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Introduction 

 Aviation has long been benefiting from modeling and simulation for 

technology development, testing, training and integration purposes. Although the 

importance of scenarios in this domain has been well known, there still exists a lack 

of common understanding and standardized practices in aviation simulation 

scenario development (Durak, Topçu, Siegfried, & Oguztuzun, 2014; Jafer, 

Chhaya, Durak, & Gerlach, 2016). It is an extensive process beginning with the 

stakeholders’ descriptions of the scenario and finishing with the generation of the 

corresponding executable specifications (Durak et al., 2014). Simulation scenario 

can be defined as the specification of initial and terminal conditions, significant 

events and the environment, as well as the major entities, their capabilities, behavior 

and interactions over time (Department of Defense, 1998). With one sky shared 

globally, the next generation of aviation technologies call for immediate action on 

defining a standardized mechanism for developing, sharing, and integrating large-

scale simulation scenarios among global stakeholders. With the help of model- and 

simulation-based engineering, large-scale systems integration and demonstrations 

take place seamlessly. This demands for common understanding of simulation 

scenarios, allowing for cross-platform interoperability such that scenarios can be 

run on any simulator worldwide.  

 Developing a scenario definition language for a specific domain has been 

recently conducted for military simulations. Military Scenario Definition Language 

(MSDL) (Wittman, 2009) was developed and published as a standard by Simulation 

Interoperability Standards Organization (SISO; 2008). Similarly, the recent effort 

published at American Institute of Aeronautics and Astronautics (AIAA), as 

reported by Jafer, Chhaya, and Durak (2017a), proposes to standardize aviation 

scenario development through Aviation Scenario Definition Language (ASDL) to 

allow the global aviation Modeling and Simulation (M&S) community, from 

academia, industry, and government agencies, benefit from a common scenario 

definition platform, enabling model transformation, reusability, and interoperability 

across various simulation environments. ASDL was proposed with the following 

goals in mind:  

1. A common mechanism (published standards) for specifying, verifying and 

executing aviation scenarios. 

2. The ability to create platform-independent aviation scenario that can be shared 

between simulation environments and various simulators. 

3. A way to improve scenario consistency among globally collaborative 

simulations. 
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4. A platform for coupling training needs with an efficient scenario generation 

process. 

5. The ability to reuse aviation scenarios as scenario descriptions in many areas 

within aviation, e.g., technology and product development and integration (US and 

European aviation programs) or flight training, etc. 

6. Reusability and adaptation to other transportation areas such as ground, water, 

and even space exploration. 

 ASDL takes scenario-based development as the core activity in constructing 

a formal scenario definition language. Concepts such as ontology-based and model-

based development have been highly utilized to incorporate automated 

transformations and executable generation (Saeki & Kaiya, 2006). At the core of 

every domain-specific language exists an ontology that captures all domain’s key 

terminology and relationships. The elements of model-driven methodology are 

modeling languages, metamodels, and transformations (Brambilla, Cabot, & 

Wimmer, 2012). Modeling languages enable the definition of a concrete 

representation for a model and metamodels are used to define modeling languages. 

Transformations are described as the mappings between models which are specified 

at metamodel level.  

 Constructing an ontology has been addressed in the literature through a 

number of techniques (Chandrasekaran, Josephson, & Benjamins, 1999; Farquhar, 

Fikes, & Rice, 1997; Maedche & Staab, 2001). To develop ASDL’s ontology, two 

approached were utilized: (1) metamodeling with Eclipse Modeling Framework 

(EMF) Ecore, and (2) metamodeling with System Entity Structure (SES). 

 EMF is a framework within the Eclipse ecosystem for Model-Driven 

Development (MDD) (Steinberg, Budinsky, Merks, & Paternostro, 2008). EMF 

core (Ecore) is a standard for data models that offers a metamodel for describing 

models as well as a persistence support with the ability to export results to 

eXtensible Markup Language (XML) format. On the other side, SES is a high-level 

ontology which was introduced to specify a set of system structures and parameter 

settings. It has long been used for modeling variable structure systems and recently 

applied to problems of model-based simulation system engineering such as model-

based testing (Durak, Schmidt, & Pawletta, 2015; Schmidt, Durak, & Pawletta, 

2016) and variability management (Pawletta, Schmidt, Zeigler, & Durak, 2016). 

 This paper proposes a model-based simulation scenario development 

approach using SES. In order to do this, first, simulation scenario development will 
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be introduced. The target language ASDL will then be described in detail including 

the metamodel and its implementation. Following this discussion, the proposed 

approach using SES will be presented and discussed. As an application example, 

we then provide a case where our proposed SES/Ecore approach is utilized in 

building a scenario-driven training toolset for air traffic controllers at the Federal 

Aviation Administration (FAA) Academy. 

Literature Review 

Simulation Scenario Development  

 Simulation scenario can be defined as the specification of initial and 

terminal conditions, significant events and the environment as well as the major 

entities, their capabilities, behavior, and interactions over time (Department of 

Defense, 1998). Although the importance of scenarios in M&S has long been well 

known, there still exists a lack of common understanding and standardized practices 

in simulation scenario development. Based on the North Atlantic Treat 

Organization (NATO) Guideline on Scenario Development (NATO, 2015), three 

types of scenarios are produced in successive stages of the scenario development 

process. These scenarios are: operational scenarios, conceptual scenarios, and 

executable scenarios (Siegfried et al., 2012, 2013), illustrated in Figure 1.  

 

Figure 1. Three types of simulation scenarios. Adapted from “Scenarios in Military 

(distributed) Simulation Environments” by R. Siegfried et al., 2012, Science and 

Technology Organization, TO Technical Report TR-MSG-086-Part-II. 
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 Operational scenarios are described in the early stages by the domain expert 

in the form of natural language, either oral or written. The key elements an 

operational scenario are the entities, their initial states and the events. The key 

element in a flight simulation scenario is the Aircraft. An example aircraft landing 

operational scenario is given as follows:  

A normal landing scenario starts with aircraft ER-1234 approaching at Daytona 

Beach Airport (DAB) originating from Atlanta Airport (ATL). Stable weather 

conditions nearing Daytona Beach are reported as cross wind: 77, dew point: 60, 

sky condition: few clouds at 5500 feet, temperature: -44, visibility: 10, wind shear: 

11.8. While cruising, the pilot requests descent. The ATC controller at DAB, grants 

the request and notifies the pilot to land on runway 7L. The pilot initiates descend 

and reports Aircraft status of altitude: 34000ft, latitude: 82.35, longitude: 31.49, 

flight rules: VFR, and ground speed: 543. The aircraft lands on Runway 7L.  

 The operational scenarios provide a coarse description of the intended 

situation and its dynamics, but they need to be refined and augmented with 

additional information pertaining to simulation. This refinement is usually done by 

the simulator experts and results in conceptual scenarios. Conceptual scenarios 

specify the piece of the world to be represented in the simulation environment in 

detail. They should incorporate all crucial information for executing the operational 

scenario. On the other hand, the executable scenario is the specification of the 

conceptual scenario in a particular format in order to be processed by the simulation 

applications for initialization, and execution. They support scenario management 

activities such as scenario distribution and role casting (Topçu, Durak, O˘guztüzün, 

& Yilmaz, 2016). For this purpose, the conceptual scenarios need to be transformed 

into executable scenarios. The transformation from conceptual scenarios to 

executable scenarios is undertaken primarily by simulator experts. Ideally, the 

resulting executable scenarios are specified in a way that they can directly be 

processed by the target simulator. 

Domain-Specific Language  

 Domain-Specific Language (DSL) is a custom-tailored computer language 

for a particular application domain (Fowler, 2010). DSL is created to specifically 

target problems in a specific domain, and stresses upon the main ideas, features, 

constraints, and characteristics of that domain. DSL enables developers to construct 

models that are specific to their application. These models are mainly composed of 

elements and relationships that are verified to be valid for that application.  
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 DSLs allow users to write complete application programs for the given 

domain more quickly and more effectively than they can with a general-purpose 

language (GPL). A well-designed DSL intends to capture precisely the semantics 

of an application domain (Hudak, 1997). Advantages of programs written in DSLs 

as compared to GPLs are that: they are more concise, they can be written more 

quickly, they are easier to maintain, and they can be written by non-programmers.  

 The greatest benefit of DSL is that it allows non-developers and those who 

are not experts in the domain to understand the overall design. This is normally 

supported by allowing graphical modeling, usually in the form of a drag and drop 

capability to construct models. DSL augmented with model-to-text transformation 

capabilities directly allows for automatic generation of source code from model. 

Ontology 

 An ontology describes the concepts and relationships that are important in 

a particular domain, providing a vocabulary for that domain as well as a 

computerized specification of the meaning of terms used in the vocabulary (Gruber, 

1993). One of the benefits of using ontologies is their capacity to be easily extended 

using new knowledge generated by experts so all existing ontologies can be used 

as a starting point for further development (Hilera & Fernández-Sanz, 2010). 

Among the existing ontology specification frameworks, the Web Ontology 

Language format (OWL) is most commonly used by the DSL community. OWL 

enables describing a domain in terms of classes, properties and individuals and may 

include rich descriptions of the characteristics of those objects (Bechhofer, 2009; 

McGuinness, 2004).  

 Ontology-Driven Software Development (ODSD) has emerged as a 

significant mechanism in creating domain-specific languages (Ceh, Crepinšek, 

Kosar, & Mernik, 2011), allowing for expressing domain concepts effectively (Pan, 

Staab, Aßmann, Ebert, & Zhao, 2012). Ontology provides a quick and simplified 

description of a DSL, abstracting language’s technically details, while highlighting 

key terminology and specifics. Once an ontology is built, it is a simple process to 

generate the language’s metamodel and establish relationships among related 

concepts. An automated process that takes in DSL’s ontology and generates its 

corresponding metamodel sounds highly efficient. This has been studied in various 

development environments including EMF (Jafer, Chhaya, & Durak, 2017b). 
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Target Language: Aviation Scenario Definition Language (ASDL) 

 A well-defined language for aviation scenario specification would enable 

the reuse of scenarios among different simulators. To address aviation simulations 

limitations, Jafer et al. (2016) introduced the Aviation Scenario Definition 

Language (ASDL) which aims to provide a standard aviation scenario specification 

mechanism. Based on DSL design methodologies, ASDL provides a well-

structured definition language to define aviation mission scenarios. ASDL supports 

verifying and executing aviation scenarios, effective sharing of scenarios among 

various simulation environments, improving the consistency among different 

simulators and enabling the reuse of scenario specifications. By taking a formal 

approach in defining aviation scenarios, ASDL provides consistency and 

completeness checking, and model-to-text transformations capabilities for various 

targets in the aviation domain. Built in EMF (Steinberg et al., 2008), ASDL tool 

suite can also support a graphical modeling environment to automatically transform 

scenario models into executable scenario scripts (Jafer et al., 2017a). The current 

version of ASDL supports specification of departure, re-route, and landing 

scenarios (“ASDL Ontology,” 2016). 

ASDL Ontology 

 To capture aircraft landing details, it is essential to have a definitions 

reference list that highlights all key terminology as well as procedures and 

operations that are communicated between the pilot and ATC. The United States’ 

FAA and the Single European Sky ATM Research (SESAR) programs provide 

inclusive glossaries that provide key terminology and concept of operations (FAA 

Flight Standards Service AFS Flight Program Division, 2012; SESAR, 2015). A 

review of existing ontologies resulted in one aviation ontology being discovered. 

However, this described the structural and physical entities of an aircraft, and hence 

did not provide any useful terms that could be reused. Thus, a new aviation-specific 

ontology was created for this project.  

 ASDL ontology consists of two parts: keywords that describe the physical 

model and operation of flights, and words that describe key communication 

between the control tower and pilots. This section lists majority of these keywords 

along with their definitions and use. A complete ASDL ontology can be accessed 

online (“ASDL Ontology,” 2016). Once sufficient keywords were identified, the 

primarily used terms were added to a basic ontology created using Protégé 

(Alatrish, 2013), which saves them in OWL format. Protégé is an ontology 

development environment that makes it easy to create, upload, modify, and share 
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ontologies for collaborative viewing and editing (Musen, 2015). The Web Ontology 

Language (Bechhofer, 2009) is a language for defining ontologies on the Web. An 

OWL ontology describes a domain in terms of classes, properties and individuals 

and may include rich descriptions of the characteristics of those objects (Stanford 

Center for Biomedical Informatics Research, 2017).  

 An ontology focuses mainly on classes which describe the concepts of the 

domain. It follows a hierarchical model where subclasses are all necessarily a part 

of the superclass (Noy & McGuinness, 2001). The ASDL ontology has four base 

classes: Air_Traffic_Control, Aircraft, Airport, and Weather. This can be seen in 

Figure 2, created by the authors. All these terms have been defined in Table 1.  

 

Figure 2. High-level view of ASDL ontology. 

 

Table 1 

Definition of terms in base class of ASDL Ontology.  

Term  Definition  

Air Traffic 

Control  

A service operated by appropriate authority to promote 

the safe, orderly and expeditious flow of air traffic.  

Aircraft  Any machine that can derive support in the atmosphere 

from the reactions of the air other than the reactions of the 

air against the earth’s surface.  

Airport  An area on land or water that is used or intended to be 

used for the landing and takeoff of aircraft and includes 

its buildings and facilities, if any.  

Weather  The state of the atmosphere at a place and time as regards 

heat, dryness, sunshine, wind, rain, etc.  

Note: Adapted from “ASDL Ontology” by GitHub, 2016, p. 1. 
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As shown in Figure 3a, the ATC class includes a Controller and various key terms 

that need to be used in conversation. The main part of this ontology involves the 

aircraft and its properties. Figure 3b, created by the authors, shows the subclasses 

of the Aircraft class. 

 

(a) Elements present in ATC class.  (b) Elements present in Aircraft class. 

Figure 3. Elements present in ATC and Aircraft classes in ontology. 

 

 The Flight_Properties subclass describes the rules (IFR or VFR) that govern 

the flight, the speed of the aircraft, the fuel remaining and has three other 

subclasses: controls (pitch, roll and turn rates), location (altitude, latitude, 

longitude) and time (arrival time, departure time, and ACLT). The physical 

properties subclass contains the call sign, type of aircraft and its weight class. The 

Airport class includes an identifier, the details of terminals and gates present in the 

airport, its elevation as well as runway details. Each runway’s information also 

includes its heading. These author-created Figures can be seen in Figure 4a in a 

similar approach, 4b shows the items present in the Weather class.  
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(a) Elements present in Airport class.              (b) Elements present in Weather class. 

Figure 4. Elements present in ATC and Aircraft classes in ontology. 

 

 Protégé instances can also be created of all these classes having the requisite 

properties. There is a large scope for addition of various related items to the 

ontology; this is only a basic framework that lists the main items that are used in 

this model. A more comprehensive list of definitions is available online at ASDL 

Ontology (2016).  

ASDL Metamodel in Ecore 

 Following the principles of MDD, scenario development takes place as the 

transformation of operational scenarios (defined in a natural language) to 

conceptual scenarios (conforming to ASDL formal metamodel) then to executable 

scenarios (specified using ASDL scenario definition). To capture all the necessary 

constructs for a simulation scenario, Simulation Interoperability Standards 

Organization (SISO) Base Object Model (BOM) (SISO Base Object Model Product 

Development Group, 2006) was adopted as the baseline metamodel. BOM is a 

standard that introduces the interplay, the sequence of events between simulation 

elements, as well as the reusable pattern, and provides a standard to capture the 

interactions. In ASDL, this baseline was extended to capture all the domain related 

concepts and terminology as constructs. Eclipse Modeling Framework (EMF) was 

used to create ASDL metamodel. EMF is a commonly used modeling framework 

and code generation facility for building tools based on metamodels (Gronback, 

2014). Once a model specification has been described, EMF provides tools to 

produce a set of Java classes for the model, along with a set of adapter classes which 

enable viewing and editing of the model. The first step is to have a design of the 

structure of the data which includes all data items and the relationships between 

them. This can then be defined in EMF in the Ecore format, which is basically a 

subset of Unified Modeling Language (UML) Class diagrams. This is the 

metamodel, which describes the structure of the model. A metamodel can further 
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be used to generate a model, which is a concrete instance of this structured data. 

The Ecore file allows users to define the following elements for the model:  

1. EClass: a class with zero or more attributes and references. 

2. EAttribute: an attribute of the class which has a name and a type. 

3. EReference: an association between two classes. 

4. EDataType: the data type of an attribute.  

 In ASDL, first an aviation scenario metamodel was developed in order to 

capture the necessary characteristics of a flight. This drew upon the ontology 

developed in the first part of the project in order to define these attributes. Second, 

the aviation metamodel was integrated with the BOM metamodel in order to define 

scenarios with specific aviation-related properties. Constructing ASDL metamodel 

was adapted from the framework introduced by Durak et al. (2014): 

1. Define the classes required to accurately represent the model. 

2. Determine the attributes used to describe the classes. 

3. Define the structure and relationships between the classes. 

4. Create an Ecore model based on the entities identified. 

5. Integrate this model of aviation entities into the BOM framework. 

6. Generate Java code for the model. 

7. Create a runtime instance and use it to define and edit an aviation scenario. 

 The current ASDL model object allows users to define four different kinds 

of scenarios: departure, reroute, and landing. It also includes pilots, airports, 

runways, control towers, flight properties, weather patterns and aircrafts. This 

metamodel was integrated with the BOM entities of interplays, state machines and 

events in order to describe a flight scenario. This is seen in Figure 5.  
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Figure 5. ASDL metamodel defined in EMF Adapted from “Formal Scenario 

Definition Language for Aviation: Aircraft Landing Case Study” by S. Jafer et al., 

2016, AIAA Modeling and Simulation Technologies conference. 

 

Approach: Ontology-based Scenario Development 

 To generate an executable simulation scenario from a given DSL ontology, 

a number of transformations must occur. Model transformations are an essential 

model-based development practice. These transformations allow for reflection of 

the data captured in one model to another as well as the addition of specialized 

information to the source model. Figure 6, created by the author, provides an overall 

illustration of our proposed approach, where an ASDL Suite provides an 

environment to specify a scenario from the early stage of scenario properties 

capturing, to providing an executable simulator-independent script. 
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Figure 6. Ontology-driven scenario development with ASDL Suite. 

 The ASDL Suite comprises efforts in three stages. The first step is the 

specification of conceptual scenarios in the form of an Ecore metamodel created in 

Eclipse. This metamodel is built on top of an ontology, which captures all the 

keywords and concepts that define a flight scenario. In the next step, this metamodel 

is used to create a model of a specific scenario. This can be performed with the use 

of the ASDL Graphical User Interface (GUI), which allows a user to pick their 

required scenario elements from a menu. This facilitates the encapsulation of all 

metamodel and ontology details and allows the user to only interact with the parts 

of the tool they directly need, without being burdened with any background code. 

The deployment stage uses the information entered by the user into the model, and 

with automated code generation facilities, produces a standard scenario script in 

eXtensible Markup Language (XML) format. This XML script is then turned over 

to the end users for executing the scenario in their target simulator.  

 The following sections discuss the details of various transformations 

occurring in EMF environment, representing the required steps in taking an 

operational scenario and turning it into an executable simulator-specific script. 

Automated Ontology to Metamodel Transformation 

 The automation of the mapping process from ontology to metamodel can be 

accomplished by creating an Eclipse plug-in that can read the Ontology files in 

OWL/XML format and convert them into Ecore objects using a set of established 

rules as has been shown in Figure 7. Fully automated transformation process is 

explained extensively in a previous work (Jafer et al., 2017b) where we discuss 

challenges and shortfall of such automation.  
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Figure 7. Transformation from ontology to metamodel. Adapted from “Owl 

Ontology to Ecore Metamodel Transformation for Designing a Domain 

Specific Language to Develop Aviation Scenarios” by S. Jafer et al., 2017b, 

Proceedings of the Symposium on Model-Driven Approaches for Simulation 

Engineering. 

 

Text-to-Model Transformation  

 Text-to-Model (T2M) transformations are generally implemented for the 

purposes of reverse-engineering models from code and for creating models of 

existing legacy code (Bruneliere, Cabot, Jouault, & Madiot, 2010). T2M 

transformations are performed by using code to obtain the UML diagrams of a 

system. This is achieved with the use of a parser for the code along with some 

mechanism to extract the relationships present between elements of the code. It is 

a highly-complicated and challenging process to write a T2M transformation code 

for complex languages. However, Eclipse enables the transformation of any XML 

schema (which is an XSD file) into an Ecore metamodel (Budinsky, Steinberg, 

Ellersick, Grose, & Merks, 2004). In the case of ASDL, no T2M transformation 

was required as all modeling was directly performed using EMF. 

Model-to-Text Transformation 

 Model-to-Text (M2T) transformations are mainly used to bridge the gap 

between the modeling language and the programming language by defining 

methods of automated code generation. Eclipse allows for the use of multiple tools 

in order to generate textual artifacts from models. Three major M2T transformation 

tools available within Eclipse are Acceleo, Xpand, and the Java Emitter Template 

(JET) (Skrypuch, 2007). EMF uses Java Development Tools (JDT) to build the 

editor within its code generation facility. The JET component’s framework is used 

for automated transformations in EMF. In this case, JET was used to convert the 

ASDL metamodel into Java source code.  
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Model-to-Model Transformation 

 A Model-to-Model Transformation (MMT) has a model as both input and 

output, but with different parent metamodels. It accepts a model conforming to a 

particular metamodel and converts it into a model conforming to a different 

metamodel based on a certain set of rules (Wimmer, Perez, Jouault, & Cabot, 2012). 

An example of an MMT performed by EMF is the transformation of an Ecore 

model into a UML model. This process involves extracting the entities and 

attributes and defining them as classes and properties, and including references and 

associations to create the UML model.  

Automated Code Generation from a Scenario Model 

 Once a conceptual model has been created, a conceptual scenario can be 

defined by running the metamodel and describing the attributes of all entities in this 

instance of the model. For ASDL, this is performed by executing the automated 

validation process included within Eclipse to ensure that all classes and attributes 

have defined requirements for the expected valid data. These standards are included 

within the metamodel and mainly describe items such as ensuring that all attributes 

have a data type, and all class relationships define the expected cardinality. The 

model, editing and testing codes are automatically obtained by using EMF’s in-

built code generation tools. This automated code has a separate Java class for each 

class in the conceptual model, which includes the getter and setter methods for all 

attributes. It is possible to allow for changes to be made in the generation of code 

for each class as necessary based on the required behavior. Once these classes have 

been generated, the metamodel is considered complete and an XML schema is 

generated and validated. A model of a conceptual scenario can now be defined 

using the metamodel. In this next step, the Eclipse Model Editor is used to define 

the operational scenario and an XML script is created. Eclipse automatically 

generates an XML Metadata Interchange (XMI) file, which is a specialized 

application of XML and is used to represent the model. 

Methodology 1: ASDL-Ecore Scenario Modeling 

 To provide an easy-to-use drag and drop framework to construct ASDL 

scenario models, a recent effort presented a graphical modeling and editing 

interface to ASDL (Jafer et al., 2017a). The graphical scenario specification tool is 

developed using EMF Forms within EMF which provides a rapid mechanism to 

develop tools for modeling languages. Figure 8 illustrates the graphical interface 

used to quickly specify an aircraft model in ASDL. 
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Figure 8. Aircraft modeling GUI. Adapted from “Graphical Specification of Fight 

Scenarios with Aviation Scenario Definition Language (asdl)” by S. Jafer et al., 

2017a, AIAA Modeling and Simulation Technologies Conference. 

Ultimately, for the given landing scenario discussed previously, all entities 

such as weather, pilot, ATC, runway, etc. can be quickly specified using EMF-

supported UI. The overall scenario created using this approach is illustrated in 

Figure 9, showing aircraft entity, followed by all other entities (hidden to preserve 

space).  

Methodology 2: System Entity Structure 

 The system theory-based approach to modeling and simulation has resulted 

in many enhancements in the field, one of which is System Entity Structure (SES) 

(Ören & Zeigler, 2012). SES is a high-level ontology which was introduced for 

knowledge representation of decomposition, taxonomy and coupling of systems 

(Kim, Lee, Christensen, & Zeigler, 1990). SES is a useful ontological framework 

to define data engineering ontologies. 

 

Figure 9. Overall landing scenario specified graphically in EMF. Adapted from 

“Graphical Specification of Fight Scenarios with Aviation Scenario 
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Definition Language (asdl)” by S. Jafer et al., 2017a, AIAA Modeling and 

Simulation Technologies Conference. 

 

 SES enables fundamental representation of hierarchical modular model 

providing a design space via the elements of a system and their relationships in 

hierarchical and axiomatic manner. SES is a declarative knowledge representation 

scheme that characterizes the structure of a family of models in terms of 

decompositions, component taxonomies, and coupling specifications and 

constraints (Zeigler, 1984). As it has been described in a number of publications 

(Pawletta et al., 2016; Zeigler & Hammonds, 2007), SES supports development, 

pruning, and generation of a family of hierarchical simulation models. SES is a 

formal ontology framework, axiomatically defined, to represent the elements of a 

system (or world) and their relationships in hierarchical manner. Figure 10, created 

by the author, provides a quick overview of the nodes and relationship involved in 

a SES. Entities represent things that have existence in a certain domain. They can 

have variables which can be assigned a value within given range and types. An 

Aspect expresses a way of decomposing an object into more detailed parts and is a 

labeled decomposition relation between the parent and the children. Multi-Aspects 

are aspects for which the components are all of the one kind. A Specialization 

represents a category or family of specific forms that a thing can assume. It is a 

labeled relation that expresses alternative choices that a system entity can take on. 

 

 

Figure 10. Nodes and relationship involved in a SES. 

 

 Given an SES tree, when suitably pruned, SES provides specific SES 

instantiations for investigation and analysis. Pruning is defined as assigning the 
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values to the variables and resolving the choices in Aspect, Multi-Aspect and 

Specialization relations. While there may be several Aspect nodes for several 

decompositions of the system on the same hierarchical level, a particular subset can 

be chosen in pruning based on the purpose. Specializations enable to capture 

various variants of an entity, one which needs to be selected during pruning. The 

cardinality in Multi-Aspect relations is also specified in pruning, resulting in the 

Pruned Entity Structure (PES), which is a selection-free tree. 

SES Metamodel 

 The SES metamodel captures all SES constructs and their relationships. 

Figure 11, created by the author, presents an overview of a representative SES 

metamodel that has been developed using ECORE. 

 

 

Figure 11. System Entity Structure metamodel.  

The constructs of the metamodel are Entity, Specialization, Aspect, 

MultiAspect and Attribute classes. An Attribute has a name and value field which 

are specified as EString type for the sake of simplicity. In order to exemplify the 

relationships between the constructs, we can have a look at the unidirectional 

references between Entity and MultiAspect. An Entity type node can have a zero 

to n multi-aspect to MultipleAspect type node, and further a MultipleAspect type 

node has a reference to an Entity type nodes. The process followed for developing 

the metamodel and a specific scenario can be seen in the author-created Figure 12. 
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Figure 12. Process followed for developing the metamodel and a specific scenario. 

 

ASDL Metamodel in SES  

 SES-based metamodeling approach (Zeigler & Sarjoughian, 2013) provides 

a high-level ontology for knowledge representation of decomposition, taxonomy 

and coupling of ASDL scenarios. The ASDL Metamodel captures all possible meta 

elements of a flight operation scenario (landing, reroute, departure) via a SES. A 

representative excerpt of ASDL Metamodel is presented in Figure 13, created by 

the author. The top-level Scenario entity is decomposed using the scenarioDec 

aspect node into Environment, Entities and Events. entityMultiAsp multi-aspect 

node decomposes Entities to multiple nodes Entity. entitySpec specialization node 

is then used to capture the different types of Entity. Three examples from a larger 

set that are depicted in the figure are Aircraft, Airports which is the declaration for 

multiple Airport, and Weather. aircraftDec is then used to identify the aspects of an 

Aircraft that are of interest as elements of a scenario. These are namely Flight and 

Pilot. Flight is then decomposed into its states: Position, Attitude, Angular Velocity 

and Translational Velocity. Airport is decomposed into ATCs and Runways which 

are declaration for multiple ATC and Runway. WeatherStateDec decomposes 

Weather into Wind and Temperature. eventDec decomposes an event into a Guard 

and an Action. Two Guard types are State and Time. eventSpec is on the other side 

used to capture various types of Event. Examples are Reroute, Landing and 

Departure. Finally, a Landing event can be specified as either NormalLanding, 

CrosswindLanding, or ShortFieldLanding. 
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Figure 13. ADL metamodel extract. 

 In an SES tree, attributes are leaf entities that capture scenario’s data values. 

As an example, Position entity has attributes Latitude, Longitude and Altitude. 

Default values for attributes can be easily set at metamodeling. Such data could 

appear on SES tree for quick reference. While the presented ASDL SES hierarchy 

excerpt is not complete, it includes enough number of elements to be representative 

as a metamodel that captures various possible scenario elements. The complete 

metamodel captures all the possible scenario elements that are available in ASDL. 

SES structure can also be implemented in the MS4 Me, which is an Eclipse-based 

tool suite that provides a quick development environment to specify SES entities 

and their relationships. Figure 14, created by the author, is the partial ASDL 

implementation in MS4 Me environment with SES tree constructed on the right-

side section. 

ASDL-SES Scenario Modeling 

 With the given SES tree in Figure 13 consisting of all possible elements of 

the simulation scenario, the scenario modeling activity is as simple as Pruning of 

this tree to hand pick a very particular scenario. Values are assigned to attributes, 

and selections are performed for Aspect, Multi-aspect, and Specialization. The 

resulting selection-free tree is the model representation of that particular scenario. 

See Figure 15, created by the author. 

 Pruning can be conducted via automated means using a scripting front-end 

that sets the attributes values and selections in decision nodes such as cardinalities 

at multi-aspect nodes or types at specialization nodes. The pruning procedure 

resulted in Figure 15, however was accomplished manually. The ASDL Scenario 

Metamodel is used to construct a modeling toolbox that is composed of decision-

free nodes of the SES tree. As the user adds the Scenario to its mode, Environment 

appears a decision-free elect of the scenarioDec. Then the user selects which and 
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how many Entities will be added. Referring to the operational scenario of Normal 

Landing provided in the Simulation Scenario Development subsection, the user 

proceeds to Step 2 by adding the NormalLanding event to the model. In Step 3 and 

4, the user then adds the Aircraft and Airport entities. Step 5 follows by adding 

Weather element and finally the last step is when the user specifies the missing 

values of selected attributes (gray boxes), specifying all the details according to the 

operational scenario. 

 

Figure 14. Representation of ASDL scenario metamodel in SES. 

 

 

Figure 15. Scenario development with pruning.  
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  Ultimately, the MS4 Me tool suite can be utilized to work from any such 

pruning to generate the complete space by enumeration or it can sample from this 

space randomly. Automated pruning in the form of enumerative and random 

pruning are under consideration by MS4 Me team. Enumerative pruning can 

generate completely pruned entity structures sequentially assuring that each family 

member is produced once and only once (Zeigler, Kim, & Praehofer, 2000). This 

"brute force" method is sufficient for relatively small solution spaces – recall that 

the family size grows geometrically with number of choices. Random pruning 

samples from the family of PES will make choices with uniform probability 

wherever the pruning script has not given the pruner a basis for decision. By starting 

from a different initial seed for its pseudo-random number generator at each 

iteration, the pruner draws different random samples from the solution space. This 

process will be constrained by a set of rules.  

 Furthermore, MS4 Me can develop rules that direct the pruning process as 

well the pre-and post-processing of the pruning results. Such rules will exploit 

partial contexts to enable a rule to be applied to every occurrence of an entity that 

satisfies a partial context. In general, there may be more than one rule and 

concomitantly, more than one partial context may apply to an entity. Accordingly, 

the developed algorithms will be enabled to make decisions in which selections are 

ambiguous. For example, one approach is to order partial contexts by length, 

longest first - on the basis that longer paths are more specific than shorter paths. For 

each entity occurrence that it encounters, the algorithm finds the longest (most 

specific) partial context that matches the occurrence under consideration and 

applies the associated rule to it. Conditional rules can be developed in which 

choices made in one location of the structure will condition those in other locations.  

Comparison of Approaches 

 Both approaches require an understanding of the subject domain in order to 

create a metamodel. The definitions and relationships between these elements need 

to be understood so they can be represented hierarchically within the ontology. The 

SES approach requires a more strict and formal definition of the ontology since 

MultiAspects and Specializations are separated from other Aspects, which are the 

other child elements (Jafer, Chhaya, Updegrove, & Durak, 2018). On the other 

hand, an OWL ontology requires metamodeling using Ecore or another framework 

to extract an XML schema and generate a specific scenario, whereas an SES Editor 

such as MS4 Me can generate the XML directly from a pruned SES model. The 

additional step of translating an OWL file into Ecore before generating a scenario 

makes the use of SES more favorable in the authors’ eyes. 
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Application 

 One of the applications of our proposed ontology-driven scenario 

development is in the domain of aviation training. Targeting the FAA Academy Air 

Traffic Control program, we are building a scenario-based training environment 

that enhances controller’s training by providing a practice environment where 

trainees investigate various air traffic scenarios (Updegrove & Jafer, 2017). Based 

on the concept of scenario specification and modeling adopted in ASDL, we are 

developing a GUI-based environment where controller instructors specify air traffic 

scenario metrics and properties, conduct performance and evaluation studies, and 

monitor trainee’s responses to gauge the learning process. On the other hand, 

trainees are provided with a close-to-reality simulation environment, where they 

practice various scenarios by analyzing and reacting to the scenario events and 

making optimal choices in controlling air traffic events (Chhaya, Jafer, Coyne, 

Thigpen, & Durak, 2018).  

 Similarly, the defense domain can significantly benefit from scenario-based 

simulation technologies for training, guidance, and decision support purposes. The 

MSDL (Military Scenario Definition Language Product Development) was 

proposed for this purpose and have been widely used in the defense domain (SISO, 

2008). 

 The application of ASDL has been described for the following domains in 

other works: generation of flight simulation scenarios (Jafer, Chhaya, Durak, & 

Gerlach, 2018), scenario-based challenges for Next Generation Aviation 

Technology (Moallemi, Jafer, & Chhaya, 2018) and enhancing scenario-centric 

ATC training (Chhaya et al., 2018). 

Conclusion 

 This paper presents a model-based scenario development approach that 

exploits Eclipse Modeling Framework (EMF) Ecore and System Entity Structure 

(SES) for metamodeling and modeling. Despite its key role in a simulation study, 

there is no structured and well-formed methodology for scenario development. By 

presenting two distinct metamodeling approaches for a Domain Specific Language 

(DSL) recently published for aviation simulation scenario specification (Aviation 

Scenario Definition Language – ASDL), ontology development and model-based 

scenario specification stages are presented. EMF uses the Ecore format, which is a 

subset of UML class diagrams to describe entities and their relationships. SES 

represents the elements of a system and their relationships in a hierarchical manner. 

Given the similar structure that both Ecore and SES follow, it is not easy to draw a 
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fine comparison line between the two methodologies. Obviously, through steps of 

model transformations, one can easily, and even automatically, translate a DSL 

metamodel from one approach to another. Hierarchical structure and entity 

specification are among the main concepts shared by Ecore and SES in constructing 

a DSL ontology. The key is the selection of scenario-specific entities from a DSL 

ontology, which has been evidently made easy by tool support, providing modelers 

various means of automation in specifying, validating, and verifying a scenario. 

This work showcases the capabilities of both EMF and SES as metamodel 

frameworks for scenario-based modeling, but it can be extended to investigate the 

full tool suites available in each platform to determine its suitability for all aspects 

of the modeling process. The research demonstrated in this article has already been 

utilized to develop a scenario-based training tool for air traffic controllers at the 

FAA Academy. Moving the effort through standardization is already underway, 

where XML representation of SES already exists and ASDL Ecore/XML is 

currently being researched. Automated model checking and transformation as well 

as more rigorous tool support are two future directions in this area, both for Ecore 

and SES. 

  

23

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018



References 

Alatrish, E. (2013). Comparison some of ontology. Journal of Management 

Information Systems, 8(2), 18-24. 

ASDL Ontology. (2016). Retrieved from https://github.com/ASDL-prj/Ontology  

Bechhofer, S. (2009). Owl: Web ontology language. In Encyclopedia of database 

systems (pp. 2008–2009). Retrieved from https://link.springer.com/ 

referenceworkentry/ 10.1007%2F978-0-387-39940-9_1073 

Brambilla, M., Cabot, J., & Wimmer, M. (2012). Model-driven software 

engineering in practice. Synthesis Lectures on Software Engineering, 1(1), 

1-182.  

Bruneliere, H., Cabot, J., Jouault, F., & Madiot, F. (2010). Modisco: A generic 

and extensible framework for model driven reverse engineering. In 

Proceedings of the ieee/acm international conference on automated 

software engineering (pp. 173–174). Antwerp, Belgium. 

Budinsky, F., Steinberg, D., Ellersick, R., Grose, T. J., & Merks, E. (2004). 

Eclipse modeling framework: A developer’s guide. Addison-Wesley. 

Ceh, I., Crepinšek, M., Kosar, T., & Mernik, M. (2011). Ontology driven 

development of domain-specific languages. Computer Science and 

Information Systems, 8(2), 317–342.  

Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. (1999). What are 

ontologies, and why do we need them? IEEE Intelligent Systems and their 

applications, 14(1), 20–26.  

Chhaya, B., Jafer, S., Coyne, W. B., Thigpen, N. C., & Durak, U. (2018). 

Enhancing scenario-centric air traffic control training. In 2018 AIAA 

modeling and simulation technologies conference (p. 1399). Kissimmee, 

FL. 

Department of Defense. (1998, January). DoD modeling and simulation (M&S) 

glossary. Washington, DC: Author. 

Durak, U., Schmidt, A., & Pawletta, T. (2015). Model-based testing for objective 

fidelity evaluation of engineering and research flight simulators. In AIAA 

modeling and simulation technologies conference (p. 2948). Kissimmee, 

FL. 

Durak, U., Topçu, O., Siegfried, R., & Oguztuzun, H. (2014). Scenario 

development: A model-driven engineering perspective. In 2014 

24

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4



international conference on Simulation and Modeling Methodologies, 

Technologies and Applications (SIMULTECH) (pp. 117–124). Vienna, 

Austria. 

FAA Flight Standards Service AFS Flight Program Division. (2012). AFS flight 

program flight operations manual. Retrieved from http://fsims.faa.gov/ 

wdocs/other/fom.htm 

Farquhar, A., Fikes, R., & Rice, J. (1997). The ontolingua server: A tool for 

collaborative ontology construction. International Journal of Human-

Computer Studies, 46(6), 707-727.  

Fowler, M. (2010). Domain-specific languages. New York, NY: Pearson 

Education. 

Gronback, R. (2014). Eclipse modeling framework (emf). Retrieved from 

https://eclipse.org/ modeling/ emf/  

Gruber, T. R. (1993). A translation approach to portable ontology specifications. 

Knowledge Acquisition, 5(2), 199–220. 

Hilera, J. R., & Fernández-Sanz, L. (2010). Developing domain-ontologies to 

improve software engineering knowledge. In Software engineering 

advances (icsea), 2010 fifth international conference on (pp. 380–383). 

Nice, France. 

Hudak, P. (1997). Domain-specific languages. Handbook of Programming 

Languages, 3(39-60), 21. Retrieved from https://pdfs.semanticscholar.org/ 

b06c/ 06de5335a0e53ad7122419886890c2cab2a4.pdf 

Jafer, S., Chhaya, B., & Durak, U. (2017a). Graphical specification of flight 

scenarios with aviation scenario definition language (asdl). In AIAA 

modeling and simulation technologies conference (p. 1311). Grapevine, 

TX. 

Jafer, S., Chhaya, B., & Durak, U. (2017b). Owl ontology to Ecore metamodel 

transformation for designing a domain specific language to develop 

aviation scenarios. In Proceedings of the symposium on model-driven 

approaches for simulation engineering (p. 3). Grapevine, TX. 

Jafer, S., Chhaya, B., Durak, U., & Gerlach, T. (2016). Formal scenario definition 

language for aviation: aircraft landing case study. In AIAA modeling and 

simulation technologies conference (p. 3521). Washington, D.C. 

25

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

https://eclipse.org/modeling/emf/


Jafer, S., Chhaya, B., Durak, U., & Gerlach, T. (2018). Automatic generation of 

flight simulation scenarios with aviation scenario definition language. 

Journal of Aerospace Information Systems, 15(4), 193-202. 

Jafer, S., Chhaya, B., Updegrove, J., & Durak, U. (2018). Schema-based 

ontological representations of a domain-specific scenario modeling 

language. Journal of Simulation Engineering, 1.  

Kim, T.-G., Lee, C., Christensen, E. R., & Zeigler, B. P. (1990). System entity 

structuring and model base management. IEEE Transactions on Systems 

Man and Cybernetics, 20(5), 1013–1024. 

Maedche, A., & Staab, S. (2001). Ontology learning for the semantic web. IEEE 

Intelligent systems, 16(2), 72-79.  

McGuinness, D. L. (2004). Owl web ontology language overview. W3C 

recommendation, 10(10). 

Moallemi, M., Jafer, S., & Chhaya, B. (2018). Scenario specification challenges 

for next generation aviation technology demonstrations. In 2018 AIAA 

modeling and simulation technologies conference (p. 1396). Kissimmee, 

FL. 

Musen, M. A. (2015). The protégé project: A look back and a look forward. AI 

matters, 1(4), 4-12.  

North Atlantic Treaty Organization. (2015, January). Guideline on scenario 

development for (distributed) simulation environments. Retrieved from 

https://www.sto.nato.int/ publications/STO%20Technical%20Reports/ 

STO-TR-MSG-086-Part-II/$$TR-MSG-086-Part-II-ALL.pdf 

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to 

creating your first ontology. Retrieved from https://protege.stanford.edu/ 

publications/ ontology_development/ontology101.pdf 

Ören, T. I., & Zeigler, B. P. (2012). System theoretic foundations of modeling and 

simulation: a historic perspective and the legacy of a Wayne Wymore. 

Simulation, 88(9), 1033–1046.  

Pan, J. Z., Staab, S., Aßmann, U., Ebert, J., & Zhao, Y. (2012). Ontology-driven 

software development. New York, NY: Springer. 

Pawletta, T., Schmidt, A., Zeigler, B. P., & Durak, U. (2016). Extended 

variability modeling using system entity structure ontology within 

matlab/simulink. In Proceedings of the 49th annual simulation symposium 

(p. 22). Pasadena, CA. 

26

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4



Saeki, M., & Kaiya, H. (2006). On relationships among models, meta models and 

ontologies. In Proceedings of the proceedings of the 6th oopsla workshop 

on domain-specific modeling (dsm 2006). Portland, OR. 

doi:10.1.1.103.6720 

Schmidt, A., Durak, U., & Pawletta, T. (2016). Model-based testing methodology 

using system entity structures for matlab/simulink models. Simulation, 

92(8), 729–746. 

SESAR. (2015). Welcome to the Sesar integrated dictionary. Retrieved from 

https://ext.eurocontrol.int/lexicon/index.php/SESAR  

Siegfried, R., Laux, A., Rother, M., Steinkamp, D., Herrmann, G., Lüthi, J., & 

Hahn, M. (2012). Scenarios in military (distributed) simulation 

environments. Retrieved from https://www.sto.nato.int/publications/ 

STO%20Technical%20Reports/STO-TR-MSG-086-Part-II/$$TR-MSG-

086-Part-II-ALL.pdf 

Siegfried, R., Oguztüzün, H., Durak, U., Hatip, A., Herrmann, G., Gustavson, P., 

& Hahn, M. (2013). Specification and documentation of conceptual 

scenarios using base object models (boms). Retrieved from 

https://www.researchgate.net/publication/ 256939472_ Specification_and_ 

Documentation_of_Conceptual_Scenarios_Using_Base_Object_Models_

BOMs 

Simulation Interoperability Standards Organization. (2008, October). Standard 

for: Military scenario definition language (msdl). Retrieved from 

https://www.sisostds.org/ DigitalLibrary.aspx?Command=Core_ 

Download&EntryId=30830 

Skrypuch, N. (2007). Model to text (m2t). Retrieved from 

http://www.eclipse.org/modeling/m2t/  

SISO Base Object Model Product Development Group. (2006, March). Base 

object model (bom) template specification. Retrieved from 

https://www.sisostds.org/DesktopModules/ Bring2mind/DMX/API/ 

Entries/Download?Command=Core_Download&EntryId=30820&PortalId

=0&TabId=105 

Stanford Center for Biomedical Informatics Research. (2017). A free, open-source 

ontology editor and framework for building intelligent systems. Retrieved 

from http://protege.stanford.edu/  

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008). Emf: Eclipse 

modeling framework. New York, NY: Pearson Education.  

27

Jafer et al.: SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language

Published by Scholarly Commons, 2018

https://ext.eurocontrol.int/lexicon/index.php/SESAR
http://www.eclipse.org/modeling/m2t/
http://protege.stanford.edu/


Topçu, O., Durak, U., O˘guztüzün, H., & Yilmaz, L. (2016). Distributed 

simulation: A model driven engineering approach. New York, NY: 

Springer. 

Updegrove, J., & Jafer, S. (2017). Recommendations for next generation air traffic 

control training. In Digital avionics systems conference (dasc), 2017 

IEEE/AIAA 36th (pp. 1–6). St. Petersburg, FL. 

Wimmer, M., Perez, S. M., Jouault, F., & Cabot, J. (2012). A catalogue of 

refactorings for model-to-model transformations. Journal of Object 

Technology, 11(2), 2-1. 

Wittman Jr, R. L. (2009). Defining a standard: The military scenario definition 

language version 1.0 standard. In Proceedings of the 2009 spring 

simulation multiconference (p. 73). San Diego, CA. 

Zeigler, B. P. (1984). Multifacetted modelling and discrete event simulation. San 

Diego, CA: Academic. 

Zeigler, B. P., & Hammonds, P. E. (2007). Modeling and simulation-based data 

engineering: introducing pragmatics into ontologies for net-centric 

information exchange. Amsterdam, Netherlands: Elsevier.  

Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of modeling and 

simulation. San Diego, CA: Academic. 

Zeigler, B. P., & Sarjoughian, H. S. (2013). Guide to modeling and simulation of 

systems of systems. New York, NY: Springer. 

28

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 5, Art. 4

https://commons.erau.edu/ijaaa/vol5/iss5/4


	SES and Ecore for Ontology-based Scenario Modeling in Aviation Scenario Definition Language (ASDL)
	Scholarly Commons Citation

	tmp.1544306925.pdf.K10Zy

