
Annual ADFSL Conference on Digital Forensics, Security and Law 2017
Proceedings

May 16th, 11:00 AM

Understanding Deleted File Decay on Removable Media using Understanding Deleted File Decay on Removable Media using

Differential Analysis Differential Analysis

James H. Jones Jr
George Mason University, jjonesu@gmu.edu

Anurag Srivastava
George Mason University, asrivas4@masonlive.gmu.edu

Josh Mosier
George Mason University

Connor Anderson
George Mason University

Seth Buenafe
George Mason University

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Computer Law Commons, Data Storage Systems Commons, Forensic Science and

Technology Commons, Information Security Commons, and the OS and Networks Commons

Scholarly Commons Citation Scholarly Commons Citation
Jones, James H. Jr; Srivastava, Anurag; Mosier, Josh; Anderson, Connor; and Buenafe, Seth,
"Understanding Deleted File Decay on Removable Media using Differential Analysis" (2017). Annual
ADFSL Conference on Digital Forensics, Security and Law. 13.
https://commons.erau.edu/adfsl/2017/papers/13

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2017
https://commons.erau.edu/adfsl/2017
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2017/papers/13?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Understanding Deleted File Decay On ... CDFSL Proceedings 2017

UNDERSTANDING DELETED FILE DECAY ON
REMOVABLE MEDIA USING DIFFERENTIAL

ANALYSIS
James H. Jones, Jr.1, Anurag Srivastava2, Josh Mosier3, Connor Anderson3, Seth Buenafe3

1George Mason University
Department of Electrical and Computer Engineering

Fairfax, Virginia 22030
jjonesu@gmu.edu

2George Mason University
Volgenau School of Engineering

Fairfax, Virginia 22030
asrivas4@masonlive.gmu.edu

3George Mason University
Aspiring Scientists Summer Internship Program

Fairfax, Virginia 22030

ABSTRACT

Digital content created by picture recording devices is often stored internally on the source device,
on either embedded or removable media. Such storage media is typically limited in capacity and
meant primarily for interim storage of the most recent image files, and these devices are
frequently configured to delete older files as necessary to make room for new files. When
investigations involve such devices and media, it is sometimes these older deleted files that would
be of interest. It is an established fact that deleted file content may persist in part or in its
entirety after deletion, and identifying the nature of file fragments on digital media has been an
active research area for years. However, very little research has been conducted to understand
how and why deleted file content persists (or decays) on different media and under different
circumstances. The research reported here builds upon prior work establishing a methodology for
the study of deleted file decay generally, and the application of that methodology to the decay of
deleted files on traditional computing systems with spinning magnetic disks. In this current work,
we study the decay of deleted image files on a digital camera with removable SD card storage, and
we conduct preliminary experiments for direct SD card and USB storage. Our results indicate that
deleted file decay is affected by the size of both the deleted and overwriting files, overwrite
frequency, sector size, and cluster size. These results have implications for digital forensic
investigators seeking to recover and interpret file fragments.

Keywords: digital forensics; digital trace; file fragment; residual content; deleted data

persistence; deleted file decay

@ 2017 ADFSL Page 153

CDFSL Proceedings 2017

1. INTRODUCTION

The use and operation of digital devices creates
associated digital traces: files and data on
storage devices, data in volatile memory,
network traffic, Windows registry keys, CPU
register values, etc. These traces, in whole and
in part, are used by digital forensics
investigators to infer and reconstruct past
events, and are also harvested by criminal
actors to collect private information. The
persistence and decay of digital traces over
time varies based on the type of trace, the
storage or processing medium, and other
inadvertent or deliberate activity which may
damage or destroy the trace. While some
traces may remain intact over time, most
deleted or otherwise released content is altered,
destroyed, and disassociated over time due to
normal system operation and deliberate
obfuscation activity. The current state of
practice in digital forensics accepts that traces
and trace fragments may or may not be
available. Analysts are able to reason over the
traces that are available, and in specific cases
may attempt to explain the cause and
significance of trace presence or absence;
however, the state of the art has not
addressed, in a rigorous and generalizable
manner, the question of why trace or trace
fragments do or do not persist or decay.

Most digital traces, such as allocated files,
configuration settings, running processes, or
network traffic are designed to persist while
they are allocated or in use; however, once de
allocated, no longer active, or passed to
another process, these traces are subject to
decay, modification, and destruction. For
example, a file is stored on a magnetic hard
disk or solid-state media in groups of sectors
called clusters. A sector is the smallest unit
that a block device can read or write in a
single operation, and a cluster is the smallest
unit that a file system can allocate or de
allocate. Clusters are often multi-sector and

Page 154

Understanding Deleted File Decay On ...

aligned, but not necessarily. When a file is
deleted , the file system marks the clusters
storing the data as available for future use as
needed, but does not typically alter any of the
original file data in those clusters. The
operating system and its file system may
eventually overwrite some or all of the media
sectors used to store the original file. As a
result some or all of the deleted file will be

' destroyed, while other parts may remain intact
for an indefinite period of time. Tools exist to
"undelete" files when the data remains intact,
file carving techniques (Ravi et al, 2016) (Yi et
al , 2015) (Garfinkel, 2007) can recover full or
partial files after deletion, and forensic
investigators regularly recover full and partial
traces from media. While solid state hard disks
(SSDs) and thumb drives may use the same
file systems as magnetic hard disks, the
underlying operation of these devices is
significantly different. The flash memory of
SSDs and thumb drives has an additional
processing layer, called the Flash Translation
Layer (FTL) , which is designed to optimize the
reliability, performance, and lifetime of the
device. FTL implementations are generally not
published and vary across vendors and device
types, although recent work reverse engineers
the firmware of flash implementations to
reconstruct data (Zhang, 2015). The FTL and
associated device logic implement wear leveling
(writing to all locations an even number of
times) , TRIM (preemptively erasing storage
locations so they are ready for a subsequent
write), and proactively rearrange the data
within the storage device. As a result, deleted
file persistence on magnetic and flash devices is
significantly different , although TRIM
implementations are quite fragile and
frequently do not work as designed (Gubanovis
& Afonin, 2014), leaving more data available
for recovery than expected.

To help visualize deleted file decay and
partial trace recovery, a deleted BMP image

@ 2017 ADFSL

Understanding Deleted File Decay On ...

file was repeatedly rendered as sectors of the
original file were overwritten. This sequence of
images is shown in Figure 1, where 100% of
the sectors are intact on the left, and sectors
are overwritten going from left to right until
only 15% of the original sectors remain intact
for the rightmost image. The BMP image
format is most suitable for such recovery, as
file contents map directly to the image layout,
although other work (Sencar & Memon, 2009)
(Uzun & Sencar, 2015) has shown that partial
image recovery from other image formats is

Figure 1. Rendering deleted BMP file as it decays

2. RELATED WORK

Fairbanks and Garfinkel (2012) posited factors
which might affect the persistence of deleted
file content. This paper is predated by other
work observing the effects of data persistence
but not attempting to explain it beyond the
immediate case. In chapter 7 of their 2005
book "Forensic Discovery," Farmer and
Venema (2005) published experimental data
and partial explanations for the persistence of
deleted file information. While useful, the
experiments were limited in scope, and the
discussion sought to explain the observed
persistence given aspects of their particular
test system rather than computer systems in
general. As noted by Venema elsewhere (Reust
& Fried burg, 2006) , " ... persistence of deleted
file content is dependent on file system,
activity, and amount of free space (a complex
relationship)." Roussev and Quates (2012)
tangentially show the effects of data
persistence in a case study of the M57 dataset.
The case study focused on content triage using
similarity digests, but the paper includes a

@ 2017 ADFSL

CDFSL Proceedings 2017

possible as well. For arbitrary file types, work
by Garfinkel and McCarrin (2015) investigates
the probative potential of file fragments. The
work presented here helps to understand the
factors affecting deleted file decay on flash
media, and is relevant to digital forensic
investigations as practitioners extend their
capabilities beyond whole file recovery and into
partial file recovery and interpretation.

graph of deleted file data persistence for a
specific example (see Figure 1 on page S66 of
that publication). The decay effect, observed
as an almost linear reduction in deleted file
content over a matter of days, is explained by
the user deleting the files and continuing to
use the system normally. Had the user in this
case employed a well-implemented secure
deletion tool, as discussed in (Joukov et al,
2006) and elsewhere, the original file data
locations would have been overwritten and
rendered irrecoverable immediately upon
deletion. Such tools typically do not address
the possibility of data remnants in locations
other than the primary storage clusters,
meaning that remnant recovery is possible
even in the face of secure deletion. An
example of this is when a new copy of a file is
made during the modification process and the
original version is then deleted. Although the
new version will be securely erased, the
persistence of the clusters that constituted the
original version is unknown. This can also
happen in the absence of file modification due

Page 155

CDFSL Proceedings 2017

to drive defragmentation. The challenge in
such cases, and m any experiment or
investigation without ground truth, is how to
establish that a remnant is part of a specific
original file vs. a false positive, a situation
which is discussed in (Garfinkel et al, 2010).
The work proposed here will track the sectors
of a deleted file in place, although integrating
this with other work finding and reasoning
over deleted file fragments found in any
location is a logical next step and will lead to a
more complete model of deleted file
persistence.

Factors affecting deleted file persistence
noted by Fairbanks and Garfinkel include
device types, especially the difference between
magnetic and flash storage. Bell and
Boddington (2010) wrote one of the first
complete analyses of this effect for solid state
drives. Later work, including (Casey &
Turnbull, 2011) (Huang et al, 2015) , discussed
the impact of flash memory for digital forensics
in the context of mobile devices and the
recovery of fragmented files. Fairbanks and
Garfinkel also suggest that file type may affect
deleted file persistence, suggesting email
databases as an example. As early as 2007,
(Stahlberg et al, 2007) and (Litchfield, 2007)
discussed deleted data persistence in databases
and how this differs from normal file deletion.
More recently, Conrad et al (2009) discussed
deleted data persistence in the context of
forensic analysis of a Sony PlayStation
Portable. The rapid rise in cloud
infrastructure, especially multi-tenant clouds,
has generated interest m deleted data
persistence in such environments where
multiple entities share a common underlying
infrastructure. Govan (2013) presents a
detailed analysis of data remanence for several
applications, and concludes that the effects are
conflicting: deleted data may be replicated in
multiple locations and so will be more
recoverable, while the frequent writing of data

Page 156

Understanding Deleted File Decay On ...

and lack of transparency will inevitably modify
or destroy deleted file traces or at least call
into question their integrity.

The work presented here is related to, but
distinct from, efforts to identify the filetypes of
recovered file fragments, work that has been
ongoing for over 10 years (Li et al , 2006)
(Calhoun & Coles, 2008) (Roussev & Quates,
2013). These efforts are aimed at identifying
the type of file from which a fragment
originated, whereas we are studying the factors
affecting the decay of the original file into the
fragments that are eventually recovered.
Similarly, our work supports the development
of deterministic approaches in digital forensics
(Nagy et al, 2015), but is not itself a
deterministic reasoning approach. While
considerable effort has been spent to process
full and partial digital traces, little work has
been directed at understanding the
mechanisms driving the decay of full traces
into partial traces.

3. APPROACH AND
lVlETHODOLOGY

We developed and implemented a methodology
to track the decay of deleted file contents over
time. We first capture multiple sequential
images of a device's stored data, where files to
be tracked are deleted between the first two
images (images O and 1). Files known to the
file system in image O but not in image 1 are
the deleted files. Once identified, we use image
0 to record the sector locations and original
contents of those files (sectors) prior to
deletion. We then track the contents of the
original file's sectors over the remaining
images, identifying if, when, and which sectors
of each deleted file were changed. This
approach is based on the differential analysis
ideas articulated by Garfinkel et al (2012). The
file and sector change data is then processed to
form and test hypotheses as to which factors
affect deleted file decay, and to design

@ 2017 ADFSL

Understanding Deleted File Decay On ...

additional experiments. This process is
summarized in Figure 2 and detailed m the

CDFSL Proceedings 2017

text that follows.

I 5Ystem to I ,.... delet:+ I syStem t i I ,....activit~ I 5Ystem t 2 I ,....activit~ I 5Ystem t 3 I ,.... , , , • ~
Step 1: capture (files (((
sequential snapshots
of a single system at

different times ············ Limage0J ················· [Bag~ · ················· ~ ··· ················ ~ ····················· E5

/

L p2:differential analysi~ ~ \ / ~
to identify deleted files

Step 4: record contents of origina l
file locations at each snapshot

Step 3: record locations
and original contents of
to-be-deleted files Step 5: analyze recorded data to establish persistence

of each de leted artifact, in whole and in part

Step 1: Record sequential images of the raw
hard disk contents for a single system over
time. Files may be created prior to the first
image at tO, but the first image must include
the files to be deleted and tracked as allocated
files, and the files to track must be deleted
between image O and image 1.

Step 2: Determine which files were deleted by
comparing the allocated files in image 1 and
image O; files allocated in image O and not in
image 1 are considered deleted. Deleted file
information includes file name, file size, and
the sectors allocated to the file in image 0.

Step 3: Record a cryptographic hash of the

contents of the data sectors in image O (before
deletion) for each deleted file.

Step 4 : Record a hash of the contents of those
same sectors for all other images (image 1 to
image N).

Step 5: Use the stored data to analyze deleted

file decay, i.e. , when did the contents (sectors)
of each file change and why.

We use a publicly available Python
implementation of this methodology developed
by Jones and Khan (201 7). The

@ 2017 ADFSL

implementation assumes a series of disk images
in raw format and a filesystem supported by
The Sleuth Kit1 (fiwalk). The implementation
comes in two parts. The first program,
adiff.py, processes the raw images and
populates a sqlite3 database with sector hashes
for each deleted file and image. The second

program, trace_ file. py, processes the sqlite3
database from adiff.py and produces one or
more output items: data, graphs, and console
displays representing deleted file decay.

For these experiments, we used FTK
Imager and the *nix dd command to collect
device and media raw images. Each device was
prepared prior to any file activity according to
the test design. Depending on the experiment,
preparation included erasing old data,
reformatting the device, wiping the data on the
device, and/ or configuring sector and cluster
sizes. Files were then written to the media and
a raw image of the media contents was
recorded (image 0). Files were then deleted
according to the specific experiment, where
deletion may have been initiated by direct user
action or by the system as a result of user

1 http: //www.sleuthkit.org/ sleuthkit / desc.php

Page 157

CDFSL Proceedings 2017

action (such as letting the media fill up and
continue to write new files). Another raw
image of the media contents was recorded after
file deletion (image 1). Additional activity was
then executed per the experiment design, and
raw images of the media content were taken at
designed intervals (images 2, 3, ...). The raw
images were then processed using the
implementation noted above to produce decay
curves and raw decay data for each file. A
sample decay curve for several files is shown in
Figure 3, where the x-axis represents
sequential media image identifiers, and the y
axis represents the % of the original file that
remains intact at each image. Images are not
necessarily taken at regular intervals, so the x
axis should be interpreted as representing
experiment-specific activity and not equal time
intervals. The % intact value is a fraction of
the original file's sectors that remain
unchanged. Raw output data consists of the
per-file decay data as rows of comma-separated
values, suitable for additional processing. The
per-experiment sqlite database was also
retained, allowing for additional queries and
subsequent analysis based on characteristics
such as file size, file type, file name and path,
etc.

0~o --~--=-, ---!:3~-~4 __,._---J~
"""'0~ ID C<"'tui!!n<iOI)

Figure 3. Sample Deleted File Decay Curves

Page 158

Understanding Deleted File Decay On ...

4. RESULTS

We conducted two sets of experiments using
the methodology described above. The first set
of experiments used a security camera with SD
card storage, and the second set of experiments
used SD cards and USB sticks mounted on a
Windows workstation.

4.1 Camera Experiment Results

A FosCam security camera was configured
with 4 GB SD card storage, pointed out of a
window, and pictures were taken automatically
every few seconds until the media filled at

'
which point a raw image of the SD card
storage was taken. The camera continued to
take pictures, and by design began deleting
and overwriting the original picture files.
Images of the SD card media were taken at
regular intervals as the device continued to
take new pictures and the contents of the
original picture files were repeatedly
overwritten. A total of 4401 files were written
over the original files. Figure 4 shows the new
(overwriting) file sizes over time. Files are
named and stored sequentially, so are ordered
chronologically by name. Larger files were
created as light and activity filled the camera's
field of view in the morning, which occurred
about 1/ 3 of the way into the graph.

@ 2017 ADFSL

Understanding Deleted File Decay On ... CDFSL Proceedings 2017

Image Size over capture Time

VI

0
t
Q) "" V\

0

' ~~.~ij~~!i~~§i~~~i~i~~~§~s~f~~!~~~e~~!~~!!E§!~~~f~i~!!~~~i§!~~~i~~~ii~~~~liij~!5~!~
File Order

Figure 4. File size over time for overwriting camera files

Figure 5 shows individual deleted file
persistence based on the order in which the file
was originally written. These are the 157 files
that were overwritten by the 4401 files in
Figure 4. Note that the scales of Figure 4 and
Figure 5 are not aligned; the files that were
overwritten and tracked were stored
sequentially on the media, and the overwriting
files were stored sequentially as well , but we
overwrote the original files multiple times. It is
true that File 1 in both figures started at the
same offset on the media, but varying file sizes
means they don't necessarily end at the same
offset. Consequently, File 2 in both graphs
does not necessarily start or end at the same
offset, etc. The percent persistence value (y
axis of Figure 5) is the final persistence of each
file after multiple overwrites. The oscillating
pattern (periodically ranging from -0% to
- 50%) over sequential images may be
explained by variation in the size of the
overwriting files and the cluster size storing the
deleted files. We used a cluster size of 32 kB
(64 512-byte sectors), and the overwriting files
oscillated around a cluster boundary (128
sectors, or two clusters). Overwriting files
slightly smaller than two clusters would
overwrite almost all of the data in the second
and final cluster, whereas overwriting files
slightly larger than two clusters would

@ 2017 ADFSL

overwrite very little of the data in the third
and final cluster.

Page 159

CDFSL Proceedings 2017 Understanding Deleted File Decay On ...

File Persistence over capture time
60

cu
U 50
C:
cu
l/'I 40

l/')
I....

CU 30
Q_

.....
C: 20
cu
u
I....
CU 10

Q_

I 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101105109113117121125129133137141145149153157

Fi le Order

Figure 5. Persistence over time for deleted camera files

Figure 6 shows the distribution of deleted
file persistence after one round of overwriting.
Each line in the graph represents the
persistence of one file , prior to deletion on the
left-side y-axis and after the first overwrite on
the right-side y-axis. At this early point, after
one overwrite, the persistence of the deleted
files ranges from -0-50% with some files
persisting at 100% (the values on the right-side
y-axis). As the overwriting continued using
different file sizes and multiple overwrites
(about 25 in total), the distribution of deleted
file persistence coalesced around 0% or 50%,
with none of the values in between (as
indicated in Figure 5) . It appears that the
relationship between original (deleted) file
sizes, overwriting file sizes, and cluster sizes
may explain this phenomenon, although we
have yet to fully explore this.

Page 160

80

u
~ 60

I!!
B
:;:
v, 40
;f.

20

Deleted Fi~ Sector PerstStence; Alt Files

o~--~--~---~--~--~
0

Image ID (sequential)

Figure 6. File persistence distribution after one
overwrite

Figure 7 shows the relationship between
file size and persistence for these same deleted
files , also after only one overwrite. In the
graph, data points are color-coded by clusters
used: 2 cluster files are orange and use less
than 128 sectors (x-axis), 3 cluster files are
green and red and use from 128 to 192 sectors,
and 4 cluster files are blue and use 192 to 256
sectors. The 3 cluster range (the x-axis from
128 sectors or 2 clusters to 192 sectors or 3
clusters) is further broken out to highlight a
linear persistence pattern for some of these files

@ 2017 ADFSL

Understanding Deleted File Decay On ...

(the upward-sloping trend of > 0% persistence
between 140 sectors and 192 sectors; red points
if viewing m color). Several interesting
patterns are apparent (see the circled
annotations on Figure 7): (i) the linear trend
just noted from 140 sectors to 192 sectors,
followed by a declining curve above 192
sectors, (ii) the narrowing shape from 110
sectors to 128 sectors, leading to the

CDFSL Proceedings 2017

concentrated flatline from 128 sectors to 155
sectors, (iii) the pattern of 0% and 100% which
changes as the sector value changes, and (iv)
the two non-zero clusters for files over 192
sectors. We are continuing to analyze this data
and these patterns, and are continuing
additional experiments, in order to explain
these observations.

Foscam Automatically Deleted File Persistence

®

IO
0

• • • • ®
:l,Pcm;ID,;:.& • •

100 120 140 @ 160 80 200 220

Number of Sectors

• aus er files 3 Ouster fr es 2 Cius er Files • 3 Cluster Trendline

Figure 7: Final persistence vs. file size (number of sectors) for camera overwriting experiments

4.2 SDCardandUSB
Experiment Results

A separate set of experiments was conducted
to determine the effect of cluster size on
deleted file persistence when multiple
overwrites are performed. A common set of
files of varying sizes was written to an SD
card, once with 32-kB cluster size and once
with 64-kB cluster size. For each configuration,
the media was imaged (image 0), the files were
deleted (image 1), and new files were
repeatedly written to the media until full
(images 2-6). Decay curves for the deleted files
are shown in Figure 8. With a 64-kB cluster
size, more deleted files have higher persistence
after multiple overwrites. By comparison, a 32-
kB cluster size yielded some deleted files of

@ 2017 ADFSL

very high persistence after 1-3 overwrites, but
these files did not persist to the same degree as
the 64-kB cluster size after subsequent
overwrites. Average persistence across all files
for each cluster size was modeled as
exponential decay depending on time running,
file size, media size, and new image rate
(Figure 9).

Page 161

CDFSL Proceedings 2017 Understanding Deleted File Decay On ...

Deleted Fi le Sector Persistence: All Files
100 100

Deleted File Sector Persistence: All Files

BO BO

u
60 60 "' E

I!!

~
cu
V,

"if.
40 40

20 20

0 0
0 1 2 3 4 6 0 2 3

Image ID (sequential) Image ID (sequential)

Figure 8. SD card file decay (cluster size 32 kB left and 64 kB right)

Persistance vs Number of Overwrites

25

20

• ..
l 1s ·····~-: ..

~
-~ i 10 ···-... __ 111···--- ...

P:r1 = ;jj_ l • .38l¥fJ ·· ·-..
R,1 - 31.18 _;9[!'/,J

• 32k8

• 64k8

......... U:pon. (32kB)

......... Expon. (64 kB)

·············•
··········•

Number of OVerwrites

Figure 9. SD card deleted file persistence based on
cluster size and multiple overwrites

Finally, preliminary experiments were run to
explore the combined effect of file system,
media, and cluster size on deleted file
persistence. No effect was observed for
different file systems (F AT32 vs. NTFS) , but
an effect was observed when the media type
was USB and cluster size was varied (512
bytes, 4096 bytes , and 8192 bytes). See Figure
10 for associated decay curves. Additional
experiments to explore this effect are
underway.

Page 162

SD Card

,G, . \ I
!~-

USB

512
Bytes

4096
Bytes

8192
Bytes

Figure 10. Effect of media and cluster size on deleted
file persistence

5. CONCLUSIONS AND
FUTURE-WORK

We present results from multiple experiments
exploring the factors affecting deleted file
persistence on digital cameras with SD card
storage, direct SD card storage, and USB

@ 2017 ADFSL

Understanding Deleted File Decay On ...

memory sticks. Our results suggest that
influential factors include file sizes of deleted
and overwriting files, cluster size especially as
it relates to file sizes, media type, and number
of overwrites. It is generally accepted that
under common conditions of limited
overwrites, it is likely that some file fragments
may remain indefinitely in the cluster slack
space of newly allocated files. A related and
possibly non-intuitive result here is that
fragments of some files will remain even under
conditions of repeated overwrites, as indicated
by the exponential decay of Figure 9.

Our conclusions generally match our
intuition and the hypotheses posed by others;
however, no prior empirical work exists to
which our conclusions can be compared. It is
our hope and expectation that others will use
the tools and methods described here to
conduct additional experiments to validate or
refute these preliminary results. Our future
work will continue to explore the open
questions posed by this work. We will also
explore additional factors that might affect
deleted file persistence on these and other
storage devices and systems. Related work
currently in progress is exploring deleted file
persistence on mobile phones, IoT devices, and
industrial control systems equipment.

ACKNOWLEDGE:MENTS

The authors would like to thank MITRE and
the National Cybersecurity Center of
Excellence for sponsoring the camera
experiments described above. The authors
would also like to thank the George Mason
University Aspiring Scientists Summer
Internship Program under which three of the
authors participated in this work.

AUTHOR BIOGRAPHIES

Jim Jones is an Associate Professor in the
Electrical and Computer Engineering
Department at George Mason University.

@ 2017 ADFSL

CDFSL Proceedings 2017

Anurag Srivastava is a PhD IT student in the
Volgenau School of Engineering at George
Mason University. Josh Mosier, Connor
Anderson, and Seth Buenafe were high school
students and participants in the George Mason
University Aspiring Scientists Summer
Internship Program at the time of this work.

REFERENCES
Bell, G.B. and Boddington, R. (2010) Solid

State Drives: The Beginning of the End for
Current Practice m Digital Forensic
Recovery? Journal of Digital Forensics,
Security and Law, 5 (3). pp. 1-20.

Calhoun, W. C., & Coles, D. (2008).
Predicting the types of file fragments.
Digital Investigation, 5, S14-S20.

Casey, E., & Turnbull, B. (2011). Digital
evidence on mobile devices. Eoghan Casey,
Digital Evidence and Computer Crime.
Third Edition. Forensic Science,
Computers, and the Internet , Academic
Pres.

Conrad, S., Rodriguez, C., Marberry, C., &
Craiger, P. (2009). Forensic Analysis of the
Sony PlayStation Portable. In Advances in
digital Forensics V (pp. 119-129). Springer
Berlin Heidelberg.

Fairbanks, K., & Garfinkel, S. (2012). Column:
Factors Affecting Data Decay. Journal of
Digital Forensics, Security and Law, 7(2) ,
7-10.

Farmer, D. , & Venema, W. (2005). Forensic
discovery (Vol. 6). Upper Saddle River:
Addison-Wesley.

Garfinkel, S. L. (2007). Carving contiguous
and fragmented files with fast object
validation. Digital Investigation, 4, 2-12.

Page 163

CDFSL Proceedings 2017

Garfinkel, S. L., & McCarrin, M. (2015). Hash
based carving: Searching media for
complete files and file fragments with
sector hashing and hashdb. Digital
Investigation, 14, S95-S105.

Garfinkel, S. , Nelson, A. , White, D ., &
Roussev, V. (2010). Using purpose-built
functions and block hashes to enable small
block and sub-file forensics. digital
investigation, 7, Sl3-S23.

Garfinkel, S. , Nelson, A. J. , & Young, J.
(2012). A general strategy for differential
forensic analysis. Digital Investigation, 9,
S50-S59.

Govan, M. (2013 , June). Forensic Droplets &
Puddles from the Cloud. The 3rd
International Conference on Cybercrime,
Security and Digital Forensics, Cardiff;
June 2013.

Gubanovis and Afonin (2014) . Recovering
Evidence from SSD Drives m 2014:
Understanding TRIM, Garbage Collection
and Exclusions. Online at
http: //articles.forensicfocus.com/ 2014/ 09 / 2
3 / recovering-evidence-from-ssd-drives-in-
2014-understanding-trim-garbage
collection-and-exclusions/

Huang, N., He, J. , Zhao, B. , Liu, G. , & Wan,
X. (2015). Reconstructing Fragmented
Y AFFS2 Files for Forensic Analysis.
International Journal of Hybrid
Information Technology, 8(7), 37-44.

Jones, J. , & Khan, T. (2017). A Method and
Implementation for the Empirical Study of
Deleted File Persistence in Digital Devices
and Media. Proceedings of the 2017 IEEE
7th Annual Computing and
Communication Workshop and Conference
(CCWC).

Joukov, N., Papaxenopoulos, H., & Zadok, E.
(2006 , October). Secure deletion myths,
issues, and solutions. In Proceedings of the

Page 164

Understanding Deleted File Decay On ...

second ACM workshop on Storage security
and survivability (pp. 61-66). ACM.

Li, B., Wang, Q. , & Luo, J. (2006 , December).
Forensic analysis of document fragment
based on SVM. In Intelligent Information
Hiding and Multimedia Signal Processing,
2006. IIH-MSP'06. International
Conference on (pp. 236-239). IEEE.

Litchfield, D. (2007). Oracle forensics part 2:
Locating dropped objects. NGSSoftware
Insight Security Research (NISR)
Publication, Next Generation Security
Software.

Nagy, S., Palmer, I., Sundaramurthy, S. C.,
Ou, X. , & Campbell, R. (2015). An
Empirical Study on Current Models for
Reasoning about Digital Evidence. 10th
International Conference on Systematic
Approaches to Digital Forensic
Engineering. Malaga, Spain.

Ravi , A. , Kumar, T. R. , & Mathew, A. R.
(2016). A method for carving fragmented
document and image files. In 2016
International Conference on Advances in
Human Machine Interaction (HMI) (pp. 1-
6). IEEE.

Reust, J., & Friedburg, S. (2006). DFRWS
2005 Workshop Report.

Roussev, V. , & Quates, C. (2012). Content
triage with similarity digests: The M57
case study. Digital Investigation, 9, S60-
S68.

Roussev, V., & Quates, C. (2013). File
fragment encoding classification-An
empirical approach. Digital Investigation,
10, S69-S77.

Sencar, H. T., & Memon, N. (2009).
Identification and recovery of JPEG files
with mISsmg fragments. digital
investigation, 6, S88-S98.

@ 2017 ADFSL

Understanding Deleted File Decay On ...

Stahlberg, P. , Miklau, G. , & Levine, B. N.
(2007, June). Threats to privacy in the
forensic analysis of database systems. In
Proceedings of the 2007 ACM SIGMOD
international conference on Management of
data (pp. 91-102). ACM.

Uzun, E. , & Sencar, H. T. (2015). Carving
orphaned JPEG file fragments. IEEE
Transactions on Information Forensics and
Security, 10(8) , 1549-1563.

Yi, S. , Hu, X., & Wu, H. (2015) . An automatic
reassembly model and algorithm of log file
fragments based on graph theory. In
Software Engineering and Service Science
(ICSESS) , 2015 6th IEEE International
Conference on (pp. 686-689). IEEE.

Zhang, L., Hao, S. G., Zheng, J., Tan, Y. A.,
Zhang, Q. X. , & Li, Y. Z. (2015).
Descrambling data on solid-state disks by
reverse-engineering the firmware. Digital
Investigation, 12, 77-87.

@ 2017 ADFSL

CDFSL Proceedings 2017

Page 165

CDFSL Proceedings 2017 Understanding Deleted File Decay On ...

Page 166 @ 2017 ADFSL

	Understanding Deleted File Decay on Removable Media using Differential Analysis
	Scholarly Commons Citation

	Understanding Deleted File Decay on Removable Media using Differential Analysis

