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Variable viscosity condition in the modeling of a slider bearing

Kedar Nath Uprety∗

Central Department of Mathematics,
Tribhuvan University,

Kirtipur Campus, Kathmandu, Nepal

Stefan C. Mancas†

Department of Mathematics,
Embry-Riddle Aeronautical University,
Daytona-Beach, FL. 32114-3900, U.S.A

To reduce tear and wear of machinery lubrication is essential. Lubricants form a layer between
two surfaces preventing direct contact and reduce friction between moving parts and hence reduce
wear. In this short letter the lubrication of two slider bearings with parallel and nonparallel is
studied. First, we show that bearings with parallel plates cannot support any load. For bearings
with nonparallel plates we are interested on how constant and temperature dependent viscosity
affects the properties of the bearings. Also, a critical temperature for which the bearings would
fail due to excess in temperature is found for both latter cases. If the viscosity is constant, the
critical temperature is given by an explicit formula, while for the non-constant viscosity the critical
temperature can be always found from a closed form formula involving Weber functions.
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I. SLIDER BEARING WITH PARALLEL PLATES

The incompressible Navier-Stokes equations

∂~v

∂t
+ ~v · ∇~v +

∇p
ρ

= ν∆~v + ~f (1)

together with the continuity equation

∂ρ

∂t
+∇ · (ρ~v) = 0 (2)

describe the motion of a fluid with velocity field ~v = (u,w), pressure p, density ρ, kinematic viscosity ν, and body

forces ~f that may arise from friction [2]. Let the horizontal x and vertical z velocity components of the fluid be
u(x, z, t) and w(x, z, t), and take incompressible fluid ρ = const which gives ∇ · ~v = 0, respectively. Then from (1)

and (2) with ~f = ~0, we obtain

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1

ρ

∂p

∂x
= ν

(
∂2u

∂x2
+
∂2u

∂z2

)
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

1

ρ

∂p

∂z
= ν

(
∂2w

∂x2
+
∂2w

∂z2

)
(3)

∂u

∂x
+
∂w

∂z
= 0. (4)

We impose the following boundary conditions

(u,w) = (0, 0) at z = 0 and (u,w) = (up, 0) at z = l
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FIG. 1: Bearing with parallel plates

where up is the horizontal velocity of the top plate, l the separation distance between the plates along the z-axis, L
is the length of the plates, and the bottom plate is fixed, see Fig.1.

Let a typical set of parameters for the bearing plate be L = 5 · 10−2m, up = 1m/sec, ρ = 103 kg/m3, µ =
10−4m2/sec. To non- dimensionalize equations (3)-(4) we use new scaled parameters

x = xL, z = zl, u = uup, w = wεup, t = tL/up, p = p̄P,

where P is the undecided scaling factor for pressure and will be determined later. By eliminating the terms which
have small coefficients as compared to 1/ε, from (3) and (4) we choose P such that

P =
µupL

l2
, (5)

with µ = ρν.
Then using (5) we obtain

∂p

∂x
=
∂2u

∂z2
(6)

∂p

∂z
= 0 (7)

and from (4) we also have

∂u

∂x
+
∂w

∂z
= 0. (8)

The new boundary conditions for u and w are

u = 0 at z = 0 and u = 1 at z = 1

w = 0 at z = 0 and w = 0 at z = 1

One integration of (7) gives

p = φ(x)
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and from (6) we obtain uζ and u by two successive integrations

∂u

∂z
=
∂φ

∂x
z + c1, (9)

and

u =
∂φ

∂x

z2

2
+ c1z + c2. (10)

c1 and c2 are constants that depend on the boundary conditions u = 0 at z = 0 and u = 1 at z = 1 which give c2 = 0
and c1 = 1− 1

2
dφ
dx . Using all of these the velocity in the x direction is

u =

(
z2 − z

2

)
dφ

dx
+ z. (11)

In the z direction w is obtained easily from (8) which gives

∂w

∂z
= −∂u

∂x
. (12)

Using (11) in the above, by one integration we get

w =

(
z2

4
− z3

6

)
d2φ

dx2
+ c3. (13)

As before, using the boundary conditions w = 0 at z = 0 and z = 1, we have c3 = 0, and c3 = − 1
12
d2φ
dx2 , which gives

φ(x̄) = c4x+ c5. But since φ = 0 then p = 0 and the velocity field is ~v = (z, 0). Since the pressure is zero, the bearing
with parallel plates cannot support any load, see [3, 4]. Therefore, we will consider next the case of nonparallel plates.

II. SLIDER BEARING WITH NONPARALLEL PLATES

For the nonparallel plates, we have that bottom plate is flat and we assume that the top plate is a linear function
z = h(x), see Fig. 2.

FIG. 2: Bearing with nonparallel plates

Scaling the equations (3)-(4) as before together with

h(x) = lh(x)
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gives the same equations (6)- (8) but subject to new boundary conditions

u = 0 at z = 0 and u = 1 at z = h(x)

From (10) c2 = 0 and

c1 =
1

h(x)
− 1

2

dφ

dx
h(x).

Thus

u =
dφ

dx

z2 − z̄h̄
2

+
z

h
(14)

From (8) then

∂w

∂z
= −z

2 − z̄h̄
2

φ′′(x̄) +
z̄

2

dh̄

dx̄
φ′(x̄) +

z̄

h̄2
dh̄

dx̄
(15)

Integrating we obtain the velocity in the z direction

w̄ = −
(
z̄3

6
− z̄2h̄

4

)
φ′′(x̄) +

z̄2

4

dh̄

dx̄
φ′(x̄) +

z̄2

2h̄2
dh̄

dx̄
+ c3 (16)

By imposing the boundary conditions

w̄ = 0 at z̄ = 0

w̄ = 0 at z̄ = h̄(x̄)

we have c3 = 0 and

h̄3(x̄)

12
φ′′(x̄) +

h̄2(x̄)

4

dh̄(x̄)

dx̄
φ′(x̄) +

1

2

dh̄(x̄)

dx̄
= 0 (17)

which implies

d

dx̄

[
h̄3(x̄)

12
φ′(x)

]
+

1

2

dh̄

dx̄
= 0. (18)

Assuming a linear profile [3, 4] h̄(x̄) = k1x̄+ k2, and after simplification

(k1x̄+ k2)3

12
φ′(x̄) +

1

2
(k1x̄+ k2) = r2 (19)

then

φ′(x̄) =
−6

(k1x̄+ k2)2
+

r1
(k1x̄+ k2)3

. (20)

One integration gives

φ(x̄) =
6k1

k1x̄+ k2
+

k1r1
(k1x̄+ k2)2

+ r2 (21)

The constants r1 and r2 are obtained by using boundary conditions φ = 0 at x̄ = 0 and x̄ = 1. Hence,{
r1 + r2 = −6
r1 + 4r2 = −12

(22)

The linear system (22) has solution r1 = −4, r2 = −2. Therefore the pressure

p̄ = φ(x̄) =
2x̄(1− x̄)

(1 + x̄)2
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and is positive for x̄ ∈ (0, 1). Hence, the pressure is developed inside the fluid and the bearing supports a load given
by

load =

∫ 1

0

2x̄(1− x̄)

(1 + x̄)2
dx̄ = 6 ln(2)− 4 (23)

Substituting the pressure φ in (14) and (16) one can obtain an analytic expression for the velocity field ~v with
components

u =
z̄

(x̄+ 1)3
[x̄(4x̄− 3z̄ + 4) + z̄]

w =
2z̄2

(x̄+ 1)4
(x̄− 1)(x̄− z̄ + 1). (24)

The velocity field ~v for the normalized scales, along with the streamlines are depicted in Fig.3.

FIG. 3: Velocity field ~v

A. Constant viscosity

In the following subsection we wish to find a critical temperature Tc before the lubricant catches fire. Suppose that
the plates are kept at a constant temperature T1 and lubricant catches fire at critical temperature Tc. We rescale the
temperature according to

T = T1 + θ̄(Tc − T1) (25)

where θ̄ is the non-dimensional variable ∈ [0, 1] and represents a critical parameter that will be determined.
The energy equation is

ρcp

(
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z

)
=

= µ

[(
∂u

∂z
+
∂w

∂x

)2

+ 2

(
∂u

∂x

)2

+ 2

(
∂w

∂z

)2
]

+ k

(
∂2T

∂x2
+
∂2T

∂z2

)
(26)

where cp is the specific heat of the viscous fluid and k is its thermal conductivity.
The boundary conditions for θ̄ are

θ̄ = 0 at z̄ = 0 and z̄ = h̄(x̄)
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As before, by neglecting the terms that are small as compared to 1/ε, it yields to the the new energy equation

µ
u2p
l2

(
∂ū

∂z̄

)2

= − k
l2
∂2θ̄

∂z̄2
(Tc − T1) (27)

from which (
∂ū

∂z̄

)2

= −B∂
2θ̄

∂z̄2
(28)

where

B =
k

µu2p
(Tc − T1). (29)

Substituting ū, from (14) then [
∂

∂z̄

(
z2 − zh

2

dφ

dx
+
z

h̄

)]2
= −B∂

2θ̄

∂z̄2
(30)

Integrating once and using boundary conditions for θ̄ we get

−Bθ̄ = φ′(x̄)2
z̄4 − h̄2z̄

12
+

(
1

h̄
− h̄

2
φ′(x̄)

)2
z̄2 − h̄z̄

2
+ φ′(x̄)

(
1

h̄
− h̄

2
φ′(x̄)

)
z̄3 − h̄2z̄

3
(31)

Hence, for the linear profile h(x̄) = x̄+ 1, and using (20) the critical parameter becomes

θ̄ =
z

3B(x+ 1)6
[24x2(x+ 1)2z − (3x− 1)2z3 − 8x(x+ 1)(3x− 1)z2 + (x+ 1)2(x2 − 14x+ 1)] (32)

from which one can find the critical temperature Tc of the lubricant before catches fire via (29).

B. Variable viscosity

Finally, we will consider the lubricant in which the viscosity decreases with the temperature. So (3) and (4) are

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1

ρ

∂p

∂x
=

∂

∂x

(
ν
∂u

∂x

)
+

∂

∂z

(
ν
∂u

∂x

)
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

1

ρ

∂p

∂z
=

∂

∂x

(
ν
∂w

∂x

)
+

∂

∂z

(
ν
∂w

∂x

)
(33)

Using dimensionless viscosity ν = ν0ν̄ in

∂p̄

∂z̄
=

∂

∂z̄

(
ν
∂ū

∂z̄

)
(34)

we obtain

∂p̄

∂z̄
= ν0

∂

∂z̄

(
ν̄
∂ū

∂z̄

)
, (35)

and the energy equation reduces to

ν̄

(
∂ū

∂z̄

)2

= −B∂
2θ̄

∂z̄2
(36)

with B given by (29).
As the viscosity changes with temperature we will assume ν̄ = α/θ̄. From (34) as p = φ(x̄) we have

∂ū

∂z̄
=
φ′(x̄)z̄ + c1(x̄)

ν̄
(37)
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or in terms of θ̄

∂2θ̄

∂z̄2
= − θ̄

αB
(φ′(x̄)z̄ + c1(x̄))

2
(38)

We recognize (38) as a parabolic differential equation which will be solved using Weber functions. To see that, let us
the the transformation

ζ =

√
2φ(x̄)
4
√
αβ

(
z̄ +

c1(x̄)

φ′(x̄)

)
(39)

which leads to the special case of Weber’s equation [1]

θ̄ζζ +

(
n+

1

2
− 1

4
ζ2
)
θ̄ = 0 (40)

provided that n = − 1
2 . Since we have two independent solutions

θ̄1 = e−
ζ2

4 1F1

(1

4
,

1

2
;
ζ2

2

)
θ̄2 = ζe−

ζ2

4 1F1

(3

4
,

3

2
;
ζ2

2

)
(41)

where 1F1(a, b; ζ) =
∑∞
n=0

(a)n
(b)n

ζn

n! is the confluent hypergeometric function that satisfies

ζy′′ + (b− ζ)y′ − ay = 0 (42)

one can construct the auxiliary functions [5] from (42)

Y1 =

√
π

Γ(1/4)
θ̄1

Y2 =
2
√
π

Γ(1/4)
θ̄2 (43)

which in turn yield to the Whittaker functions

U(ζ) =

√
2

2
(Y1 − Y2)

V (ζ) =
1

Γ(1/2)

√
2

2
(Y1 + Y2) (44)

Using all of the above, the solution to (38) may be written as

θ̄(ζ) =

√
πe−

ζ2

4

4
√

2Γ(3/4)

(
1F1

(1

4
,

1

2
;
ζ2

2

)
−
√

2ζ1F1

(3

4
,

3

2
;
ζ2

2

))
(45)

which upon using the substitution again to go back to the z̄ variable using (39), together with the boundary conditions
for θ̄ that determine c1(x̄) would yield the critical temperature before the bearing will fail due to excess in heath.

III. CONCLUSION

In this short letter we studied two models of slider bearings with nonparallel plates and two types of viscous fluids
between the plates. One of the plates is fixed and other is moving horizontally with a constant velocity. The work
obtained due to the motion of the top plate on lubricant makes the temperature of the viscous layer change, which
yields in the properties of the viscous fluid to be affected. We found the conditions under which the safe operation of
the bearing is ensured. That is, we found two critical temperatures before the lubricant fails. The first temperature
was based on the simpler case of constant viscosity, while the second case was found from the temperature dependent
viscosity. Closed form solutions in terms of Weber functions were found for the non-constant case. These findings can
be extended to slider bearings with different geometries h(x̄), and viscosities that depend on temperature differently
from the discussion here.
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