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Thousands of landings in commercial transport-category (FAA, 2013) 

airplanes are executed every single day all over the world. Accurate touchdowns 

are crucial in saving excessive wear and tear on brakes, tires, and airplane 

structure. They are especially critical when landing on wet and/or contaminated 

runways or during LAHSO operations. Despite so much operational experience, 

the control of landing flare and touchdown accuracy is still a “hit or miss” event. 

The statistics on touchdown points and the large scatter of data indicates that 

landings are not very accurate even when full auto-land capabilities are used 

(FAA, 2007). Large operational cushions (67% for dry DLDR and 92% for wet 

WLDR runway) are provided over (un-factored gross measured) demonstrated 

dry landing distance (gross DDLD) for airplanes used in commercial air 

transportation (e.g., Title 14 CFR 121). Contaminated runways may require 2-3 

times longer runway lengths than DDLD (Daidzic & Shrestha, 2008; Daidzic, 

2011a). The highest frequency of transport-category airplane incident/accidents 

occurs indeed during the landing/rollout phase. 

 

In normal daily operations, various studies over many decades have shown 

the standard deviation (SD) of touchdown points in manual landings to be roughly 

1000 feet for any particular transport-category airplane type. This indicates that 

more than 30% of touchdowns are actually exceeding even these large 

uncertainties. A significant percentage of touchdowns occurs beyond the 3,000 ft 

markers (touchdown zone) which reduces the margin for error when landing on 

slippery runways. The lowering of the nose gear often takes unnecessarily long 

time in line operations further reducing the distance margins for subsequent 

deceleration (Daidzic & Shresta, 2008). Not every long-landing results in a 

runway overrun, but in every overrun accident, landing long and having poor 

touchdown control was a major contributing factor (Daidzic & Shresta, 2008; 

Daidzic 2009a, 2009b, 2009c, 2011a, 2013). Contemporary conventional flight 

control design and pilot training does not address landing touchdown accuracy 

and control sufficiently well. 

 

The main gear touchdown point depends on many factors, such as, proper 

vertical flight-path, airspeed, crossing threshold at appropriate height, proper 

thrust management, height and flight load in flare, atmospheric turbulence and 

wind, etc. The landing maneuver can be seen as a management of the airplane’s 

total energy. A conventional landing flare maneuver involves pitching airplane 

slightly up while simultaneously closing the throttles when the gear height is 

“about right” (Blake and Elliott, 1991; Daidzic, 2011b; Davis, 1971; Denton, 

1993; Lowery, 2001; Schiff, 1997; Webb and Walker, 2004). To pitch the 

airplane up, a pilot must pull elevator up which initially generates unbalanced 

downward force thereby rotating airplane’s nose up and ultimately increasing the 
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pitch angle, the Angle-of-Attack (AOA), and reducing the flight path angle (must 

still be negative for positive touchdown). However, before an airplane starts 

pitching up, increasing AOA and lift, the initial airplane’s reaction will be 

downward acceleration due to unbalanced tail down lift increment (Phillips, 1979; 

Grantham et al, 1987). This phenomenon is called Adverse Elevator Effect 

(AEE). There is nothing peculiar about it as all conventional flight controls 

initially exhibit adverse responses. 

 

In a cruise flight one is not much concerned about the AEE and small 

altitude loss (several feet at maximum) before an airplane actually starts climbing. 

However, in landing approach several feet could mean a difference between a 

smooth and a hard landing with possible bounce, balloon, extended float, runway 

overrun, etc. But even worse than this well-known reverse-altitude response is the 

time-lag (dead-time) introduced by the AEE and the “nothing-happening-when-

pulling-elevator” syndrome. As many studies have shown and almost every pilot 

knows, it is almost impossible to make consistent (manual or automatic) landings 

and touchdowns. Landing flare maneuver in transport-category airplanes is 

somewhat mechanical although many would not admit it. Landing flare is indeed 

of very short duration and thus very difficult to practice and refine.  

 

The abbreviated review of some important publications on landing flare 

presented here is neither exhaustive nor complete. A whole article would be 

required just to review all the work done in the past 50+ years on landing 

dynamics of jet airplane.  One of the first studies of landing touchdowns in 

turboprop and turbojet-type airplanes was conducted by Stickle (1961). The 

author found that most of the touchdowns occurred at airspeeds of 22.5 to 26.6% 

above the stalling speed. He also found that 1-in-100 touchdowns occurred 

beyond 2,800 ft from the runway threshold in turbojet-type airplanes. White 

(1968) presented a very simple model of landing flare which did not have the 

sophistication required to model the AEE. The AEE was known, but not 

understood or appreciated well enough before the arrival of the large airplanes 

and the onset of the “jet-age”. To the best of our knowledge, the first serious 

theoretical analysis of landing flare was presented by Pinsker (1969). The author 

used the Laplace transform on the simplified linear 3-DOF longitudinal airplane 

dynamics model to obtain the short-term aircraft response after step and ramp 

elevator control applications. Unfortunately, Pinsker’s original work on AEE had 

some typographical errors in equations used. The author himself was truly a giant 

of aircraft stability, control, and performance theory who made numerous 

important contributions to the field and who also provided inspiration to the 

author of this article. Cleveland (1970) discussed handling qualities of 

conventional aircraft designs. As Cleveland pointed out, reverse altitude response 
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(i.e., AEE) can be accepted if the longitudinal time-lag of response does not 

exceed 2 seconds criterion. As an example Cleveland used C-5A with a dead-time 

in pitch response of about 0.8 s. The conclusion made is that future very large 

aircraft may indeed need canard surface and perhaps Direct Lift Control (DLC) 

due to unacceptable dead-time in pitch response. Lykken and Shah (1972) 

discussed the use of DLC to improve the pitch response lag times and better 

vertical response control in large airplanes (Lockheed’s L-1011). This was 

especially important for the precise glideslope control and tracking during 

Category III ILS approaches where almost instantaneous lift management is 

critical. Seckel (1975) presented his study of the landing flare in light GA airplane 

(variable-stability Navion) and did not mention AEE as relevant to landing flare. 

Phillips (1979) presented his in-depth analysis of altitude response based on the 

impulse, step and ramp elevator application. The author used the case of Space 

Shuttle orbiter and other four (military) aircraft of which some were used in 

power-off landing scenarios to investigate approach and landing dynamics. The 

author used 3-DOF linearized equations of longitudinal aircraft dynamics. His 

results predicted altitude loss and time-delay of proverse flight-controls effect of 

1-2 seconds. Phillips made no connection between the reverse altitude response 

and the landing flare. Grantham et al (1987) performed full 6-DOF simulation and 

piloted study of handling qualities in pitch response lag for a large transport-

category airplane (Lockheed’s L-1011). Abzug and Larrabee (1997) discussed, 

among many other things, the handling properties and reverse altitude response of 

very large aircraft during landing flare. The authors merely repeated the 

arguments already given by Cleveland (1970) and Phillips (1979) and were using 

STS’s space shuttle orbiter’s sluggish and inadequate longitudinal dynamic and 

time-lags in pitch response that exceeds 2 seconds.  Merat (2008) considered the 

use of DLC in Airbus 380 due to its anticipated sluggish longitudinal dynamics in 

landing. Merat showed the existence of the reverse altitude response and the way 

to mitigate it using the DLC. Merat employed the standard small-perturbation 3-

DOF state space analysis of longitudinal dynamics. It may still be too early to 

determine if A380 may indeed need DLC in the future. Zaal et al (2008) studied 

the effect of pitch and heave motion cues in a pitch control task. Detecting AEE 

accurately may be critical in our ability to use it for our advantage. The issue of 

AEE was revisited in publications by Daidzic (2010, 2011b), where for the first 

time it was suggested to be used to pilot’s advantage during landing flare and a 

new landing technique for large airplanes has been proposed. Very recently 

Malmquist et al (2014) presented their study of kinematic effects in large 

transport aircraft mentioning the reverse altitude response. Authors also 

recommended incorporating training concerning kinematic issues for operators of 

large aircraft. 

 

3

Daidzic: Adverse Elevator Effect

Published by Scholarly Commons, 2014



  

Historically, very little “science” existed in pilot education, training and 

execution of the landing flare maneuver. This led to large scatter in touchdown 

points and much too frequently a runway overrun (Daidzic, 2009b, 2009c, 2011a, 

2011c). Typically, an airplane travels horizontally about 200-250 feet every 

second in flare maneuver. Any prolonged float, bounce, and/or ballooning uses 

runway excessively and makes overrun or subsequent heavy breaking more 

probable and dramatic.  

 

An illustration of landing flare (round-out) maneuver is shown in Figure 1. 

It is assumed that a constant flight load is maintained during flare curve which 

then represents a segment of a circle. One has to be very careful with the 

definition of the flare height which is not the same as a runway threshold crossing 

height (TCH). Any horizontal distance covered in actual flare must be added to 

the distance covered to descend from the TCH to flare height (if lower). Proper 

flare height and accompanied horizontal flare distance can theoretically be zero if 

no-flare touchdown is made. Once the airplane’s gear height achieves 

“appropriate” flare height, the pilot starts the pull-up maneuver while 

simultaneously closing the throttles. So much latitude exists here as various flare 

heights with different pitch-up load profiles of various durations are used. The 

purpose of a good landing flare is to progressively pitch up an airplane to a proper 

touchdown attitude and arresting the sink rate, while simultaneously avoiding 

bounce, float, and/or ballooning. This is by no means a simple task as the 

maneuver is very short and the human and airplane inertia makes the feedback 

process complicated and sluggish at best.  

 

 
 

Figure 1. Flare maneuver. Not to scale. Angles and distances are highly 

exaggerated for better visual representation. 
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The rounding out maneuver can be executed using infinite combinations 

of flight load profiles of different durations. Often, the pilot is interested in gentle 

rounding-out maneuver which offers more time to monitor progress for “normal” 

touchdowns. However, gentle flare will result in touching down long and wasting 

usable runway. If the runway is contaminated and/or LAHSO operations are in 

use, this could cause serious problems in subsequent ground-roll braking efforts, 

as well-documented accidents history has unfortunately shown. An additional 

horizontal distance will be covered in curved path beyond the point of straight 

descent (glidepath) and runway intercept as shown in Figure 1. The operational 

practice of many operators uses fixed flare height (e.g., 30-ft for wide-body and 

15-20 ft for narrow-body) which pilots are then instructed to follow. There is 

rarely any compensation for variable conditions and everything is left to the 

pilot’s experience of how to flare and control touchdown.  

 

The flare height can be estimated from Daidzic & Shrestha (2008), by 

assuming constant (or averaged) instantaneous flare flight-load: 
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The “proper” flare heights versus approach rate-of-descent (ROD) and 

various flight loads for touchdown vertical of 200 and 100 fpm respectively using 

Equation 1 is shown in Figures 2 and 3. Since the normal landing reference 

airspeed is 30% over the stall speed in a given configuration, the maximum 

vertical flight load allowed is 1.69 which is depicted as dashed line. Similar 

results are shown in Figure 4, only this time for the zero-sink or tangential 

(“greaser”) touchdown. If the touchdown angle is the same as the approach angle 

the “proper” flare height is obviously zero. While instantaneous application of 

constant flare load was assumed here, Pinsker (1969) considered time evolution of 

pitch response. 

 

Computations of the flare height as a function of approach ROD (just 

before flare starts), pull-up g-force in flare, and touchdown RODs of 200 fpm and 

zero-sink (in parenthesis) at ground speed of 250 fps (148 knots) are summarized 

in Table 1. Again, great sensitivity of the proper flare height on the actual descent 
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rate just before the initiation of the flare maneuver is noticeable and partly 

explains lack of touchdown consistency. A mere 2 feet in flare height or so divide 

“greaser” from relatively firm landing at 200 fpm. Human vision and judgment is 

normally not that sophisticated to identify 2-ft height differences at 50 ft eye 

heights in a moving and rotating cockpit. Additionally, a mere delay of 300 

milliseconds to flare-altitude call-out and initiation of flare plays a significant role 

in touchdown impact intensity (Daidzic, 2009c). 

 

As the flare height increases using ever gentler pull-up loads so does the 

sensitivity of the correct flare height on the vertical speed. The uncertainty due to 

pitch-up flight load is quite large as seen from the total differential:  
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Where partial derivatives defining individual uncertainties are: 
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Figure 2. Flare height as a function of approach ROD’s and different pull-up g-

forces at 200 fpm vertical touchdown speeds.  
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Figure 3. Flare height as a function of approach ROD’s and different pull-up g-

forces at 100 fpm vertical touchdown speeds.  

 

 
 

Figure 4. Flare height as a function of approach ROD’s and different pull-up g-

forces at 0 fpm (tangential, zero-sink) vertical touchdown speeds. 

 

As seen in Figures 2, 3 and 4 and particularly from the third partial 

derivative above (Equation 2), the flare height is very sensitive on the magnitude 
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of the pull-up load. The horizontal distance in flare can be calculated from 

Daidzic & Shrestha (2008): 
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The total air distance covered from crossing the runway threshold (at 

TCH) to the touchdown point is: 
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The minimum distance in flare is actually no-flare ( APPTD   ) landing 

where, 0min  APPFLFL hL  . This is really hard and damaging on landing gear 

and occupants and is avoided at all cost. If the flare height is finite positive value, 

the extra distance covered in flare beyond the point of the straight descent is: 
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Table 1 

 

Flare height at 250 fps (148 knots). 

 

RODAPP [fpm] 

Gear Height [ft] 

RODTD at 200 (0) fpm 

nFL=1.08, qFL=0.59 deg/s 

Gear Height [ft] 

RODTD at 200 (0) fpm 

nFL=1.2, qFL=1.48 deg/s 

1000 51.76 (53.92) 20.70 (21.57) 

900 41.52 (43.67) 16.61 (17.47) 

800 32.35 (34.51) 12.94 (13.80) 

700 24.26 (26.42) 9.70 (10.57) 

600 17.25 (19.41) 6.90 (7.76) 

500 11.32 (13.48) 4.53 (5.39) 

 

As a consequence the additional distance covered in curved flare 

maneuver is a linear function of flare height. Increasing the flare height by 20% 

would also require gentler round-out maneuver (lower flare flight load) and 

increase the flare distance by 20%. The longest flare distance is achieved for 
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tangential touchdowns where, 0TD , and assuming the uniform flare flight load. 

Equation 5 can be rewritten in the following form which also accounts for wind: 
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The horizontal distance covered in flare is proportional to the square of the 

approach ROD. It is simultaneously inversely proportional to the approach 

vertical flight path and the constant flare flight load.  

 

For example, an airplane flying a no-wind approach at 250 ft/s (148 kts) 

and 3o glidepath has approach ROD of 13.1 ft/s or 786 ft/min. The minimum 

horizontal distance covered from the 30 ft flare height is then 572 ft while 

maintaining glidepath angle. The “proper” flare height according to Equation 1 

would be 33.3 ft at flare load of 0.08 to deliver a constant-radius arc for tangential 

touchdown.  

 

If the airplane achieves zero-sink touchdown (“greaser”) in a smooth 

curved path, the horizontal distance covered in flare will be 1,270 ft from the 33.3 

ft flare height with flare flight load of 1.080 ( 08.0 FLn ) or constant pull-up 

load of 0.59 degrees/s. In reality, ground effect and its influences on vortex drag, 

pitching moment, tail effectiveness, etc., must be taken into account. If the 

airplane landing gear crossed runway threshold at 50 ft on a 30 glidepath, 

additional 319 ft will be covered in air before starting flare, resulting in the total 

air distance to touchdown of 1589 ft – assuming perfect conditions. 

 

The horizontal flare distance versus flare flight load at selected 250 fps 

(148 knots) flare airspeed is presented in Figure 5 for three different touchdown 

angles using the Equation 3. Obviously, gentle flare starting at higher flare heights 

would require excessively longer horizontal distances. This analysis does not take 

into account any ballooning, excessive floating, and bouncing which would add 

additional distance and possibly result in an overrun. 

 

However, the real flight trajectory during the landing flare looks more like 

the one presented in Figure 6. The illustration in Figure 1 is just an idealization of 

the flare maneuver. The initial response to elevator up control input is in airplane 

accelerating downward, increasing ROD, and losing altitude (or going below the 

glidepath/glideslope). It also becomes clear why no-flare is sometimes better than 

late flare. And as it will be shown later, rather than pull-up it is often better to 
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push-over in late flare provided pitch angle does not become too flat for 

touchdown and risking the nose-gear strike first. 

 

 
 

Figure 5. Flare distance as a function of pull-up g-load and touchdown angle at 

ground speed of 148 knots. 

 

Thus, the main goal of this article is to showcase a relatively simple, yet 

quite powerful and realistic (on short time-scales) adverse effect of elevator 

control (AEE) in conventional airplane designs. Many computations for a selected 

transport-category aircraft will be presented for specific control inputs. A new 

landing technique is proposed which will utilize AEE to the pilot’s benefit making 

touchdowns more accurate and reducing the required runway lengths. 

 

Mathematical model of Adverse Elevator Effect 

 

The mathematical model for the simultaneous pitching and plunge (heave) 

motion presented here is based on the linearized short-term (1 to 2 seconds) 

longitudinal dynamics of airplane in landing flare. Simple, yet powerful 

mathematical models have been developed in time and complex domain with 

Laplace/Heaviside transfer functions (TF) defining responses to arbitrary elevator 

control inputs. Only small perturbations of rigid-body aircraft about the 

equilibrium (reference) flight conditions are considered resulting in a set of two to 

three ordinary differential equations (ODE) describing simple longitudinal 

dynamics with up to three degrees-of-freedom (3-DOF). The longitudinal 
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dynamics is decoupled from the lateral-directional dynamics and the small 

difference in the lateral moment of inertia between the principal body axis and the 

stability axis has been neglected (Roskam, 2007). The AEE is investigated here 

on the time-scales which are somewhat shorter than the oscillatory and heavily 

damped short-period (SP) oscillatory pitching dynamics (Etkin, 1959, 2005; Kolk, 

1961; Seckel, 1964; Nelson, 1998; Phillips, 2004, Roskam, 2007; Schmidt, 2012; 

Stengl, 2004; Stevens & Lewis, 2003). Of many stability derivatives only the 

elevator control effect is considered along the perturbed lift force on the main 

wing. Pitch stiffness and pitch damping are neglected. Ground effect has not been 

simulated for simplicity. 

 

 
 

Figure 6. Illustration of idealized and real flare dynamics with AEE. Not so scale. 

Angles and distances are highly exaggerated for better visual representation. 

 

A transport-category airplane in stabilized landing approach is typically 

descending at 10-15 feet/seconds (600-900 fpm). Usually, such airplane would 

start flare at gear heights of 20-40 feet. Larger “jumbos” and “super-jumbos” 

could start pre-flare maneuver at even higher heights. Some large airplanes with 

high aspect-ratio and wingspan have such a massive ground-effect in flare that 

very little elevator control is required (Davis, 1971; Denton, 1993). If the pilot 

does not flare the aircraft, and depending on the approach ROD, it would take 

only about 3 seconds before the landing gear impacts runway surface at 

unacceptably high vertical speeds.  

 

It is assumed that a landing airplane entered the flare height at a steady 

vertical flight path angle, steady ROD, and constant approach AOA. The variables 

of interest can be written as a sum of steady-state (reference or equilibrium) and 

small perturbation values: 
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               thhthtttttt APPAPPAPPAPP    

 

The initial conditions (ICs) for perturbed states are by definition all zero. 

Airspeed change during landing flare in ground effect is small and is neglected. 

The kinematic condition between AOA, pitch angle, and vertical flight path 

(glidepath) angle yields, 
i  . Since the incidence angle (

i ) is fixed any 

pitch change consists of the AOA and flight path-angle change (   ). A 

pure-pitching motion exists when CG is constrained and all the pitch change goes 

into AOA change alone with no flight-path variation.  

 

Small-perturbation flight dynamics equations (Etkin, 1959, 2005; Kolk, 

1961; Seckel, 1964; Abzug & Larrabee, 1997; Nelson, 1998; Stevens & Lewis, 

2003; Phillips, 2004, Stengel, 2004; Roskam, 2007; Schmidt, 2012) are originally 

due to Bryan in 1911 and have been an invaluable tool in development of new 

aircraft and flight simulation ever since. All partial derivatives in linearly 

truncated Taylor expansion are evaluated at the reference (equilibrium) conditions 

(steady-state flight). The only control force and moment discussed here are those 

coming from an elevator. Several simplifying assumptions are made in describing 

the AEE of a rigid-body conventional-tail aircraft. A change of airspeed is 

negligible for short time periods and thus forward speed-damping terms have 

been neglected (
uuu MZX ,, ) in the absence of any thrust perturbation. The entire 

force equation in the x-direction (longitudinal) can thus be dropped. Pitch 

damping terms (
mm CC

q
, ), pitch stiffness (

mC ), and vertical damping (
qzC ) have 

been also neglected. A 3-DOF linear time-invariant (LTI) model for quasi-steady 

motion in vertical plane is only considered. 

 
Aircraft response to an arbitrary elevator input and pure-pitching restriction 

 

A simple solution of short-time flare dynamics can be obtained from the 

“pure-pitching” kinematic approximation (Nelson, 1998)  resulting in all pitch 

change going into increase in AOA only, while the flight path angle stays constant 

( 0 ). In such case, the simple linearized mathematical model becomes: 
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The aircraft stability-axes (Roskam, 2007; Stevens & Lewis, 2003) are 

used with the body z-axis pointing downward while the vertical component of the 

earth-fixed inertial reference system is pointing upward. The first ODE is simply 

a balance of perturbed forces in the vertical direction (“heave” motion). The 

second ODE represents the conservation of pitching angular momentum. The 

third equation describes the instantaneous kinematic condition for the pure-

pitching dynamics. The forces and moments (stability derivatives) in Equation 7 

are expressed as: 
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    (8) 

 

The longitudinal stability and control coefficients can be or measured in 

flight tests or wind tunnels or modeled using standard methods (Abzug & 

Larrabee, 1997; Kolk, 1961; Seckel, 1964; Russell, 1996; Nelson, 1998; Phillips, 

2004; Roskam, 2007; Schmidt, 2012; Stengl, 2004; Stevens & Lewis, 2003).  

 

Aircraft’s vertical body-axis follows the right hand rule and points 

downward while the Earth-fixed vertical axis points upward and so the sign will 

change. Perhaps it is more intuitive to think about the tail lift perturbation as 

expressed in more familiar lift increment form: 

 

eyyttt

eeLt

ee

eee

MIlLMM

ZmSQCLL


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

 




 

 

The elevator movement (down or up) will define the sign of the tail lift 

and the pitching moment change. By aircraft stability and control theory 

convention upward elevator (pitching up) is taken as negative (Nelson, 1998; 

Phillips, 2004; Roskam, 2007). An elevator temporal movement can be defined by 

any control input and can be a Dirac’s impulse, Heaviside’s step, ramp, parabolic, 

sinusoidal, finite pulse, doublet, or anything desired and tailored.  

 

The final set of longitudinal dynamic equations for pure-pitching flight 

perturbation becomes: 
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   
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       (9) 

 

The function  tu  is control input (elevator deflection). The direction of 

elevator deflection will define the sign (positive or negative) so that both elevator-

up ( 0 e ) and elevator-down ( 0 e ) deflections can be simulated. Up 

elevator has negative sign but induces positive pitching moment and rate 

(increasing pitch angle). The various constants in Equation 9 are defined as: 
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   (10) 

 

The parameter K  can be described as the acceleration due to main wing 

lift increment, parameter P  is the vertical acceleration due to tail elevator lift 

change, and R is the pitching angular acceleration.  Important parameter in main 

wing lift production is the product, RK  . For many transport-category airplanes 

this product of vertical and angular (pitching) accelerations is almost constant. 

Pinsker (1969) arrived to similar set of equations as we did. 

 

Aircraft response to an arbitrary elevator input and free flight path 

 

In this analysis the restriction of pure-pitching motion will be removed 

and the vertical flight-path angle will become independent (free flight). The 

conservation of angular momentum along airplane’s lateral axis (pitch rotation) 

for arbitrary elevator input becomes: 

 

 
   tulLMtI

dt

d
I tttyyyy 




 
2

2

 

 

The balance of vertical forces will include the increase in the elevator 

downward force and the time-dependent increase in main-wing lift: 
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The third ODE describing vertical flight path (glidepath) change is 

obtained from the kinematic condition and constant-airspeed approximation: 
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The kinematic condition in free flight is very different from the one in 

pure-pitching mode: 
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    (11) 

 

The final set of ODEs describing the short-term AEE longitudinal flight 

dynamics in free-flight at small flight angle is: 

 

         tuPtKth
v

h
tuRt 
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  




0

  (12) 

 

 The free-flight longitudinal dynamics model is more complex than for 

pure-pitching approximation as it allows for the change of the AOA and flight 

path angles independently.  

 

Methods and Materials 

 

Aircraft-response based on the particular pilot-controlled elevator input 

are investigated. Impulse and step control inputs were used to investigate aircraft 

longitudinal dynamics and AEE. Although these simple control inputs are just an 

approximation of how pilots normally would command pitch changes, they 

nevertheless unravel the mystery behind AEE. Other delays in control system are 

neglected. 

 

The system of coupled linear ODEs describing rigid-airplane longitudinal 

dynamics can be conveniently solved using the powerful space-state analysis 

(Nelson, 1998; Phillips, 2004; Stengl, 2004; Schmidt, 2012). However, for the 

simple single-input system (elevator deflection), the Laplace transforms (Spiegel, 

1965) are chosen. The Laplace transformation is also a very powerful 
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mathematical technique with a beautiful property that it converts ODE into 

algebraic functions in Laplace complex domain. Without describing details of the 

Laplace transform properties, the transform-pairs used here are defined as: 

 

             
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An interested reader is welcome to consult many great mathematical 

books written on integral transforms and Laplace transform in particular. A good, 

simple, and very popular introductory text used here is by Spiegel (1965). 

 

Solution to pure-pitching longitudinal flight dynamics approximation 

 

In Laplace domain the system of ODE (Equation 9) becomes a system of 

three algebraic equations with three unknowns. If the elevator is up then the 

deflection is negative and the incremental tail-lift is directed downward 

generating a positive pitching motion (upward). The Laplace transforms of system 

given by Equation 9 becomes: 

 

             sUPsAKsHssTsAsURsTs  22   (13) 

 

and: 
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The TFs for elevator control input can be defined for pitch, AOA, and 

altitude responses: 
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For an impulse input, the Laplace transform of the elevator control 

function is simply   1sU  (elevator up) or   1sU  (elevator down). 

Performing the inverse Laplace transform of Equation 15 for the impulse elevator 

up deflection (approximating quick jerk back and release) results in time-domain: 

 

      tPt
RK

thtRtt  3

6
      (16) 

16

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 1 [2014], Iss. 4, Art. 3

https://commons.erau.edu/ijaaa/vol1/iss4/3
DOI: https://doi.org/10.15394/ijaaa.2014.1032



  

 

For an impulse elevator down control input   1sU  (approximating 

quick jerk forward and release), the temporal solution for pure-pitching altitude 

and pitch (also AOA) change is: 

 

      tPt
RK

thtRtt  3

6
     (17) 

 

If the elevator control input is unit step up (elevator suddenly up and hold 

that deflection) or,   ssU 1 , the temporal height and pitch changes are: 
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For unit step down or,   ssU 1 , the temporal height and pitch changes 

in pure-pitching mode become: 
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Since all the above functions are analytic, the derivatives with respect to 

time can be easily found. The characteristic duration (time-constant) of the AEE 

or inverse altitude response to step control input during which an airplane 

essentially only rotates around lateral axis is: 
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For a B747-200 airplane this time constant is about 365 milliseconds (ms) 

at 148 knots approach speed and SL density altitude. All three important time 

scales defining the duration of loss of altitude (reverse altitude response), 

increased (adverse) ROD, and downward acceleration from the moment step 

elevator input are (Pinsker, 1969): 
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Interestingly, the characteristic step-response time 
step  does not depend on 

the magnitude of the elevator force or deflection (up or down), but only on the 

specific aerodynamic parameters. In the case of impulse input the respective time 

constant is about 71% of the step time constant for AEE. 

 

Solution of free-flight longitudinal dynamics 

 

Applying the Laplace transform to all three ODE (Equation 12) results in 

the system of three algebraic equations for three unknown functions: 
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The functions for pitch, height and AOA in Laplace domain for arbitrary 

control input and free-flight condition become: 
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The transfer functions for pitch, AOA, and altitude/height response can be 

now defined as: 
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Only impulse and step responses for elevator-up control input will be 

examined. Elevator down is just a mirror image of elevator up control input. For 

an elevator-up impulse response, where,   1sU , the solution to Laplace 

inversions yields: 
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The above analytic solutions (Equation 23) yield values at zero-time: 

 

      bPhPhh  0000   

 

For an elevator-up step response, where   ssU 1 , the solutions for 

altitude, pitch and AOA, after some quite tedious Laplace inversions and 

algebraic reductions, yields: 
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These analytic solutions (Equation 24) yield values at initial- or zero-time: 

 

      Phhh  00000   

 

In order to find various inverse-transforms, many Laplace transform 

properties have been used including the convolution integral, transform of the 

derivative function, etc. (Spiegel, 1965). Again, all functions are analytic and 

continuous in the entire time domain and the temporal derivatives can be easily 

found and are thus not explicitly given here. The free-flight kinematic condition 

(Equation 11) is satisfied by both (impulse and step) solutions given with 

Equations 23 and 24. 

 

Results and Discussion 

 

The responses for an impulse and a step elevator up and down control 

inputs of various magnitudes in pure-pitching and free-flight are presented. The 

AAE and the reverse altitude response is clearly present for the initial short-period 

after the flight control application as will be shown below.  

 

The evaluation of height, vertical speed, and vertical acceleration for two 

different impulse elevator up and down inputs is examined first. The acceleration 

in pitch is constant since pitch stiffness and damping were neglected for short 

time scales. A geometrical and aerodynamic characteristics of B747-200 have 

been used as that data is readily available (Nelson, 1998; Philipps, 2004) although 
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no great accuracy is claimed. The landing weight used is 550,000 lb, wing 

reference area is 5,500 ft2 with the wingspan of 195 feet, the pitching moment of 

inertia is 30,000,000 slug-ft2 and the horizontal-tail-to-CG arm is 100 ft. The 

reference/flare speed was taken as 148 knots (250 fps) at SL density altitude. 

 

Tail lift perturbations due to elevator (up or down) applications have been 

arbitrarily taken as 50,000 and 100,000 lb respectively. In terms of elevator 

deflection angle where elevator is assumed to be symmetric airfoil with maximum 

up and down deflections of 450 in slow speed regime, one obtains: 
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If the elevator power is calculated for B747-200 to be 4.0
e

ZC


and 

43.1
e

mC


 at a given approach airspeed and SL ISA conditions, the 50,000 lb 

tail vertical lift increment corresponds to elevator (up or down) deflection of 

17.50. For 100,000 lb tail-lift increment, a 350 elevator deflection is 

correspondingly required. These forces and deflections are, in fact, excessive for 

normal landings, but serve to show that AEE’s pitch time-lag does not depend on 

the magnitude of tail lift perturbation. 

 

The first result of computations will be height, vertical speed and 

acceleration for impulse upward elevator movement for pure-pitching motion and 

50,000 and 100,000 lb tail-lift increments as shown in Figure 7. Similar results are 

shown in Figure 8, but this time the elevator deflection is downward creating 

initially an upward motion, a sort of, proverse elevator effect. The initial upward 

motion is just a mirror image of downward motion (AEE) and will thus not be 

repeated for every case. As expected, the time delay (lag) due to AEE is 

independent of the tail lift magnitude. The results for the pure-pitching flight 

dynamics and elevator step up and down control deflections are shown in Figures 

9 and 10 respectively. Again, the AEE is clearly noticeable and the time-lag is 

actually longer than for the case of impulse control input (about 1.25 s versus 0.9 

s for the impulse control input). Elevator-down control input is just a mirror-

image of elevator-up response. 

   

Analog results for free-flight longitudinal dynamics are shown in Figures 

11 and 12 for impulse and step elevator-up response. Again, the same 50,000 and 

100,000 lb tail lift increments were used. Since the effect of elevator down is just 

a mirror image of the elevator-up response that was presented earlier it has not 

been simulated separately. A response in pitch, AOA and height for an impulse 
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elevator up control input is shown in Figure 11. A step response is shown in 

Figure 12. Again, the AEE is quite obvious introducing longer delay in step 

response than for impulse control input.  The magnitude of the time-lag is 

somewhat moderated compared to pure-pitching motion, but not much, 

suggesting that the initial response to elevator control input is a linear 

combination of downward acceleration and pure rotation around the lateral axis. 

 

 
 

Figure 7. Height, vertical speed, and vertical acceleration perturbations due to 

impulse elevator-up 50,000 (LHS) and 100,000 lb (RHS) tail lift change input for 

pure-pitching restricted flight dynamics. 

 

 
 

Figure 8. Height, vertical speed, and vertical acceleration perturbations due to 

impulse elevator-down 50,000 (LHS) and 100,000 lb (RHS) tail lift change input 

for pure-pitching restricted flight dynamics. 

 

Another useful observation is that short impulses (jerks) on elevator 

introduce less adverse effects than step input (pull and hold). As will be shown in 

subsequent articles, ramp elevator input (progressively increasing elevator up) 

introduces even larger AEE lag times. This certainly has to do with the amount of 

energy introduced by the elevator deflection. 
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Figure 9. Height, vertical speed, and vertical acceleration perturbations due to 

step elevator-up 50,000 (LHS) and 100,000 lb (RHS) tail lift change input for 

pure-pitching restricted flight dynamics. 

 

 
 

Figure 10. Height, vertical speed, and vertical acceleration perturbations due to 

step elevator-down 50,000 (LHS) and 100,000 lb (RHS) tail lift change input for 

pure-pitching restricted flight dynamics. 

 

 
 

Figure 11. Height, vertical speed, and vertical acceleration perturbations due to 

impulse elevator up 50,000 (LHS) and 100,000 lb (RHS) tail lift change input for 

free-flight dynamics. 
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The intensity of the tail-down (or up) lift does not affect the lag-time 

constant for a particular control input (impulse or step). Only the magnitude of 

adverse effects, such as reverse, altitude response, vertical acceleration and speed 

changes are affected. In a way that is to be expected from a linear isochronous 

model. 

 

 
 

Figure 12. Height, vertical speed, and vertical acceleration perturbations due to 

step elevator up 50,000 (LHS) and 100,000 lb (RHS) tail lift change input for 

free-flight dynamics. 

 

The results of the unrestricted longitudinal small-perturbations flight 

dynamics full simulations for a 100 step elevator-up control input for B747-200 

utilizing in-house developed flight simulation dynamics programs in MATLABTM 

and optimizing Fortran 95/2003 compiler with IMSL subroutines are shown in 

Figure 13. Advanced Runge-Kutta variable-step methods for numerical solution 

of system of ODEs were utilized. The full model includes all stiffness and 

damping terms and fully models longitudinal dynamics and control effects in free-

flight. This simulation result is used only to validate the assumptions made in the 

simple longitudinal flight models utilized here (Equations 9 and 21). No attempt 

is made here to describe details of the full longitudinal dynamics model due to 

size and complexity restrictions. From the state-space analysis of the full model 

the times 21T to halve the short-period (SP) and the long-period (phugoid or LP) 

modes for B747-200 are 1.078 and 84.35 seconds respectively. SP and LP 

damping constants are 0.939 and 0.0588 respectively. The fundamental decaying 

oscillatory periods signifying dynamic stability were 9.167 and 44.97 s 

respectively. Accordingly, the AEE (reverse altitude effect) takes place on the 

same time-scale as the SP motion. The main difference is that AEE is “control-

induced” effect, while the SP heavily damped oscillations are the result of 

airplane’s inherent longitudinal stability.  
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Figure 13. Unrestricted longitudinal dynamics flight perturbations due to step 100 

elevator up (-) control input using the full 3-DOF state-space model with 

kinematic relationships of free-flight for B747-200. 

 

Clearly, the forward speed change in flare with no thrust inputs and for 

short periods is small (one knot deceleration after 1.86 s). The pitch angle (#4 

graph in Figure 13) and the AOA (#2) increased by about 2 degrees each after 

about 1 second in the pull-up maneuver indicating that the flight path angle 

change (#6) is zero (as in pure-pitching mode). Obvious is also the initial loss of 

altitude (0.2 ft) and steepening the approach (-0.10 at 0.5 s) inducing downward 

vertical acceleration and speed increments. While altitude loss and downward 

acceleration are not that significant, the real problem is in creating the dead-time 

(lag) during a flare with the time-scales of about 1.18 seconds for height loss and 

0.80 seconds for vertical airspeed (flight-path angle) reversal. This is about the 

same result as was obtained in a simple analytical model developed here. This is 

to be compared to 1.263 and 0.73 s as calculated for the altitude-loss and the 

vertical speed reversal times for the same airplane and conditions. Thus all the 

assumptions made and the results obtained from the simple model are validated. It 

is also possible to add atmospheric disturbances (horizontal and vertical gusts) as 

well as ground effect aerodynamics to get very faithful airplane response provided 

all design data are known. 
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To summarize, the all three important height parameters are initially 

reversed. This is the consequence of the traditional tail elevator actually being the 

“wrong” control initially and for short period. This effect makes consistent 

accurate landings and touchdowns very difficult. Interestingly, regardless of the 

elevator force magnitude, the reversal duration does not change for a particular 

airplane type. The worst AEE consequence thus is to introduce the dead-time or 

the time-delay in pitch response. The landing flare occurs on the time-scale of few 

seconds and 1-2 seconds time-delays are essential. 

 

Armed with the better understanding of the airplane longitudinal dynamics 

during flare maneuver and especially the inevitable occurrence of the AEE, it is 

now investigated how this “adverse” phenomenon can be used to actually 

improve landing control and accuracy.  

 

The new proposed landing technique, illustrated in Figures 6 and 14, 

would start with the flare about 10 feet lower than usual for a particular airplane 

type (say, 20 ft instead of 30 ft gear height) utilizing somewhat faster pull-up of 

perhaps 1.20-1.25 g  which is still well below the landing stall margin of 1.69 g. 

This will result in achieving the pitch angle of perhaps 7-8 degrees (from 2-3 

degrees nose-up in stabilized approach), and then almost instantaneously followed 

by a push-over pulse for about 600-800 ms relax and expect main gear 

touchdown. The push-over maneuver will be initiated when the airplane is about 

4-6 feet above the ground. The main gear touchdown would still occur with the 

pitch (deck) angle of 5+ degrees and the vertical touchdown speeds in the range of 

100-200 fpm. The scatter of landing touchdowns is expected to be significantly 

smaller with more consistent landings and significant runway distance savings 

achieved. Such accurate touchdowns would be crucial for landings on 

contaminated runways and for LAHSO operations. 

 

In the push-over maneuver a pilot is trying to accomplish two things: 

 

 Reduce the rate-of-descent by relying on the short-term AEE’s reverse-

altitude response and reduction in ROD. 

 Reduce the pitch angle and set the airplane in the pitch down motion 

which is going to save few seconds in lowering the nose gear down after 

main-gear touchdown. 

 

In order to estimate the reduction in ROD by push-over maneuver, the law of 

conservation of linear momentum is employed for the vertical axis only: 

 

25

Daidzic: Adverse Elevator Effect

Published by Scholarly Commons, 2014



  

   
2

1

2

1

2

1

t

t

z

v

v

z

K

K

zz
z dtFdv

g

W
dKF

dt

dK z

z

z

z

    (25) 

  

From where it follows: 
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For example, assuming the initial pull that reduced the approach ROD 

from 720 (12 fps) to 300 fpm (5 fps) and airplane at the pitch angle of 8 degrees 

nose up while only about 5 ft above the runway. A pilot then generates a 50,000 

lb upward (push-over) vertical pulse on the tail (elevator down) of an aircraft 

weighing 550,000 lb lasting about 800 ms (0.8 s) by pushing the control column 

forward and then neutralizing. Such push-over pulse will create maximum climb 

ROD of 141 fpm (2.34 fps) that must be added to the descent rate of 300 fpm 

resulting in the net ROD of 160 fpm (2.66 fps). This must be timed appropriately 

so that the airplane is about touching down at that moment.  

 

Simultaneously, the pitch angle of the aircraft will decrease according to 

the law of conservation of angular momentum: 
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The pitch rate will change: 
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For example, if a pilot applies forward pressure pulse for 800 ms, creating 

downward pitching moment of, lbft000,000,5100000,50  , in an airplane with 

lateral-axis moment of inertia of  27 ftslug100.3  , it will result in the final pitch 

rate of about 7.64 deg/s. The total pitch angle change in 800 ms pulse will be 

about 3 degrees or final 5 degrees nose-up pitch attitude (from 8 degrees after 

pull-up) at main-gear touchdown: 
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This analysis neglects pitch stiffness and damping as well as changing 

aerodynamics in ground effect. However, as it was seen from the full model the 

difference is not large and the assumptions made are quite reasonable. Another 

added benefit to executing push-over maneuver when at appropriate height and 

just before touchdown is that the landing gear located behind the CG will be 

rotated away from the runway surface therefore minimizing vertical speed at the 

moment of touchdown. However, that only reduces the initial impact, but does not 

affect the vertical speed of CG. For example, if the landing gear is about 20 feet 

beyond the instantaneous point of rotation with the nose-down rotation of 6 deg/s 

at the time of touchdown, the vertical speed decreases by additional 126 fpm. 

Accordingly, the AEE and the rotation of the landing gear can both combined 

reduce the vertical touchdown impact by additional 200-300 fpm. A maneuver of 

short push-over pulse can be beneficial when within 1 s of touchdown and at the 

heights not greater than 4-6 feet. Detailed full flight simulator (FFS) study 

involving pilots of various experiences and in different aircraft will have to be 

conducted to validate the main proposal in this article. The remaining question is 

if the FFS flight models running in real-time have the accuracy and fidelity to 

properly simulate AEE. 

 

Standard flare technique involving starting flare higher to account for the 

AEE-induced time-lag carries some negative implications. First, it is more 

difficult to judge the height and it also implies shallower round-out (flare) which 

is perhaps preferred by crew, but it consumes excessive horizontal distance. 

Letting the aircraft settle gently onto runway may be preferred by pilots and 

passengers, but it often leads to landing long increasing the probability of overrun, 

excessive subsequent wear and tear of brakes and needlessly overstressing the 

entire airplane structure during heavy braking and thrust-reversing. Building 

longer runways is clearly not an option due to excessive cost and pilots could get 

even more complacent and losing touchdown control discipline.  

 

The new proposed landing technique, which was perhaps “discovered” 

accidentally by some pilots could not have been consistently reproduced as the 

main causes were never understood properly. Taking everything into account it is 

believed that this new proposed landing/touchdown technique can save about 500-

1,000 feet of runway in average in regular daily line-operations. It will be of 

course most beneficial when landing on short contaminated runways and with 

LAHSO procedures where touchdown precision and prompt lowering of the  nose 

gear is paramount.   

 

It has been said that some pilots operating venerable tri-jet Boeing B727s 

used the “pull-push” method as a standard landing technique. It somehow worked 
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despite the fact that many wrong explanations were given to explain it. The 

B727’s operating manual does not explicitly endorse such technique for normal 

landings. However, because all three engines are installed in the tail, the 

airplane’s CG (and wing) was quite behind and the arm of the elevator was 

relatively short. As a consequence, the powerful tail down force would create 

significant downward acceleration while the pitch response was taking time due 

to relatively weak control pitching moments. Accordingly a push-over maneuver 

created significant upward acceleration (reduced ROD) which B727 pilots 

apparently used frequently. It is possible that pull-push technique was also used 

by some pilots flying older airplanes which were “tail-heavy” having short tail-to-

CG arm (B727, Hawker Siddeley Trident, Vickers-Armstrong VC10, BAC 1-11, 

DC9/MD80, etc.). An airplane that had many landing accidents due to late flare is 

MD11. Supersonic and hypersonic airplanes of the future will be especially prone 

to AEE and landing/touchdown problems. 

 

 
 

Figure 14. An illustration of the proposed new landing technique utilizing AEE. 

Not to scale. Angles and distances are highly exaggerated. 

 

Although seemingly a peculiar phenomenon that could be dismissed as 

irrelevant, the AEE does exist every time an airplane with conventional tail is 

rotated for takeoff or in landing-flare pitch-up. There are few other lessons that 

can be learned by understanding the AEE and the short-term landing flare 

dynamics. When very close to ground with excessive ROD, a sudden pull-up to 

arrest the vertical descent rate could only make things worse and accelerate 

airplane downward even faster. At best there will be no effect of pitch-up 

correction as perhaps many pilots have already discovered in late flare (Daidzic, 
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2010, 2011b). As much as it seems counter-intuitive, actually pushing over will 

rapidly create upward lift increment that will slow down descend. AEE is only a 

short-term effect and can be used only when close to ground, i.e., landing.  

 

Since the pull-push landing technique involves two pitch rotations during 

which the glidepath is not significantly altered, an airplane utilizing this technique 

would essentially touch down very close (within 100-200 ft) to the minimum 

horizontal distance or where the glideslope/glidepath intercepts the runway. On 

the other hand, the “conventional” landing technique frequently results in 

touchdowns which are 500 to 1000+ feet away from the glideslope runway 

intercept (no-flare touchdown) point. This is mostly due to the gradual flare and 

near-tangential touchdowns where the rounding slopes become too shallow. Such 

conventional landing technique causes large scattering in touchdown points. If 

two airplanes conducting “conventional” and “pull-push” landing enter the same 

gear-height at the same airspeed and ROD (glidepath), the normal landing 

technique would involve one rotation and slow gradual shallow descent toward 

the runway. The pull-push flare’s two pitch rotations at lower altitudes actually 

involve maintaining the glidepath while the ROD decreases to acceptable 100-200 

fpm touchdown.  

 

More in-depth study and publications on AEE is planned in the near 

future. The ramp, parabolic, harmonic, rectified sine, finite pulse, doublet, and 

any arbitrary elevator control inputs will be used to investigate airplane’s 

longitudinal dynamics. A full 6-DOF rigid-airplane nonlinear models and 

linearized coupled lateral-longitudinal small-perturbation airplane models will be 

used to model an arbitrary elevator pull-push landing flare maneuver with the 

complications of ground effect, atmospheric turbulence and gusty winds. It is also 

envisioned to conduct a piloted-study utilizing real airplanes and FFS to validate 

some of the theoretical results and develop the new landing technique for large 

airplanes. Optimization of the new pull-push landing technique and defining its 

envelope of use is of prime importance. Today’s modern fly-by-wire airplanes 

utilize flare-mode for touchdown and that may appear to interfere with the “pull-

push” technique explored here. However, if the new touchdown technique is 

found to be superior to the conventional one there should be no difficulty in 

modifying the flare-mode software and adapt to new realities. However, at this 

point we do not want to delve on too many speculations. Further research, flight-

path integrations, and piloted studies will hopefully provide some more definite 

answers. 
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Conclusions 

 

A simple longitudinal flight dynamics model for rigid-body airplane 

landings was introduced. Only the short-period response to elevator up or down 

deflections were evaluated. Pitch stiffness, pitch damping, and vertical damping 

were neglected. The forward airspeed is essentially constant during the short term 

flare maneuver. Laplace integral transform was used to convert the differential 

model in time domain into the algebraic complex domain which after algebraic 

reductions, applications of control inputs, and solutions was then inverted back 

into the time domain. Only impulse and step control inputs were investigated in 

this study. Two different magnitudes of tail lift forces, corresponding to different 

elevator displacements were utilized to evaluate the effect on short-term height, 

AOA, vertical motion, and pitching dynamics. As expected, the simple model 

faithfully revealed the adverse elevator effect and the well-known reverse altitude 

response. A more complex mathematical models that were developed but not 

shown here due to complexity and size constraints validated and confirmed results 

of simple model used here. The AEE phenomenon was known for quite some 

time but often dismissed as irrelevant during flight at altitudes. However, during 

few seconds of landing flare and touchdown this adverse effect plays a prominent 

role which not only introduces initially reversed responses, but also generates 

substantial effective dead-times which are accounted for in operational practice by 

initiating round-out at higher altitudes and gentler than actually possible or 

desired. Today’s standard manual landing and touchdown techniques actually 

introduce large scattering and significant uncertainties in touchdown accuracy. No 

flare touchdowns would be unacceptable due to severe landing gear structural 

loads. A new pull-push landing technique which utilizes AEE to pilot’s advantage 

has been introduced and described. It is believed that the proposed landing and 

touchdown technique, in the absence of sophisticated direct-lift-control, would 

save, on average, 500 to 1,000 feet of runway which is especially important when 

landing on contaminated runways and during LAHSO operations. More results 

will be presented in subsequent publications involving full 6-DOF nonlinear and 

small-perturbation models while incorporating ground effect, atmospheric 

turbulence and wind. Experimental piloted studies in full-flight simulators, 

variable-stability, and real transport-category airplanes are required before the 

results and the proposed landing technique could be validated and perhaps 

implemented in daily operations. Experimental landing flare studies are difficult 

due to short duration of the maneuver.  
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