and cluster sizes 
may explain this phenomenon, although we 
have yet to fully explore this. 
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Figure 6. File persistence distribution after one 
overwrite 

Figure 7 shows the relationship between 
file size and persistence for these same deleted 
files , also after only one overwrite. In the 
graph, data points are color-coded by clusters 
used: 2 cluster files are orange and use less 
than 128 sectors (x-axis), 3 cluster files are 
green and red and use from 128 to 192 sectors, 
and 4 cluster files are blue and use 192 to 256 
sectors. The 3 cluster range ( the x-axis from 
128 sectors or 2 clusters to 192 sectors or 3 
clusters) is further broken out to highlight a 
linear persistence pattern for some of these files 
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( the upward-sloping trend of > 0% persistence 
between 140 sectors and 192 sectors; red points 
if viewing m color). Several interesting 
patterns are apparent ( see the circled 
annotations on Figure 7): ( i) the linear trend 
just noted from 140 sectors to 192 sectors, 
followed by a declining curve above 192 
sectors, (ii) the narrowing shape from 110 
sectors to 128 sectors, leading to the 
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concentrated flatline from 128 sectors to 155 
sectors, (iii) the pattern of 0% and 100% which 
changes as the sector value changes, and (iv) 
the two non-zero clusters for files over 192 
sectors. We are continuing to analyze this data 
and these patterns, and are continuing 
additional experiments, in order to explain 
these observations. 

Foscam Automatically Deleted File Persistence 
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IO 
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• • • • ® 
:l,Pcm;ID,;:.& • • 

100 120 140 @ 160 80 200 220 

Number of Sectors 

• aus er files 3 Ouster fr es 2 Cius er Files • 3 Cluster Trendline 

Figure 7: Final persistence vs. file size (number of sectors) for camera overwriting experiments 

4.2 SDCardandUSB 
Experiment Results 

A separate set of experiments was conducted 
to determine the effect of cluster size on 
deleted file persistence when multiple 
overwrites are performed. A common set of 
files of varying sizes was written to an SD 
card, once with 32-kB cluster size and once 
with 64-kB cluster size. For each configuration, 
the media was imaged (image 0), the files were 
deleted (image 1), and new files were 
repeatedly written to the media until full 
(images 2-6). Decay curves for the deleted files 
are shown in Figure 8. With a 64-kB cluster 
size, more deleted files have higher persistence 
after multiple overwrites. By comparison, a 32-
kB cluster size yielded some deleted files of 

@ 2017 ADFSL 

very high persistence after 1-3 overwrites, but 
these files did not persist to the same degree as 
the 64-kB cluster size after subsequent 
overwrites. Average persistence across all files 
for each cluster size was modeled as 
exponential decay depending on time running, 
file size, media size, and new image rate 
(Figure 9). 
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Deleted Fi le Sector Persistence: All Files 
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Deleted File Sector Persistence: All Files 
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Figure 8. SD card file decay ( cluster size 32 kB left and 64 kB right) 

Persistance vs Number of Overwrites 
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Figure 9. SD card deleted file persistence based on 
cluster size and multiple overwrites 

Finally, preliminary experiments were run to 
explore the combined effect of file system, 
media, and cluster size on deleted file 
persistence. No effect was observed for 
different file systems (F AT32 vs. NTFS) , but 
an effect was observed when the media type 
was USB and cluster size was varied (512 
bytes, 4096 bytes , and 8192 bytes). See Figure 
10 for associated decay curves. Additional 
experiments to explore this effect are 
underway. 
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Figure 10. Effect of media and cluster size on deleted 
file persistence 

5. CONCLUSIONS AND 
FUTURE-WORK 

We present results from multiple experiments 
exploring the factors affecting deleted file 
persistence on digital cameras with SD card 
storage, direct SD card storage, and USB 
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memory sticks. Our results suggest that 
influential factors include file sizes of deleted 
and overwriting files, cluster size especially as 
it relates to file sizes, media type, and number 
of overwrites. It is generally accepted that 
under common conditions of limited 
overwrites, it is likely that some file fragments 
may remain indefinitely in the cluster slack 
space of newly allocated files. A related and 
possibly non-intuitive result here is that 
fragments of some files will remain even under 
conditions of repeated overwrites, as indicated 
by the exponential decay of Figure 9. 

Our conclusions generally match our 
intuition and the hypotheses posed by others; 
however, no prior empirical work exists to 
which our conclusions can be compared. It is 
our hope and expectation that others will use 
the tools and methods described here to 
conduct additional experiments to validate or 
refute these preliminary results. Our future 
work will continue to explore the open 
questions posed by this work. We will also 
explore additional factors that might affect 
deleted file persistence on these and other 
storage devices and systems. Related work 
currently in progress is exploring deleted file 
persistence on mobile phones, IoT devices, and 
industrial control systems equipment. 
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