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USING COMPUTER BEHAVIOR
PROFILES TO DIFFERENTIATE

BETWEEN USERS IN A DIGITAL
INVESTIGATION
Shruti Gupta, Marcus Rogers

Purdue University

ABSTRACT

Most digital crimes involve finding evidence on the computer and then linking it to a suspect
using login information, such as a username and a password. However, login information is
often shared or compromised. In such a situation, there needs to be a way to identify the
user without relying exclusively on login credentials. This paper introduces the concept that
users may show behavioral traits which might provide more information about the user on
the computer. This hypothesis was tested by conducting an experiment in which subjects
were required to perform common tasks on a computer, over multiple sessions. The choices
they made to complete each task was recorded. These were converted to a ’behavior profile,’
corresponding to each login session. Cluster Analysis of all the profiles assigned identifiers
to each profile such that 98% of profiles were attributed correctly. Also, similarity scores
were generated for each session-pair to test whether the similarity analysis attributed profiles
to the same user or to two different users. Using similarity scores, the user sessions were
correctly attributed 93.2% of the time. Sessions were incorrectly attributed to the same
user 3.1% of the time and incorrectly attributed to different users 3.7% of the time. At a
confidence level of 95%, the average correct attributions for the population was calculated to
be between 92.98% and 93.42%. This shows that users show uniqueness and consistency in
the choices they make as they complete everyday tasks on a system, and this can be useful
to differentiate between them.

Keywords: computer behavior users, interaction, investigation, forensics, graphical inter-
face, windows, digital

1. INTRODUCTION

In today’s electronic age, it would be dif-
ficult to find people whose lives do not in-
clude any kind of digital devices. In 2011,
76% Americans reported having a computer
at home and 72% reported home internet use
[File and Ryan, 2014]. Any crime scene that

includes a cell phone, a computer, or even a
simple calculator, is dealing with digital ev-
idence. 80-90% of crimes deal with digital
evidence of some kind [Rogers et al., 2007].
Digital crimes often use artifacts on the
computer as clues to identify the culprit.
In most cases, the computer user can be
identified using account or login informa-
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tion. However, login information is not a
very reliable method for user identification
since this information is often shared be-
tween individuals, resulting in claims of com-
promise. Hence digital investigations poten-
tially require a means of identifying com-
puter users without the use of login infor-
mation. To illustrate this, consider the situ-
ation in which User A was logged into User
B’s account when a crime was committed
[Peisert et al., 2008]. This was seen in the
case of United States v. Keith Moreland
[Mor, 2011]. The district court’s judgment
convicting Moreland was reversed in the ap-
pellate court because there was no way for
the police to determine which one of the fam-
ily members was using the computer when
the illegal images were received. There needs
to be a way for law-enforcement to connect
the “user-name” to the actual user.

The authors suggest that one can classify
users on the same account of a system by
their usage patterns. “Usage” in the con-
text of this study refers to how everyday
tasks are performed on the computer by the
user. The data that was collected of a per-
son’s usage was used to create a user ’pro-
file.’ These user-profiles were analyzed to
identify if they can be useful in distinguish-
ing between two different users on a com-
puter. A behavior profile or a user-profile
can be compared to a criminal profile where
the person’s traits are used to narrow down
suspects [Abraham and de Vel, 2002]. This
research study identifies a gap in digital in-
vestigation procedures and provides the be-
havioral research that can be exploited in the
future to fill this gap.

2. RELATED WORK
The task of modeling user behavior on
the computer without relying on login in-
formation has the same goals as studies
that deal with masquerade attacks. The

way a person interacts with the computer
(i.e., a person’s computer usage) has been
used to differentiate people in earlier stud-
ies [Gamboa and Fred, 2004]. Other stud-
ies have used computer usage to identify a
user, employ methods like system interac-
tion profiling (e.g., command line profiling),
keyboard usage analysis, mouse movement
analysis and Graphical User Interface (GUI)
usage analysis; however, this study attempts
to see if there are broad metrics such as the
choices users make as they interact with the
computer, that can be used to model their
behavior on a computer. Without significant
research in this area within the psychological
domain, the related work focuses on studies
within the computer security realm that deal
with user behavior to detect masquerade at-
tacks.

2.1 System Interaction
Profiling

Lane and Brodley [Lane and Brodley, 1997]
proposed a method by which a user’s cur-
rent behavior is matched to a historical pro-
file consisting of the command line history
of the user as the main variable. Schonlau
et al.[Schonlau et al., 2001] conducted a re-
search study in command line profiling us-
ing 50 users, collecting approximately 15,000
commands from each user. The best re-
sults that the study reported had a suc-
cess rate of 69.3%. Maxion and Townsend
[Maxion and Townsend, 2002] expanded the
research done by Schonlau et al. by us-
ing the same dataset. While Schonlau et
al. simulated the masquerade attack by in-
jecting the data of the 50 users with ran-
dom data from outside; this study had every
user act as a masquerader for every other
user. This study claims a 56% improvement
over the results presented by Schonlau et al.
[Schonlau et al., 2001].

Shim, Kim, and Gantenbein

Page 38 c© 2016 ADFSL



Using Computer Behavior Profiles to Differentiate between ... CDFSL Proceedings 2016

[Shim et al., 2008] proposed another study
that dealt with creating user profiles based
on the command line input. Their dataset
consisted of UNIX command histories of
nine students. The overall average detection
rate of the system was 73.13%. Li and
Manikopoulos [Li and Manikopoulos, 2004]
used the concept of a system state to create
user profiles. They used parameters such
as window titles and process table entries
to model user behavior. They used four
users for training and another four users for
testing. They achieved a detection rate of
63% and a false positive rate of 3.7%.

2.2 Keystroke Dynamics

An initial study by the Rand Corporation
was the basis of user authentication related
to keystroke timings [Gaines et al., 1980].
The authors used digraph times, which
is the time used to type certain two-
letter combinations, as a metric to dis-
tinguish users. Umpress and Williams
[Umphress and Williams, 1985] conducted
early research in this area, using keystroke
latency, and achieved a false positive rate
of 12% and a false negative rate of 6%.
Joyce and Gupta [Joyce and Gupta, 1990]
furthered research in this area. Joyce and
Gupta used the same metrics as Umpress
and Williams but used login credentials
of users for authentication. Joyce and
Gupta yielded a false positive rate of
around 7% and a false negative rate of
less than 1%. In 1996, Obaidat and
Sadoun [Obaidat and Sadoun, 1996] used
the concept of hold time as an additional
parameter. They found that using hold
times and latencies together provided best
results compared to using the individual
parameters.

2.3 Mouse Dynamics

Keystroke dynamics have never really
established themselves as an authenti-

cation mechanism [Peacock et al., 2004].
One major factor for this could be the
emergence of computers with graphical
user interfaces. Pusara and Brodley
[Pusara and Brodley, 2004] modeled mouse
movement by the two-dimensional screen
coordinates each time the mouse moves.
They also included other variables like
mouse wheel movement, mouse clicks and
non-client area movement. Their experi-
ment gave a false positive rate of .43% and
a false negative rate of 1.75%. Garg et al.
[Garg et al., 2006] conducted research very
similar to that of Pusara and Brodley’s,
except that participants were allowed to
work freely while Pusara and Brodley
had participants read specific web pages.
Garg et al. had a higher false negative
error rate of 3.85%. Ahmed and Traore
[Ahmed and Traore, 2007] performed very
similar studies combining the concept of
keyboard dynamics and mouse dynamics.
They achieved error rates with a false
negative rate of .651% and a false positive
rate of 1.312%.

2.4 GUI Usage Analysis

Imsand and Hamilton
[Imsand and Hamilton, 2007] proposed
another approach for detecting anomalous
users. They shifted the focus from what the
user does to how the user performs their
standard tasks. They modeled the user
profile on the interaction of the user with
the graphical user interface of the system.
The false positive error rate was 26.5%
and the false negative error rate was 38%.
They expanded this research by customizing
attack thresholds for each user. This gave a
detection rate of 60% with no false positives.
The study, however, showed very high error
rates for certain users and very low rates for
others, prompting that the usage analysis is
very user-dependent for some reason. The
positive feature of Imsand and Hamilton’s
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approach is that it claims to use 72% less
data than the previous mouse dynamics
methods proposed.

Imsand and Hamilton conducted the same
experiment again to explore the cause for
the variation of the detection rates among
different users. The detection rate fell from
60% in the previous experiment to 52%. The
aim of this study was to identify how com-
puter usage affects the detection rate. The
only significant conclusion that the author
drew from the research study was that par-
ticipants who spend more than six hours
on the computer each day could use this
method of masquerade detection more ef-
fectively than others. In 2008, Imsand and
Hamilton [Imsand and Hamilton, 2008] re-
peated a similar experiment again. This
time they chose a more mixed population by
recruiting from a high school and a local en-
gineering and assembly firm. Also, they used
a different measurement of similarity known
as the Jaccard index. The attack threshold
customized for each user gave a false nega-
tive rate of 6.27% with a false positive error
rate of zero.

3. PROCEDURE
The study involved looking at how different
users vary in the manner in which they per-
form everyday tasks on the computer. As a
part of the experiment, different users were
required to log on to the same computer en-
vironment and perform the same set of tasks.
To study the effect of a particular change, it
is common practice to keep all other vari-
ables constant [Schonlau et al., 2001]. The
operating environment on the computers
that was in the study included:

• Windows 7 Home Premium, Version
6.1, Service Pack 1

• Mozilla Firefox 7.0.1, Internet Ex-
plorer 8.0.7601.17514, Google Chrome

14.0.835.202 m

• Microsoft Word 2010 14.4734.1000

Desktop recording software Camstudio (ver-
sion 2.6), DRPU PC Data Manager (ver-
sion 5.4.1.1), and REFOG Free Keylog-
ger 7.2.1.1445 were used for data collec-
tion. Camstudio records all desktop activ-
ity in the form of videos. The PC Data
Manager and REFOG Keylogger records all
keystrokes that have been typed on the sys-
tem. Both tools were used concurrently as
there was no single tool that could record
desktop activity and the keystrokes entered.
The authors chose these tools because they
were commercially-used and were available
for free. The combination of the tools pro-
vided the best picture of the actions that
were performed to complete a particular
task.

3.1 Participants

The criteria for the selection of participants
required that they were above the age of 18
and were comfortable with the use of a com-
puter in a Windows environment. The latter
requirement was enforced because there the
users’ behavior should not be impacted by
the learning curve associated with perform-
ing new tasks. A sample size of 60 partici-
pants was used.

Table 1 shows the demographic data for
the participants. Most of the participants
were students at Purdue University. This re-
sulted in an age group of 18-25 years mostly.

3.2 Methodology

Each participant was required to perform a
set of tasks. They consisted of everyday op-
eration on a computer such as copying and
pasting text, renaming folders, etc. Table 2
shows the set of tasks that were given to the
participants. As the user performs a task,
the desktop recording software and keystroke
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Table 1. Frequency Distribution of Sample Demographics

Percentage (Frequency)

Ethnicity

Asian 48 (29)
African-American/African 3 (2)
White 47 (28)
Pacific Islander 2 (1)

Gender
Male 72 (43)
Female 28 (17)

Age

18 - 20 3 (2)
20 - 30 87 (52)
30 - 40 8 (5)
40 - 50 0 (0)
50+ 2 (1)

Total 100(60)

logger record all the actions that the user
performed.

The data collection procedure was re-
peated over six sessions where the first ses-
sion was treated as a practice session and the
data collected in that session was discarded.
Imsand [Imsand and Hamilton, 2008] has
proposed that an interval of half an hour is
enough to ensure the independence of each
session. This research study was conducted
with a minimum interval of one hour be-
tween each session to ensure that sessions
are independent.

4. RESULTS
This is a structured observational study that
falls into the mode of generalizing, where
the observer attempts to model participants’
behavior into a general categorical data set
[Tjora, 2006]. An observational study can ei-
ther have predefined categories which would
make it structured, or can be free where
categories are assigned as data is observed.
Using the free approach introduces some
degree of subjectivity in the observations
[Drury, 1995]. To counter this, the data from
the first 30 participants was used to obtain
the categories that could be assigned to the
variables. The next 30 participants were

used to test the consistency of user behav-
ior using those obtained categories. Previous
studies with similar goals have mostly em-
ployed a smaller number of participants (ap-
proximately 10). However, most researchers
have expressed the belief that better results
can be obtained with a larger sample size.
The aim of data analysis was to see if the
set of 150 sessions (five sessions each from
30 users) could be grouped into the cor-
rect user sessions. Two-step clustering was
used for classifying data, as it is the pre-
ferred approach when the number of clus-
ters is known and it can deal with a cate-
gorical data set. A log-likelihood distance
measure was used that assumes a multino-
mial distribution for a categorical dataset.
Clustering of the data assigned a cluster-ID
to each data session. The cluster-ID pre-
dicts the group membership for each ses-
sion. These predicted group memberships
are compared to the actual groups (users)
that the sessions belong to and the num-
ber of accurate predictions is calculated; 147
out of 150 sessions were assigned a cluster-
ID corresponding to the user’s identity. This
means that 98% of the sessions were classi-
fied correctly. The measure of how distinctly
the groups can be classified is known as Sil-
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Table 2. List of tasks given to each partici-
pant

1) Create a new folder on the Desktop and
name it alpha.

2) Copy the file abc.docx from the Desktop
into the new alpha folder that you have just
created.

3) Navigate to the My Documents folder. Re-
name the folder named beta in the My Doc-
uments folder to gamma.

4) Create a new Microsoft Word document
in the alpha Folder. Name this document
study.docx.

5) Open abc.docx. Copy all the content
from the file abc.docx to study.docx. Close
abc.docx.

6) Perform the following operations on the
study.docx document
a. Delete the first sentence of the document
(Not the title).
b. Make the title of the document bold.
c. Increase the font size of the second para-
graph to 14 points.
d. Move the first paragraph of the document
to the end of the document (so that it be-
comes the last paragraph of the document).
e. Close study.docx.

7) Open a web browser of your choice and go
to Purdue College of Technology homepage.

houette Co-efficient. As seen in Figure 1, the
Silhouette Co-efficient was obtained to be .6,
which indicated that the groups formed had
good cohesion and separation.

The good degree of cohesion and separa-
tion means that users showed very similar
behavior within their own sessions and high
variability as compared to other users. In
simpler terms, it indicated that users ex-
hibited uniqueness in how they perform the
same tasks on the computer. Cluster Anal-
ysis also provided an indicator of the contri-
bution of each variable to the group mem-
bership. This means that it showed degree
to which each of the variables contributed

to the uniqueness. This provides a better
picture of computer usage behavior among
different users. Figure 2 shows the graph in-
dicating the importance of the different vari-
ables.

As seen in Figure 2, different variables had
varying degrees of contribution to the group
membership i.e. to making clusters, which
indicated the user. According to the graph in
Figure 2, the five variables that contributed
the highest are:

1. Method of locating specified folder.

2. Method of making text bold.

3. Method of increasing font size in Word
document.

4. Method of copying text from a Word file
to another.

5. Method of opening specified webpage.

Cluster analysis needs a significant
amount of data to form meaningful clusters.
Studies in the past have tried to detect
anomalous users by having every user
act as an intruder for every other user
[Schonlau et al., 2001]. The authors use a
similar approach by computing a similarity
score for pair-wise comparisons for all
the sessions. The similarity scores were
calculated using the Jaccard Index similar
to Imsand [Imsand and Hamilton, 2008].
The data from the first 30 users was used to
obtain a threshold value, which helped us
determine if sessions can be attributed to
the same user or not. Data from the next
30 users was used to test if sessions can
be attributed to users using the threshold
obtained. User sessions from the next 30
users are compared similarly in a pair-wise
manner and similarity scores are generated.
If the similarity score is above this thresh-
old, the sessions are considered to be from
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Figure 1. Cluster quality output as obtained from SPSS

the same user. If the similarity score is
below this threshold, sessions are attributed
to different users. The results have been
outlined in Table 3.

Table 3. Table showing the rates at which
user sessions were matched

Average rate at
which sessions were
correctly attributed
to either same or
different user

93.2%

Average rate at
which sessions
were incorrectly at-
tributed as belonging
to the same user

3.1%

Average rate at
which sessions
were incorrectly at-
tributed as belonging
to different users

3.7%

Confidence interval
of correct attribu-
tions extrapolated
for population at a
confidence level of
95% (using Students
t distribution)

(92.98%, 93.42 %).

5. CONCLU-

SION/DISCUSSION

The results of the experiments show that
the computer sessions could be divided into
groups, with the groups representing each
user. This indicated that users show unique
behavior and consistency in their actions.
The results also show that the computer ses-
sions could be clustered correctly 98% of
the time and when a one-on-one compari-
son was done, they were attributed correctly
93.2% of the time. These numbers are signif-
icant enough to warrant further exploration
of computer behavior as a metric to differ-
entiate between users. The other research
studies in this area use automated data col-
lection and analysis mechanisms but only
employ a small number of participants to
test their system. This research study took
a behavioral approach to test if users show
a high degree of consistency and uniqueness
in the choices they make for general use of
a personal computer. Even without an au-
tomated system, the data collected from 60
participants provides a valuable contribution
towards studying user behavior in digital en-
vironments.

The results show great promise. The high
degree of similarity between sessions belong-
ing to the same user and low similarity lev-
els between sessions belonging to different
users shows that computer usage has very
good potential to be used to differentiate be-
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Figure 2. Graph showing contribution of variables to group membership

tween users on the computer. While addi-
tional tools need to be developed that can
model usage behavior and differentiate be-
tween users, logging computer usage can be
developed into a soft biometric to give fur-
ther direction to a criminal investigation.
Even though it would have a long way to go
to be admissible in court, it can provide in-
vestigators with more information about the
person using the computer and provide di-
rection for the investigation. The results of
the study also identified variables that had
a greater impact on the discrimination be-
tween users and these variables can be used
in future profiles.

6. FUTURE WORK
This was a preliminary study to test whether
user sessions could be attributed to correct
users by employing a broad metric like the

computer usage behavior of users. An au-
tomated logging tool needs to be employed
that can effectively log the users’ interac-
tion without the users’ knowledge. Also, the
sample population was constrained by the
limitation that no compensation was offered
to the participants. Future research in this
area should also focus on the relationship be-
tween metadata and the user-profiles gener-
ated. Metadata like age, gender, occupation
etc. might reflect on the computer behavior
of individuals and this should be explored so
that computer habits of people can be asso-
ciated with their demographic information.
The findings presented in this study can be
used to form a more structured framework
that can be implemented in digital investiga-
tions to identify the correct individual using
the computer.
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