
International Journal of Aviation, International Journal of Aviation,

Aeronautics, and Aerospace Aeronautics, and Aerospace

Volume 5 Issue 5 Article 4

2018

SES and Ecore for Ontology-based Scenario Modeling in Aviation SES and Ecore for Ontology-based Scenario Modeling in Aviation

Scenario Definition Language (ASDL) Scenario Definition Language (ASDL)

Shafagh Jafer
Embry-Riddle Aeronautical University, jafers@erau.edu
Bharvi Chhaya
Embry-Riddle Aeronautical University, chhayab@my.erau.edu
Bernard P. Zeigler
RTSync Corp, zeigler@rtsync.com
Umut Durak
German Aerospace Center, umut.durak@dlr.de

Follow this and additional works at: https://commons.erau.edu/ijaaa

 Part of the Electrical and Computer Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Jafer, S., Chhaya, B., Zeigler, B. P., & Durak, U. (2018). SES and Ecore for Ontology-based Scenario
Modeling in Aviation Scenario Definition Language (ASDL). International Journal of Aviation, Aeronautics,
and Aerospace, 5(5). Retrieved from https://commons.erau.edu/ijaaa/vol5/iss5/4

This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been
accepted for inclusion in International Journal of Aviation, Aeronautics, and Aerospace by an authorized
administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217177488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/ijaaa
https://commons.erau.edu/ijaaa
https://commons.erau.edu/ijaaa/vol5
https://commons.erau.edu/ijaaa/vol5/iss5
https://commons.erau.edu/ijaaa/vol5/iss5/4
https://commons.erau.edu/ijaaa?utm_source=commons.erau.edu%2Fijaaa%2Fvol5%2Fiss5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fijaaa%2Fvol5%2Fiss5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/ijaaa/vol5/iss5/4?utm_source=commons.erau.edu%2Fijaaa%2Fvol5%2Fiss5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

Introduction

 Aviation has long been benefiting from modeling and simulation for

technology development, testing, training and integration purposes. Although the

importance of scenarios in this domain has been well known, there still exists a lack

of common understanding and standardized practices in aviation simulation

scenario development (Durak, Topçu, Siegfried, & Oguztuzun, 2014; Jafer,

Chhaya, Durak, & Gerlach, 2016). It is an extensive process beginning with the

stakeholders’ descriptions of the scenario and finishing with the generation of the

corresponding executable specifications (Durak et al., 2014). Simulation scenario

can be defined as the specification of initial and terminal conditions, significant

events and the environment, as well as the major entities, their capabilities, behavior

and interactions over time (Department of Defense, 1998). With one sky shared

globally, the next generation of aviation technologies call for immediate action on

defining a standardized mechanism for developing, sharing, and integrating large-

scale simulation scenarios among global stakeholders. With the help of model- and

simulation-based engineering, large-scale systems integration and demonstrations

take place seamlessly. This demands for common understanding of simulation

scenarios, allowing for cross-platform interoperability such that scenarios can be

run on any simulator worldwide.

 Developing a scenario definition language for a specific domain has been

recently conducted for military simulations. Military Scenario Definition Language

(MSDL) (Wittman, 2009) was developed and published as a standard by Simulation

Interoperability Standards Organization (SISO; 2008). Similarly, the recent effort

published at American Institute of Aeronautics and Astronautics (AIAA), as

reported by Jafer, Chhaya, and Durak (2017a), proposes to standardize aviation

scenario development through Aviation Scenario Definition Language (ASDL) to

allow the global aviation Modeling and Simulation (M&S) community, from

academia, industry, and government agencies, benefit from a common scenario

definition platform, enabling model transformation, reusability, and interoperability

across various simulation environments. ASDL was proposed with the following

goals in mind:

1. A common mechanism (published standards) for specifying, verifying and

executing aviation scenarios.

2. The ability to create platform-independent aviation scenario that can be shared

between simulation environments and various simulators.

3. A way to improve scenario consistency among globally collaborative

simulations.

1

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

4. A platform for coupling training needs with an efficient scenario generation

process.

5. The ability to reuse aviation scenarios as scenario descriptions in many areas

within aviation, e.g., technology and product development and integration (US and

European aviation programs) or flight training, etc.

6. Reusability and adaptation to other transportation areas such as ground, water,

and even space exploration.

 ASDL takes scenario-based development as the core activity in constructing

a formal scenario definition language. Concepts such as ontology-based and model-

based development have been highly utilized to incorporate automated

transformations and executable generation (Saeki & Kaiya, 2006). At the core of

every domain-specific language exists an ontology that captures all domain’s key

terminology and relationships. The elements of model-driven methodology are

modeling languages, metamodels, and transformations (Brambilla, Cabot, &

Wimmer, 2012). Modeling languages enable the definition of a concrete

representation for a model and metamodels are used to define modeling languages.

Transformations are described as the mappings between models which are specified

at metamodel level.

 Constructing an ontology has been addressed in the literature through a

number of techniques (Chandrasekaran, Josephson, & Benjamins, 1999; Farquhar,

Fikes, & Rice, 1997; Maedche & Staab, 2001). To develop ASDL’s ontology, two

approached were utilized: (1) metamodeling with Eclipse Modeling Framework

(EMF) Ecore, and (2) metamodeling with System Entity Structure (SES).

 EMF is a framework within the Eclipse ecosystem for Model-Driven

Development (MDD) (Steinberg, Budinsky, Merks, & Paternostro, 2008). EMF

core (Ecore) is a standard for data models that offers a metamodel for describing

models as well as a persistence support with the ability to export results to

eXtensible Markup Language (XML) format. On the other side, SES is a high-level

ontology which was introduced to specify a set of system structures and parameter

settings. It has long been used for modeling variable structure systems and recently

applied to problems of model-based simulation system engineering such as model-

based testing (Durak, Schmidt, & Pawletta, 2015; Schmidt, Durak, & Pawletta,

2016) and variability management (Pawletta, Schmidt, Zeigler, & Durak, 2016).

 This paper proposes a model-based simulation scenario development

approach using SES. In order to do this, first, simulation scenario development will

2

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

be introduced. The target language ASDL will then be described in detail including

the metamodel and its implementation. Following this discussion, the proposed

approach using SES will be presented and discussed. As an application example,

we then provide a case where our proposed SES/Ecore approach is utilized in

building a scenario-driven training toolset for air traffic controllers at the Federal

Aviation Administration (FAA) Academy.

Literature Review

Simulation Scenario Development

 Simulation scenario can be defined as the specification of initial and

terminal conditions, significant events and the environment as well as the major

entities, their capabilities, behavior, and interactions over time (Department of

Defense, 1998). Although the importance of scenarios in M&S has long been well

known, there still exists a lack of common understanding and standardized practices

in simulation scenario development. Based on the North Atlantic Treat

Organization (NATO) Guideline on Scenario Development (NATO, 2015), three

types of scenarios are produced in successive stages of the scenario development

process. These scenarios are: operational scenarios, conceptual scenarios, and

executable scenarios (Siegfried et al., 2012, 2013), illustrated in Figure 1.

Figure 1. Three types of simulation scenarios. Adapted from “Scenarios in Military

(distributed) Simulation Environments” by R. Siegfried et al., 2012, Science and

Technology Organization, TO Technical Report TR-MSG-086-Part-II.

3

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

 Operational scenarios are described in the early stages by the domain expert

in the form of natural language, either oral or written. The key elements an

operational scenario are the entities, their initial states and the events. The key

element in a flight simulation scenario is the Aircraft. An example aircraft landing

operational scenario is given as follows:

A normal landing scenario starts with aircraft ER-1234 approaching at Daytona

Beach Airport (DAB) originating from Atlanta Airport (ATL). Stable weather

conditions nearing Daytona Beach are reported as cross wind: 77, dew point: 60,

sky condition: few clouds at 5500 feet, temperature: -44, visibility: 10, wind shear:

11.8. While cruising, the pilot requests descent. The ATC controller at DAB, grants

the request and notifies the pilot to land on runway 7L. The pilot initiates descend

and reports Aircraft status of altitude: 34000ft, latitude: 82.35, longitude: 31.49,

flight rules: VFR, and ground speed: 543. The aircraft lands on Runway 7L.

 The operational scenarios provide a coarse description of the intended

situation and its dynamics, but they need to be refined and augmented with

additional information pertaining to simulation. This refinement is usually done by

the simulator experts and results in conceptual scenarios. Conceptual scenarios

specify the piece of the world to be represented in the simulation environment in

detail. They should incorporate all crucial information for executing the operational

scenario. On the other hand, the executable scenario is the specification of the

conceptual scenario in a particular format in order to be processed by the simulation

applications for initialization, and execution. They support scenario management

activities such as scenario distribution and role casting (Topçu, Durak, O˘guztüzün,

& Yilmaz, 2016). For this purpose, the conceptual scenarios need to be transformed

into executable scenarios. The transformation from conceptual scenarios to

executable scenarios is undertaken primarily by simulator experts. Ideally, the

resulting executable scenarios are specified in a way that they can directly be

processed by the target simulator.

Domain-Specific Language

 Domain-Specific Language (DSL) is a custom-tailored computer language

for a particular application domain (Fowler, 2010). DSL is created to specifically

target problems in a specific domain, and stresses upon the main ideas, features,

constraints, and characteristics of that domain. DSL enables developers to construct

models that are specific to their application. These models are mainly composed of

elements and relationships that are verified to be valid for that application.

4

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

 DSLs allow users to write complete application programs for the given

domain more quickly and more effectively than they can with a general-purpose

language (GPL). A well-designed DSL intends to capture precisely the semantics

of an application domain (Hudak, 1997). Advantages of programs written in DSLs

as compared to GPLs are that: they are more concise, they can be written more

quickly, they are easier to maintain, and they can be written by non-programmers.

 The greatest benefit of DSL is that it allows non-developers and those who

are not experts in the domain to understand the overall design. This is normally

supported by allowing graphical modeling, usually in the form of a drag and drop

capability to construct models. DSL augmented with model-to-text transformation

capabilities directly allows for automatic generation of source code from model.

Ontology

 An ontology describes the concepts and relationships that are important in

a particular domain, providing a vocabulary for that domain as well as a

computerized specification of the meaning of terms used in the vocabulary (Gruber,

1993). One of the benefits of using ontologies is their capacity to be easily extended

using new knowledge generated by experts so all existing ontologies can be used

as a starting point for further development (Hilera & Fernández-Sanz, 2010).

Among the existing ontology specification frameworks, the Web Ontology

Language format (OWL) is most commonly used by the DSL community. OWL

enables describing a domain in terms of classes, properties and individuals and may

include rich descriptions of the characteristics of those objects (Bechhofer, 2009;

McGuinness, 2004).

 Ontology-Driven Software Development (ODSD) has emerged as a

significant mechanism in creating domain-specific languages (Ceh, Crepinšek,

Kosar, & Mernik, 2011), allowing for expressing domain concepts effectively (Pan,

Staab, Aßmann, Ebert, & Zhao, 2012). Ontology provides a quick and simplified

description of a DSL, abstracting language’s technically details, while highlighting

key terminology and specifics. Once an ontology is built, it is a simple process to

generate the language’s metamodel and establish relationships among related

concepts. An automated process that takes in DSL’s ontology and generates its

corresponding metamodel sounds highly efficient. This has been studied in various

development environments including EMF (Jafer, Chhaya, & Durak, 2017b).

5

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

Target Language: Aviation Scenario Definition Language (ASDL)

 A well-defined language for aviation scenario specification would enable

the reuse of scenarios among different simulators. To address aviation simulations

limitations, Jafer et al. (2016) introduced the Aviation Scenario Definition

Language (ASDL) which aims to provide a standard aviation scenario specification

mechanism. Based on DSL design methodologies, ASDL provides a well-

structured definition language to define aviation mission scenarios. ASDL supports

verifying and executing aviation scenarios, effective sharing of scenarios among

various simulation environments, improving the consistency among different

simulators and enabling the reuse of scenario specifications. By taking a formal

approach in defining aviation scenarios, ASDL provides consistency and

completeness checking, and model-to-text transformations capabilities for various

targets in the aviation domain. Built in EMF (Steinberg et al., 2008), ASDL tool

suite can also support a graphical modeling environment to automatically transform

scenario models into executable scenario scripts (Jafer et al., 2017a). The current

version of ASDL supports specification of departure, re-route, and landing

scenarios (“ASDL Ontology,” 2016).

ASDL Ontology

 To capture aircraft landing details, it is essential to have a definitions

reference list that highlights all key terminology as well as procedures and

operations that are communicated between the pilot and ATC. The United States’

FAA and the Single European Sky ATM Research (SESAR) programs provide

inclusive glossaries that provide key terminology and concept of operations (FAA

Flight Standards Service AFS Flight Program Division, 2012; SESAR, 2015). A

review of existing ontologies resulted in one aviation ontology being discovered.

However, this described the structural and physical entities of an aircraft, and hence

did not provide any useful terms that could be reused. Thus, a new aviation-specific

ontology was created for this project.

 ASDL ontology consists of two parts: keywords that describe the physical

model and operation of flights, and words that describe key communication

between the control tower and pilots. This section lists majority of these keywords

along with their definitions and use. A complete ASDL ontology can be accessed

online (“ASDL Ontology,” 2016). Once sufficient keywords were identified, the

primarily used terms were added to a basic ontology created using Protégé

(Alatrish, 2013), which saves them in OWL format. Protégé is an ontology

development environment that makes it easy to create, upload, modify, and share

6

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

ontologies for collaborative viewing and editing (Musen, 2015). The Web Ontology

Language (Bechhofer, 2009) is a language for defining ontologies on the Web. An

OWL ontology describes a domain in terms of classes, properties and individuals

and may include rich descriptions of the characteristics of those objects (Stanford

Center for Biomedical Informatics Research, 2017).

 An ontology focuses mainly on classes which describe the concepts of the

domain. It follows a hierarchical model where subclasses are all necessarily a part

of the superclass (Noy & McGuinness, 2001). The ASDL ontology has four base

classes: Air_Traffic_Control, Aircraft, Airport, and Weather. This can be seen in

Figure 2, created by the authors. All these terms have been defined in Table 1.

Figure 2. High-level view of ASDL ontology.

Table 1

Definition of terms in base class of ASDL Ontology.

Term Definition

Air Traffic

Control

A service operated by appropriate authority to promote

the safe, orderly and expeditious flow of air traffic.

Aircraft Any machine that can derive support in the atmosphere

from the reactions of the air other than the reactions of the

air against the earth’s surface.

Airport An area on land or water that is used or intended to be

used for the landing and takeoff of aircraft and includes

its buildings and facilities, if any.

Weather The state of the atmosphere at a place and time as regards

heat, dryness, sunshine, wind, rain, etc.

Note: Adapted from “ASDL Ontology” by GitHub, 2016, p. 1.

7

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

As shown in Figure 3a, the ATC class includes a Controller and various key terms

that need to be used in conversation. The main part of this ontology involves the

aircraft and its properties. Figure 3b, created by the authors, shows the subclasses

of the Aircraft class.

(a) Elements present in ATC class. (b) Elements present in Aircraft class.

Figure 3. Elements present in ATC and Aircraft classes in ontology.

 The Flight_Properties subclass describes the rules (IFR or VFR) that govern

the flight, the speed of the aircraft, the fuel remaining and has three other

subclasses: controls (pitch, roll and turn rates), location (altitude, latitude,

longitude) and time (arrival time, departure time, and ACLT). The physical

properties subclass contains the call sign, type of aircraft and its weight class. The

Airport class includes an identifier, the details of terminals and gates present in the

airport, its elevation as well as runway details. Each runway’s information also

includes its heading. These author-created Figures can be seen in Figure 4a in a

similar approach, 4b shows the items present in the Weather class.

8

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

(a) Elements present in Airport class. (b) Elements present in Weather class.

Figure 4. Elements present in ATC and Aircraft classes in ontology.

 Protégé instances can also be created of all these classes having the requisite

properties. There is a large scope for addition of various related items to the

ontology; this is only a basic framework that lists the main items that are used in

this model. A more comprehensive list of definitions is available online at ASDL

Ontology (2016).

ASDL Metamodel in Ecore

 Following the principles of MDD, scenario development takes place as the

transformation of operational scenarios (defined in a natural language) to

conceptual scenarios (conforming to ASDL formal metamodel) then to executable

scenarios (specified using ASDL scenario definition). To capture all the necessary

constructs for a simulation scenario, Simulation Interoperability Standards

Organization (SISO) Base Object Model (BOM) (SISO Base Object Model Product

Development Group, 2006) was adopted as the baseline metamodel. BOM is a

standard that introduces the interplay, the sequence of events between simulation

elements, as well as the reusable pattern, and provides a standard to capture the

interactions. In ASDL, this baseline was extended to capture all the domain related

concepts and terminology as constructs. Eclipse Modeling Framework (EMF) was

used to create ASDL metamodel. EMF is a commonly used modeling framework

and code generation facility for building tools based on metamodels (Gronback,

2014). Once a model specification has been described, EMF provides tools to

produce a set of Java classes for the model, along with a set of adapter classes which

enable viewing and editing of the model. The first step is to have a design of the

structure of the data which includes all data items and the relationships between

them. This can then be defined in EMF in the Ecore format, which is basically a

subset of Unified Modeling Language (UML) Class diagrams. This is the

metamodel, which describes the structure of the model. A metamodel can further

9

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

be used to generate a model, which is a concrete instance of this structured data.

The Ecore file allows users to define the following elements for the model:

1. EClass: a class with zero or more attributes and references.

2. EAttribute: an attribute of the class which has a name and a type.

3. EReference: an association between two classes.

4. EDataType: the data type of an attribute.

 In ASDL, first an aviation scenario metamodel was developed in order to

capture the necessary characteristics of a flight. This drew upon the ontology

developed in the first part of the project in order to define these attributes. Second,

the aviation metamodel was integrated with the BOM metamodel in order to define

scenarios with specific aviation-related properties. Constructing ASDL metamodel

was adapted from the framework introduced by Durak et al. (2014):

1. Define the classes required to accurately represent the model.

2. Determine the attributes used to describe the classes.

3. Define the structure and relationships between the classes.

4. Create an Ecore model based on the entities identified.

5. Integrate this model of aviation entities into the BOM framework.

6. Generate Java code for the model.

7. Create a runtime instance and use it to define and edit an aviation scenario.

 The current ASDL model object allows users to define four different kinds

of scenarios: departure, reroute, and landing. It also includes pilots, airports,

runways, control towers, flight properties, weather patterns and aircrafts. This

metamodel was integrated with the BOM entities of interplays, state machines and

events in order to describe a flight scenario. This is seen in Figure 5.

10

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

Figure 5. ASDL metamodel defined in EMF Adapted from “Formal Scenario

Definition Language for Aviation: Aircraft Landing Case Study” by S. Jafer et al.,

2016, AIAA Modeling and Simulation Technologies conference.

Approach: Ontology-based Scenario Development

 To generate an executable simulation scenario from a given DSL ontology,

a number of transformations must occur. Model transformations are an essential

model-based development practice. These transformations allow for reflection of

the data captured in one model to another as well as the addition of specialized

information to the source model. Figure 6, created by the author, provides an overall

illustration of our proposed approach, where an ASDL Suite provides an

environment to specify a scenario from the early stage of scenario properties

capturing, to providing an executable simulator-independent script.

11

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

Figure 6. Ontology-driven scenario development with ASDL Suite.

 The ASDL Suite comprises efforts in three stages. The first step is the

specification of conceptual scenarios in the form of an Ecore metamodel created in

Eclipse. This metamodel is built on top of an ontology, which captures all the

keywords and concepts that define a flight scenario. In the next step, this metamodel

is used to create a model of a specific scenario. This can be performed with the use

of the ASDL Graphical User Interface (GUI), which allows a user to pick their

required scenario elements from a menu. This facilitates the encapsulation of all

metamodel and ontology details and allows the user to only interact with the parts

of the tool they directly need, without being burdened with any background code.

The deployment stage uses the information entered by the user into the model, and

with automated code generation facilities, produces a standard scenario script in

eXtensible Markup Language (XML) format. This XML script is then turned over

to the end users for executing the scenario in their target simulator.

 The following sections discuss the details of various transformations

occurring in EMF environment, representing the required steps in taking an

operational scenario and turning it into an executable simulator-specific script.

Automated Ontology to Metamodel Transformation

 The automation of the mapping process from ontology to metamodel can be

accomplished by creating an Eclipse plug-in that can read the Ontology files in

OWL/XML format and convert them into Ecore objects using a set of established

rules as has been shown in Figure 7. Fully automated transformation process is

explained extensively in a previous work (Jafer et al., 2017b) where we discuss

challenges and shortfall of such automation.

12

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

Figure 7. Transformation from ontology to metamodel. Adapted from “Owl

Ontology to Ecore Metamodel Transformation for Designing a Domain

Specific Language to Develop Aviation Scenarios” by S. Jafer et al., 2017b,

Proceedings of the Symposium on Model-Driven Approaches for Simulation

Engineering.

Text-to-Model Transformation

 Text-to-Model (T2M) transformations are generally implemented for the

purposes of reverse-engineering models from code and for creating models of

existing legacy code (Bruneliere, Cabot, Jouault, & Madiot, 2010). T2M

transformations are performed by using code to obtain the UML diagrams of a

system. This is achieved with the use of a parser for the code along with some

mechanism to extract the relationships present between elements of the code. It is

a highly-complicated and challenging process to write a T2M transformation code

for complex languages. However, Eclipse enables the transformation of any XML

schema (which is an XSD file) into an Ecore metamodel (Budinsky, Steinberg,

Ellersick, Grose, & Merks, 2004). In the case of ASDL, no T2M transformation

was required as all modeling was directly performed using EMF.

Model-to-Text Transformation

 Model-to-Text (M2T) transformations are mainly used to bridge the gap

between the modeling language and the programming language by defining

methods of automated code generation. Eclipse allows for the use of multiple tools

in order to generate textual artifacts from models. Three major M2T transformation

tools available within Eclipse are Acceleo, Xpand, and the Java Emitter Template

(JET) (Skrypuch, 2007). EMF uses Java Development Tools (JDT) to build the

editor within its code generation facility. The JET component’s framework is used

for automated transformations in EMF. In this case, JET was used to convert the

ASDL metamodel into Java source code.

13

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

Model-to-Model Transformation

 A Model-to-Model Transformation (MMT) has a model as both input and

output, but with different parent metamodels. It accepts a model conforming to a

particular metamodel and converts it into a model conforming to a different

metamodel based on a certain set of rules (Wimmer, Perez, Jouault, & Cabot, 2012).

An example of an MMT performed by EMF is the transformation of an Ecore

model into a UML model. This process involves extracting the entities and

attributes and defining them as classes and properties, and including references and

associations to create the UML model.

Automated Code Generation from a Scenario Model

 Once a conceptual model has been created, a conceptual scenario can be

defined by running the metamodel and describing the attributes of all entities in this

instance of the model. For ASDL, this is performed by executing the automated

validation process included within Eclipse to ensure that all classes and attributes

have defined requirements for the expected valid data. These standards are included

within the metamodel and mainly describe items such as ensuring that all attributes

have a data type, and all class relationships define the expected cardinality. The

model, editing and testing codes are automatically obtained by using EMF’s in-

built code generation tools. This automated code has a separate Java class for each

class in the conceptual model, which includes the getter and setter methods for all

attributes. It is possible to allow for changes to be made in the generation of code

for each class as necessary based on the required behavior. Once these classes have

been generated, the metamodel is considered complete and an XML schema is

generated and validated. A model of a conceptual scenario can now be defined

using the metamodel. In this next step, the Eclipse Model Editor is used to define

the operational scenario and an XML script is created. Eclipse automatically

generates an XML Metadata Interchange (XMI) file, which is a specialized

application of XML and is used to represent the model.

Methodology 1: ASDL-Ecore Scenario Modeling

 To provide an easy-to-use drag and drop framework to construct ASDL

scenario models, a recent effort presented a graphical modeling and editing

interface to ASDL (Jafer et al., 2017a). The graphical scenario specification tool is

developed using EMF Forms within EMF which provides a rapid mechanism to

develop tools for modeling languages. Figure 8 illustrates the graphical interface

used to quickly specify an aircraft model in ASDL.

14

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

Figure 8. Aircraft modeling GUI. Adapted from “Graphical Specification of Fight

Scenarios with Aviation Scenario Definition Language (asdl)” by S. Jafer et al.,

2017a, AIAA Modeling and Simulation Technologies Conference.

Ultimately, for the given landing scenario discussed previously, all entities

such as weather, pilot, ATC, runway, etc. can be quickly specified using EMF-

supported UI. The overall scenario created using this approach is illustrated in

Figure 9, showing aircraft entity, followed by all other entities (hidden to preserve

space).

Methodology 2: System Entity Structure

 The system theory-based approach to modeling and simulation has resulted

in many enhancements in the field, one of which is System Entity Structure (SES)

(Ören & Zeigler, 2012). SES is a high-level ontology which was introduced for

knowledge representation of decomposition, taxonomy and coupling of systems

(Kim, Lee, Christensen, & Zeigler, 1990). SES is a useful ontological framework

to define data engineering ontologies.

Figure 9. Overall landing scenario specified graphically in EMF. Adapted from

“Graphical Specification of Fight Scenarios with Aviation Scenario

15

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

Definition Language (asdl)” by S. Jafer et al., 2017a, AIAA Modeling and

Simulation Technologies Conference.

 SES enables fundamental representation of hierarchical modular model

providing a design space via the elements of a system and their relationships in

hierarchical and axiomatic manner. SES is a declarative knowledge representation

scheme that characterizes the structure of a family of models in terms of

decompositions, component taxonomies, and coupling specifications and

constraints (Zeigler, 1984). As it has been described in a number of publications

(Pawletta et al., 2016; Zeigler & Hammonds, 2007), SES supports development,

pruning, and generation of a family of hierarchical simulation models. SES is a

formal ontology framework, axiomatically defined, to represent the elements of a

system (or world) and their relationships in hierarchical manner. Figure 10, created

by the author, provides a quick overview of the nodes and relationship involved in

a SES. Entities represent things that have existence in a certain domain. They can

have variables which can be assigned a value within given range and types. An

Aspect expresses a way of decomposing an object into more detailed parts and is a

labeled decomposition relation between the parent and the children. Multi-Aspects

are aspects for which the components are all of the one kind. A Specialization

represents a category or family of specific forms that a thing can assume. It is a

labeled relation that expresses alternative choices that a system entity can take on.

Figure 10. Nodes and relationship involved in a SES.

 Given an SES tree, when suitably pruned, SES provides specific SES

instantiations for investigation and analysis. Pruning is defined as assigning the

16

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

values to the variables and resolving the choices in Aspect, Multi-Aspect and

Specialization relations. While there may be several Aspect nodes for several

decompositions of the system on the same hierarchical level, a particular subset can

be chosen in pruning based on the purpose. Specializations enable to capture

various variants of an entity, one which needs to be selected during pruning. The

cardinality in Multi-Aspect relations is also specified in pruning, resulting in the

Pruned Entity Structure (PES), which is a selection-free tree.

SES Metamodel

 The SES metamodel captures all SES constructs and their relationships.

Figure 11, created by the author, presents an overview of a representative SES

metamodel that has been developed using ECORE.

Figure 11. System Entity Structure metamodel.

The constructs of the metamodel are Entity, Specialization, Aspect,

MultiAspect and Attribute classes. An Attribute has a name and value field which

are specified as EString type for the sake of simplicity. In order to exemplify the

relationships between the constructs, we can have a look at the unidirectional

references between Entity and MultiAspect. An Entity type node can have a zero

to n multi-aspect to MultipleAspect type node, and further a MultipleAspect type

node has a reference to an Entity type nodes. The process followed for developing

the metamodel and a specific scenario can be seen in the author-created Figure 12.

17

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

Figure 12. Process followed for developing the metamodel and a specific scenario.

ASDL Metamodel in SES

 SES-based metamodeling approach (Zeigler & Sarjoughian, 2013) provides

a high-level ontology for knowledge representation of decomposition, taxonomy

and coupling of ASDL scenarios. The ASDL Metamodel captures all possible meta

elements of a flight operation scenario (landing, reroute, departure) via a SES. A

representative excerpt of ASDL Metamodel is presented in Figure 13, created by

the author. The top-level Scenario entity is decomposed using the scenarioDec

aspect node into Environment, Entities and Events. entityMultiAsp multi-aspect

node decomposes Entities to multiple nodes Entity. entitySpec specialization node

is then used to capture the different types of Entity. Three examples from a larger

set that are depicted in the figure are Aircraft, Airports which is the declaration for

multiple Airport, and Weather. aircraftDec is then used to identify the aspects of an

Aircraft that are of interest as elements of a scenario. These are namely Flight and

Pilot. Flight is then decomposed into its states: Position, Attitude, Angular Velocity

and Translational Velocity. Airport is decomposed into ATCs and Runways which

are declaration for multiple ATC and Runway. WeatherStateDec decomposes

Weather into Wind and Temperature. eventDec decomposes an event into a Guard

and an Action. Two Guard types are State and Time. eventSpec is on the other side

used to capture various types of Event. Examples are Reroute, Landing and

Departure. Finally, a Landing event can be specified as either NormalLanding,

CrosswindLanding, or ShortFieldLanding.

18

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

Figure 13. ADL metamodel extract.

 In an SES tree, attributes are leaf entities that capture scenario’s data values.

As an example, Position entity has attributes Latitude, Longitude and Altitude.

Default values for attributes can be easily set at metamodeling. Such data could

appear on SES tree for quick reference. While the presented ASDL SES hierarchy

excerpt is not complete, it includes enough number of elements to be representative

as a metamodel that captures various possible scenario elements. The complete

metamodel captures all the possible scenario elements that are available in ASDL.

SES structure can also be implemented in the MS4 Me, which is an Eclipse-based

tool suite that provides a quick development environment to specify SES entities

and their relationships. Figure 14, created by the author, is the partial ASDL

implementation in MS4 Me environment with SES tree constructed on the right-

side section.

ASDL-SES Scenario Modeling

 With the given SES tree in Figure 13 consisting of all possible elements of

the simulation scenario, the scenario modeling activity is as simple as Pruning of

this tree to hand pick a very particular scenario. Values are assigned to attributes,

and selections are performed for Aspect, Multi-aspect, and Specialization. The

resulting selection-free tree is the model representation of that particular scenario.

See Figure 15, created by the author.

 Pruning can be conducted via automated means using a scripting front-end

that sets the attributes values and selections in decision nodes such as cardinalities

at multi-aspect nodes or types at specialization nodes. The pruning procedure

resulted in Figure 15, however was accomplished manually. The ASDL Scenario

Metamodel is used to construct a modeling toolbox that is composed of decision-

free nodes of the SES tree. As the user adds the Scenario to its mode, Environment

appears a decision-free elect of the scenarioDec. Then the user selects which and

19

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

how many Entities will be added. Referring to the operational scenario of Normal

Landing provided in the Simulation Scenario Development subsection, the user

proceeds to Step 2 by adding the NormalLanding event to the model. In Step 3 and

4, the user then adds the Aircraft and Airport entities. Step 5 follows by adding

Weather element and finally the last step is when the user specifies the missing

values of selected attributes (gray boxes), specifying all the details according to the

operational scenario.

Figure 14. Representation of ASDL scenario metamodel in SES.

Figure 15. Scenario development with pruning.

20

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

 Ultimately, the MS4 Me tool suite can be utilized to work from any such

pruning to generate the complete space by enumeration or it can sample from this

space randomly. Automated pruning in the form of enumerative and random

pruning are under consideration by MS4 Me team. Enumerative pruning can

generate completely pruned entity structures sequentially assuring that each family

member is produced once and only once (Zeigler, Kim, & Praehofer, 2000). This

"brute force" method is sufficient for relatively small solution spaces – recall that

the family size grows geometrically with number of choices. Random pruning

samples from the family of PES will make choices with uniform probability

wherever the pruning script has not given the pruner a basis for decision. By starting

from a different initial seed for its pseudo-random number generator at each

iteration, the pruner draws different random samples from the solution space. This

process will be constrained by a set of rules.

 Furthermore, MS4 Me can develop rules that direct the pruning process as

well the pre-and post-processing of the pruning results. Such rules will exploit

partial contexts to enable a rule to be applied to every occurrence of an entity that

satisfies a partial context. In general, there may be more than one rule and

concomitantly, more than one partial context may apply to an entity. Accordingly,

the developed algorithms will be enabled to make decisions in which selections are

ambiguous. For example, one approach is to order partial contexts by length,

longest first - on the basis that longer paths are more specific than shorter paths. For

each entity occurrence that it encounters, the algorithm finds the longest (most

specific) partial context that matches the occurrence under consideration and

applies the associated rule to it. Conditional rules can be developed in which

choices made in one location of the structure will condition those in other locations.

Comparison of Approaches

 Both approaches require an understanding of the subject domain in order to

create a metamodel. The definitions and relationships between these elements need

to be understood so they can be represented hierarchically within the ontology. The

SES approach requires a more strict and formal definition of the ontology since

MultiAspects and Specializations are separated from other Aspects, which are the

other child elements (Jafer, Chhaya, Updegrove, & Durak, 2018). On the other

hand, an OWL ontology requires metamodeling using Ecore or another framework

to extract an XML schema and generate a specific scenario, whereas an SES Editor

such as MS4 Me can generate the XML directly from a pruned SES model. The

additional step of translating an OWL file into Ecore before generating a scenario

makes the use of SES more favorable in the authors’ eyes.

21

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

Application

 One of the applications of our proposed ontology-driven scenario

development is in the domain of aviation training. Targeting the FAA Academy Air

Traffic Control program, we are building a scenario-based training environment

that enhances controller’s training by providing a practice environment where

trainees investigate various air traffic scenarios (Updegrove & Jafer, 2017). Based

on the concept of scenario specification and modeling adopted in ASDL, we are

developing a GUI-based environment where controller instructors specify air traffic

scenario metrics and properties, conduct performance and evaluation studies, and

monitor trainee’s responses to gauge the learning process. On the other hand,

trainees are provided with a close-to-reality simulation environment, where they

practice various scenarios by analyzing and reacting to the scenario events and

making optimal choices in controlling air traffic events (Chhaya, Jafer, Coyne,

Thigpen, & Durak, 2018).

 Similarly, the defense domain can significantly benefit from scenario-based

simulation technologies for training, guidance, and decision support purposes. The

MSDL (Military Scenario Definition Language Product Development) was

proposed for this purpose and have been widely used in the defense domain (SISO,

2008).

 The application of ASDL has been described for the following domains in

other works: generation of flight simulation scenarios (Jafer, Chhaya, Durak, &

Gerlach, 2018), scenario-based challenges for Next Generation Aviation

Technology (Moallemi, Jafer, & Chhaya, 2018) and enhancing scenario-centric

ATC training (Chhaya et al., 2018).

Conclusion

 This paper presents a model-based scenario development approach that

exploits Eclipse Modeling Framework (EMF) Ecore and System Entity Structure

(SES) for metamodeling and modeling. Despite its key role in a simulation study,

there is no structured and well-formed methodology for scenario development. By

presenting two distinct metamodeling approaches for a Domain Specific Language

(DSL) recently published for aviation simulation scenario specification (Aviation

Scenario Definition Language – ASDL), ontology development and model-based

scenario specification stages are presented. EMF uses the Ecore format, which is a

subset of UML class diagrams to describe entities and their relationships. SES

represents the elements of a system and their relationships in a hierarchical manner.

Given the similar structure that both Ecore and SES follow, it is not easy to draw a

22

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

fine comparison line between the two methodologies. Obviously, through steps of

model transformations, one can easily, and even automatically, translate a DSL

metamodel from one approach to another. Hierarchical structure and entity

specification are among the main concepts shared by Ecore and SES in constructing

a DSL ontology. The key is the selection of scenario-specific entities from a DSL

ontology, which has been evidently made easy by tool support, providing modelers

various means of automation in specifying, validating, and verifying a scenario.

This work showcases the capabilities of both EMF and SES as metamodel

frameworks for scenario-based modeling, but it can be extended to investigate the

full tool suites available in each platform to determine its suitability for all aspects

of the modeling process. The research demonstrated in this article has already been

utilized to develop a scenario-based training tool for air traffic controllers at the

FAA Academy. Moving the effort through standardization is already underway,

where XML representation of SES already exists and ASDL Ecore/XML is

currently being researched. Automated model checking and transformation as well

as more rigorous tool support are two future directions in this area, both for Ecore

and SES.

23

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

References

Alatrish, E. (2013). Comparison some of ontology. Journal of Management

Information Systems, 8(2), 18-24.

ASDL Ontology. (2016). Retrieved from https://github.com/ASDL-prj/Ontology

Bechhofer, S. (2009). Owl: Web ontology language. In Encyclopedia of database

systems (pp. 2008–2009). Retrieved from https://link.springer.com/

referenceworkentry/ 10.1007%2F978-0-387-39940-9_1073

Brambilla, M., Cabot, J., & Wimmer, M. (2012). Model-driven software

engineering in practice. Synthesis Lectures on Software Engineering, 1(1),

1-182.

Bruneliere, H., Cabot, J., Jouault, F., & Madiot, F. (2010). Modisco: A generic

and extensible framework for model driven reverse engineering. In

Proceedings of the ieee/acm international conference on automated

software engineering (pp. 173–174). Antwerp, Belgium.

Budinsky, F., Steinberg, D., Ellersick, R., Grose, T. J., & Merks, E. (2004).

Eclipse modeling framework: A developer’s guide. Addison-Wesley.

Ceh, I., Crepinšek, M., Kosar, T., & Mernik, M. (2011). Ontology driven

development of domain-specific languages. Computer Science and

Information Systems, 8(2), 317–342.

Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. (1999). What are

ontologies, and why do we need them? IEEE Intelligent Systems and their

applications, 14(1), 20–26.

Chhaya, B., Jafer, S., Coyne, W. B., Thigpen, N. C., & Durak, U. (2018).

Enhancing scenario-centric air traffic control training. In 2018 AIAA

modeling and simulation technologies conference (p. 1399). Kissimmee,

FL.

Department of Defense. (1998, January). DoD modeling and simulation (M&S)

glossary. Washington, DC: Author.

Durak, U., Schmidt, A., & Pawletta, T. (2015). Model-based testing for objective

fidelity evaluation of engineering and research flight simulators. In AIAA

modeling and simulation technologies conference (p. 2948). Kissimmee,

FL.

Durak, U., Topçu, O., Siegfried, R., & Oguztuzun, H. (2014). Scenario

development: A model-driven engineering perspective. In 2014

24

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

international conference on Simulation and Modeling Methodologies,

Technologies and Applications (SIMULTECH) (pp. 117–124). Vienna,

Austria.

FAA Flight Standards Service AFS Flight Program Division. (2012). AFS flight

program flight operations manual. Retrieved from http://fsims.faa.gov/

wdocs/other/fom.htm

Farquhar, A., Fikes, R., & Rice, J. (1997). The ontolingua server: A tool for

collaborative ontology construction. International Journal of Human-

Computer Studies, 46(6), 707-727.

Fowler, M. (2010). Domain-specific languages. New York, NY: Pearson

Education.

Gronback, R. (2014). Eclipse modeling framework (emf). Retrieved from

https://eclipse.org/ modeling/ emf/

Gruber, T. R. (1993). A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2), 199–220.

Hilera, J. R., & Fernández-Sanz, L. (2010). Developing domain-ontologies to

improve software engineering knowledge. In Software engineering

advances (icsea), 2010 fifth international conference on (pp. 380–383).

Nice, France.

Hudak, P. (1997). Domain-specific languages. Handbook of Programming

Languages, 3(39-60), 21. Retrieved from https://pdfs.semanticscholar.org/

b06c/ 06de5335a0e53ad7122419886890c2cab2a4.pdf

Jafer, S., Chhaya, B., & Durak, U. (2017a). Graphical specification of flight

scenarios with aviation scenario definition language (asdl). In AIAA

modeling and simulation technologies conference (p. 1311). Grapevine,

TX.

Jafer, S., Chhaya, B., & Durak, U. (2017b). Owl ontology to Ecore metamodel

transformation for designing a domain specific language to develop

aviation scenarios. In Proceedings of the symposium on model-driven

approaches for simulation engineering (p. 3). Grapevine, TX.

Jafer, S., Chhaya, B., Durak, U., & Gerlach, T. (2016). Formal scenario definition

language for aviation: aircraft landing case study. In AIAA modeling and

simulation technologies conference (p. 3521). Washington, D.C.

25

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

https://eclipse.org/modeling/emf/

Jafer, S., Chhaya, B., Durak, U., & Gerlach, T. (2018). Automatic generation of

flight simulation scenarios with aviation scenario definition language.

Journal of Aerospace Information Systems, 15(4), 193-202.

Jafer, S., Chhaya, B., Updegrove, J., & Durak, U. (2018). Schema-based

ontological representations of a domain-specific scenario modeling

language. Journal of Simulation Engineering, 1.

Kim, T.-G., Lee, C., Christensen, E. R., & Zeigler, B. P. (1990). System entity

structuring and model base management. IEEE Transactions on Systems

Man and Cybernetics, 20(5), 1013–1024.

Maedche, A., & Staab, S. (2001). Ontology learning for the semantic web. IEEE

Intelligent systems, 16(2), 72-79.

McGuinness, D. L. (2004). Owl web ontology language overview. W3C

recommendation, 10(10).

Moallemi, M., Jafer, S., & Chhaya, B. (2018). Scenario specification challenges

for next generation aviation technology demonstrations. In 2018 AIAA

modeling and simulation technologies conference (p. 1396). Kissimmee,

FL.

Musen, M. A. (2015). The protégé project: A look back and a look forward. AI

matters, 1(4), 4-12.

North Atlantic Treaty Organization. (2015, January). Guideline on scenario

development for (distributed) simulation environments. Retrieved from

https://www.sto.nato.int/ publications/STO%20Technical%20Reports/

STO-TR-MSG-086-Part-II/$$TR-MSG-086-Part-II-ALL.pdf

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to

creating your first ontology. Retrieved from https://protege.stanford.edu/

publications/ ontology_development/ontology101.pdf

Ören, T. I., & Zeigler, B. P. (2012). System theoretic foundations of modeling and

simulation: a historic perspective and the legacy of a Wayne Wymore.

Simulation, 88(9), 1033–1046.

Pan, J. Z., Staab, S., Aßmann, U., Ebert, J., & Zhao, Y. (2012). Ontology-driven

software development. New York, NY: Springer.

Pawletta, T., Schmidt, A., Zeigler, B. P., & Durak, U. (2016). Extended

variability modeling using system entity structure ontology within

matlab/simulink. In Proceedings of the 49th annual simulation symposium

(p. 22). Pasadena, CA.

26

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

Saeki, M., & Kaiya, H. (2006). On relationships among models, meta models and

ontologies. In Proceedings of the proceedings of the 6th oopsla workshop

on domain-specific modeling (dsm 2006). Portland, OR.

doi:10.1.1.103.6720

Schmidt, A., Durak, U., & Pawletta, T. (2016). Model-based testing methodology

using system entity structures for matlab/simulink models. Simulation,

92(8), 729–746.

SESAR. (2015). Welcome to the Sesar integrated dictionary. Retrieved from

https://ext.eurocontrol.int/lexicon/index.php/SESAR

Siegfried, R., Laux, A., Rother, M., Steinkamp, D., Herrmann, G., Lüthi, J., &

Hahn, M. (2012). Scenarios in military (distributed) simulation

environments. Retrieved from https://www.sto.nato.int/publications/

STO%20Technical%20Reports/STO-TR-MSG-086-Part-II/$$TR-MSG-

086-Part-II-ALL.pdf

Siegfried, R., Oguztüzün, H., Durak, U., Hatip, A., Herrmann, G., Gustavson, P.,

& Hahn, M. (2013). Specification and documentation of conceptual

scenarios using base object models (boms). Retrieved from

https://www.researchgate.net/publication/ 256939472_ Specification_and_

Documentation_of_Conceptual_Scenarios_Using_Base_Object_Models_

BOMs

Simulation Interoperability Standards Organization. (2008, October). Standard

for: Military scenario definition language (msdl). Retrieved from

https://www.sisostds.org/ DigitalLibrary.aspx?Command=Core_

Download&EntryId=30830

Skrypuch, N. (2007). Model to text (m2t). Retrieved from

http://www.eclipse.org/modeling/m2t/

SISO Base Object Model Product Development Group. (2006, March). Base

object model (bom) template specification. Retrieved from

https://www.sisostds.org/DesktopModules/ Bring2mind/DMX/API/

Entries/Download?Command=Core_Download&EntryId=30820&PortalId

=0&TabId=105

Stanford Center for Biomedical Informatics Research. (2017). A free, open-source

ontology editor and framework for building intelligent systems. Retrieved

from http://protege.stanford.edu/

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008). Emf: Eclipse

modeling framework. New York, NY: Pearson Education.

27

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

https://ext.eurocontrol.int/lexicon/index.php/SESAR
http://www.eclipse.org/modeling/m2t/
http://protege.stanford.edu/

Topçu, O., Durak, U., O˘guztüzün, H., & Yilmaz, L. (2016). Distributed

simulation: A model driven engineering approach. New York, NY:

Springer.

Updegrove, J., & Jafer, S. (2017). Recommendations for next generation air traffic

control training. In Digital avionics systems conference (dasc), 2017

IEEE/AIAA 36th (pp. 1–6). St. Petersburg, FL.

Wimmer, M., Perez, S. M., Jouault, F., & Cabot, J. (2012). A catalogue of

refactorings for model-to-model transformations. Journal of Object

Technology, 11(2), 2-1.

Wittman Jr, R. L. (2009). Defining a standard: The military scenario definition

language version 1.0 standard. In Proceedings of the 2009 spring

simulation multiconference (p. 73). San Diego, CA.

Zeigler, B. P. (1984). Multifacetted modelling and discrete event simulation. San

Diego, CA: Academic.

Zeigler, B. P., & Hammonds, P. E. (2007). Modeling and simulation-based data

engineering: introducing pragmatics into ontologies for net-centric

information exchange. Amsterdam, Netherlands: Elsevier.

Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of modeling and

simulation. San Diego, CA: Academic.

Zeigler, B. P., & Sarjoughian, H. S. (2013). Guide to modeling and simulation of

systems of systems. New York, NY: Springer.

28

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4

	SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language (ASDL)
	Scholarly Commons Citation

	tmp.1544306925.pdf.K10Zy

