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 In 2015, Ray Mabus, the U.S. Secretary of the Navy, stated that the F-35C 

Lightning II “should be, and almost certainly will be, the last manned strike fighter 

aircraft the Department of the Navy will ever buy or fly” (Myers, 2015, para. 2). 

This prophecy may provide an insight into the large-scale transition from manned 

to unmanned aircraft occurring within the U.S. Department of Defense (DoD), but 

what does this imply?  

This paradigm shift is expected not only to revolutionize military flight 

operations, but also to be a multi-modal shift throughout aviation. A 2013 U.S. 

Department of Transportation report concluded that Unmanned Aircraft Systems 

operations will likely surpass manned commercial and military aircraft operations 

by 2035 (U.S. Department of Transportation, 2013, p. 7).  

Aircraft reliability will be a significant hurdle to this expansion. Questions 

of unmanned aircraft reliability are often paired with a criticism of their safety 

record, including accident causation and rates. A thorough understanding of 

unmanned aircraft accident data is needed by policy makers to make accurate 

decisions regarding the development of regulatory requirements for unmanned 

aircraft. Because policy makers are influenced by their constituents, an accurate 

characterization of the data in the public forum is also needed.  

Research Problem 

The discussion of accident statistics (or “mishap” statistics, in military 

terms) of medium and large unmanned aircraft is often incomplete. The MQ-1 

Predator and the MQ-9 Reaper are often part of these discussions because they have 

flown the bulk of the hours of U.S. Air Force unmanned aircraft of similar size (U.S. 

Air Force Safety Center, 2018).  

Comparing the mishap rate of one aircraft to another is mostly accomplished 

by showing the current cumulative rate, or reporting the number of mishaps that 

have occurred over a recent period. For example, “during the 5-yr period ending in 

fiscal year 2005, Predator RPAs [Remotely Piloted Aircraft] were lost at a rate of 

14.2 aircraft per 100,000 flight hours as compared to a rate of 3.0 for the U-2 and 

1.6 for the A-10” (Tvaryanas & Thompson, 2008, p. 526). Although Tvaryanas and 

Thompson’s statement might have been accurate with the data available at the time 

(and the article indicates the comparison was chosen due to similarities in mission 

type), it does not consider platform maturity. During the referenced period, U.S. Air 

Force Predator RPAs increased total flight hours from 17,476 to 140,735; the U-2 

increased from 387,429 to 452,097 flight hours; and the A-10 from 3,768,311 to 

4,350,290 flight hours (U.S. Air Force Safety Center, 2018). As an aircraft platform 

matures by accumulating more flight hours, the cumulative mishap rate generally 
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decreases (U.S. Air Force Safety Center, 2018). Therefore, a comparison of the 

mishap or loss rate of an aircraft with approximately 140,000 flight hours to one 

with more than 4 million does not provide a comprehensive picture of the data.  

To better understand the comparison of manned versus unmanned aircraft 

safety data, this paper used a chi-square goodness of fit method to compare the 

initial progression of the MQ-9 Reaper Class A mishap rate to that of several U.S. 

Air Force manned aircraft. Although not a typical use of the chi-square approach, 

the method is used as an analytical tool to describe and quantify the comparisons, 

rather than make statistical conclusions.  

Definitions 

Aircraft accident. “An occurrence associated with the operation of an 

aircraft which takes place between the time any person boards the aircraft with the 

intention of flight and all such persons have disembarked, and in which any person 

suffers death or serious injury, or in which the aircraft receives substantial damage” 

(from Title 49 of the U.S. Code of Federal Regulations, Part 830). Part 830 indicates 

that in this definition, “aircraft” includes unmanned aircraft.  

Mishap. An “unplanned occurrence, or series of occurrences, that results in 

damage or injury and meets Class A, B, C, or D reporting criteria” (U.S. Air Force, 

2017b, p. 102).  

Mishap rate. The average number of mishaps that have occurred over a 

defined number of flight hours, usually per 100,000 flight hours (U.S. Air Force 

Safety Center, 2018).  

Class A mishap. A mishap resulting in direct costs of $2,000,000 or more, 

loss of aircraft, a fatality, or permanent total disability (U.S. Air Force, 2017b, p. 20). 

Class B mishap. A mishap resulting in direct costs of $500,000 or more but 

less than $2,000,000, a permanent partial disability, or inpatient hospitalization of 

three or more personnel (U.S. Air Force, 2017b, p. 20). 

Class C mishap. A mishap resulting in direct costs of $50,000 or more but 

less than $500,000, and other miscellaneous loss of work definitions (U.S. Air 

Force, 2017b, pp. 20–21). 

Class D mishap. A mishap resulting in direct costs of $20,000 or more but 

less than $50,000, and other miscellaneous loss of work definitions (U.S. Air Force, 

2017b, p. 21). 
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Unmanned Aircraft (UA). A broad spectrum from weather balloons to 

highly complex aircraft piloted from remote locations by licensed pilots or 

operators. The latter are group of the unmanned aircraft are often referred to as 

“remotely piloted aircraft” or RPAs (International Civil Aviation Organization, 

2017, p. 1). 

Unmanned Aircraft System (UAS). An aircraft and its associated elements 

which are operated with no pilot on board (International Civil Aviation 

Organization, 2017). 

Review of Relevant Literature 

The following literature was reviewed, highlighting unmanned mishap 

causation and rates. Two mishap case studies that demonstrate differences in 

manned vs. unmanned aircraft mishap causation are also included.  

Progression Toward Increasing Autonomous Unmanned Aircraft Control 

Aircraft control has become increasingly automated over the past century. 

The aircraft autopilot was first introduced in 1914 (Thompson, 2014); furthermore, 

automated landings began as early as 1937 (Larson, 2012) and have been used by 

commercial airlines since the mid-1960s (Bearup, 2015). The Automatic Carrier 

Landing System (ACLS) used by the U.S. Navy’s F/A-18 Hornet fighter/attack 

aircraft was certified for fleet-wide use in 1984. ACLS improves safety by being 

able to land the aircraft in difficult circumstances such as low visibility, deck motion 

due to high seas, and high turbulence along the approach path (Urnes & Hess, 1985, 

pp. 289, 295).  

This trend of increasing autonomous aircraft control will also be significant 

in the transition from manned to unmanned aircraft. When discussing the future of 

unmanned systems, the 2013 DoD Unmanned Systems Integrated Roadmap 

indicated that the long-term future state (beyond 2020) will include higher levels of 

automation (p. 72). Lee contended that autonomy will indeed be the driving force 

for new remotely piloted aircraft technology, and that distrust of autonomy will be 

a limiting factor of this progress (2011, p. 79).  

Lee also concluded that military unmanned aircraft will require more 

autonomy to operate in the increasingly complex aviation environment and in 

contested military airspace (2011). To remain competitive in military aviation, 

increasing autonomous control of unmanned aircraft will likely be required. Straub 

concluded that law enforcement agencies might one day have no choice but to use 

armed unmanned aircraft to counter the equipment and tactics of criminals (2014). 
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Lee further proposed that stages or degrees in the progression toward more 

autonomy, rather than an “all-or-nothing” approach, can mitigate doubts about 

autonomous unmanned aircraft operations (2011, p. 77). Much of Lee’s discussion 

on this progression is based on a 1978 Massachusetts Institute of Technology study 

by Sheridan and Verplank that presented 10 levels of automation, ranging from no 

computer assistance to the computer performing the entire task (pp. 79–80).  

More autonomous control of unmanned aircraft could result in a loss of jobs, 

particularly for pilots. In a 2013 University of Oxford study, Frey and Osborne 

concluded that most workers in transportation and logistics industries (for example, 

taxi drivers and delivery drivers) face a high risk of being replaced by 

computerization. The concept of self-driving commercial automobiles can logically 

be extended to self-driving commercial aircraft.  

This movement toward unmanned commercial aircraft may also likely 

occur in stages. Lim, Bassien-Capsa, Ramasamy, Liu, and Sabatini (2017) 

contended that the current two-pilot requirement for commercial airlines may 

transition to single-pilot operations supported by a ground flight crew. The authors 

further concluded that this will likely begin with cargo aircraft operations, and that 

ultimately, we will likely see remotely piloted commercial airlines. 

Ultimately, increasing autonomous aircraft control will of course affect how 

aircrew are trained. While automation can reduce crew workload and improve 

safety, it does not necessarily reduce operator training. In fact, one of the key 

“ironies of automation” described by Bainbridge is that the most successful 

automated systems may be the ones that need the greatest investment in operator 

training (Bainbridge, 1983). 

Mishap Causation (“Why”) 

Pilot error has long been found to be a primary cause in a significant portion 

of aircraft accidents (Aircraft Owners and Pilots Association [AOPA] Air Safety 

Institute, 2017). In this section, first, how often pilot/crewmember errors contribute 

to manned and unmanned aircraft accidents will be discussed. Next, the general 

classifications or the types of crew errors will be analyzed, including which are the 

most common.  

Pilot/crewmember error contributing to manned aircraft accidents. 

The AOPA Air Safety Institute’s Joseph T. Nall Report is an industry-recognized 

resource on general aviation accident statistics. The most recent edition was 

released in 2017. It focuses on data from 2014 (AOPA Air Safety Institute, 2017). 

The statistics in the report include general aviation accidents, or all flight activities 
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in the NAS and flights to and from the United States and its territories, excluding 

those by the DoD or scheduled airlines.  Also excluded are fixed-wing aircraft 

weighing more than 12,500 pounds, weight-shift control aircraft, powered 

parachutes, gyroplanes, gliders, airships, balloons, and unmanned aircraft. 

The Nall Report (2017) provides a breakdown for commercial and non-

commercial general aviation accident causes (commercial flights in this context 

include charter, cargo, crop-dusting, and external load flights, but not, as mentioned, 

scheduled airlines). Three broad categories of causation are used: pilot-related, 

mechanical/maintenance, and other/unknown. The Nall Report indicates that 75% 

of the 952 non-commercial and 63% of the 68 commercial accidents in 2014 were 

pilot-related. The report concludes that these numbers are almost identical to every 

year in recent memory.  

Pilot/crewmember error contributing to unmanned aircraft accidents. 

A review of the pilot/crewmember contribution to MQ-1 and MQ-9 unmanned 

aircraft accidents was conducted. The review focused on journal articles that 

employ the Human Factors Analysis and Classification System (HFACS) accident 

causation taxonomy. HFACS was developed by Dr. Douglas Wiegmann and Dr. 

Scott Shappell to determine why accidents happen and how to reduce accident rates 

(HFACS, 2014). The DoD implements a version of HFACS to identify hazards and 

risks that result in mishaps (U.S. Department of Defense, 2005a).  

In a 2004 Department of Transportation/FAA study, Williams analyzed, 

among other unmanned aircraft accidents, 15 MQ-1 Predator Class A mishaps that 

occurred between December 1999 and December 2003. The study relied on 

executive summaries of the mishaps from the Air Force Judge Advocate General 

Corps website, Air Force Accident Investigation Board (AIB) reports, and previous 

work on Air Force accidents and human factors issues by Tvaryanas (Williams, 

2004). Of the MQ-1 mishaps analyzed, 67% had human factors causes, 42% had 

aircraft causes, and 17% had maintenance causes. Of those attributed to human 

factors causes, 75% were due to procedural errors. 

In a 2006 study, Tvaryanas, Thompson, and Constable conducted a 10-year 

(1993 to 2003) cross-sectional, quantitative HFACS analysis of several types of 

unmanned aircraft. The U.S. Air Force unmanned aircraft in the study (primarily 

38 RQ-1 mishaps, but also 4 RQ-4 Global Hawk mishaps—maximum gross weight 

of 32,250 pounds, see U.S. Air Force, 2014) had 79.1% that involved human factors 

causes. 

Tvaryanas and Thompson further analyzed unmanned aircraft mishap 

statistics in a 2008 study. This analysis differed from the 2006 study in that only 
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Air Force MQ-1 Predator mishaps were analyzed (for simplicity, unless otherwise 

stated, “MQ-1” is used to represent both the RQ-1 and MQ-1 throughout this paper). 

The study relied on U.S. Air Force Safety Center data and analyzed all MQ-1 

mishaps with direct costs totaling $20,000 or more during fiscal years 1997 to 2005, 

a total of 54 mishaps. In addition, 41 “near misses” were included in the analysis, 

bringing the total events considered to 95. As in the 2006 study, the 

mishaps/incidents were analyzed using the HFACS taxonomy. The study found that 

50.5% of the mishaps or incidents included crewmember failures.  

In a 2013 study, Giese, Carr, and Chahl conducted a HFACS analysis 

categorizing 52 MQ-1 and MQ-9 Class A mishaps that occurred from 2004 to 2012. 

The study analyzed U.S. Air Force AIB mishap reports and found that 42% of the 

mishaps involved human error. Of the ones involving human error, 59% had 

operator error as the main cause. 

Types of crewmember errors in manned aircraft accidents. HFACS is 

based in part on Reason’s “Swiss cheese” accident causation model: when holes in 

the defense layers intended to prevent accidents line up, the mishap occurs (Reason, 

2000, p. 769). Reason’s model includes four levels of human error, with each level 

influencing the next: organizational influences, unsafe supervision, preconditions 

for unsafe acts, and unsafe acts (Wiegmann & Shappell, 2003). HFACS provides a 

framework to apply these four levels in real settings and further divides the four 

levels into 19 causal categories, as shown in Figure 1. Some derivations of the 

HFACS taxonomy include additional sublevels beyond these 19, for example, the 

“nanocodes” used in the DoD-HFACS (Cohen, Wiegmann, & Shappell, 2015, p. 

731). The DoD’s continued commitment to HFACS was demonstrated by the Naval 

Safety Center’s recent launch of a DoD-HFACS mobile application (“app”) via the 

Apple and Android app stores. The app is intended to replace the existing HFACS 

flipbook used to identify DoD-HFACS codes (Glover, 2018). 
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Figure 1. The 4 levels and 19 causal categories of the HFACS framework. Reprinted from Shappell 

& Wiegmann, 2004, with permission. 

HFACS founders Shappell and Wiegmann used their taxonomy in a 2004 

study to compare human error across military, commercial carrier, and general 

aviation operations. The study comprised a meta-analysis of over 16,000 accidents 

from approximately 1990 to 1998. According to the authors, it was the first time 

that commercial and military data was compared beyond overall accident rates or 

the overall percentages of accidents associated with human error, i.e., beyond the 

discussion thus far in this report.  

Shappell and Wiegmann’s 2004 study focused on unsafe acts of aircrew—

the bottom of the four HFACS tiers shown on Figure 1. HFACS divides unsafe acts 

into errors and violations. The errors are further divided into skill-based errors, 

decision errors, and perceptual errors (the bottom left portion of the HFACS 

diagram in Figure 1). 

The study found that the three subcategories of crew error, from most 

common to least common, were the same across all three broad categories of 

manned aircraft aviation. The most common were skill-based errors, then decision 

errors, and finally perceptual errors.  
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Types of crewmember errors in unmanned aircraft accidents. The three 

unmanned aircraft HFACS studies previously mentioned—Tvaryanas, Thompson, 

and Constable (2006), Tvaryanas and Thompson (2008), and Giese et al. (2013)—

also included an analysis of unsafe acts in MQ-1 and/or MQ-9 mishaps or incidents. 

Each of these three studies found the same order of most to least common in the 

HFACS subcategories of MQ-1/MQ-9 operator error as Shappell and Wiegmann’s 

2004 cross-segment study of manned aircraft: skill-based errors were most common, 

then decision errors, and then perceptual errors.  

These studies also discussed the interrelatedness of crew errors to 

automation, HMI/control station design, and crew training (Tvaryanas & Constable 

2006; Tvaryanas & Thompson, 2008; Giese et al., 2013). When addressing these 

issues, Tvaryanas and Thompson’s 2008 study described how the Predator was 

initially acquired by the U.S. Air Force as an “advanced concept technology 

demonstration” and how the resulting rapid acquisition process affected ground 

control station design, procurement of technical publications, and the development 

of initial training programs (p. 529). Similarly, Giese et al. concluded that “the 

pressure of immediate usage for [the] Predator in combat theaters resulted in early 

Operational Test and Evaluation configurations of the system being ordered in 

significant numbers,” resulting in a lack of maturity of certification requirements 

when compared to civil aircraft (2013, p. 1191). 

Summary – mishap causation. In summary, a significant portion of 

manned aircraft mishaps have historically been attributed to pilot or crewmember 

error. A similar trend is evident in the unmanned aircraft data or those aircraft 

considered in this study (primarily the MQ-1 and MQ-9). Of the pilot/crewmember 

accidents, manned and the unmanned aircraft considered have the same breakdown 

of types of crew errors, from most common to least common. Skill-based errors 

were the most common.  

Case Studies Highlighting Causation  

While the general breakdown of (1) percentage, and (2) type of 

crewmember errors in manned and unmanned aircraft accidents appears similar, 

how these errors are manifested can be quite different. Further statistical analysis 

on causation is beyond the scope of this study. But, to demonstrate causation 

differences, two unmanned aircraft accidents will be analyzed in this section. The 

first was an MQ-1 Predator mishap that illustrates how the pilot not being onboard 

the aircraft might affect aircrew decision making. The second was an MQ-9 Reaper 

mishap that underscores the unique challenge of stall recognition pilots face when 

flying an unmanned aircraft.  
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 U.S. Air Force MQ-1 mishap, tail number 05-3154, March 29, 2013. The 

first accident to be analyzed was an MQ-1 mishap that occurred on March 29, 2013, 

northeast of Kandahar, Afghanistan. All information about the mishap described 

here is based on the U.S. Air Force Accident Investigation Board (AIB) publicly 

releasable documents and report (U.S. Air Force, 2013).  

 MQ-1 overview. First, a brief description of the MQ-1 Predator. It has a 

wingspan of 55 feet and a maximum takeoff weight of 2,250 pounds. Powered by 

a turbocharged Rotax piston engine, the MQ-1 can reach altitudes up to 25,000 feet 

Mean Sean Level (MSL). A crew comprised of a pilot and sensor operator flies the 

aircraft from a ground control station via a line-of-sight datalink, or a satellite 

datalink for beyond line-of-sight operations. The MQ-1 began service with the U.S. 

Air Force in 1996 as the RQ-1. With the addition of AGM-114 Hellfire missiles in 

2002, it was re-designated the MQ-1 (the “R” indicates a reconnaissance aircraft; 

“M” is for multi-role; “Q” indicates a remotely piloted aircraft system) (U.S. Air 

Force, 2015a). In March of 2018, the U.S. Air Force retired the MQ-1 (Losey, 2018). 

While in service, it was used for armed reconnaissance, airborne surveillance, and 

target acquisition, and could carry up to 450 pounds of payload (U.S. Air Force, 

2015a).  

Mishap sequence. The mishap flight was an armed Intelligence 

Surveillance and Reconnaissance (ISR) mission. The Launch and Recovery 

Element (LRE, for takeoff and landing) was operated from the airfield in 

Afghanistan. The Mission Control Element (MCE) was operated from Fargo, ND, 

via a satellite datalink. Aircraft control was transferred from the LRE to the MCE 

at 0535 Universal Time Coordinated (UTC), or approximately 25 minutes after 

takeoff (pp. 5, 6).  

The weather forecast for the mission area included showers, few 

thunderstorms, and light icing. Nearly three hours into the flight, at approximately 

0800 UTC, a weather technician from the Squadron Operations Center (SOC) 

informed the mishap crew of an inbound weather front and recommended they 

depart the aircraft from the mission area at 1000 UTC to avoid the approaching 

hazardous weather (pp. 6, 10).  

At 0945 UTC, the mishap aircraft was requested to support a Forward 

Operating Base (FOB) expecting an imminent hostile attack. To support the FOB, 

the crew and weather technician agreed to delay the departure from the mission 

area an additional 30 minutes, but no later than 1030 UTC (pp. i, 6).  

At 0956 UTC, a lightning ground strike was observed within 10 nautical 

miles of the mishap aircraft. The crew began to depart the aircraft from the mission 
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area at 1028 UTC. Towering clouds began to surround the mishap aircraft, and it 

flew into clouds at 1035 UTC. The datalink from the aircraft ceased at 1039 UTC. 

Radar data indicated the aircraft departed controlled flight and entered a stall or 

spin. The aircraft was destroyed upon impact (pp. 6, 7, 10).  

Mishap cause. The AIB concluded a lightning strike damaged the aircraft 

electrical circuits, resulting in the loss of the satellite datalink and loss of the aircraft. 

The aircraft manufacturer’s report to the Air Force (a partially redacted version was 

included in the AIB documents) stated that returned hardware from other MQ-1 

lightning strike events indicated that a lightning strike can damage the MQ-1’s 

onboard electronics (pp. i, JJ-8).  

 Using DoD-HFACS, the AIB assessed the accident for contributing human 

factors. They found no evidence that human factors as described in the HFACS 

taxonomy were a factor in the mishap (p. 13).  

This case study highlights how pilot decision making might be affected by 

not being onboard the aircraft. The decision to delay departing the aircraft from an 

area of deteriorating weather might have been influenced by the crew having no 

physical danger from a weather-induced crash. One could argue that “pushing the 

limits” with weather-related decisions—because the aircrew are not onboard the 

aircraft—could be influenced by the organizational climate as described in HFACS. 

The point could also be made that this type of decision is one of the five hazardous 

attitudes (possibly “invulnerability”) that contribute to poor judgment, as described 

by the FAA (U.S. Department of Transportation, 2016b, p. 2-5). While this could 

be true in some scenarios, for this mishap, the AIB concluded that the human factors 

described in HFACS were not applicable.  

U.S. Air Force MQ-9 mishap, tail number 10-4113, June 7, 2016. The 

second case study analyzed here was an MQ-9 mishap that occurred during a 

proficiency flight on June 7, 2016, in the Nevada Test and Training Range, located 

northwest of Las Vegas, NV. This summary is based on the U.S. Air Force AIB 

publicly releasable report (U.S. Air Force, 2016). This mishap highlights how the 

pilot not being onboard the aircraft can affect his or her ability to recognize a 

decreasing energy state of the aircraft and an impending stall. 

 MQ-9 overview. The MQ-9 is powered by a Honeywell turboprop engine 

and has a wingspan of 66 feet. It has a maximum takeoff weight of 10,500 pounds 

and a ceiling of 50,000 feet MSL. Like the MQ-1, the MQ-9 is operated by a pilot 

and sensor operator using a line-of-sight or satellite datalink. The MQ-9 has been 

in service with the U.S. Air Force since 2007. It can carry 3,750 pounds of payload 
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including AGM-114 Hellfire missiles, GBU-12 Paveway II laser-guided bombs, 

and GBU-38 Joint Direct Attack Munitions (U.S. Air Force, 2015b).  

Mishap sequence. This was a stall/spin mishap that occurred approximately 

two minutes after aircraft control was transferred from the LRE to the MCE. During 

the transfer, the aircraft was flying at 8,500 feet MSL. The MCE crew did not realize 

the minimum acceptable autopilot altitude was set to 9,000 feet MSL. As the MCE 

crew completed their handover checklist, they unknowingly engaged the 9,000-foot 

minimum altitude setting, causing the aircraft autopilot to initiate a climb from 

8,500 feet MSL. 

The mishap pilot recognized the climb, but incorrectly attributed it to a 

malfunction or unexpected flight condition. To quickly take manual control of the 

aircraft, the pilot used the “landing configuration” command, which disables all 

autopilot modes and the aircraft automated stall protection system. The pilot 

initially reduced power to descend the aircraft toward 8,000 feet, then resumed 

completing the handover checklist, but did not adequately adjust aircraft pitch 

attitude. 

As angle of attack continued to increase, the pilot failed to notice the audible 

and visual stall warnings. When the sensor operator correctly assessed the situation 

and advised the pilot that the aircraft was in a stall, the pilot increased engine power, 

but did not apply the stall recovery procedures outlined in the MQ-9 Flight Manual. 

Angle of attack increased until the aircraft entered a full aerodynamic stall and then 

spiraled to the ground. 

Mishap cause. The AIB determined the cause of the mishap was a 

combination of (1) the pilot incorrectly prioritizing completing the handover 

checklist, and (2) the pilot’s failure to observe the warnings of a reduced energy 

state and stall and then implement stall recovery procedures. 

The AIB also used HFACS to categorize the human factors associated with 

this mishap. They concluded that the DoD-HFACS nanocode AE202 Task 

Misprioritization (a subset of Decision Errors, within Unsafe Acts) was applicable. 

The Task Misprioritization nanocode is when “the individual does not organize, 

based on accepted prioritization techniques, the tasks needed to manage the 

immediate situation” (U.S. Department of Defense, 2005a, p. 9). 

Stall recognition. Regarding stall recognition, the FAA’s Airplane Flying 

Handbook (U.S. Department of Transportation, 2016a) describes how manned 

aircraft pilots, over time, develop a “feel” for the airplane. This “feel” includes 

kinesthesis—the ability to sense movement—but also includes other sensory input 
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like hearing air moving across the airframe and feeling engine vibration. This “feel” 

can provide the manned aircraft pilot critical information about changes in aircraft 

speed and direction and warn the pilot of an impending stall (pp. 3-4, 4-5, 4-6). 

Developing this “feel” is a foundational skill emphasized early in pilot training and 

required for pilot certification. During the practical test to earn a private pilot 

certificate, the applicant must demonstrate knowledge of impending stall and full 

stall indications including how to recognize a stall by sight, sound, and feel 

(U.S. Department of Transportation, 2017).  

Without these inputs, the unmanned aircraft pilot is relatively sensory 

deprived, lacking visual and auditory cueing (Tvaryanas et al. 2006). Williams 

concluded that unmanned aircraft pilots have the challenge of a general lack of 

sensory cues including delayed control feedback and a small field of view (2006). 

The MQ-9 stall/spin mishap described here highlights this sensory deprivation and 

the need for pilot training specifically tailored to the unmanned aircraft 

environment.  

Lastly, this mishap highlights one of the key operational and physical 

differences in unmanned aircraft accident investigation identified by the 

International Society of Air Safety Investigators (ISASI): that the pilot/operator 

does not have direct feedback of the aircraft condition, trajectory, and surrounding 

airspace (2015). 

Mishap Rates (“How Often”) 

 Mishap rate comparisons are often made by considering the current 

cumulative mishap rate, or sometimes the mishap rate over a recent period. A 

comprehensive, analysis comparing the progression of the cumulative mishap rate 

during the maturity of the MQ-9 to manned aircraft was not found.  

The U.S. Department of Defense has published several Unmanned Aircraft 

Systems (UAS) Roadmaps to provide a Defense-wide vision for UAVs and related 

technologies (U.S. Department of Defense, 2009). In the 2005, 2007, and 2009 

Roadmaps, a basic comparison of several military unmanned aircraft to the F-16 

and U-2 is provided. In addition to plotting the cumulative Class A mishap rates, 

the Roadmaps provide broad conclusions on platform maturity. An example from 

the 2009 Roadmap:  

Historically, UAS have suffered mishaps at one to two orders of magnitude 

greater than the rate (per 100,000 hours) incurred by manned military 

aircraft. In recent years, however, flight experience and improved 

technologies have enabled UAS to continue to track the reliability of early 
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manned military aircraft with their reliability approaching an equivalent 

level of reliability to their manned military counterparts. (p. 92) 

Herz, in a 2008 study on Predator mishaps, makes a similar conclusion that 

while MQ-1 mishap rates might be high relative to more mature U.S. Air Force 

aircraft, they are similar to the rates seen in the early years of the F-16. But how 

similar? Herz’s conclusion and the Roadmap discussions do not provide an analysis 

to answer this question. The next section of this paper provides such an analysis.  

Methodology 

The objective of the analysis portion of this study was to compare the 

progression of the cumulative Class A mishap rate of the U.S. Air Force MQ-9 to 

several U.S. Air Force manned aircraft during approximately the first one million 

flight hours. The approximate one million-hour range was selected because the U.S. 

Air Force MQ-9 had accumulated 1,378,992 flight hours as of FY17 (U.S. Air 

Force Safety Center, 2018). The standard metric of Class A mishaps per 

100,000 flight hours was used.  

A chi-square goodness-of-fit calculation was used to compare the 

cumulative mishap rates using designated points or benchmarks. Although each 

benchmark was a cumulative rate, each included new data in the rate calculation 

and was treated as a random sample for the chi-square calculations.  

Comparison Aircraft 

The choice of comparison aircraft for this type of analysis will vary 

depending on the goal of the researcher. For this study, the comparison aircraft were 

selected based on the data available on the U.S. Air Force Safety Center website 

and the following characteristics: 

▪ The total flight hours. Aircraft with at least 250,000 flight hours, and up 

to approximately one million flight hours, were considered. 

▪ The recency of the flight hours.  

▪ A manned aircraft. Since the goal of the analysis was to compare the 

MQ-9 to U.S. Air Force manned aircraft, the RQ-4 Global Hawk was 

not considered for this analysis. In addition, the RQ-4 had only 

accumulated 206,974 hours as of FY17 (U.S. Air Force Safety Center, 

2018).  

▪ A fixed-wing aircraft. Helicopters and tilt rotor aircraft like the V-22 

Osprey were not considered. 

▪ An aircraft not primarily used for pilot training.  
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▪ Aircraft used in capacities other than air freight or cargo. 

▪ Single-engine aircraft (like the MQ-9) were preferred, for similar 

propulsion system redundancy; however, because only a few single-

engine aircraft were available, aircraft with more than one engine were 

also considered. 

▪ Aircraft powered by turbine engine(s), for more similar powerplant 

reliability. This is why the MQ-9 was the focus of the comparison and 

not the MQ-1. 

▪ The U.S. Air Force was the launch customer for the aircraft (or one of 

the launch customers). The A-7, for instance, was not selected. The U.S. 

Navy began flying the A-7 in 1965 and began flying them in Vietnam in 

1967 (Schoeni, 1978, p. 4; Naval Aviation National Museum, 2016). 

The U.S. Air Force did not begin flying the A-7 until 1968 (National 

Museum of the Air Force, 2015). This will be evident in the A-7 data 

plotted later in this report.  

Based on the criteria listed above, six comparison aircraft were selected: the 

F-16 Fighting Falcon, the F-15 Eagle, the A-10 Thunderbolt, the U-2 Dragon Lady, 

the B-1 Lancer, and the F-22 Raptor. As of FY17, the U-2, B-1, and F-22 had not 

yet achieved one million flight hours but had reached at least 250,000 hours. Like 

the MQ-9, the F-16 and U-2 are single-engine aircraft; the F-15, A-10, and F-22 

have two engines; the B-1 has four.  

Perhaps a comparison like this, between a remotely piloted aircraft (such as 

the MQ-1 or possibly the MQ-9) and an aircraft like the F-22 Raptor, do not 

adequately consider distinctions in mission; some instead recommend a comparison 

like the RQ-1 unarmed Predator to the MC-12 Liberty (Kreuzer, 2015). Although 

the MQ-9 and the comparison aircraft have somewhat different missions, the goal 

was to provide a more complete understanding of comparisons already being made.  

Furthermore, while the MC-12’s mission might be more aligned with the 

RQ-1’s, as Kreuzer contends (reconnaissance), the U.S. military was not the launch 

customer for the MC-12. The MC-12 is a military version of the Beechcraft Super 

King Air 350ER (U.S. Air Force, 2017a). The Super King Air series was flown in 

civil aviation for several decades before entering service with the U.S. Air Force in 

2009 (AOPA, 2018; U.S. Air Force 2017a). Therefore, the MC-12 does not fit the 

goal of this study—to compare the progression of the Class A mishap rate during 

initial maturity.  

Included next is a general description of the steps used to complete the 

comparisons—as this methodology could be used to compare the cumulative 

mishap rates of other aircraft.  
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Step 1: Gather and Organize the Mishap Data 

For each aircraft, obtain the data needed to calculate the cumulative mishap 

rate (usually mishaps per 100,000 flight hours), at some interval (usually annually), 

over the range to be compared.  

Step 2: Determine the Comparison Points 

Determine the comparison points or benchmarks in the following manner:  

▪ The comparison points should begin at a point no lower than the 

frequency used to calculate the mishap rate. For example, if the often-

applied metric of mishaps per 100,000 flight hours is used, the first 

comparison point should be no lower than 100,000 hours. Mishaps prior 

to this point will be reflected in the cumulative rate calculations.  

▪ To generate the comparison points, determine an objective scale 

(meaning formula-based rather than arbitrary) that approximately fits 

the available data over the comparison range. For instance, if the aircraft 

with the fewest data points has 10, then develop a scale that generates 

approximately 10 points that generally align with the data.  

▪ At least three comparison points are recommended.  

Step 3: Determine the Cumulative Mishap Rates at the Comparison Points 

Use linear interpolation or curve fitting to calculate the cumulative mishap 

rate for each aircraft at each comparison point.  

Step 4: Conduct the Chi-Square Goodness-of-Fit Test Using the Comparison 

Points 

A chi-square goodness-of-fit test involves a comparison between expected 

and observed values (often counts or frequencies). The expected and observed 

values usually sum to the same total—sometimes viewed as a requirement for a chi-

square goodness-of-fit test. If they do not, then the expected values are usually 

adjusted (scaled as percentages of the total observed values) to make this so.  

One reason for this adjustment is to ensure a common frame of reference 

for the counts or frequencies being compared (i.e., the same “per x”). For example, 

if the goodness-of-fit test is comparing categories of violent crimes in a particular 

city from one year to another, one year will be designated the “expected” values, 

the other the “observed.” Because the total number of violent crimes across the 

categories is likely not the same in the two years compared, the expected counts or 
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frequencies are adjusted to have a common frame of reference with the observed 

values (the same “per x”) (Weiss, & Weiss, 2017).  

This type of adjustment would not work for the mishap rate comparison 

proposed here. However, this common frame of reference is accomplished by each 

comparison point being mishaps per 100,000 flight hours (or another shared 

“per x”). When the values (mishap rates) for the two aircraft being compared are 

totaled, though, they will most likely not be the same. Because of this, of the two 

aircraft being compared, the one with the lowest total will be treated as the expected 

values. Due to the nature of the chi-square calculation, this will yield a higher chi-

square statistic (and lower p-value) than if the aircraft with the higher total were 

treated as the expected values.  

While this might not be a typical use of a chi-square goodness-of-fit test, at 

its core, the goodness-of-fit test involves three essential elements: 

▪ All frequencies or counts have the same frame of reference, as discussed. 

▪ Each comparison in the overall calculation involves two frequencies or 

counts that are treated as if they should be equal—and the degree to 

which they are not is calculated using the chi-square formula. 

▪ These individual chi-square calculations are summed, and it is the sum 

of these individual calculations that yields the chi-square “statistic”—or 

the x-axis value on the chi-square distribution to be checked against an 

x-axis “critical value,” determined by the degrees of freedom in the 

comparison (or a p-value, representing the area under the distribution 

curve to the right of the chi-square statistic, is calculated and checked).  

These three requirements are met in the steps proposed here.  

Yet, because this is not a typical use of the chi-square goodness-of-fit test, 

an optional supplement to Step 4 is to expand upon the chi-square results with an 

additional test—for example, the Mann-Whitney test. The Mann-Whitney test is 

often used to compare means of non-parametric distributions (Leedy & Ormrod, 

2016). 

Step 5 (Optional): If Some Mishap Rates at the Comparison Points Are Less 

Than 5, Adjust the Rate and Repeat the Test  

Some references on statistics contend that none of the expected counts or 

frequencies in a chi-square goodness-of-fit test can be less than 5. Some say that no 

more than 20% can be less than 5. Still others contend that these requirements are 

too restrictive (Weiss & Weiss, 2017).  
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Because of this consideration, if some of the mishap rates at the comparison 

points are less than 5, consider the following optional step: 

(a) Alter the rate calculation (the “per x”) to the next comparison point, 

until the rates are above 5. For instance, instead of mishaps per 

100,000 flights hours, if the next comparison point is 150,000 flight 

hours, adjust the rate to per 150,000 flight hours. This would 

increase all mishap rates by a factor of 1.5.  

(b) Remove initial comparison point(s) if needed, as required in Step 2. 

For example, if the rate is increased from per 100,000 to per 150,000 

flight hours, remove the per 100,000 flight hours comparison point. 

The mishaps prior to the aircraft achieving 150,000 flight hours 

would still be included in the comparison because the mishap rate 

calculations are cumulative values.  

(c) Repeat the test with the updated data points.  

Results 

 Using the five-step method described above, the MQ-9 cumulative mishap 

rate progression during approximately the first one million flight hours was tested 

against the comparison aircraft.  

Step 1: Gather and Organize the Mishap Data 

The historical mishap data for the MQ-9 and each comparison aircraft were 

obtained from the U.S. Air Force Safety Center’s public website (U.S. Air Force 

Safety Center, 2018) and plotted by aircraft platform. Then, the cumulative mishap 

rate was calculated at the available data points (in this case, each year) as shown on 

Figure 2. The Appendix of this report lists all values of the plotted data. Note: 

Class A mishaps due to direct action of an enemy or hostile force are not included 

in the Air Force Safety Center data (U.S. Air Force, 2017b; R. Greenwood, personal 

communication, March 26, 2018).  
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Figure 2. Cumulative mishap rates of the aircraft discussed in this study. The tables in the Appendix 

include the plotted data values. Note how the A-7 does not have the initial decrease in the cumulative 

rate seen in the other aircraft, likely at least in part due to the U.S. Air Force not being the launch 

customer.  

 

Step 2: Determine the Comparison Points 

As described in the methodology section, the comparison points for this 

analysis were determined using an objective, formula-based scale that 

approximately matched the number of data points for the MQ-9 and most 

comparison aircraft. Since the metric used was mishaps per 100,000 flight hours, 

the first comparison point was 100,000 hours. Then, six additional comparison 

points were determined by successively increasing the flight hours by 50%, 

resulting in a seventh and final comparison point of 1,139,063 hours. This seemed 

a good fit for the available data and produced three groups, based on the number of 

comparison points: Group A (all seven comparison points: the F-16, F-15, and A-

10); Group B (five comparison points: the U-2 and the B-1); and Group C (three 

comparison points: the F-22).  

Step 3: Determine the Cumulative Mishap Rates at the Comparison Points 

Linear interpolation was used to determine the cumulative mishap rate for 

each aircraft at each comparison point. The tables in the Appendix show how the 

comparison points fit into the raw data. 
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Step 4: Conduct the Chi-Square Goodness-of-Fit Test Using the Comparison 

Points 

Group A. The comparison points for the Group A aircraft are shown in 

Figure 3. Noted details of the plot include: 

▪ Each plot has a similar shape. 

▪ The F-15 and A-10 plots have similar values. 

▪ The MQ-9 has the lowest rate at all but the first comparison point. 

▪ The F-16 plot is quite higher than the other three. 

 

 

Figure 3. Comparison points for Group A (seven comparison points). 

The chi-square goodness-of-fit test found a significant difference between 

the mishap rate progression of the MQ-9 and the F-16 (p-value of 0.00). See Table 1.  

The MQ-9 data points, although generally lower than the F-15 and A-10, 

were found to be similar (p-values of 0.736 and 0.721, respectively).  

The Mann-Whitney tests (H0: µ1 = µ2) using the same comparison points for 

Group A yielded results consistent with the chi-square tests. See Table 1.  
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Table 1  

 

Chi-Square Goodness-of-Fit and Mann-Whitney Results for Comparing the Cumulative Mishap 

Rate Progression of the MQ-9 to the Group A Aircraft (Seven Comparison Points) 

 

Hours   MQ-9 F-16   MQ-9 F-15   MQ-9 A-10 

100,000  11.5 15.2  11.5 10.6  11.5 12.6 

150,000  8.5 15.3  8.5 10.6  8.5 11.2 

225,000  6.4 14.9  6.4 8.8  6.4 9.3 

337,500  5.2 12.3  5.2 7.4  5.2 7.2 

506,250  4.1 10.0  4.1 6.1  4.1 5.6 

759,375  3.9 8.1  3.9 4.8  3.9 4.4 

1,139,063  3.5 6.8  3.5 3.9  3.5 3.9 
 Total 43.1 82.7  43.1 52.2  43.1 54.2 
          

        Chi-square \ /  \ /  \ / 
              Statistic 43.79  3.56  3.67 

              p-value 0.000  0.736  0.721 

              Null (H0) Reject  Accept  Accept 
          

        Mann-Whitney       

              p-value 0.011  0.405  0.337 

              Null (H0) Reject   Accept   Accept 

Note: Degrees of freedom = 6; chi-square critical value = 12.59; alpha = 0.05. Aircraft with 

the lower total were used as the expected value for chi-square calculations. Mishap rates 

shown are rounded values; precise values were used in the statistical calculations. The 

p-values and null hypotheses are included to describe and quantify the comparisons.  
 

 

Group B. The comparison points for the Group B aircraft are shown in 

Figure 4. As seen on the figure, the MQ-9 cumulative rate was generally higher 

than the B-1, but lower than the U-2. 
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Figure 4. Comparison points for Group B (five comparison points).  

The chi-square goodness-of-fit test did not find a significant difference 

between the MQ-9 and the U-2, or between the MQ-9 and the B-1. The MQ-9 to 

B-1 comparison yielded a chi-square statistic near, but less than the critical value 

(and a corresponding p-value just above than 0.05 limit). See Table 2.  

To get an additional sense of the limits of this method—for what would be 

considered a significant difference—the U-2 and B-1 progressions were compared 

to each other using the same method. A significant difference was the result, as 

shown on Table 2.  

As in Group A, the Mann-Whitney test results were consistent with those 

found by the chi-square goodness-of-fit test. See Table 2.  
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Table 2 

 

Chi-Square Goodness-of-Fit and Mann-Whitney Results for Comparing the Cumulative Mishap 

Rate Progression of the Group B Aircraft (Five Comparison Points) 

 

Hours   MQ-9 U-2   MQ-9 B-1   U-2 B-1 

100,000  11.5 13.3  11.5 5.3  13.3 5.3 

150,000  8.5 11.1  8.5 6.5  11.1 6.5 

225,000  6.4 7.7  6.4 4.5  7.7 4.5 

337,500  5.2 6.9  5.2 3.6  6.9 3.6 

506,250  4.1 6.1  4.1 4.3  6.1 4.3 
 Total 35.7 45.2  35.7 24.2  45.2 24.2 
          

        Chi-square \ /  \ /  \ / 
              Statistic 2.88  9.42  24.20 

              p-value 0.579  0.051  0.000 

              Null (H0) Accept  Accept  Reject 
          

        Mann-Whitney        

              p-value 0.421  0.310  0.016 

              Null (H0) Accept   Accept   Reject 

Note: Degrees of freedom = 4; chi-square critical value = 9.49; alpha = 0.05. Aircraft with the 

lower total were used as the expected value for chi-square calculations. Mishap rates shown are 

rounded values; precise values were used in the statistical calculations. The p-values and null 

hypotheses are included to describe and quantify the comparisons. 
 

 

 

Group C. The final comparison group was the MQ-9 and the F-22, with 

three comparison points. Figure 5 shows that the F-22 had a lower cumulative Class 

A mishap rate at each point.  

 

 

22

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 4, Art. 3

https://commons.erau.edu/ijaaa/vol5/iss4/3
DOI: https://doi.org/10.15394/ijaaa.2018.1262



 

Figure 5. Comparison points for Group C (three comparison points).  

Although the F-22 had a lower mishap rate at each point, the chi-square 

goodness-of-fit test did not find a significant difference in this comparison. This 

conclusion was once again supported by a Mann-Whitney test. See Table 3.  

 

Table 3 

 

Chi-Square Goodness-of-Fit and Mann-Whitney Results for the MQ-9 to the F-22 Mishap 

Rate Progression (Group C, Three Comparison Points) 

 

Hours   MQ-9 F-22       

100,000  11.5 6.4       

150,000  8.5 7.0       

225,000  6.4 5.8       

 Total 26.3 19.2       
          

        Chi-square \ /       

              Statistic 4.48       

              p-value 0.107       

              Null (H0) Accept       
          

        Mann-Whitney         

              p-value 0.268       

              Null (H0) Accept       

 

Note: Degrees of freedom = 2; chi-square critical value = 5.99; alpha = 0.05. Aircraft with 

the lower total were used as the expected value for chi-square calculations. Mishap rates 
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shown are rounded values; precise values were used in the statistical calculations. The 

p-values and null hypotheses are included to describe and quantify the comparisons. 

 

Step 5 (Optional): If Some Mishap Rates at the Comparison Points Are Less 

Than 5, Adjust the Rate and Repeat the Test  

Because some of the comparison points in Groups A and B had values less 

than 5, the analysis was repeated for these groups using a per 150,000 flight hours 

mishap rate. This adjustment increased all rates above 5. This also resulted in the 

first comparison point being 150,000 flight hours, as described in the Methodology 

section. The comparison of the MQ-9 to the F-22 did not have rates below 5, so this 

optional step was not applicable for Group C. 

When the chi-square goodness-of-fit test was repeated with the new Group 

A and Group B comparison points, the results were the same as those found using 

the standard per 100,000 flight hour rate. Table 4 shows the updated comparisons 

of the MQ-9 to the F-16, F-15, and A-10. 

Table 4 

 

Chi-Square Goodness-of-Fit and Mann-Whitney Results for Group A Aircraft Using Class A 

Mishaps per 150,000 Flight Hours  

 

Hours   MQ-9 F-16   MQ-9 F-15   MQ-9 A-10 

150,000  12.7 23.0  12.7 16.0  12.7 16.8 

225,000  9.5 22.4  9.5 13.2  9.5 13.9 

337,500  7.9 18.4  7.9 11.0  7.9 10.8 

506,250  6.2 15.0  6.2 9.1  6.2 8.4 

759,375  5.8 12.2  5.8 7.2  5.8 6.7 

1,139,063  5.3 10.2   5.3 5.9  5.3 5.8 
 Total 47.4 101.2  47.4 62.3  47.4 62.4 
          

        Chi-square \ /  \ /  \ / 
              Statistic 63.92  5.25  5.35 

              p-value 0.000  0.386  0.375 

              Null (H0) Reject  Accept  Accept 
          

        Mann-Whitney       

              p-value 0.009  0.240  0.262 

              Null (H0) Reject   Accept   Accept 

Note: Degrees of freedom = 5; chi-square critical value = 11.07; alpha = 0.05. Aircraft with 

the lower total were used as the expected value for chi-square calculations. Mishap rates 

shown are rounded values; precise values were used in the statistical calculations. The 

p-values and null hypotheses are included to describe and quantify the comparisons. 
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Table 5 shows the comparisons with the MQ-9, U-2, and B-1. Note how the 

U-2 to B-1 comparison using the per 150,000 flight hour rate was the only 

comparison in this study that the Mann-Whitney results differed from the chi-

square goodness-of-fit test. The chi-square test again found a significant difference 

between the U-2 and B-1. The Mann-Whitney test, however, produced a p-value 

of .057 (just above the .05 alpha), indicating there was not a significant difference 

between the U-2 and B-1 using a per 150,000 flight hour rate. See Table 5.  

 

Table 5 

 

Chi-Square Goodness-of-Fit and Mann-Whitney Results for Group B Aircraft, and the U-2 to the 

B-1, Using Class A Mishaps per 150,000 Flight Hours 

 

Hours   MQ-9 U-2   MQ-9 B-1   U-2 B-1 

150,000  12.7 16.6  12.7 9.8  16.6 9.8 

225,000  9.5 11.5  9.5 6.7  11.5 6.7 

337,500  7.9 10.4  7.9 5.3  10.4 5.3 

506,250  6.2 9.2  6.2 6.5  9.2 6.5 
 Total 36.3 47.8  36.3 28.3  47.8 28.3 
          

        Chi-square \ /  \ /  \ / 
              Statistic 3.87  3.30  14.26 

              p-value 0.276  0.348  0.003 

              Null (H0) Accept  Accept  Reject 
          

        Mann-Whitney        

              p-value 0.343  0.486  0.057 

              Null (H0) Accept   Accept   Accept 

Note: Degrees of freedom = 3; chi-square critical value = 7.81; alpha = 0.05. Aircraft with 

the lower total were used as the expected value for chi-square calculations. Mishap rates 

shown are rounded values; precise values were used in the statistical calculations. The 

p-values and null hypotheses are included to describe and quantify the comparisons. 
 

 

Summary, Mishap Rate Comparisons 

A analysis comparing the U.S. Air Force MQ-9 cumulative Class A mishap 

rate progression to that of several U.S. Air Force manned aircraft during 

approximately the first one million flight hours was completed. To summarize, the 

MQ-9 was found to have: 

▪ a lower rate than the F-16 (a significant difference); 

▪ a lower rate than the F-15 and the A-10 (but not a significant difference);  

▪ a lower rate than the U-2 but a higher rate than the B-1 (neither were 

significant differences); and 

▪ a higher rate than the F-22 (but not a significant difference). 
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Conclusion 

This research has shown that there is a well-established, significant 

percentage of manned aircraft accidents attributed to crew error. A similar trend 

appears to be the case in the unmanned aircraft data. The available data also support 

that, like manned aircraft, skill-based crew errors will continue to be a major 

contributor in unmanned aircraft accidents. Further research is needed in this area 

as some of the studies considered here indicated that, for some unmanned aircraft 

beyond those considered in this study (the MQ-1 and MQ-9) judgment/decision 

errors were more common than skill-based errors. Additionally, the continued 

progression toward more autonomous aircraft control, how the pilot/operator 

interfaces with the aircraft (HMI), and crew training are interrelated and will play 

a significant role in future unmanned aircraft accidents.  

The chi-square goodness-of-fit analysis indicated that, during 

approximately the first one million flight hours, the MQ-9 did not have a significant 

different Class A mishap rate progression than the comparison aircraft. The F-16 

was the only exception and had a higher rate. These findings were validated with 

Mann-Whitney tests.  

One of the criticisms of these results is that the method compares the MQ-9 

to old data, and that the overall U.S. Air Force mishap rate has decreased over time. 

This is a valid point for the F-16, F-15, and A-10 comparisons—each of these 

aircraft achieved one million flight hours in the mid-1980s. This criticism does not 

hold up for the F-22. The F-22 passed the 100,000-hour milestone in FY11; the 

MQ-9 did in FY10. Also, the fact that the U-2 and B-1 had not yet achieved 

one million flight hours as of FY17 also somewhat disputes the “old data” 

criticism—not all the data in the U-2 and B-1 comparisons are old. Looking at the 

last comparison point for these aircraft (506,250 hours), the MQ-9 achieved this 

benchmark in FY14; the B-1 passed the same mark in FY07; the U-2 did so in FY09.  

Another criticism of these results is that the aircraft fly different types of 

missions. As mentioned, one objective of this study was to provide a better 

understanding of comparisons already being made. Further, the MQ-9 flies armed 

ISR missions and can carry Hellfire missiles, Paveway laser-guided bombs, and 

Joint Direct Attack Munitions. In some respects, MQ-9 missions are not that 

different from those flown by the comparison aircraft.  

Despite these possible criticisms, the results show that an unmanned aircraft 

like the MQ-9 can be operated with a similar level of safety to that of a very 

sophisticated manned aircraft like the F-22. These results can be applied more 

broadly as unmanned aircraft development continues, indicating that the unmanned 
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safety record will someday match and may eventually surpass that of manned 

aircraft.  

Recommendations 

 The first recommendation involves the need to continually update 

unmanned aircraft crew training. This recommendation stems from the finding that, 

like manned aircraft, the unmanned aircraft considered in this study usually had 

skill-based crewmember errors—and a primary way to mitigate skill-based crew 

errors is through proper training. Moreover, as demonstrated by one of the case 

studies analyzed in this report, aircrew training must be tailored to the unique 

challenges of operating an aircraft remotely. In addition, more autonomous control 

will likely be required to remain competitive in military and commercial aviation. 

Improvements to automation will also improve safety. But more autonomous 

control—and improvements to the HMI/control station design—will also require 

updated crew training.  

The second general recommendation from this study involves looking 

objectively at the available safety data. A comprehensive approach is needed to 

understand mishap statistics. Comparing mishap rate progressions based on aircraft 

maturity is just one part of the overall safety picture. Nevertheless, it shows that the 

MQ-9, during the first one million flight hours of platform maturity, had a lower 

Class A mishap rate progression than the F-16, and a similar progression to the F-15 

and A-10; and (with the hours accumulated to date) the U-2, B-1, and F-22. These 

comparisons are in some ways limited due to the age of some of the data and to 

variation in missions. And the approach described here does not consider variables 

like aircraft cost, certification, and crew qualifications. But this type of comparison 

should be part of the discussion. A more comprehensive discussion of the available 

safety data will allow the continued expansion of unmanned aircraft into aviation 

operations.
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Appendix 

 This Appendix lists the data from the U.S. Safety Center website depicted 

in the figures and shows the results of the calculations to obtain the cumulative 

Class A mishap rates. It also includes the interpolated values (in boldface) for the 

comparison points used in the analysis.  

Table A1 

 

MQ-9 Class A Mishap Data and Comparison Points 

 

Year* 

Class A 

Mishaps* 

Cumulative      

Class A        

Mishaps** Hours* 

Cumulative     

Hours* 

Cumulative        

Class A      

Mishap 

Rate** 

FY09 4 10 25,391 52,394 19.1 

    100,000 11.5 

FY10 1 11 56,103 108,497 10.1 

    150,000 8.5 

FY11 2 13 86,526 195,023 6.7 

    225,000 6.4 

FY12 4 17 118,039 313,062 5.4 

    337,500 5.2 

FY13 3 20 155,802 468,864 4.3 

    506,250 4.1 

FY14 4 24 179,560 648,424 3.7 

    759,375 3.9 

FY15 10 34 199,967 848,391 4.0 

FY16 5 39 238,674 1,087,065 3.6 

    1,139,063 3.5 

FY17 4 43 291,927 1,378,992 3.1 

 

Note: Adapted http://www.safety.af.mil/Portals/71/documents/Aviation/Aircraft%20Statistics/ 

Q-9.pdf. Retrieved April 7, 2018. Interpolated values for comparison points are boldface. 

*Data from U.S. Air Force Safety Center website. **Calculated data. 
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Table A2 

 

F-16 Class A Mishap Data and Comparison Points 

 

Year* 

Class A 

Mishaps* 

Cumulative      

Class A        

Mishaps** Hours* 

Cumulative     

Hours* 

Cumulative        

Class A      

Mishap 

Rate** 

CY81 5 14 56,423 92,398 15.2 
    100,000 15.2 
    150,000 15.3 

CY82 17 31 107,389 199,787 15.5 
    225,000 14.9 
    337,500 12.3 

CY83 11 42 150,728 350,515 12.0 
    506,250 10.0 

CY84 10 52 199,761 550,276 9.4 
    759,375 8.1 

CY85 10 62 219,647 769,923 8.1 

CY86 11 73 254,491 1,024,414 7.1 
    1,139,063 6.8 

FY87 8 81 233,560 1,257,974 6.4 

 

Note: Adapted from 

http://www.safety.af.mil/Portals/71/documents/Aviation/Aircraft%20Statistics/F-16.pdf.  

Retrieved April 7, 2018. Interpolated values for comparison points are boldface. 

*Data from U.S. Air Force Safety Center website. **Calculated data.  
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Table A3 

 

F-15 Class A Mishap Data and Comparison Points 

 

Year* 

Class A 

Mishaps* 

Cumulative      

Class A        

Mishaps** Hours* 

Cumulative     

Hours* 

Cumulative        

Class A      

Mishap 

Rate** 

CY77 6 7 42,369 67,674 10.3 
    100,000 10.6 

CY78 8 15 69,023 136,697 11.0 
    150,000 10.6 
    225,000 8.8 

CY79 5 20 96,959 233,656 8.6 
    337,500 7.4 

CY80 5 25 109,309 342,965 7.3 

CY81 5 30 132,291 475,256 6.3 
    506,250 6.1 

CY82 3 33 153,369 628,625 5.2 
    759,375 4.8 

CY83 4 37 169,438 798,063 4.6 

CY84 3 40 175,515 973,578 4.1 
    1,139,063 3.9 

CY85 5 45 185,324 1,158,902 3.9 

 

Note: Adapted from 

http://www.safety.af.mil/Portals/71/documents/Aviation/Aircraft%20Statistics/F-15.pdf.  

Retrieved December 2, 2017. Interpolated values for comparison points are boldface. 

*Data from U.S. Air Force Safety Center website. **Calculated data. 
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Table A4 

 

A-10 Class A Mishap Data and Comparison Points 

 

Year* 

Class A 

Mishaps* 

Cumulative      

Class A        

Mishaps** Hours* 

Cumulative     

Hours* 

Cumulative        

Class A      

Mishap 

Rate** 

CY78 7 9 44,538 66,433 13.5 
    100,000 12.6 
    150,000 11.2 

CY79 8 17 86,544 152,977 11.1 
    225,000 9.3 

CY80 5 22 130,159 283,136 7.8 
    337,500 7.2 

CY81 5 27 174,924 458,060 5.9 
    506,250 5.6 

CY82 4 31 219,349 677,409 4.6 
    759,375 4.4 

CY83 7 38 226,129 903,538 4.2 

CY84 6 44 224,058 1,127,596 3.9 
    1,139,063 3.9 

CY85 4 48 224,133 1,351,729 3.6 

 

Note: Adapted from 

http://www.safety.af.mil/Portals/71/documents/Aviation/Aircraft%20Statistics/A-10.pdf. 

Retrieved December 5, 2017. Interpolated values for comparison points are boldface. 

*Data from U.S. Air Force Safety Center website. **Calculated data.  
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Table A5 

 

U-2 Class A Mishap Data and Comparison Points 

 

Year* 

Class A 

Mishaps* 

Cumulative      

Class A        

Mishaps** Hours* 

Cumulative     

Hours* 

Cumulative        

Class A      

Mishap 

Rate** 

FY80 2 13 10,080 96,574 13.5 
    100,000 13.3 

FY81 1 14 10,211 106,785 13.1 

FY82 0 14 10,131 116,916 12.0 

FY83 0 14 12,555 129,471 10.8 

FY84 2 16 13,257 142,728 11.2 
    150,000 11.1 

FY85 1 17 11,788 154,516 11.0 

FY86 0 17 13,954 168,470 10.1 

FY87 0 17 16,786 185,256 9.2 

FY88 0 17 16,730 201,986 8.4 

FY89 0 17 17,620 219,606 7.7 
    225,000 7.7 

FY90 1 18 18,001 237,607 7.6 

FY91 0 18 19,820 257,427 7.0 

FY92 1 19 16,597 274,024 6.9 

FY93 0 19 18,085 292,109 6.5 

FY94 2 21 15,643 307,752 6.8 

FY95 1 22 17,726 325,478 6.8 
    337,500 6.9 

FY96 2 24 16,518 341,996 7.0 

FY97 1 25 11,601 353,597 7.1 

FY98 0 25 11,431 365,028 6.8 

FY99 2 27 11,436 376,464 7.2 

FY00 0 27 10,965 387,429 7.0 

FY01 0 27 10,285 397,714 6.8 

FY02 1 28 14,581 412,295 6.8 

FY03 1 29 13,325 425,620 6.8 

FY04 0 29 13,294 438,914 6.6 

FY05 1 30 13,183 452,097 6.6 

FY06 0 30 14,511 466,608 6.4 

FY07 1 31 15,600 482,208 6.4 

FY08 0 31 15,469 497,677 6.2 
    506,250 6.1 

FY09 0 31 15,810 513,487 6.0 

FY10 0 31 15,778 529,265 5.9 

FY11 0 31 16,496 545,761 5.7 

FY12 0 31 16,782 562,543 5.5 

FY13 0 31 16,713 579,256 5.4 

FY14 0 31 16,713 595,969 5.2 

FY15 0 31 16,159 612,128 5.1 

FY16 1 32 16,502 628,630 5.1 

36

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 4, Art. 3

https://commons.erau.edu/ijaaa/vol5/iss4/3
DOI: https://doi.org/10.15394/ijaaa.2018.1262



FY17 0 32 16,440 645,070 5.0 

 

Note: Adapted from 

http://www.safety.af.mil/Portals/71/documents/Aviation/Aircraft%20Statistics/U-2.pdf.  

Retrieved April 7, 2018. Interpolated values for comparison points are boldface. 

*Data from U.S. Air Force Safety Center website. **Calculated data. 
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Table A6 

 

B-1 Class A Mishap Data and Comparison Points 

 

Year* 

Class A 

Mishaps* 

Cumulative      

Class A        

Mishaps** Hours* 

Cumulative     

Hours* 

Cumulative        

Class A      

Mishap 

Rate** 

FY90 1 4 26,705 84,279 4.7 

    100,000 5.3 

FY91 2 6 23,355 107,634 5.6 

FY92 3 9 26,970 134,604 6.7 

FY93 1 10 30,179 164,783 6.1 

    150,000 6.5 

FY94 0 10 29,382 194,165 5.2 

FY95 0 10 27,778 221,943 4.5 

    225,000 4.5 

FY96 0 10 26,370 248,313 4.0 

FY97 1 11 24,803 273,116 4.0 

FY98 1 12 23,744 296,860 4.0 

FY99 0 12 22,884 319,744 3.8 

    337,500 3.6 

FY00 0 12 24,703 344,447 3.5 

FY01 0 12 24,627 369,074 3.3 

FY02 1 13 26,130 395,204 3.3 

FY03 1 14 20,993 416,197 3.4 

FY04 2 16 27,773 443,970 3.6 

FY05 4 20 21,482 465,452 4.3 

FY06 1 21 19,632 485,084 4.3 

    506,250 4.3 

FY07 1 22 24,083 509,167 4.3 

FY08 3 25 22,406 531,573 4.7 

FY09 0 25 22,426 553,999 4.5 

FY10 0 25 22,760 576,759 4.3 

FY11 0 25 23,535 600,294 4.2 

FY12 2 27 28,824 629,118 4.3 

FY13 1 28 24,725 653,843 4.3 

FY14 0 28 21,692 675,535 4.1 

FY15 0 28 22,534 698,069 4.0 

FY16 0 28 13,241 711,310 3.9 

FY17 0 28 10,950 722,260 3.9 

 

Note: Adapted from 

http://www.safety.af.mil/Portals/71/documents/Aviation/Aircraft%20Statistics/B-1.pdf.  

Retrieved April 11, 2018. Interpolated values for comparison points are boldface. 

*Data from U.S. Air Force Safety Center website. **Calculated data. 
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Table A7 

 

F-22 Class A Mishap Data and Comparison Points 

 

Year* 

Class A 

Mishaps* 

Cumulative      

Class A        

Mishaps** Hours* 

Cumulative     

Hours* 

Cumulative        

Class A      

Mishap 

Rate** 

FY10 0 6 24,675 94,401 6.4 
    100,000 6.4 

FY11 1 7 15,289 109,690 6.4 

FY12 3 10 26,506 136,196 7.3 
    150,000 7.0 

FY13 1 11 26,184 162,380 6.8 

FY14 1 12 29,939 192,319 6.2 

FY15 1 13 31,993 224,312 5.8 
    225,000 5.8 

FY16 1 14 30,889 255,201 5.5 

FY17 1 15 33,834 289,035 5.2 

 

Note: Adapted from 

http://www.safety.af.mil/Portals/71/documents/Aviation/Aircraft%20Statistics/F-22.pdf.  

Retrieved April 7, 2018. Interpolated values for comparison points are boldface. 

*Data from U.S. Air Force Safety Center website. **Calculated data. 
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Table A8 

 

A-7 Class A Mishap Data and Comparison Points 

 

Year* 

Class A 

Mishaps* 

Cumulative      

Class A        

Mishaps** Hours* 

Cumulative     

Hours* 

Cumulative        

Class A      

Mishap 

Rate** 

CY71 3 4 37,094 48,896 8.2 
    100,000 6.6 

CY72 3 7 62,810 111,706 6.3 
    150,000 7.0 

CY73 9 16 88,297 200,003 8.0 
    225,000 7.8 

CY74 5 21 89,547 289,550 7.3 
    337,500 8.0 

CY75 12 33 89,495 379,045 8.7 

CY76 7 40 99,284 478,329 8.4 
    506,250 8.3 

CY77 7 47 108,681 587,010 8.0 

CY78 9 56 100,882 687,892 8.1 
    759,375 8.2 

CY79 8 64 92,410 780,302 8.2 

CY80 3 67 91,478 871,780 7.7 

CY81 4 71 80,848 952,628 7.5 

CY82 2 73 84,315 1,036,943 7.0 

CY83 2 75 83,947 1,120,890 6.7 
    1,139,063 6.7 

CY84 6 81 85,643 1,206,533 6.7 

 

Note: Adapted http://www.safety.af.mil/Portals/71/documents/Aviation/Aircraft%20Statistics/ 

A-7.pdf. Retrieved April 7, 2018. Interpolated values for comparison points are boldface. 

*Data from U.S. Air Force Safety Center website. **Calculated data. 
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