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ABSTRACT 

Researcher: Robert William Maxson 

Title: PREDICTION OF AIRPORT ARRIVAL RATES USING DATA 

MINING METHODS 

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2018 

This research sought to establish and utilize relationships between environmental variable 

inputs and airport efficiency estimates by data mining archived weather and airport 

performance data at ten geographically and climatologically different airports. Several 

meaningful relationships were discovered using various statistical modeling methods 

within an overarching data mining protocol 

 and the developed models were tested using historical data. Additionally, a selected 

model was deployed using real-time predictive weather information to estimate airport 

efficiency as a demonstration of potential operational usefulness.  

This work employed SAS
® 

Enterprise Miner
TM 

data mining and modeling

software to train and validate decision tree, neural network, and linear regression models 

to estimate the importance of weather input variables in predicting Airport Arrival Rates 

(AAR) using the FAA’s Aviation System Performance Metric (ASPM) database. The 

ASPM database contains airport performance statistics and limited weather variables 

archived at 15-minute and hourly intervals, and these data formed the foundation of this 

study. In order to add more weather parameters into the data mining environment, 

National Oceanic and Atmospheric Administration (NOAA) National Centers for 

Environmental Information (NCEI) meteorological hourly station data were merged with 
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the ASPM data to increase the number of environmental variables (e.g., precipitation type 

and amount) into the analyses.    

Using the SAS
®
 Enterprise Miner

TM
, three different types of models were created, 

compared, and scored at the following ten airports: a) Hartsfield-Jackson Atlanta 

International Airport (ATL), b) Los Angeles International Airport (LAX), c) O’Hare 

International Airport (ORD), d) Dallas/Fort Worth International Airport (DFW), e) John 

F. Kennedy International Airport (JFK), f) Denver International Airport (DEN), g) San 

Francisco International Airport (SFO), h) Charlotte-Douglas International Airport (CLT), 

i) LaGuardia Airport (LGA), and j) Newark Liberty International Airport (EWR). At each 

location, weather inputs were used to estimate AARs as a metric of efficiency easily 

interpreted by FAA airspace managers.  

To estimate Airport Arrival Rates, three data sets were used: a) 15-minute and b) 

hourly ASPM data, along with c) a merged ASPM and meteorological hourly station data 

set. For all three data sets, the models were trained and validated using data from 2014 

and 2015, and then tested using 2016 data. Additionally, a selected airport model was 

deployed using National Weather Service (NWS) Localized Aviation MOS (Model 

Output Statistics) Program (LAMP) weather guidance as the input variables over a 24-

hour period as a test. The resulting AAR output predictions were then compared with the 

real-world AARs observed.   

Based on model scoring using 2016 data, LAX, ATL, and EWR demonstrated 

useful predictive performance that potentially could be applied to estimate real-world 

AARs. Marginal, but perhaps useful AAR prediction might be gleaned operationally at 

LGA, SFO, and DFW, as the number of successfully scored cases fall loosely within one 
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standard deviation of acceptable model performance arbitrarily set at ten percent of the 

airport’s maximum AAR. The remaining models studied, DEN, CLT, ORD, and JFK 

appeared to have little useful operational application based on the 2016 model scoring 

results.  
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CHAPTER I 

INTRODUCTION 

The Federal Aviation Administration (FAA) lists a number of accomplishments 

on its Air Traffic by the Numbers web page (Federal Aviation Administration, 2016a). 

The statistics for 2015 included a yearly total of 8,727,691 commercial flights flown with 

an average of 23,911 flights that moved 2,246,004 passengers each day. The United 

States operated 7,523 commercial and 199,927 general aviation aircraft and managed 

5,000,000 and 26,000,000 miles of continental and oceanic airspace, respectively. To 

accomplish this, the FAA maintained 21 Air Route Traffic Control Centers, 197 Terminal 

Radar Approach Control Facilities, and 19,299 airports controlled by 14,000 air traffic 

controllers that were supported by 6,000 airway transportation systems specialists. In 

2015, there were no fatalities resulting from a United States commercial carrier accident.   

As impressive as the accomplishments listed above were, the FAA and industry 

continuously examined existing planning and operating procedures to improve the overall 

efficiency and safety of the National Airspace System (NAS). Motivation to improve 

NAS efficiencies may be traced to 2007, when more than one-quarter of all flights were 

delayed or canceled, and some airports saw one-third of all flights delayed or canceled 

(United States Government Accountability Office, 2010). The NAS was recognized to be 

operating beyond its capacity, and passenger complaints generated congressional interest 

in this problem. Subsequently, the number of delayed and canceled flights declined in 

2008 and 2009, but the Government Accountability Office (GAO) noted the decrease in 

flight delays should be attributed more to a recession in the U.S. economy that resulted in 

a lack of passenger demand (and therefore fewer flights) than improved efficiencies in 
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overall NAS operations. Moreover, based on FAA estimates, the GAO reported even 

when planned physical runway improvements and the implementation of advanced air 

traffic control technologies resulting from NextGen improvements are made, annual total 

flight delays (in millions of minutes) were projected to continue to increase and will 

easily exceed those recorded in 2009 (GAO, 2010, p. 35). Figure 1 shows estimates of 

total yearly flight delays (in millions of minutes) per year out to 2019 and compares the 

2009 baseline delay estimate with those that anticipate new runway capacity and 

improvements due to NextGen technology upgrades (that also includes runway capacity 

improvements). 

As part of its performance efficiency monitoring system effort, the FAA (Federal 

Aviation Administration, 2013) tracked five different types of delay within its Aviation 

System Metrics (ASPM) and Operations Network (OPSNET) programs at fifteen-minute 

intervals each day. The specific delays tracked were: a) carrier delays, b) late arrival 

delays, c) NAS delays, d) security delays, and e) weather delays. Carrier delays result 

from internal conditions or decisions made by an airline resulting in an aircraft being late 

for passenger dispatch. Reasons include aircraft cleaning or maintenance, inspections, 

fueling, catering, crew-duty limit scheduling, and even removing an unruly passenger. 

Late arrival delays are caused by the delayed arrival of a flight at a previous airport that 

cascades delay to subsequent flights of the same aircraft throughout the day. NAS delays 

fall within control of FAA airspace managers and result from airspace management 

decisions to reduce traffic flows due to non-extreme weather (e.g., ceilings), airport 

operations, traffic volumes, and air traffic control constraints. Security delays result from 

a terminal or concourse evacuation due to security concerns, improperly functioning 
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security screening equipment, or when passengers experience security-screening lines 

taking longer than 29 minutes to clear. Weather delays result from extreme or hazardous 

weather and may occur at any location in the National Airspace System. 

 

 

Figure 1. Projected total delay in minutes through 2019. Adapted from U.S. Government 

Accountability Office, 2010. 

    

Regardless of previously noted delay causes that may be opaque to traveling 

passengers, flight delays also generate enormous costs to both the flying public and the 

airlines. In a National Center of Excellence for Aviation Operations Research (NEXTOR) 

report, Ball et al. (2010) estimated the total cost of flight delays was $32.9 billion in 

2007. This estimate combined the direct costs borne by airlines and passengers as well as 

the more subtle indirect costs that ripple through the U.S. economy resulting from flight 
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delays. Flight delay costs for 2014 were estimated by AviationFigure (2015) to be $25 

billion for U.S. air carriers. 

With greater granularity, Klein, Kavoussi, and Lee (2009), and more recently 

Klein, Kavoussi, Lee, and Craun (2011) further categorized operational flight delays 

described by Ball et al. as avoidable or unavoidable in nature. Unavoidable flight delays 

cannot be prevented or mitigated. Examples of unavoidable delays are those resulting 

from severe weather that cannot be penetrated, those related to mechanical or system 

failures, or those attributed to physical airport and airport terminal area designs limiting 

aircraft arrival and departure rates based on established air traffic control procedures. In 

contrast, avoidable delays are associated with inaccurate weather forecasts forcing 

airspace managers to belatedly react to unanticipated weather conditions or when 

airspace managers fail to apply optimal airspace loadings when presented with adequate 

weather forecasts. An under-forecast results in unanticipated weather impact that 

unexpectedly constrains traffic flows, while an over-forecast leads to added and 

unnecessary restrictions to previously planned or normally scheduled airline activities. 

While both cases result in significant loss of revenue, the former may unintentionally 

place passenger aircraft into unexpected weather that can adversely affect flight safety. In 

their follow-on study, Klein et al. (2011) focused only on the avoidable delay costs 

associated with convective weather and estimated that 60 to 70 percent of these delays 

were avoidable. Further, if avoidable delays caused by convection could be mitigated 

through better weather prediction along with better reaction to changing weather 

conditions by airspace managers, the annual benefit was “estimated to be in the hundreds 

of millions of dollars” (p. 2).    
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Foundational components necessary to enhance airspace efficiencies are accurate 

weather prediction and then correctly converting these anticipated environmental 

conditions into expected impacts on scheduled traffic flows. A key driver in translating 

weather conditions into impacts affecting air traffic flows at each major terminal is the 

aircraft arrival rate (AAR). Per the FAA (2016c), the AAR is “a dynamic parameter 

specifying the number of arrival aircraft that an airport, in conjunction with terminal 

airspace, can accept under specific conditions throughout a consecutive sixty (60) minute 

period” (sec. 10-7-3). FAA tactical operations managers along with terminal facility 

managers establish primary airport runway configurations and associated AARs on at 

least a yearly basis for each facility, or as required (e.g., as a result of airport construction 

or terminal airspace redesign).   

The AAR establishes maximum airport capacity as a function of aircraft 

separation (miles-in-trail) on approach to the runway as determined by aircraft approach 

speeds. Based on a simple equation, average aircraft approach speeds (in knots) are 

divided by the desired miles-in-trail aircraft separation distance (with fractional 

remainders from this division conservatively rounded-down to the nearest whole 

number). Table 1 illustrates the simple relationship between aircraft ground speed, 

desired aircraft approach distance expressed in miles-in-trail (MIT), separation (miles 

between aircraft), and maximum AAR values. 
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Table 1 

Maximum Airport Capacity  

  
Miles in Trail and Airspeed vs. Airport Arrival 

Rate (AAR)   
Miles between 

Aircraft 
2.5 3 3.5 4 4.5 5 6 7 8 9 10 

AAR at 130 

knot Threshold 

Speed  

52 43 37 32 28 26 21 18 16 14 13 

AAR at 140 

knot Threshold 

Speed 

56 46 40 35 31 28 23 20 17 15 14 

Note. Adapted from FAA Operational Planning, 2016c. 

 

Airport conditions must then be applied to potentially (and most likely) reduce the 

maximum AAR to the optimal AAR for each airport runway configuration in order to 

account for:  

 Intersecting arrival/departure runways,  

 Distance between arrival runways,  

 Dual purpose runways (shared arrivals and departures),  

 Land and hold short utilization,  

 Availability of high speed taxiways, 

 Airspace limitations/constraints,  

 Procedural limitations (missed approach protection, noise abatement, etc.), 

and 

 Taxiway layouts (FAA, 2016c, sec. 10-7-5). 

Additionally, FAA operational managers seek to identify optimal AAR for each runway 

configuration. Optimal AARs are further adjusted by the current and forecast terminal 
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ceiling and visibilities: 

 Visual meteorological conditions (VMC) − Weather allows vectoring for a 

visual approach,  

 Marginal VMC − Weather does not allow vectoring for a visual approach, but 

visual separation on final is possible,  

 Instrument meteorological conditions (IMC) − Visual approaches and visual 

separation on final are not possible, and 

 Low IMC − Weather dictates Category II or III operations, or 2.5 miles in trail 

(MIT) on final is not available (FAA, 2016c, sec. 10-7-5). 

In the first case, VMC, reducing the maximum AAR is not required. However, as ceilings 

and visibilities decrease (to marginal VMC, then IMC, and then low IMC), the AARs 

need to be reduced accordingly. This is due to the need to increase the miles in trail 

between aircraft to ensure safe aircraft separation and manageable controller workloads 

during reduced/restricted visibility flight operations. Further, AARs must be constantly 

monitored and changed in response to real-time factors, such as: 

 Aircraft type/fleet mix, 

 Runway conditions, 

 Runway/taxiway construction, 

 Equipment outages, and 

 Terminal radar approach control constraints (FAA, 2016c, sec. 10-7-5).  

 AARs are based on principle runway configurations established at each airport. 

Once baseline AARs are determined for each major runway configuration, optimal AARs 

are derived in real-time and consider the factors previously listed above, and dynamic 
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real-time AAR adjustments are subject to the approval of the Director of System 

Operations, Air Traffic Control System Command Center, ATCSCC (FAA, 2016c). 

Determining optimal AARs involves considering multiple factors that include weather. 

Given the number of potential inputs used to determine an optimal AAR, predictively 

translating weather conditions into airport efficiency impacts, a priori, suggests using 

multiple input variables with different levels of importance and non-linear variable 

relationships.    

 Fortunately, both the FAA and the National Oceanic and Atmospheric 

Administration (NOAA) have maintained meticulous historical databases that can be 

applied to better understand how these variable relationships may contribute to AAR 

values. Most notably, the FAA has assembled a comprehensive set of NAS performance 

and weather data over the last decade. For the most part, this information has been used 

in hindsight to assess previous day, week, month, and year airspace performance statistics 

to reactively improve airspace efficiency problems. Hughes (2016) reports,  

As NextGen implementation continues to move forward, the agency is 

disseminating digital flight, aeronautical and weather data, and collaborating with 

industry on ways to make use of the vast amounts of available information. The 

agency is also conducting research on new applications made possible by 

technological advances that increase the accessibility of FAA data… 

Currently, the data are examined at some point after operations are completed… 

Moreover, the data being archived today can be used to identify operational trends 

and patterns that may be exploited to enhance airspace efficiencies. (per Maniloth 

as cited in Hughes, 2016, para. 1-5)   
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This research examines National Airspace System performance data and NOAA 

National Centers for Environmental Information (NCEI, formerly the National Climate 

Data Center, or NCDC) data archives using data mining techniques to better understand 

how external constraints, such as weather, alter airport and terminal operational 

efficiencies. Explored in this study was the potential use these data have in understanding 

how the airspace system responds to flow constraints, and if correctly interpreted, how 

this knowledge can be used to predict future NAS reaction and performance by applying 

numerical predictive weather guidance. This effort moved beyond the reactive use of 

information described by Hughes and data mines large data sets to discover relational 

patterns between various input variables (largely composed of weather elements) and 

airport arrival rates by combining the FAA ASPM data with time-matched NOAA 

meteorological station records. Most important, as both Hughes and Manikoth noted, is 

the recognition that historical data might be used as a benchmark in predicting future 

NAS capacities. 

Statement of the Problem 

Weather is responsible for approximately 70 percent of flight delays in the 

National Airspace System (Sheth et al., 2015). As previously stated, total flight delay 

costs are estimated to be roughly $30 billion or more per year, and delays resulting from 

convective weather alone costs the airlines and passengers millions of dollars each year 

due to delays that can potentially be avoided. Accordingly, a great deal of effort has been 

spent trying to predict and estimate the effects of weather on the National Airspace 

System. This research has been encouraging, but the results have been difficult to apply 

operationally. Further, the actual impact of weather on operations is often complicated by 
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traffic metering inconsistencies, the accuracy of forecasts issued by the NWS, and 

scheduled airspace loadings.   

A well-assembled database of historical airport performance and weather data has 

been archived for major airport terminals by the FAA and National Weather Service 

(NWS), respectively, and continues to be recorded today. These data are used primarily 

to derive post hoc reports of NAS performance efficiencies. While this information is 

useful, what is needed are predictive tools that can assess the impacts of weather-based 

NAS constraints before they occur. 

Previous research has set the stage to create these tools. A great deal of this effort 

has been spent establishing the relationships between various input variables and airport 

arrival rates or runway configurations using evolving modeling approaches and statistical 

tools, e.g., support vector machines (Smith, 2008), bagging decision trees (Wang 2011), 

Bayesian networks (Laskey, et al., 2012), and logistic regression (Dahl, et al., 2013). 

However, this work will take advantage of newer data mining statistical tools that can 

assimilate an increased number of input variables and will also introduce additional 

weather variables not found in the ASPM database. Additionally, the best models used to 

estimate a given airport AAR either singularly or in combination as an ensemble, coupled 

with objectively derived numerical weather element guidance to be used predictively, 

have been left for further discovery. 

Purpose Statement 

This research examined the prediction of airport arrival rates based on weather 

factors and other available a priori input variables using data mining methods. 

Foundational to this study was the establishment of a baseline understanding on how 
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airports and airport terminal areas react to changing conditions. With an airport’s 

response to various weather conditions better understood, arrival rates could then be 

objectively estimated with greater skill (perhaps out to several days) using predictive 

numerical weather guidance. The ability of national operations managers (NOM) at the 

FAA National Command Center to estimate realistic airport arrival rates during the 

planning phases of NAS operation has tactical and strategic real-world implications that 

can improve National Airspace System efficiencies and lower airline operational costs.  

Research Questions 

This study asked two fundamental questions: 

 First, can data mining methods be used to discover significant

relationships between various meteorological variable inputs and airport

efficiencies recorded in the FAA and NCEI databases?

 Second, what factors can then be used as inputs to estimate AARs?

The outcomes resulting from the first question fed directly into the second question. Any 

consistencies in modeling results were noted across the 10 airports selected. 

Significance of the Study 

This research sought to translate predictive weather guidance into National 

Airspace System performance impact. Foundational to this study was the use of data 

mining techniques to detect patterns in the behavior of the airspace system through its 

terminals as they react to changing weather conditions and traffic demands. With an 

airport’s response to various weather conditions as well as other constraints better 

understood, arrival rates could potentially be estimated with greater skill (perhaps out to 

several days) using predictive numerical weather guidance. The ability of national 
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airspace managers to set realistic airport arrival rates during the early planning phases of 

NAS operations is expected to enhance airport efficiencies, lower operational costs, and 

improve flight safety. Accurately set AARs with ample lead times can prevent an 

excessive number of flights from launching into airports with reduced capacities that 

cannot support arrival demands, preventing airborne holding near the destination airport 

or even more costly diversions to alternate airports. It also ensures air traffic controllers 

can safely manage arrival demands, particularly during inclement weather events that 

may include hazardous weather. 

Theoretically, this study sought to build on the work of others by using data 

mining techniques to discover relationships between meteorological input data and 

airport performance. Different statistical approaches have been used in past studies, and 

each has suggested there are meaningful relationships between various input variables 

found in the ASPM data and the airport arrival rate. Further development was needed to 

advance the predictive aspects of what has been discovered previously. That is, once the 

linkage between the input variables and airport arrival rates were known, numerical 

weather model guidance could potentially be used to take advantage of the patterns 

revealed by data mining to predict future airport arrival rates. The efficacy of an objective 

predictive airport arrival rate system was examined.   

More practically, this research sought to understand the impact various weather 

elements have on airport performance. In other words, it translated meteorological events 

into measurable airport efficiency. Additionally, it compared model performance between 

airports of differing capacities and geographical locations to estimate the usefulness of 

this research for application by FAA air traffic managers as a planning tool.  
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Delimitations 

Only a sample of the Aviation System Performance Metric (ASPM) tracked 

airports was used in this research. However, as described below, the airports selected 

were chosen for their geographic and climatological diversity. Additionally, while ASPM 

data are available for the past decade, only the last three-year’s worth of data were used, 

largely to keep the input variable file sizes to a manageable level, as these data were 

recorded at 15-minute intervals.   

All the models were constructed utilizing the SAS
®

 Enterprise Miner
TM

. It is a 

data mining software package that can be easily managed through its graphical interface 

with little outstanding specific programming knowledge. As Tufféry (2011) reports, there 

are a number of points to consider when selecting a statistical or data mining software 

system. The factors that need to be considered are: a) the types of data mining and data 

preparation processes available in a given software package, b) other tools the user may 

already have available in resident software that may fill software gaps in the system being 

considered, c) selecting software that is capable of “logistic regression, Fisher 

discriminant analysis, decision trees, cluster analysis” (p. 114), and other more 

commonly used modeling techniques and advanced statistical functionalities, d) the 

quality of the algorithms contained in the software system, e) the computing power 

required to drive the software, and finally, f) the software cost. Tufféry also notes the 

advantages of having all the data formatting and analyses tools in the same software 

package to avoid problematic data transfers and incompatible data formats that may result 

in moving from one statistical or data mining software system to another. Tufféry 

compares, at length, the features found in SAS, R, and SPSS (pp. 137-161) and notes that 



14 

 

SAS is “unequalled in its processing speed for large volumes, … is the most stable of the 

three systems,”…“and now boasts a completely graphical user interface” (p. 162). 

 This study focuses largely on weather elements as principle input variables, and 

as a result, all the meteorological variables contained in the ASPM data as well as the 

Hourly Surface Meteorological Station datasets were used. Of the remaining variables in 

the ASPM data, care was taken to remove variables that would not be available to an 

airspace manager in the planning phases of their operations. For example, expected 

periodic departure rates based on the time of day (as derived from historical data) is an 

acceptable input; however, the actual departure rate included in the ASPM data is not a 

variable that can be considered as input data for a predictive system.   

 Airports studied were selected based on passenger volume and weather diversity. 

The eight busiest airports based on passenger volumes in 2015 were: a) Hartsfield-

Jackson Atlanta International Airport (ATL), b) Los Angeles International Airport 

(LAX), c) O’Hare International Airport (ORD), d) Dallas/Fort Worth International 

Airport (DFW), e) John F. Kennedy International Airport (JFK), f) Denver International 

Airport (DEN), g) San Francisco International Airport (SFO), and h) Charlotte Douglas 

International Airport (CLT). Within these eight airports, excellent weather/geographic 

diversity is noted, from the wintery patterns seen in Chicago and New York, to the 

summer-time convective weather regimes noted in Atlanta, Charlotte, and Dallas, to the 

wind-sensitive mountainous domain represented by Denver, and finally, the maritime 

stratus environment found at Los Angeles and San Francisco. LaGuardia and Newark 

Liberty International Airports were added to complete the New York airport market triad 

and to add the ramp and taxiway space-challenged LaGuardia Airport into this study.    
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Additionally, there are a number of numerical weather models that could have 

been selected for the predictive segment of this research. These models vary in areal and 

temporal resolution as well as forecast range, from several hours out to two weeks. For 

the purpose of this research, the NWS Localized Aviation MOS (Model Output Statistics) 

Program, or LAMP modeling system, was selected because of outputs specifically 

tailored to airport locations, and the model’s readily available post-forecast verification 

statistics (Ghirardelli & Glahn, 2010). Other models can replace the LAMP within the 

research framework constructed here; however, this work is outside the scope of this 

study and is left for further research.   

Limitations and Assumptions 

This study was limited by the available data. In particular, the FAA Aviation 

System Performance Metric data are only collected for 77 selected airports, and without 

these data this study would be extraordinarily difficult to accomplish. The ASPM data are 

recorded at 15-minute and hourly intervals. Hourly global station weather data were 

found for each airport location and were collected from the NOAA National Centers for 

Environmental Information. Although limited weather information is already contained 

within the ASPM data sets, the number of meteorological input variables were 

significantly increased by combining the ASPM data with selected NCEI station data. In 

general, these selected stations were in the immediate vicinity of a selected airport and 

are also assumed to be representative of weather conditions at the airport at the time the 

observations were recorded. This assumption was supported by cross checking the 

common weather variables found in both data sets through the period of records used. 

Additionally, the physical configuration at each airport selected for this study is 
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considered to be static. For example, while a new fifth runway was added at Atlanta’s 

Hartsfield-Jackson International Airport in May 2006, this research only used data 

collected from 2014 and later. Similarly, each airport used was checked for configuration 

changes that may have occurred during the periods of data collection and analysis.     

 No assumptions were made regarding climate change that may or may not have 

affected the seasonal severity of weather over the two-year period selected for the 

training and validation data and the following year’s data used for model testing. Nor was 

any effort made to normalize the varying weather conditions between–years during the 

three-year period studied. Additionally, while traffic flow and passenger volumes were 

compared at each airport for the three years studied, no formal estimate was made to 

determine if the volume changes noted were significant. Finally, while the modeling 

outcomes at the ten airports were briefly compared, it was assumed that a model’s 

predictive performance at one airport may not be generalized to another airport. The 

rationale behind this assumption is easy to visualize: two inches of snow at Chicago’s 

O’Hare will not affect arrival rates in the same manner as Atlanta’s Hartfield-Jackson or 

Dallas/Ft Worth International Airports because of O’Hare’s superior capability to 

mitigate snow events. Other dimensions beyond weather factors, such as physical airport 

design, may further compound the problem of generalizing the results found at one 

airport to another. Nonetheless, a useful modeling design for a single airport that predicts 

the effect selected input variables have on its arrival rate over an extended forecast period 

would be a valuable tool, even without extensibility.        
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Definitions of Terms 

Data Mining  Data mining is the set of methods and techniques for 

exploring and analysing [sic] data sets (which are often 

large), in an automatic or semi-automatic way, in order to 

find among these data certain unknown or hidden rules, 

associations or tendencies; special systems output the 

essentials of the useful information while reducing the 

quantity of data (Tufféry, 2011, p. 4). 

Decision Tree  A decision tree represents a hierarchical segmentation of 

the data … [and] is composed of a set of rules that can be 

applied to partition the data into disjoint groups (Sarma, 

2013, p. 170).   

Multiple Linear Regression Multiple linear regression is a regression model with two or 

more independent variables (Hair, 2010, p. 158). 

Neural Networks  A neural network has architecture based on that of the 

brain, organized in neurons and synapses, and takes the 

form of interconnected units (or formal neurons), with each 

continuous input variable corresponding to a unit at a first 

level, called the input layer, and each category of a 

qualitative variable also corresponding to a unit of the input 

layer (Tufféry, 2011, p. 217). 

SAS
®
 Enterprise Miner

TM
  SAS

®
 Enterprise Miner

TM
 is a suite of statistical, data

mining, and machine-learning algorithms that streamlines 
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the data mining process and creates highly accurate 

predictive and descriptive models that are based on analysis 

of vast amounts of data from across the enterprise 

(Department of Veteran Affairs, 2016, sec 508). 

List of Acronyms 

AAR Airport Arrival Rate 

ADR Airport Departure Rate 

ADS−A Automatic Dependent Surveillance−Addressable 

ADS−B Automatic Dependent Surveillance−Broadcast 

AFP Airspace Flow Program 

AIM Aeronautical Information Manual 

ALS Approach light system 

ARINC Aeronautical Radio, Inc. 

ARSR Air route surveillance radar 

ARTCC Air route traffic control center 

ASOS Automated Surface Observing System 

ASP Arrival sequencing program 

ASPM Aviation System Performance Metrics 

AT Air Traffic 

ATC Air traffic control 

ATCS Air traffic control specialist 

ATCSCC David J. Hurley Air Traffic Control System Command 

Center 
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ATCT Airport traffic control tower 

ATM Air Traffic Manager 

ATO Air Traffic Organization 

ATREP Air Traffic representative 

AWC Aviation Weather Center 

AWIS Automated weather information service 

AWOS Automated Weather Observing System 

CCFP Collaborative Convective Forecast Product 

CDM Collaborative decision making 

CONUS Continental/Contiguous/Conterminous United States 

CWA Center weather advisory 

CWSU ARTCC Weather Service Unit 

DCCWU ATCSCC Weather Unit 

DVRSN Diversion 

FAA Federal Aviation Administration 

FCA Flow Constrained Area 

FSS Flight service station 

GA General aviation 

GC Ground control 

GDP Ground delay program(s) 

GS Ground stop(s) 

ICAO International Civil Aviation Organization 

IFR Instrument flight rules 
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IFSS International flight service station 

ILS  Instrument landing system 

IMC Instrument meteorological conditions 

LAA Local airport advisory 

LADP Local Airport Deicing Plan 

LAHSO Land and hold short operations 

LAWRS Limited aviation weather reporting station 

LLWAS Low level wind shear alert system 

LLWS Low Level Wind Shear 

LOA Letter of agreement 

METAR Aviation Routine Weather Report 

MIT Miles−in−trail 

MSL Mean sea level 

NAS National Airspace System 

NASA National Aeronautics and Space Administration 

NM Nautical mile 

NOAA National Oceanic and Atmospheric Administration 

NOM National Operations Manager 

NOS National Ocean Service 

NOTAM Notice to Airmen 

NTML National Traffic Management Log 

NTMO National Traffic Management Officer 

NTSB National Transportation Safety Board 
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NWS National Weather Service 

NWSOP National winter storm operations plan 

OAG Official Airline Guide 

OM Operations Manager 

PIREPS Pilot reports 

POTA Percent On Time Arrivals 

RVR Runway visual range 

RVV Runway visibility value 

SAER System Airport Efficiency Rate 

SID Standard Instrument Departure 

SIGMET Significant meteorological information 

SOP Standard operating procedure 

SPECI Non-routine (Special) Aviation Weather Report 

SUA Special use airspace 

SVFR Special visual flight rules 

SWAP Severe weather avoidance plan 

TDWR Terminal Doppler weather radar 

TELCON Telephone Conference 

TFMS Traffic Flow Management System 

TM Traffic management 

TMC Traffic management coordinator 

TMI Traffic management initiatives 

TMU Traffic management unit 
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TRACON Terminal radar approach control 

USAF United States Air Force 

UTC Coordinated universal time 

VFR Visual flight rules 

VMC Visual meteorological conditions 

VOR Omnidirectional VHF navigational aid 

WFO Weather Forecast Office 

WSO Weather Service Office 
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CHAPTER II 

REVIEW OF THE RELEVANT LITERATURE 

Introduction 

This chapter is broken into three parts: a) a brief discussion of how adverse 

weather acts as a constraint that limits air traffic volume capacities of the United States 

NAS, b) a summary literature review of relevant research recognized for its meaningful 

role foundational to this research or that provides equally important guidance in 

suggesting future research efforts yet to be addressed, and c) a cursory introduction into 

the data mining, decision trees, neural networks, and regression techniques to be applied 

in this research.   

Weather and the United States National Airspace System 

The FAA (2015) outlines the major causes of delays in the NAS. These sources of 

delay (by percentage of total delay) are attributed to weather (69 percent), traffic volume 

(19 percent), equipment failures (e.g. navigation, communications, surveillance 

equipment, (one percent)), runway unavailability (six percent), and other miscellaneous 

causes (five percent). As documented by a review of NAS performance data collected 

over six years (from 2008 to 2013), adverse weather is the single largest cause of NAS 

delays, accounting for almost 70 percent of all delays, and is depicted in Figure 2. 
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Figure 2. Causes of air traffic delay in the National Airspace System. Adapted from 

FAA, 2015. 

  

Further, based on performance metrics data, the FAA reports the specific causes 

of air traffic delays vary by airport location and time of year. Using the New York 

Metroplex as an example (Newark, Kennedy, and LaGuardia Airports taken in 

aggregate), the 2013 statistics for the New York terminals show that low ceilings and 

visibility, along with surface winds, caused most of the delays during the winter. In 

contrast, during the summer months, the reasons for delays were attributed to convective 

weather (thunderstorms) and surface winds. Figure 3 shows the delays caused by 

different types of weather for the major commercial airline New York terminals in 2013. 

To demonstrate the role geographic diversity plays in the effects of adverse 

weather, the FAA describes the airports with the most weather delays. An example is 

provided for 2013. The airports heavily impacted by delay were the New York terminals 

(most delays), followed by Chicago, Philadelphia, San Francisco, and Atlanta. Airports 

that operate near maximum capacity for extended periods each day are the most sensitive 
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to adverse weather in any form. Also of note, northern tier airports were more affected by 

winter weather than Atlanta, while San Francisco (in this comparison) was uniquely 

affected by marine status and associated lowered ceilings and visibilities. Figure 4 shows 

the number of weather delays at the most-delayed airports in 2013. 

 

 

Figure 3. Types of weather delays at New York airports in 2013. Adapted from FAA, 

2015. 

 

Thunderstorms, while largely a summertime phenomenon, are worthy of further 

discussion because of the relatively large impact they have on the NAS traffic flow 

efficiencies. The FAA recognizes that thunderstorms fall into two broad categories: those 

storms that reach altitudes high enough to block planned en route flight operations and 

storms not necessarily as intimidating in height but still can disrupt arrivals and 

departures in the Terminal Radar Approach Controls (TRACONs) for aircraft near the 

terminals. Both en route and terminal located thunderstorms can have a major impact on 

airspace operations.   
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Figure 4. Airports with the most weather-related delays in 2013. Adapted from FAA, 

2015. 

 

If a single thunderstorm cell or line of larger thunderstorms cannot be safely 

overflown because of their height, flights must deviate around storms along their 

preplanned flight path. Almost immediately, and depending on en route traffic volume, 

these deviations affect the anticipated arrivals scheduled at the destination airport. This 

includes all the aircraft in-trail behind the deviated aircraft as well as those flights on 

different flight plans to the same destination airport scheduled to land in the same arrival 

bank. 

The FAA (2015) notes when airline and high-level general aviation aircraft 

cannot fly over thunderstorms, airborne (in-flight) aircraft will request re-routes around 

the obstructive convective weather. In the case of traffic flows constrained by weather, en 

route air traffic control centers can become overwhelmed by the amount of unanticipated 

traffic flying through a particular air traffic control sector. In such cases, the FAA calls 

on personnel at the Air Traffic Control System Command Center (ATCSCC) to estimate 
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the best options available for rerouting aircraft into other sectors that may lie between 

two or more Air Route Traffic Control Centers (ARTCC) in order to balance aircraft 

flows and controllers’ workloads. Depending on the location of thunderstorm 

development and en route air traffic volumes (e.g., the northeast United States), and 

based on past FAA controller and national airspace manager experience, pre-defined 

Severe Weather Avoidance Plans (SWAPs) may be put in place as part of the FAA 

ATC’s pre-planned contingency tool-kit used to mitigate high-traffic volume delays in 

the presence of adverse weather.   

The National Business Aviation Association (2016) provides a brief overview of 

the National Airspace System (NAS), Traffic Flow Management (TFM), and 

Collaborative Decision Making (CDM) so operators can gain insight into how the overall 

system functions. Their NAS description describes an integrated hierarchically organized 

command and control airspace system aimed at seamless air traffic flows across the 

nation. It is important to examine the Air Traffic Organization’s structure and how 

adverse weather affects its efficiencies.  

The United States Air Traffic Control system is broken up into 21 Air Route 

Traffic Control Centers. Within these regional umbrellas are downstream TRACONs and 

their associated airport Tower controllers who land and depart aircraft operating from 

controlled airfields. Direct aircraft control starts at the airport tower level, is handed off to 

departure control (TRACON), and thence from ARTCC to ARTCC as a flight continues 

en route across the United States. The aircraft is then passed back to a TRACON for 

approach and ultimately to the destination tower control during arrival. Supporting the 

operational controllers located at each airport tower, TRACON, and ARTCC are 
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underlying planning activities that are active each day examining known en route airline 

volumes against estimates of NAS capacities based on weather and known traffic 

constraints. A fundamental estimate of airport and NAS capacities is based on airport 

arrival rates.  

Airport Capacity 

The airport arrival rate (AAR) is an empirically derived and operationally defined 

estimate of an airport’s incoming flight acceptance capacity based on multiple input 

parameters. Per DeLaura et al. (2014), these inputs include various inclement weather 

conditions (e.g., low ceilings, compression wind direction and speeds, convective storms, 

runway conditions), the physical runway and taxiway configurations, departure demands, 

and outages of equipment that support air traffic control (ATC). Other than the physical 

airport configuration that are generally assumed to be constant unless under construction 

and the en route airways and arrival navigational fixes (which are subject to only 

occasional episodic change), the majority of independent variables that may be used to 

estimate an airport’s AAR are dynamic. These variables (e.g., weather conditions, 

equipment outages) are constantly monitored by national airspace managers in order to 

assess the impacts of these changing parameters to regulate the relative impacts these 

factors will have on overall traffic flows throughout the National Airspace System. When 

it becomes apparent an airport demand exceeds anticipated arrival rates (and can be 

exacerbated by airport departure demands), airspace managers electively employ traffic 

management initiatives (TMIs) to retard the airborne en route system in order to 

accommodate the resultant lowered AAR. As DeLaura et al. indicate, setting an airport 

AAR is often discussed in collaboration with the respective airport tower, terminal area 
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controls, en route air traffic control centers, and FAA National Command Center 

personnel. Additionally, National Weather Service personnel are embedded with FAA 

airspace management specialists in the 21 en route air traffic control centers as well as 

the FAA National Command Center. Formal collaborative discussions regarding national 

scale strategic airspace planning are conducted every two hours (between the hours of 12 

Z and 22 Z) and are led by the FAA National Command Center in collaboration with 

NWS meteorologists each day.   

Typically, regional areas of impact are discussed locally at the en route or 

terminal level and then elevated nationally during scheduled FAA command center 

strategic planning telephone conferences and webinars that occur every two hours. Tools 

available to slow the en route traffic flows include extending en route miles in trail (MIT) 

between arriving flights, en route holding to further slow down arrival flights already 

airborne, ground delay programs (GDP) where aircraft departures destined for the 

affected arrival airport with constrained AARs are delayed from taking off, and ground 

stop programs (GS) that halt all inbound flights into the affected airport from designated 

departure airports until local conditions improve. Other airspace management available to 

air traffic managers are airspace flow programs (AFP) that identify en route weather or 

traffic volume constraints and adjust aircraft flows feeding into the constrained 

geographic area, severe weather avoidance plans (SWAP) where playbooks are designed 

a priori for en route and terminal routings that are highly impacted in the presence of 

convective weather, and special traffic management programs (STMP) where 

extraordinarily high-volume traffic is anticipated due to events unrelated to adverse 
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weather (e.g., national and international sporting events, political conventions, and 

cultural expositions).   

Using Newark International Airport (KEWR) as an example, DeLaura et al. (pp. 

2-3) note the salient weather conditions that can constrain the AAR. Surface winds 

broken down into headwind and crosswind components, determine the most favorable 

(and safest) airport runway arrival configurations, and nearly as a direct result, the 

estimated AAR. In the absence of surface winds (calm conditions), airports typically have 

preferred runway configurations that maximize overall airport capacity as measured by 

flight arrivals and departures. As much as feasible, airport managers maintain the optimal 

airport configuration until weather (or other) constraints force them to change runways to 

less optimal airport arrival and departure runway combinations.   

Airport ceiling and visibility similarly impact airport AARs. Arrival aircraft must 

be spaced further apart during instrument flight conditions (IFR) than in visual flight 

conditions (VFR) because landing aircraft must strictly follow designed instrument 

approach procedures and routings, and larger flight separation distances are required for 

landing aircraft to safely taxi off arrival runways. An airport may be forced to operate 

under less than optimal runway configurations and efficiencies during IFR weather 

conditions.  

Arrival compression, caused by winds aloft that significantly push arriving 

aircraft toward the airport but are also accompanied by high near-surface arrival runway 

headwinds, can lead airport managers to lower the AAR. DeLaura et al. (2014) note:  

Compression arises when headwinds increase significantly along the arrival 

trajectory, causing the lead aircraft ground speed to decrease more rapidly than 
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the ground speed of the following aircraft. The greater than anticipated difference 

in ground speed between lead and following aircraft results in a reduction in 

aircraft spacing that can make it difficult for controllers to maintain required 

aircraft separation. High winds aloft may also result in abnormally high or low 

aircraft ground speeds, which may make it difficult to speed up or slow down 

efficiently to the desired ground speed on final approach. (p. 2) 

Compression occurs as the aircraft descends rapidly toward the airport but then 

must turn on base leg during approach at a 90-degree offset to the airport and then 

ultimately must execute another 90-degree turn toward the landing runway on final 

approach. Essentially, a compression wind scenario loads aircraft on a runway final 

approach with separation intervals that are unsafe for landing spacing and clearing the 

active runway.  

Runway surface conditions can also limit the AAR. Most notably, snow, slush, 

sleet, ice, and rain limit the braking action of arriving aircraft, increase landing distances, 

lengthen the amount of time arriving aircraft remain on the runway after touchdown, and 

result in the need to increase arrival aircraft separation on final approach. Additionally, 

frozen precipitation in any form is likely to force the airport to de-ice all departing 

aircraft, a necessary safety precaution that further encumbers the airport’s overall 

efficiency and capacity.   

DeLaura et al. (2014) discuss more nuanced constraints that limit AARs. The fleet 

mix during arrival demands can make approach and landing speeds uneven due to aircraft 

types and associated landing weights. Also, major airports typically carry high travel 

volumes (arrival and departure banks) at predictable and cyclic periods of the day. Any 
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perturbation to normal arrival flows (environmentally derived or otherwise) during these 

high-volume periods can immediately have impact on the airport’s arrival capacity. 

Additionally, in metropolitan regions with multiple airports (e.g., Chicago or New York), 

a single airport or set of airports needs are considered dominant and drive the optimum 

arrival configuration for the dominant airport onto the other airports in the metroplex. 

Finally, any equipment failure associated with an airport’s arrival capability (e.g., a 

runway glide slope out of service), will likely lead to reduced airport arrival capacities. 

Review of Literature 

The Transportation Research Board of the National Academies Airport 

Cooperative Research Program (ARCP) Report 104, “Defining and Measuring Aircraft 

Delay and Airport Capacity” (2014) seeks to gain greater understanding of airport delays, 

capacities, metrics, and the measurement tools used to define these parameters. This 

report describes how delays are estimated, identifies sources of data, and determines 

airport capacity, all from the perspective of the stakeholders. It also examines how these 

data should best be interpreted and applied in subsequent research. The report lays out a 

common ground understanding of basic airport performance data, and therefore is a 

benchmark reference to interpret the airport efficiency performance metrics and databases 

that will be used in this study. 

The FAA tracks instrument flight rules (IFR) flights that are delayed more than 

15-minutes from the flight plan filed by its carrier or operator. Controlled delays are

implemented by the FAA Air Traffic Organization (ATO) to regulate the National 

Airspace System (NAS) by holding a departing aircraft at the gate or on the airport 

surface through in-flight holding or extending the flight routing by assigning vectors. The 
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FAA’s goal is to achieve an 88 percent on-time flight metric (less than 15-minutes 

delayed) for all IFR flights arriving at designated “core 30” airports (29 major hubs and 

Memphis) “excluding minutes of delay attributed to weather, carrier action, security 

delay, and prorated minutes for late arriving flights at the departure airport” (ARCP, 

2014, p. 5). While the FAA estimates “that 70 percent of all aviation delays are caused by 

weather events” (p. 5), weather delays are excluded from the on-time metric calculations. 

In other words, the FAA tracks on-time performance metrics by monitoring input factors 

it can directly control.    

In Chapter Two, Report 104 describes seven major sources of archived National 

Airspace System (NAS) airport performance data that capture historical airport delay 

data. These are: a) the Traffic Flow Management System Counts (TFMSC), b) the 

Performance Data Analysis and Reporting System (PDARS), c) the Air Traffic 

Operations Network (OPSNET), d) the Airline Service Quality Performance (ASQP), e) 

the Aviation System Performance Metrics (ASPM), the Bureau of Transportation 

Statistics (BTS), and f) those reported by local airport systems. These databases are 

frequently combined; the “Taxi-in Time” of ASPM may be joined with the aircraft flight 

number and runway assignment derived from PDARS as well as other information 

provided by ASQP to develop a more comprehensive picture of gate delays for a given 

time interval at a particular airport. Of these, the ASPM data are relevant to this study.  

OPSNET is the “official FAA aircraft delay reporting system” (National Research 

Council (U.S.) Transportation Research Board et al., 2014). Instead of using scheduled 

airline departure and arrival times, OPSNET reports delays based on actual flight-plan 

times submitted by airline dispatch to air traffic control. Also reported in OPSNET are 
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delays attributed to weather, volume, equipment, runway, and other causes. While airport 

weather is an OPSNET factor in determining airport efficiency, weather effects are 

aggregated and scored as a derived input variable.   

ASPM data are captured by the FAA at 77 designated airports and for 22 air 

carriers. As such, the database does not include every flight-plan filed flight in the United 

States. The ASPM database notes the out-off-on-in (OOOI) times taken directly from 

ARINC and compares taxi times with empirically derived unimpeded taxi times for a 

given runway configuration at each ASPM airport to calculate delays. The actual gate-to-

gate times are measured against the scheduled block times taken from those published in 

the Official Airline Guide (OAG). Most importantly to this study, ASPM performance 

data are enhanced with weather data.   

As noted in Chapter Four, airports have different capacities in various weather 

conditions. Known as good weather capacity and bad weather capacity, some airports 

may be relatively unaffected as environmental conditions change, while other airports 

might have twice the capacity during good weather conditions as compared to the 

capacity realized in bad weather conditions. When an airport capacity is sharply reduced 

during bad weather, it is said to have poor “service reliability” (p. 52), particularly if the 

annual expectance of bad weather is fairly high. For example, per Figure 4.3 and 

presented as Figure 5 here, Seattle encounters bad weather 30 percent of the time, with a 

resulting loss of capacity of 32 percent, while Minneapolis experiences bad weather 24 

percent of the time resulting in only a seven percent loss of capacity. Thus, the service 

reliability at Minneapolis is noted to be quite good, particularly when compared to 

Seattle, and its AARs are less sensitive to environmental impacts. 
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Figure 5. Airport capacity loss due to inclement weather. Adapted from ACRP-104 and 

AAI, 2014. 

Previous work. (The reviews presented in this section are summarized in Table 2 

for convenience of comparison, presented below.) With a fundamental understanding of 

aviation performance metrics as outlined by ARCP Report 104 and the ASPM, 

researchers have taken various approaches to characterize NAS performance delays 

caused by adverse weather conditions. Lorentson (2011) combined the ASPM and 

OPSNET databases to study the effect of forecast accuracy of marine stratus cessation in 

San Francisco on airport efficiency. In his research, the author suggests that only a single 

weather variable should be considered in assessing the relationship between forecast 

quality and airport efficiency.   

Lorentson compares the human-predicted time of marine stratus clearing in San 

Francisco with the actual time of clearing as noted by an increase in airport capacity. 

Using a multivariate regression, the author determined human forecast error in minutes 
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can be predicted with some degree of confidence by the system airport efficiency rate 

(SAER) and the percent on-time arrivals (POTA). While Lorentson’s results were 

somewhat mixed, he makes good use of both the ASPM and OPSNET archival databases 

through objective analysis. 

 

Table 2  

Literature Review Summary 

Author(s) and 

(Date) 

Summary Statistical 

Model(s), and 

Data Sets Used 

Findings Limitations  

Lorentson 

(2011) 

Forecaster error 

estimated by 

system airport 

efficiency rate 

and percent on-

time arrivals 

Multivariate 

Linear 

Regression 

***** 

ASPM, 

OPSNET 

Objective 

relationship 

between 

SAER, 

POTA, and 

forecaster 

accuracy 

weakly 

established 

Reduced weather 

to impact 

categories in 

order to isolate 

correlations 

between forecast 

quality and traffic 

flow impacts 

Smith (2008) 

& Smith, 

Sherry, and 

Donohue 

(2008) 

Estimated 

AARs by 

applying TAF 

data after 

weather 

variables and 

AAR 

relationships 

were 

established 

using SVT 

Support Vector 

Machine 

(SVM) 

***** 

ASPM, BTS, 

Terminal Area 

Forecasts 

(TAF) 

SVM 

technique 

yielded strong 

relationships 

between 

weather 

variable 

inputs and 

estimated 

AARs 

A data mining 

approach that also 

includes non-

weather variables 

that also impact 

AARs is likely to 

improve the 

overall predictive 

skill. 
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Table 2  

Literature Review Summary 

Author(s) and 

(Date) 

Summary Statistical 

Model(s), and 

Data Sets Used 

Findings Limitations  

Parker, 

Soloninka & 

Littleton 

(2010) 

 

Used archived 

VMC versus 

IMC weather 

conditions to 

study arrival 

and departure 

performance at 

ATL 

Piece-wise 

Linear 

Regression 

***** 

ASPM 

Positive 

regression 

slopes (one-

to-one) 

indicate 

airport 

throughput 

capacity 

available, 

while a slope 

of zero 

implies traffic 

flow 

saturation 

Expand the data 

analysis 

techniques to 

examine 

enhanced airport 

saturation 

throughputs as a 

result of 

configuration 

changes or new 

NextGen 

technologies 

Laskey, Xu & 

Chen (2012) 

Examined flight 

delays in flights 

between ORD 

and ATL by 

breaking flights 

up into eight 

phases where 

delays could 

occur 

Piece-wise 

Linear 

Regression, 

Bayesian 

Network 

***** 

ASPM, 

National 

Convective 

Weather 

Detection 

(NCWD) 

Departure 

delays at hub 

airports and 

en route flight 

and arrival 

airport 

weather 

conditions 

can affect 

delay on all 

flight phases 

This study needs 

to be extended to 

different airport 

pairs or during 

different seasons, 

e.g., winter versus 

summer, to create 

a tactical decision 

planning tool for 

airspace 

managers. 
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Table 2  

Literature Review Summary 

Author(s) and 

(Date) 

Summary Statistical 

Model(s), and 

Data Sets Used 

Findings Limitations  

Wang (2011) Introduced 

ensemble 

bagging 

decision tree 

modeling to 

estimate 

runway 

configurations 

(and hence 

AARs) that 

were then tested 

using observed 

and predicted 

weather 

Ensemble 

decision 

bagging tree, 

support vector 

machine 

***** 

ASPM, 

METAR, 

Weather 

Impacted 

Traffic Index 

The ensemble 

bagging 

decision tree 

modeling 

consistently 

outperformed 

the SVM 

models 

introduced by 

Smith (2008) 

While ensemble 

bagging trees 

outperform the 

single support 

vector machine 

models, both 

modeling 

techniques require 

further fine-

tuning and other 

impact variables 

need to be 

considered 

beyond weather 

inputs, e.g. noise 

abatement 

procedures. 

Kulkarni, 

Wang & 

Sridhar (2013) 

Further 

compared 

ensemble 

bagging 

decision trees, 

support vector 

machine, and 

neural network 

models using 

10 weather 

input variables 

at eight airports 

from 2006 to 

2010 

Ensemble 

decision 

bagging tree, 

support vector 

machine, neural 

network 

***** 

ASPM, 

National 

Traffic 

Management 

Log 

At eight 

selected 

airports, 

ensemble 

decision trees, 

neural 

networks, and 

support vector 

machine 

modeling 

consistently 

rendered 

similar 

outcomes 

Data mining and 

decision support 

works best in 

decision spaces 

regions of low or 

moderate decision 

difficulty, and 

organizations 

should focus on 

these regions to 

determine how 

human decision 

subjectivity plays 

a role in setting 

AARs, and value 

needs to be added 

in highly difficult 

airspace metering 

decisions. 
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Table 2  

Literature Review Summary 

Author(s) and 

(Date) 

Summary Statistical 

Model(s), and 

Data Sets Used 

Findings Limitations  

Avery & 

Balakrishman 

(2015) 

Used Discrete-

Choice 

modeling to 

predict runway 

configurations 

(out to three 

hours) at LGA 

and SFO 

airports based 

on historical 

data 

Area Forecast 

Regression fed 

Decision-

Choice Model 

***** 

ASPM, 

Terminal Area 

Forecasts 

(TAF) 

Introduced 

decision-

maker derived 

influence on 

setting airport 

runway 

configuration 

based on a 

utility 

function; 

modeling also 

derived 

runway 

crosswind 

component 

limits 

objectively 

Improvements 

need to be made 

in the runway 

configuration 

“inertia” term, 

examine methods 

to introduce 

randomness by 

decision makers 

into the utility 

function, seek to 

reduce early 

model bias that 

amplifies out to 

three-hours 

Zhang & 

Nayak (2010) 

 

 

 

 

 

 

  

 

 

 

 

 

 
 

Developed 

Macroscopic 

Tool measuring 

the delay at a 

selected airport 

and the effect 

this delay has 

on the NAS at 

large 

                               

 

 

 

 

 

 

 

 

 

Two-Stage 

Least Squares 

Regression 

***** 

ASPM, NOAA 

NCWD, and 

BTS 

 

 

 

 

 

Airspace 

management 

at single 

airport has a 

definite effect 

on the NAS 

as a whole; 

IMC ratio has 

a larger effect 

than 

convection on 

airport and 

NAS 

performance, 

winter months 

effect NAS 

more than 

summer 

months 

Only two cases 

(LGA and ORD) 

studied directly 

compared even 

though ORD has 

almost three times 

the annual 

passenger volume 

when compared 

to LGA. 
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Table 2  

Literature Review Summary 

Author(s) and 

(Date) 

Summary Statistical 

Model(s), and 

Data Sets Used 

Findings Limitations  

Dhal, Roy, 

Taylor, & 

Wanke (2013) 

Estimated 

AARs 

classified as 

“low,” 

“medium,” and 

“high” at BOS 

and DTW 

airports using 

weather 

variable inputs 

to construct a 

generic 

predictive 

model for each 

airport out to 24 

hours 

Multinomial 

Logistic 

Regression 

***** 

ASPM, 

Terminal Areas 

Forecast (TAF) 

Introduced 

Logistic 

Regression as 

a potential 

modeling 

technique that 

also used 

Synthetic 

Minority 

Oversampling 

Technique 

(SMOTE) to 

mitigate 

under-

represented 

categories to 

estimate AAR 

bins 

Model 

deployment using 

predictive 

numerical 

weather model 

guidance 

introduced 

human-produced 

errors associated 

with Terminal 

Area Forecasts 

 

Smith (2008) and subsequently Smith, Sherry, and Donohue (2008) combined 

multiple databases to create a decision support tool used to predict airport arrival rates 

based on weather forecasts. In his work, the author(s) used the ASPM and BTS databases 

to extract the airport arrival rates and the delay information, while adding National 

Weather Service Terminal Aerodrome Forecasts (TAF) as the predictor variables once 

the relationship between the combined AAR/Delay data and TAF data was understood. 

Using a Support Vector Machine, which is a “method that performs classification tasks 

by constructing hyper-planes in a multi-dimensional space that separates cases of 
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different class variables” (Smith, 2008, p. 4), Smith set the TAF information as 

independent variables and then estimated the AAR as the dependent variable. Initial 

results were favorable; tests on Philadelphia showed the SVM model was 81 percent 

successful using the training data set and 83 percent successful with the testing data when 

using a split-data sample. Smith further connected the predicted AAR to delay data from 

the BTS to also estimate an overall flight delay (in minutes) associated with each AAR. 

In spite of his success, Smith reported a disadvantage in using the SVM approach is that 

it cannot distinguish if one variable has more influence than another in predicting AAR. 

Also, he noted the SVM methodology is not capable of detecting a rare event. Smith 

suggests future research examines other potential causal factors which might affect AARs 

beyond weather, such as schedule congestion and airport construction. Smith’s final 

conclusion was that data mining may be a more useful approach in examining this multi-

dimensional problem.  

Parker et al. (2010) used the ASPM database to determine the drop off in AARs 

observed during visual meteorological conditions (VMC) and instrument meteorological 

conditions (IMC) as “the extent to which NAS performance is reduced during IMC 

constitutes the performance gap between IMC and VMC” (p. 7). Using actual arrival 

rates versus scheduled arrival rates, as well as instrument approach (IA) or visual 

approach (VA) conditions extracted from the ASPM database, the authors used a 

piecewise linear regression model using a least-squares technique to examine Atlanta’s 

Hartsfield-Jackson Airport hourly throughput from 2005 to 2007. Part of their interest 

revolved around Atlanta's installation of a new runway, which was expected to lessen the 

weather VMC/IMC performance gap for both arriving and departing aircraft during IMC 
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operations. Parker et al. discovered that while the VMC versus IMC performance gap did 

decrease slightly for arriving aircraft, it actually increased for departures, and the airport 

continued to reach throughput saturation at a point of inflection where the piecewise 

regression slope changed roughly from a positive one-to-one (airport throughput capacity 

available) to a slope of zero (airport saturation).   

Laskey et al. (2012) examined the ASPM database to better understand how 

delays propagate in the National Airspace System, recognizing that delays are inherently 

a “stochastic” phenomenon, and created a Bayesian Network model to examine the root 

causes of aircraft delays. The authors considered a case study that focused on the delays 

between Chicago O’Hare International Airport and Hartsfield-Jackson International 

Airport in Atlanta and sought to identify how FAA systemic and FAA/NWS human 

factors might result in arrival delays. In contrast to Lorentson (2011, August), Laskey et 

al. suggested “different components of delay together is important because the 

components interact in complex ways under the effects of airport conditions, weather 

conditions, and system effects from NAS” (p. 1). Moreover, the authors asserted that a 

“Bayesian network model not only provides predictions of future delays that incorporate 

the interrelationships among causal factors, but also provides a means of assessing the 

effects of causal factors and inferring the factors that contributed most to the final arrival 

delay” (p. 2).    

Laskey et al. took six deliberate steps to identify the components that cause delay 

and how they interact in their case study that examines flights between Chicago O’Hare 

and Atlanta Hartsfield-Jackson airports. These steps resulted in a regression model that 

examines delay at each noted phase of flight (turn around delay, gate out delay, taxi out 
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delay, departure queue size, airborne delay, predicted time en route, taxi in delay, arrival 

que size, and gate in delay):  

(a) distinguish the most important explanatory factors for this phase using piece-

wise regression analysis and cross validation on the training sample; (b) create a 

node in the BN to represent the delay phase; (c) set the factors selected from step 

1. as the parent nodes of the given delay node in the Bayesian network; (e) 

estimate initial local distributions for the given node by discretizing the regression 

model. That is, the child node is modeled as a normal distribution with mean 

equal to the regression mean and standard deviation equal to the regression 

standard deviation. Most delay variables were discretized in 15-minute intervals, 

but some were discretized more finely to improve accuracy; (f) use Dirichlet-

multinomial learning from the training data to update the distributions of all nodes 

in the Bayesian network. We found this step to be necessary because the 

regression model alone was not adequate to capture the complex relationships 

between nodes and their parents. We gave a relative weight of 30:1 on observed 

cases to the regression prior; and, (g) evaluate the model by comparing the model 

predictions with observations on a holdout sample. (Laskey et al., p. 3) 

Results from Laskey et al., confirmed that “departure delays at the busy hub 

airport ORD are major contributors to the final gate arrival delay at the destination 

airport,” and that “weather conditions en route and at the destination airport ATL have an 

effect on delay in all flight phases” (p. 7). Ultimately, the authors expected to create a 

planning tool that will provide insights into the ramifications of tactical decisions 

regarding ground delay programs as well as flight cancelations, and how “flight 



44 

 

scheduling decisions by individual airlines contribute to the propagation of delay in the 

system” (p. 7). 

Wang (2011) compared the Support Vector Machine (SVM) approach employed 

by Smith to a bagging decision tree (BDT) model used to predict weather-impacted 

airport capacity. The author posits airport runway configuration is a critical element in 

determining airport capacity and is dependent on noise abatement procedures, traffic 

demand, surface congestion, operational considerations, surface congestion, navigational 

system outages, and weather and concluded, “among these factors, the most important is 

weather, wind direction and speed in particular” (p. 2). Wang used ASPM data as well as 

weather observations and predictions to determine the relationships between weather, 

runway configurations, and airport arrival rates at Newark, San Francisco, Chicago 

O’Hare, and Atlanta.   

As Wang reported, because of its robustness in classifying noisy or unstructured 

data, an SVM is widely used in many applications “from protein function, and face 

recognition, to text categorization” (p. 2). The SVM is constructed as previously 

described by Smith and employs a Gaussian radial basis function (RBF) to extend the 

classification technique from a linear to a non-linear decision function. Using this 

technique, the SVM can be applied in a high-dimensional space non-linear mapping 

problem. 

In ensemble bagging decision trees, bagging uses random resampling of the data 

to induce classification margins, or gaps, which bring essential diversity into the 

ensemble process. The bagging process examines the average error for each subgroup 

and then optimizes and assigns weights to the subspaces to construct the classifier. Per 
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Wang, “experimental results demonstrate that the method is robust for classification of 

noisy data and often generates improved predictions than any single classifier” (p. 3).   

Using cross-validation (N = 10), ten models were run using both the SVM and 

ensemble BDT techniques and checked for accuracy against observations. Each time, 

nine of the ten sub-groups of data were used for training, and the tenth subgroup was 

saved for model testing. Ultimately, each of the ten subgroups was withheld from the 

training data sets and used for testing purposes. This cross-validation technique 

confirmed the Wang’s findings were not capricious.  

The SVM and BDT results used to determine runway configuration were 

compared using the overall accuracy rate, critical success index, and area under the 

Receiver Operating Characteristic (ROC) curve, and these results were then compared at 

four major airports. In all cases, the BDT outperformed the SVM approach. Moreover, 

using the area under the curve statistic and based on airport weather, the BDT 

impressively correctly classified the dissimilar runway configurations 92 to 83 percent of 

the time at Newark, 92 to 77 percent of the time at San Francisco, 97 to 85 percent of the 

time at Chicago O’Hare, and 95 to 88 percent of time in Atlanta. Performance dropped 

somewhat when the BDT attempted to distinguish similar runway configurations, but the 

ROC area under the curve still remained above 0.8 overall (p. 9).   

Kulkarni, Wang, and Sridhar (2013) investigated data mining techniques to 

enhance the decision-making of air traffic managers when implementing Ground Delay 

Programs (GDP). As the authors suggest:  

Data mining algorithms have the potential to develop associations between 

weather patterns and the corresponding ground delay program responses. If 
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successful, they can be used to improve and standardize TFM decisions resulting 

in better management of traffic flows on days with reliable weather forecasts. The 

approach here seeks to develop a set of data mining and machine learning models 

and apply them to historical archives of weather observations and TFM initiatives 

to determine the extent to which the theory can predict and explain the observed 

traffic flow behaviors. (pp. 1-2) 

Kulkarni et al. noted the major reason to initiate a GDP is overwhelmingly due to 

inclement weather conditions and studied the historic operational and weather statistics at 

Newark, San Francisco, LaGuardia, Kennedy, Chicago O’Hare, Philadelphia, Boston, 

and Atlanta airports from 2006 to 2010. GDP information was extracted from the 

National Traffic Management Log (NTML) database and was then merged with ASPM 

data. Hourly variables (wind speed, visibility, ceiling, instrument meteorological 

conditions (IMC), scheduled arrivals, scheduled departures) were used as direct inputs 

and also to derive a wind impacted traffic variable (the number of arriving or departing 

aircraft with wind speeds greater than 15 knots) and an IMC impacted traffic variable (the 

number of arriving or departing aircraft during IMC conditions). Initially, ten variables 

were studied: wind speed, variation in wind speed, visibility, variation in visibility, 

ceiling, variation in ceiling, instrument meteorological conditions (IMC), scheduled 

arrivals, IMC-impacted traffic and wind-impacted traffic. Of these, the IMC-impacted 

traffic and wind-impacted traffic variables were found to be most relevant.   

The authors analyzed these data using three data mining techniques, ensemble 

bagging decision trees (BDT), neural networks (NN), and support vector machine (SVM) 

models. Kulkarni et al. noted that machine-learning performance depends on a consistent 



47 

 

decision-making process as well as the availability of training data to provide variable 

input information at key points in the decision space analysis. However, because the 

National Airspace System is operated by humans, it can respond to weather and traffic 

conditions differently depending on the objectives, preferences, and training of the 

operators who are responsible for the decision-making. Further, ambiguity in decision 

outputs were noted in scenarios that had the same approximate decision inputs. As a 

result, the authors looked toward a range of values or regions of decision consistency to 

characterize the accuracy of the three modeling approaches.   

The data were divided into regions of differing decision consistency. Comparison 

was then made between the BDT, NN, and SVM data-mining methods within each region 

of decision consistency. This was accomplished using a four by four (YY, YN, NY, NN) 

confusion matrix which in turn allowed a Critical Success Index (CSI = YY/ 

(YY+NY+YN)) and False Alarm Ratio (FAR = YN/ (YY+NN)) to be calculated and 

compared within each decision consistency region. 

In regions of low decision consistency (0.58), the CSI and FAR for the NN was 

0.64 and 0.27, for the BDT was 0.63 and 0.25, and for the SVM was 0.63 and 0.24, 

respectively. In regions of medium decision consistency (0.77), the CSI and FAR for the 

NN was 0.64 and 0.12, for the BDT was 0.61 and 0.12, and for the SVM was 0.65 and 

0.18, respectively. In regions of high decision consistency (0.88), the CSI and FAR for 

the NN was 0.82 and 0.24, for the BDT was 0.83 and 0.23, and for the SVM was 0.84 

and 0.25, respectively. 

Kulkarni et al. concluded there is probably little value in having a data-mining 

decision support system in high decision consistency regions, e.g., days where the 
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weather is favorable to operations (no GDPs required) or days with significantly adverse 

weather (multiple GDPs required). Instead, decision support should be focused in regions 

of low to moderate decision consistency. Finally, the authors note the consistency 

discovered between the three methods (NN, BDT, and SVM) provides confidence in 

using a data mining approach for this particular problem. 

Avery and Balakrishnan (2015) offered a probabilistic method to predict runway 

configuration at forecast intervals of 15-minutes out to three hours. Using both ASPM 

and Terminal Aerodrome Forecasts (TAFs), the authors employed a discrete-choice 

modeling approach that they applied to LaGuardia and San Francisco airports. Unique to 

this study were the thresholds for maximum tailwinds and crosswinds used to determine 

the runway configurations and were derived from historical data. According to the 

authors:    

Discrete-choice models are behavioral models that describe the choice selection 

of a decision maker, or the nominal decision selection among an exhaustive set of 

possible alternative options, called the choice set. Each alternative in the choice 

set is assigned a utility function based on defining attributes that are related to the 

decision selection process. At any given time, the feasible alternative with the 

maximum utility is assumed to be selected by the decision maker. (p. 2) 

A utility function is used as a stochastic random variable with an observed 

component that is deterministic as well as stochastic error component. The deterministic 

observed component of the utility function is expressed as a linear function of weighted 

attributes expressed in vector form. The random error portion of the utility function 

contains the combined measurement errors with an assumed Gumbel distribution, a 
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location error of zero, and approximates a normal distribution to decrease computational 

requirements. A Nested-Logit model was then employed to split the observable part of 

the utility function into a component common to each possibility within the decision nest 

and a component that varies between alternatives. As reported by Avery and 

Balakrishnan, “the probability that a specific alternative is chosen is given by the 

probability that its nest is chosen, multiplied by the probability that the specific 

alternative is chosen from among the alternatives in that nest” (p. 3). Estimates of the 

linear weighting attributes were estimated from the training data that maximized the 

likelihood of the observation and were determined using a non-linear optimization 

routine found in a software package named BIOGEME.   

Using variables found in the ASPM database, the utility function in the model 

estimated the importance of weather, wind speed, wind direction, arrival demand, 

departure demand, as well as other factors to determine the most likely runway 

configuration. The model starts with an initial runway configuration, and using the input 

variables listed above, yields a probabilistic forecast for the next fifteen minutes, and so 

on. Using these results as a training baseline, TAF data were used as inputs to obtain a 

probabilistic runway configuration prediction out to three hours. With perfect a priori 

(actual) information of weather conditions and traffic demands, the model was correct 81 

percent of the time at San Francisco and 82 percent of the time at LaGuardia, in 

hindsight. As a predictive tool, using scheduled demand and Terminal Aerodrome 

Forecasts three hours in advance, the model was still impressive with an accuracy of 80 

percent for San Francisco and 79 percent for LaGuardia airports.   
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Zhang and Nayak (2010) examine the factors that cause flight delays and the 

impact delays at one airport have on the rest of the NAS. To do this at a selected airport, 

different delay factors such as arrival queuing delays, differing demand management 

scenarios, and adverse weather (both local constraints and en route convection) were 

entered into a model composed of multivariate equations as independent variables. At the 

national scale, the same variables were also considered in a model using similar 

multivariate equations. The two models (of local and national scale) were then regressed 

using a two-stage least squares technique.   

Two airports were selected as case studies, New York’s LaGuardia Airport (LGA) 

and Chicago’s O’Hare International Airport (ORD), based on the authors’ contention that 

both airports are known for their “significant and persistent delays” (p. 88). Moreover, 

Zhang and Nayak noted that the demand strategies for LGA and ORD were based on 

similar slot control capacity schemes that were run in parallel by airspace managers 

during the January 2000 through June 2004 period of their study. Fifteen-minute ASPM 

data were analyzed, and by adding convective weather data from the National Oceanic 

and Atmospheric Administration and passenger boarding data from BTS, the following 

variables were constructed: a) daily arrival delay, b) deterministic queuing delay, c) 

adverse weather including convective weather and IMC ratio, d) passenger load factor, e) 

total flight operations, and e) seasonal and demand management dummy variables. 

The two models, based on multivariate simultaneous equations supported by the 

variables listed above, were regressed using a two-stage least squares technique that is an 

extension of the least squares regression generally used when the models are 

“nonrecursive with a bidirectional relationship between the causal factors and error 
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terms” and is particularly useful “when the dependent variable of one model could be one 

of the independent variables of the other model” (p. 90). The results were significant, 

with an R
2 

of 0.7741 and 0.8254 for LaGuardia and O’Hare Airports, respectively. The 

principal weather driver causing delays at both airports was the IMC over the 

thunderstorm ratio, and seasonally derived delays were dominant during the winter 

months. Also noted to be significant were delays resulting from demand management 

schemes, that is, how the airspace was regulated.   

The results from the NAS models were equally impressive; the R
2
 for LGA 

explained 94.35 percent of the of the average delay variation, while the R
2
 for ORD 

accounted for 94.06 percent of the average delay variation. It was also discovered that a 

one-minute delay at LaGuardia resulted in a 0.082 minute delay in the NAS, while a one-

minute delay at O’Hare resulted in a 0.052 minute delay in the NAS. Zhang and Nayak 

noted how differing demands and management strategies of specific airports impacts the 

system in its entirety. Another application of this study is the estimated improved 

capacity at a single airport (e.g., additional runways) can be translated into an expected 

improvement in overall NAS performance.   

Zhang and Nayak conclude that the two-stage least squares regression 

methodology could easily be extended to add more independent input variables. Also, the 

single airport to NAS relationship could be generalized to the 22 Air Route Control 

Centers (ARTCCs) and then applied to the NAS at-large. Finally, and again by extension, 

the two-stage least squares regression could be replaced by a three-stage least squares 

model to better refine the coefficients realized in the multivariate equations. 
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Dhal, Roy, Taylor, and Wanke (2013) estimated airport arrival rates (AAR) using 

a multinomial logistic regression as a means to predict AARs over a 24-hour period. A 

principle driver in their research was to derive a generic prediction algorithm for a given 

airport, and their work examined the Boston Logan International and Detroit 

Metropolitan Wayne County Airports as cases for the developmental design. While the 

authors noted the importance of runway configuration as a factor in determining the AAR 

(and as was later pursued directly by Avery and Balakrishnan), they chose to focus on 

estimating AAR classifications (e.g., low, medium, and high) directly rather than airport 

runway conditions.   

Dhal et al. focused their study on building and refining the multinomial logistic 

regression models for the two airports selected and then tested the models. In 

constructing the model, the authors outlined a three-step process: a) identify factors, b) 

gather historical data, and c) begin data mining, which iteratively includes data pre-

processing, running the regression model, and model evaluation. The three steps are 

briefly described. 

The first step led the authors to consider the major factors that control an airport’s 

AAR. They noted that common environmental factors such as wind speed and direction, 

ceiling, and visibility play a role in influencing the AAR. Moreover, these weather 

elements can be predicted and therefore applied as regressors to practical AAR 

forecasting tools. Beyond the common environmental elements, Dhal et al. identified 

airport specific factors that also affect AARs. For example, LaGuardia Airport in New 

York is physically constrained by the East River and has very limited ramp and taxi space 

that slows down aircraft arrivals and departures during busy hours of the day. Similarly, 
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and depending on an airport’s physical layout, the authors conclude the airport departure 

rate can also affect its arrival rate, although they did not consider this influence in their 

2013 research. Additionally, since humans control the NAS, it was noted that variability 

in AARs is also caused by the decision-making of airspace managers that “can mask and 

overwhelm other dependencies in the data” (p. 3).  

In the second step, Dhal et al. collected historical FAA performance data and 

NWS weather archives. The FAA performance data were extracted from the ASPM 

database, specifically hourly data between April 1
st
 and September 30

th
 were assembled 

for three years (2009 – 2011) as the training data set, and the test data were pulled from 

the April 1
st
 through September 30

th
, 2012, archive. These data were time-matched with 

National Weather Service Meteorological Terminal Aviation Routine Weather Report, 

more commonly referred to as METARs.   

As previously mentioned, the third step, data mining, is iterative in nature and 

includes pre-processing, multinomial logistic regression model construction, and model 

testing and refinement. The data pre-processing techniques used by Dhal et al. lend 

insight into best practices when data-mining the FAA ASPM database. The authors 

carefully identified each variable type (i.e., continuous or categorical) so that variables 

were correctly entered into the regression. Also, the authors reclassified some of the data 

such as “no ceiling” and “winds variable” into numerical data to match the otherwise 

completely numerical data in these respective fields. As others have done previously (e.g. 

Smith, 2008), the nighttime hours between midnight and 0700 local time were not 

considered because of low traffic volumes, and therefore no loading on airport capacity. 

Data associated with these local times were therefore removed from the regressions.   
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Another important pre-processing task reclassified the continuous variable AAR 

into a categorical variable required for the multinomial logistic regression. This was an 

important step as it binned the AARs into two or three categories based on observed 

AARs, and in particular, should include categories that indicate low arrival rates 

indicating constrained airport capacity. For Boston Logan International Airport, three 

values were chosen: Low (AAR <= 45), Medium (45< AAR <= 60), and High (AAR > 

60), while Detroit Metropolitan Wayne County Airport used only two levels: Low (AAR 

<= 60) or High (AAR > 60).   

The final pre-processing step conducted a sensitivity-specificity analysis of the 

variables considered as regressors to determine their respective influence in predicting 

the AAR. Variables with low influence as regressors on the dependent variable were 

considered for removal from the regression. Per Dhal et al. (2013): 

It is well-known that extraneous regressors tend to frustrate regression algorithms, 

which in turn leads to poor performance of the obtained prediction models. The 

sensitivity-specificity analysis can be used to identify unnecessary environmental 

attributes, which can then be removed from the list of potential regressors for 

AAR classification, if desired. (p. 4) 

The multinomial logistic regression was then developed to estimate the AAR 

based on the selected input variables. This particular statistical technique was chosen for 

several reasons. With the AARs binned in to two or three categories, a multinomial (or 

binary) logistic regression was used. Additionally, the input variables are both categorical 

and continuous, and “the logistic regression immediately yields a stochastic model for 

AAR categories given the regression parameters” (p. 4). The following regressors were 
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used: local hour, from 6 AM to 11 PM (18 total, categorical), presence/absence of 

thunderstorms (categorical), ceiling (continuous), visibility (continuous), surface wind 

angle (continuous), and surface wind speed (continuous). The aforementioned sensitivity-

specificity analysis confirmed each of these selected input variables were useful as 

regressors. The use of local hour as a regressor is worthy of note as this input variable 

added regularly scheduled airport traffic volume loadings that consistently occur on a 

daily basis into the model.   

With the multinomial (three category AAR categorical target variable) logistic 

regression model constructed for Boston Logan International Airport using the multi-year 

test data set, the model was evaluated by Dhal et al. using the six-month 2012 data. It 

correctly classified 62 percent of the historical AAR categories by using a three by three 

confusion matrix. The authors contend this is an acceptable performance:  

This representation of the model’s performance is standard in the statistics and 

data mining literature and is referred to as a confusion matrix. The confusion 

matrix for this regressor indicates that the AAR levels are indeed being 

distinguished by the regression, and in particular that the low AAR level can be 

predicted well in this example. (p. 8) 

With the basic multinomial logistic regression model constructed and tested, it 

may be “iteratively refined by 1) changing the set of regressors used, 2) re-categorizing 

the AAR and other logistic variables, and/or 3) modifying the regression algorithm itself” 

(p. 5).  

In contrast, the Detroit Metropolitan Wayne County Airport parallel case study 

did not share the success of the Boston Logan International Airport using the same basic 
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modeling approach. The historical assessment of the AARs for this airport led to just two 

levels (and hence a binary logistic regression) set at rate either above or below a 60 AAR. 

Dhal et al. found well over 8,000 cases where the Detroit Airport accepted a 60 or better 

AAR, but close to only 1,000 cases where the airport dipped below a 60 AAR. Little 

explanation is given as to why a third, and more moderate category between a low and 

high ARR was not selected as was applied with Boston Logan experimental design. One 

might attribute these differences to the non-winter weather (April through September) 

selected for this study that perhaps is indicative of an under-utilized airport that only 

becomes over-burdened in the presence of thunderstorms during the spring through fall 

months. In any case, to improve the regression in iteration, Dhal at al. suggest the 

inequity in numbers of high and low AAR cases tends to force the regression to 

artificially favor the higher classification. To combat this under-represented, rare-

occurrence problem statistically, the authors address the imbalance of high versus low 

cases by interjecting synthetic “low” AARs into the model, a process identified as 

Synthetic Minority Over-sampling Technique, or SMOTE. While there was some 

improvement predicting the low AAR events, “this improvement came at a loss of 

performance in predicting high ARR events” (p. 10).   

With the models constructed and tested, Dhal et al. outline how they can be 

deployed, although this was not performed in their 2013 research. For each forecast hour, 

predicted weather values could be substituted for the historical regressor values used to 

build the models e.g., surface wind speed and direction, ceiling, visibility, and the 

presence of thunderstorms in order to calculate a Probability Mass Function to estimate 

the probabilities of a specific AAR level. As posited by the authors, the simplest 
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approach is to choose the AAR level with the highest conditional Probability Mass 

Function, and other possibilities were also lightly considered. 

In conclusion, the authors examined both the methodology used in their research 

as well as the data sets that could potentially be used for future AAR prediction. In the 

first, Dhal et al. determined the multinomial logistic regression modeling technique 

employed was effective in modeling low AARs but recognized the problems in selecting 

the best model regressors and also the need to move past categorical AAR estimated 

levels into continuous, or numerical predictions, and in actual model deployment, 

selecting the best weather forecast tools to bring predictive weather elements into the 

deployed model. In this, they recognized the various numerical weather models could 

potentially be used as well as the complexities of their meaningful application. 

Dhal et al. leave us with the idea that humans involved in the weather forecast 

process, particularly for TAFs, (and for that matter, management of the NAS by human 

specialists) leads to a variance of forecast success predictability that is very difficult to 

model. The authors offer the possibility of directly interjecting both short-term, high-

resolution, probabilistic models as well as more classic deterministic-solutions of the 

input variables across a 24-hour time frame. Either of these potential model inputs for 

deployed models offer a consistent input bias that can be measured and corrected, but 

then must be weighed against a lack of TAF fidelity and temporal forecasting resolution 

that runs out to 30 hours. Dhal et al. suggest an automated but constantly advancing 

forecast loop might well surpass the human-produced inputs if the numerical model 

inputs can be directly entered into both the new algorithms and the deployed operational 

AAR models. Noted in this approach are the complexities that must be overcome in 
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extracting sensible elements from the numerical weather models that can be directly 

applied into the deployed logistic regression model with the correct time-steps and 

correct physical scale. In other words, replace the variance found in high resolution but 

human-produced TAFs with spatially downscaled weather elements extracted from 

numerical weather models. Dhal et al. recognized the challenges of this approach and 

acknowledge the principle problem will be in pulling the localized environmental 

information from regional or global-scale numerical weather models. These efforts, 

perhaps prescient, were left for further research.   

Data Mining, Decision Trees, Neural Networks, and Regression  

Data mining. There are numerous definitions that describe data mining. A simple 

definition is data mining combines computer-aided statistical techniques and artificial 

intelligence that allow the exploration of large data sets and databases to discover hidden 

patterns in the data that may be subsequently exploited for predictive purposes. Dubey et 

al. (2016) offer “unsophisticated” data (e.g. data from the Internet, that may be very large 

in nature and highly unstructured) can be more usefully arranged by applying data mining 

techniques (p. 5). In data mining, a descriptive model is created to approximate the 

known or archived data available. These “patterns are then compared with this model to 

find the deviation and is then analyzed or coded in the deviated form” (p. 8).  

Gera and Goel (2015) suggest data mining is a subset of a larger “knowledge of 

discovery in databases (KDD)” (p. 22). The idea that multiple databases can be 

simultaneously queried is complimented by the concept that such databases may be static 

or dynamic. Dynamic data sets can be very large, constantly flowing, and may make the 

latencies associated with post hoc static data set analysis both impractical and of little 
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value. A dynamically supplied set of input data is particularly interesting in the 

application of weather conditions toward the problem of predicting NAS efficiencies, as 

these environmental parameters are constantly changing.  

With data mining loosely defined, several commercially available software tools 

are available for its application. Al Ghoson and Abdullah (2010) contrast the relative 

strengths and weaknesses of the SAS
®
 Enterprise Miner

TM
, SPSS

®
 Clementine

TM
, and the 

IBM DB2
®
 Intelligent Miner

TM
 when using decision tree and clustering analyses as might 

be used for business decision making. Their evaluation was based on the following 

criteria: a) performance, b) functionality, c) usability, and d) auxiliary task support. The 

authors note decision trees and clustering are two of the most common classification 

techniques used in business decision-making.   

Compared to the other two data mining software packages, Al Ghoson and 

Abdullah indicate SAS
®
 Enterprise Miner

TM 
is a complete system that creates an 

integrated environment which includes “predictive and descriptive modeling, text mining, 

forecasting, optimization, simulation, and experimental design” (p. 62).  

 Decision trees.  Per Tufféry (2011), decision trees recursively divide a population 

into n predetermined segments through the use of chosen selection variables that provide 

the best separation of the population into distinct classes (p. 313). The first split is called 

the root or parent-node, and the sub-segments are called child-nodes, although if these 

nodes are further divided, they may be called intermediate-nodes. The final segments that 

cannot be further divided are called terminal-nodes, or leaves, and these nodes combined 

with all their successors form a branch of the tree. Using a training data set, posterior 

probabilities are calculated for each node and are based on the number of the sample 
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population that fall into a given node per the node rule established by the value set for the 

selection variable. These values are called target levels, and the assignment of the 

selection variable value at each node is called a decision. Each member of the population 

is ultimately assigned to only one leaf. Decision trees are normally constructed to 

minimize the overall classification error of the population, to maximize profit, or to guard 

against loss (Sarma, 2013, p. 170). Tufféry (2011) notes decision trees fall into a space 

that bridges descriptive and predictive modeling and therefore should be considered as a 

“supervised divisive hierarchical” method (p. 313). 

Using SAS
®
 Enterprise Miner

TM
 as an example software package that supports 

decision tree modeling, there are several methods used to assess decision tree worth. 

These are: decision, average square error (ASE), misclassification, and lift. In decision, 

the maximize function seeks the largest profit, while the minimize function seeks to 

reduce costs. ASE is the average square of the difference between the predicted and 

actual outcome and is used when the target is continuous. Misclassification seeks to 

minimize the number of records that are misclassified, while lift compares the percentage 

of correctly selected individuals with a desired set of traits from a given percentage of the 

population as compared to those results found by a completely random model. Training, 

validation, and test datasets are allocated by sample size. If the sample is large, the sets 

can be of equal size, but if the sample is relatively small, it is common to use a 40/30/30 

or 50/25/25 percent split for the training, validation, and test data subsets, respectively. 

The validation dataset is sometimes called the pruning (model fine-tuning) dataset. A 

larger training dataset generally results in more stable parameter estimates. The training 

dataset performs three tasks: a) assigning rules used to make selections at each node, b) 
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estimating posterior probabilities at each node after the population selections are made, 

and c) calculating the selection variable value, or decision, at each node. The validation 

dataset is used to prune the tree, which usually is initially too large and is called the 

whole tree or maximal tree. The optimal tree is one that yields a higher profit than any 

other smaller tree but also yields an equal or higher profit than any other larger tree. 

SAS
®
 Enterprise Miner

TM
 can do this automatically. To do this, the worth of the tree is 

calculated by comparing the candidate splitting values used at each node and then 

iteratively determining which combination of nodes and node decision values result in the 

best tree. The method used for this comparison is selectable within SAS
®
 Enterprise 

Miner
TM

. Finally, the test data set is used to assess the performance of the validated 

model and is useful in comparing other models, such as neural networks or regression 

models (Sarma, 2013, pp. 173-175).  

During the validation phase, measuring the worth of the split depends on the type 

of target variable being studied, e.g. for nominal variables SAS
®
 Enterprise Miner

TM
 uses 

the non-parametric test: ProbChisq (the p value of the Pearson Chi-Squared test), if 

categorical but with ordered scales, it is ordinal and uses Entropy or Gini, and if interval 

(parametric) it uses Variance or ProbF. In a binary split (categorical), the Chi-Squared 

statistic is used to test the null hypothesis that the proportion of the responders with an 

income less than X is not significantly different than those with an income greater than X. 

The logworth of the p value is then calculated, and the larger this value, the lower the p-

value, and hence the split. Node impurity is determined using Gini and Entropy, with 

pure being set to 0, and completely mixed being set to a value of 1. For more than a 

binary target variable (e.g., three or greater number of categories), the Chi Squared 
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statistic is used in a r x b contingency table, where r in the number of target levels 

(categories), and b is the number of child nodes being created on the basis of certain 

input. When the target variable is continuous, the F-test is the selection criterion 

employed to determine the effectiveness of the splitting decision. ANOVA is used first to 

test the null hypothesis (as above, resulting in the F-test statistic) then the logworth of the 

F-test (larger values imply lower p-values) that indicates a better split (Sarma, 2013, pp. 

177-181). 

Adjusting the p values using a Bonferroni or depth adjustment allows decision 

splits to be compared from different inputs. The p-values can be modified using the 

Bonferroni Adjustment, which minimizes type-I errors when multiple tests of 

significance are carried out. Lowering the selected p value, e.g., less than 0.05, can 

control decision tree growth. This increases the degree to which two child nodes must 

differ in order that the considered split be significant. Thus, changing the threshold p 

value controls tree growth. Tree size can also be controlled by setting the maximum 

number of records: if set to 100, a leaf will not be created (the parent node will not be 

split), if there are 99 records (or less) split into this node, or by limiting the depth of the 

tree, which controls the number of downstream nodes from the parent node. Removing 

binary sub-tree splits that do not contribute to model performance optimizes the final tree.   

SAS
®
 Enterprise Miner

TM
 contains a graphical sub-tree assessment function that aids in 

selecting the best model size (Sarma, 2013, pp. 183-185). 

Tufféry (2011) offers decision tree advantages and disadvantages: 

Advantages of decision trees. 

 Results are in terms of the original variables (as opposed to neural networks) 
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and do not need to be re-expressed; 

 DTs are non-parametric: The Independent Variables can be non-normal and 

collinear; 

 The response of the dependent variable to the independent variables can be 

non-linear or non-monotonic; 

 Relatively unaffected by outliers; 

 Can deal with missing data; 

 Can handle all types of data directly; and 

 Compute times are quite reasonable. 

Disadvantages of decision trees. 

 A Decision tree detects local and not global optima (but this can overcome by 

resampling); 

 Require a large enough sample to provide at least 30 to 50 samples per node;   

 Unlike neural networks, over-fitting is easily seen in decision trees; 

 Decision tree solutions may be rectangular representations of the variable 

space that are less than optimal; and 

 Decision trees, while terrific classifiers, may be difficult to generalize as 

predictive systems. (pp. 327-328) 

 Neural networks.  Neural networks are multi-layered models that pass and 

process information between layers and are sometimes referred to as artificial neural 

networks or ANNs. They have been noted to approximate the human nervous system in 

their architecture and learning abilities. Tufféry (2011) recognizes the nearly universal 
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application of neural networks; they can be used in clustering, classification, and 

predictive modeling designs (p. 217). Charaniya and Dudul (2013) describe a forward-

feeding neural network as a series of source nodes that ultimately connect to an output 

layer of neurons or computation nodes. There may be additional layers found between the 

source nodes and output neurons that perform calculations on the data received from the 

source nodes (or the previous layer, depending on model complexity) and then pass these 

results to output layer (or the next layer, again depending on model complexity). If a 

layer of nodes is not directly connected to the source or output nodes, it is called a hidden 

layer, as it has no connectivity with external data input sources nor does it provide direct 

output solutions. A neural network schematic is shown as Figure 6. As Sarma (2013) 

notes, “A neural network model can be thought of as a complex nonlinear model where 

the tasks of variable transformation, composite variable creation, and model estimation 

(estimation of weights) are done simultaneously in such a way that a specified error 

function is minimized” (p. 241).  
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Figure 6. Neural network schematic. (K. M. Fasuke, http://texample.net, 

https://creativecommons.org/licenses/by/2.5/legalcode) 

 

Within the hidden layers of a neural network model, the source data are 

normalized, may then be transformed, and are processed by the model to achieve the best 

results through iteration. Data normalization, foundational to neural networks, is non-

trivial and must be carefully considered based on the variable type. Normalization 

treatment varies between continuous, discrete, and qualitative inputs (Tufféry, 2011, pp. 

223-224).  

Nielson (2015) develops a basic but most understandable treatment of neural 

networks. Perhaps of greatest interest, neurons are noted to be the progeny of perceptrons 

developed in the 1960s by Rosenblatt et al. Per Nielson (2015), a perceptron receives and 

weights binary model inputs into a larger set of combined but similarly considered 

distinct decision selection criteria. Once energized, perceptrons combine available input 

data, and based on these informed and weighted inputs, make a fully mechanical but 

http://texample.net/
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enlightened decision. Perceptrons must be visualized and taken in aggregate, and as such 

have been compared to the perceiving and responding parts of the human brain. Though 

less complex, and hidden layers notwithstanding, the neural network is an approximation 

in how humans solve problems based on our basic mental model.       

Per Sarma (2013), SAS has a range of choices for these functions allowing for 

combinations of hidden layer function, hidden layer activation function, target layer 

combination function, and target layer activation function to be selected, and each 

provides a different neural network model (p. 241). The multilayer perceptron networks 

use linear combination functions and sigmoid (S-shaped) activation functions in the 

hidden layers. Other neural networks use Radial Basis Function (RBF) and Multilayer 

Perceptron (MLP) networks (p. 279). Within the SAS
®
 Enterprise Miner

TM
, the 

AutoNeural node automatically configures a neural network (p. 307) by using a search 

algorithm to select the best activation functions. Additionally, the Dmine Regression 

node enables the computation of a forward stepwise, least squares regression model. In 

each step, the independent variable that best contributes to the model R-Square value is 

selected (p. 312). The tool can also automatically bin continuous terms. Finally, the 

DMNeural node is used to fit a non-linear equation by selecting the best performing input 

components based on an R-squared evaluation of the linear regression of the target 

variable on the principle components (pp. 309-310). 

Sarma (2013) concludes: 

In summary, a neural network is essentially nothing more than a complex non-

linear function of the inputs. Dividing the network into different layers and 

different units within each layer makes it very flexible. A large number of non-
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linear functions can be generated and fitted to the data by means of different 

architectural specifications. (p. 316) 

Tufféry (2011) offers neural network advantages and disadvantages:  

Advantages of neural networks. 

 Allow for non-linear relations and complex interactions between variables, if 

the necessary investment is made in the hidden layers; 

 Are non-parametric, meaning independent variables are not assumed to follow 

any particular probability distribution; 

 Some networks are insensitive to unstructured or defective data; and 

 Neural networks can handle a wide-range of problems. 

Disadvantages of neural networks. 

 Convergence toward a globally-optimal solution is not always certain; 

 Considerable risk of over-fitting; 

 Impossible to handle a large number of variables; 

 Some applications cannot handle the non-explicit nature of the results; 

 Numerous parameters make the network hard to control; and 

 May be adversely affected by outliers. (pp. 499-500) 

Regression. Tufféry (2011) notes there are two major reasons to include linear 

regression into data mining at-large. First, “linear regression forms the basis of all linear 

models and is universally acceptable” (p. 355). Second, linear regression must be 

understood in order to better appreciate the complexities of the regression approach that 

is likely to be applied in this research. As Tufféry suggests, modern regression techniques 

(e.g. “ridge and lasso” regression) “are very useful” when the number of variables exceed 
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the number of observations or when collinearity is suspected between the predictor 

variables (p. 355).  

In simple linear regression, both the predictor variables and the target variable are 

assumed to be continuous, and it is assumed the dependent variable “Y” is contrasted 

with the independent variable(s) “X,” and these independent observations are controlled. 

As Tufféry suggests, this basic model takes on a deterministic linear component and a 

stochastic error component that models the errors associated with the imperfections found 

in the “Y” solutions when fitted to the explicit “X” independent variable. Thus, errors are 

assumed within the “Y” solutions based on the single best fit of multiple “X” 

observations. The best fit of the single straight-line regression is generally the solution 

that minimizes these collective errors when taken in aggregate. But assumptions are 

made: a) the “variance of the errors is the same for all values of “X” (homoscedasticity)”, 

b) the errors are linearly independent, and c) the errors are normally distributed (p. 356). 

These collective errors are estimated by the residuals based on the coefficients 

that approximate the slope and offset for the single line fit of the model. Tufféry notes 

these coefficients are impossible to determine precisely as: “a) the linear model is often 

only an approximation of reality; and b) we are working on samples, not the whole 

population; and measurement errors occur” (p. 357). To reduce the levels of variance 

within this regression technique, three approaches are offered: a) “increasing the size n of 

the sample, b) increasing the range of the value of the observed values of “X,” or c) by 

reducing the variance S
2
 of the errors in the sample” (p. 358).   

Hair et al. (2010) succinctly identify the assumptions that need to be satisfied in 

order to perform a linear regression. These assumptions can be difficult to satisfy and 
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need to be examined for each independent and dependent variable and then for the overall 

relationship after model estimation. The necessary assumptions for each variable are 

linearity, homoscedasticity, and normality (p. 208). For the overall variate, the 

assumptions are linearity, homoscedasticity, independence of the residuals, and normality 

(p. 220). Honoring all of these assumptions can be challenging.  

Finally, Keith (2015) offers multiple linear regression (MR) advantages and 

disadvantages: 

Advantages of multiple regression (MR). 

 MR can use both categorical and continuous independent variables; 

 MR can easily incorporate multiple independent variables; 

 MR is appropriate for the analysis of experimental (active manipulation of the 

independent variables) or nonexperimental research. (p. 18) 

Disadvantages of multiple regression (MR). 

 The dependent variables must be a linear function of the independent 

variables; 

 Each observation should be drawn independently from the population, and 

associated error for each should be independent of the other observations;  

 The variance of errors should not be a function of the independent variables, 

and dispersion of values along the regression line should be fairly constant for 

all values of X (homoscedasticity). 

 The errors should be normally distributed. (pp. 187-188) 
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Sample, Explore, Modify, Model, Assess (SEMMA) 

The SAS Institute recommends using a SEMMA modeling approach when using 

the SAS
® 

Enterprise Miner
TM 

 (Patel & Thompson, 2013)
 
, and as an overarching guide, it 

is the strategy used in this research. Specifically, the SEMMA acronym is broken down 

as Sample, Explore, Modify, Model, and Assess. Note the SEMMA process should be 

considered iterative in nature, as it is likely the researcher will return to the Sample or 

Explore stages after model assessment to make changes and then retrace steps through 

the Model, Modify, and Assess processes as variable relationships become better 

understood and modeling strategies are improved. A SEMMA schematic is presented in 

Figure 7. 

Sample. Within this stage, the data are introduced into the data mining software 

as input variables, and the target variable is selected, e.g. Airport Arrival Rate. In general, 

the data are partitioned into model training and validation subsets during this step. The 

SAS
© 

Enterprise Miner
TM 

accepts a large variety of data input formats.

Figure 7.  SEMMA Schematic. Based on Patel and Thompson, 2013. 
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Explore. After the data are introduced into the Enterprise Miner
TM

, the next step 

examines the variables for outliers, skewed or peaked distributions, and missing values. 

There are a number of tools provided within this stage, including “StatExplore,” as well 

as variable association, clustering, graphical exploration, multi-plotting, path analysis, 

and variable selection. In many ways, this step is critical to the subsequent modeling and 

analysis because the data are foundationally discovered and interpreted within this 

segment of the study. While the target and input variables are selected in the Sample 

phase, it may be difficult to select the best input and target variables until the data are 

inspected during this step.   

 

Modify. With the variables thoroughly explored, the data needs to be prepped for 

proper introduction into the selected models. Options in this stage include appending 

additional data to the original data set, filtering the selected data, imputing missing 

values, merging the data with other variables and data sets, or resampling the input data 

into a smaller subset. Additionally, the data are further refined for the type of model 

being considered. For example, in regression, skewed data may be transformed, dummy 

variables can be put in place as proxies for categorical variables, and missing values can 

either be imputed or list-wise removed from further consideration. Similarly, to prepare a 

neural network, the AutoNeural function can be selected from the tools within the Model 

tools grouping which tests and selects the best activation functions for the neural network 

(Sarma, 2013). 

Model. During the modeling phase, the prepared data are fed into different 

models, such as decision trees, neural networks, and regression. Numerous models are 
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available in SAS
® 

Enterprise Miner
TM

, and the parameters set for each model can be 

further adjusted depending on the statistical approach that best suits the problem being 

studied and the available data. Additionally, different models may be run in parallel so 

their collective outputs can be directly compared.

Assess. Finally, the model results can be compared using the model comparison 

function found under the Assess tools grouping. The model comparison function is 

selected from the Assess tools and presents multiple performance scores to rank the 

models such as the lowest average square error (ASE). Average square error is a 

preferred model evaluation score because it provides common estimates of performance 

for regression, neural networks, and decision trees. In the case of the scored models to be 

deployed in this study, Tufféry (2011) recommends using ROC and lift curves and the 

“measurements of area associated with them” to assess model performance (p. 541). 

Therefore, different model evaluation statistics will be further explored.  

Summary and Research Gaps 

In summary, Lorentson (2011) objectively estimated forecast accuracy through 

multivariate regression using System Airport Efficiency Rates (SAER) and Percent On-

Time Arrivals (POTA) extracted from the ASPM and OPSNET data sets. His work 

discovered meaningful relationship between SAER, POTA, and forecaster accuracy. 

Lorentson recommended that weather input variables be reduced into impact categories 

to further isolate correlations between forecast quality and its impact on traffic flows. 

Parker et al. (2010) examined VMC versus IMC conditions archived in the ASPM 

database to study their effect on airport capacity. A piece-wise linear regression showed 

that a positive regression slope indicated available airport traffic throughput capacity, 
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while a regression slope approaching zero suggested traffic flow saturation. Further study 

using expanded analytic inputs was suggested. 

Smith (2008) and subsequently Smith, Sherry, and Donohue (2008) employed a 

Support Vector Machine (SVM) to successfully model airport arrival rates and airport 

delay using the ASPM, BTS, and NWS Terminal Area Forecasts (TAF). With the 

relationship of weather inputs on AAR established, the authors used human-produced 

TAFs to estimate an airport’s AAR. In spite of their success, Smith et al. noted the 

inability to detect a rare event and the inability to determine variable worth in the analysis 

was a shortcoming of the SVM model and recommended the adoption of a data mining 

approach that would integrate other casual factors of airport delay.   

Wang (2011) built upon Smith’s work by introducing Ensemble Bagging decision 

trees to analyze the ASPM database. In direct comparison, he found the Ensemble 

Bagging decision trees outperformed the support vector machine models. Additionally, 

Wang employed METAR and the Weather Impacted Traffic Index into the data analysis. 

He also suggested that in order to predict the AAR, the airport runway configuration must 

first be estimated. Like Smith, Wang also concluded that other variables, beyond weather 

inputs, should be investigated for their contribution to airport performance degradation.  

Subsequently, Kulkarni, Wang, and Sridhar (2013) used Ensemble Bagging 

Decision trees, support vector machines, and neural networks to model multiple airports 

using 10 weather input variables, some of which were derived to create predictive tools to 

support air traffic flow decision making. They used the ASPM and National Traffic 

Management Log to feed the three models at each airport. The authors noted that the 
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different modeling techniques produced similar outcomes, and the tool they developed 

performed best in decision space regions of low to moderate difficulty.   

Avery and Balakrishman (2015) developed a logistic regression fed Decision-

Choice Model to predict runway configurations out to three hours at the LaGuardia and 

San Francisco Airports using the ASPM database and Terminal Area Forecasts. They 

introduced a method to predict runway crosswind components objectively that then 

informed the Decision-Choice Model. Avery and Balakrishman concluded the 

“randomness” of human decision makers who control the runway configuration should be 

further studied along with the problem associated with model bias in early forecasts that 

amplifies during the three-hour analysis period. 

Laskey, Xu, and Chen (2012) chose to study flight delays between the Chicago 

and Atlanta city-pair with a piece-wise linear regression and Bayesian Network. Using 

the ASPM combined with the National Convective Weather Detection databases, the 

authors broke each flight studied into eight components and found that departure delays 

at hub airports and en route and arrival weather can affect delay on all of the other 

separated flight components. Left to further study are different city-pair combinations and 

seasonal delay differences. 

Zhang and Nayak (2010) developed a macroscopic tool that measures the delay at 

a selected airport and the impact such a delay has on the National Airspace System at-

large. The authors used a two-stage least squares regression that pulled from the ASPM, 

BTS, and National Convective Weather Detection databases. They conclude that airspace 

management decisions made at one airport have a measurable effect on the National 
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Airspace System as a whole, that IMC conditions have more impact than convective 

weather, and that winter months slow NAS efficiencies more than summer months.   

Finally, Dhal, Roy, Taylor, and Wanke (2013) built a multinomial logistic 

regression model improved with a Synthetic Minority Oversampling Technique using the 

ASPM database and Terminal Area Forecasts. The authors successfully modeled low, 

medium, and high AARs at the Detroit and Boston Airports, and suggested that TAFs 

could then be used to predict the AARs in a deployed model. They also noted the 

problems associated in using the human-produced TAFs to drive the deployed model due 

to the random variance introduced by individual forecaster decisions during TAF 

production. Dhal et al. suggested that input variables from objective numerical weather 

model guidance would likely better serve the regression out to 24 hours. This effort was 

left for further study.   

From this cursory review, it is clear that significant and meaningful work has been 

accomplished in using the historical ASPM database as a potential predictor of future 

NAS performance. In overview, much of this effort has been placed in developing, 

validating, and testing different modeling approaches. With the development of 

sophisticated data mining and associated statistical software tools at-hand, largely 

unavailable to many of the previous researchers whose work is described above, it is now 

possible to push past model development and concentrate on model testing and 

deployment as well. This will be central thrust of this confirmatory and exploratory 

research. 

Specifically, this study will employ and test the theories advanced by others: 
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 Develop, validate, and test regression, decision tree, and neural network 

modeling techniques (Smith et al., Wang et al., Dhal et al., and Kulkarni et 

al.); and 

 Examine the efficacy of using data mining techniques to predict AAR (Smith 

et al., Kulkarni et al., and Wang et al.). 

Furthermore, significant effort will be made to refine, test, and deploy the models using 

historical data as well as data derived from NWS numerical weather models to be used 

predictively: 

 Examine the usefulness of merging the ASPM with hourly meteorological 

station data; 

 Determine the differences in using hourly versus 15-minute interval ASPM 

data; 

 Study the differences found in model performance in ten airports with 

significantly different climatologic environments and traffic flow capacities; 

and 

 Test the usefulness of introducing predictive numerical weather guidance into 

the deployed models as a practical air traffic control tool. 
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CHAPTER III 

METHODOLOGY 

As discovered in the literature review, data mining is a relatively new and 

effective approach to analyze the vast array of airport performance and efficiency 

statistics assembled by the Federal Aviation Administration (and others) over multiple 

years of observation. This NAS performance information is largely used in next-day and 

weekly hindsight, to measure and then improve future National Airspace System 

performance. However, yet to be discovered empirical relationships between the 

variables captured in these large databases may also yield valuable insights into how the 

NAS reacts to changing weather conditions and traffic demands that might be gainfully 

applied in future operations. 

This chapter describes the data sources, samples, data mining software, and 

analytical techniques used in this study. The major thrust of this effort was to discover the 

relationship different weather elements might have on airport efficiency with the idea that 

if these relationships can be defined, weather forecast guidance can then be directly used 

to estimate airport capacity a priori. Predictive data mining algorithms were used to 

estimate the efficacy of this approach by testing newly-created models at multiple 

airports, and these results were collectively compared to determine if there is consistent 

behavior regarding weather input variables and airport performance between the sample 

of selected airports. 
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Research Approach 

This study was data driven and employed predictive data mining software and 

techniques. According to Tufféry (2011): 

Data mining is the set of methods and techniques for exploring and analyzing data 

sets (which are often large), in an automatic or semi-automatic way, in order to 

find among these data certain unknown or hidden rules, associations or 

tendencies; special systems output the essentials of the useful information while 

reducing the quantity of the data. Briefly, data mining is the art of extracting 

information – that is, knowledge – from data. (p. 4)   

Within this data mining paradigm, multiple models were created to compare 

decision trees, neural networks, and linear regression performance to determine the 

relationships between input variables and the selected target variable, AAR. The target 

variable described a parameter of airport efficiency, while the input variables initially 

ranged from weather variables, time of day, time of year, arrival demand, and departure 

demands. Ultimately, airport arrival and departure demand statistics were removed from 

the models as input variables. 

Ten different and geographically dispersed airports were chosen for study to 

determine if there is consistency between airports when comparing input variable worth 

based on its predictive value toward the selected target variable as well as model 

performance. Indirectly, this study examined how physically different airports are 

impacted by weather, ranging from the relatively simple but runway and taxiway-

challenged LaGuardia Airport to the higher-capacity and less physically constrained 

Atlanta, Dallas Fort Worth, and Denver airports. There are other reasons to vary the 
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airport selections for this study. The New York City market (LaGuardia, JFK, and 

Newark airports) forms one corner of what the FAA has described as the “Golden 

Triangle,” an airspace that most engages FAA national airspace managers each day: the 

heavily traveled area geographically and demographically described by the New York, 

Atlanta, and Chicago Metroplexes.      

Beyond the obvious traffic demands placed on the Golden Triangle flight markets, 

there are other factors that make the Dallas, Denver, and San Francisco airports 

interesting. Specifically, Dallas operates in a weather and traffic-demand environment 

similar to Atlanta and Charlotte. Denver predominately utilizes a north-south preferred 

runway configuration that loses half of its traffic capacity during “all west” operations 

and also sees constraints similar to Chicago and New York due to winter weather snow 

events. San Francisco poses airport performance weather challenges unique to west-coast 

airports in the United States: marine stratus layers (fog), predominantly found during the 

summer months.   

Significantly, the challenge was to identify if archived weather and performance 

inputs offer reliable and objective predictors of past and future airport performance. Also, 

how did airports with varying runway configurations, capacity demands, and 

climatological conditions lend themselves to a data mining-based performance-based 

estimation created from these historical data? Finally, with linkage between weather 

inputs at the ten airports reliably established, could NWS predictive guidance be inserted 

into a deployed model to predict airport future efficiencies? The potential to input very 

large data sets and conduct analyses using a data mining approach offered new 

perspectives on NAS behavior under stresses induced by weather, and at a minimum, 
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could objectively confirm the NAS does respond to various challenges in a manner that 

can be better understood based on archived FAA performance and weather information.  

Design and procedures. Using SEMMA guidance as previously described in 

Chapter II, a brief outline of the data mining design and procedures used in this study is 

presented below and are not airport specific. In fact, once the basic modeling applications 

are established within the SAS
®
 Enterprise Miner

TM 
environment for a single airport, it 

was relatively easy to add new airports into the analytical process. In general, the design 

and procedures were applied as described in detail by Sarma (2013), and a partial 

diagram of the overall data mining schematic is presented in Figure 8. A broad overview 

of the quantitative research design and procedures is provided here, and a more detailed 

and repeatable description of this design and procedures may be found under the Data 

Treatment segment of this chapter.
 

As described in Chapter II, three basic models were utilized for each of the ten 

selected airports. These were decision trees, linear regression, and neural networks. Using 

the SEMMA approach, the models were assessed, and their parameters adjusted in an 

attempt to achieve best model performance.   

The data were introduced to the models in three steps. The first step was to train 

and validate the models using the entire two-year (2014/2015), 15-minute interval ASPM 

data. The second step was to use the two-year FAA ASPM data set extracted at hourly 

intervals, allowing comparison of the results at each airport using different sampling rates 

with additional meteorological variables. The final data introduced was the merged FAA 

ASPM and hourly NOAA NCEI surface meteorological data that add even more weather 

information variables (beyond those found in the ASPM data) to the model analyses. In 
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all steps, the selection of input variables is further presented in Chapter Four. Throughout 

this study, the airport arrival rate (AAR) was used as the target variable. 

The performance of each model (decision tree, linear regression, and neural 

network) was assessed for each airport. The ultimate goal was to create a predictive 

system where estimated input variables could then forecast airport efficiency. 2014/2015, 

15-minute and hourly ASPM data sets, as well as the ASPM and hourly merged surface 

meteorological weather data sets were used to create and validate the models, and these 

models were then scored using actual 2016 observed weather and airport AARs. These 

results were then compared by model and for the three data sets used at each airport. 

Finally, as a test, a model was deployed using predictive numerical weather 

guidance. Weather inputs were extracted from NWS models as input variables to estimate 

the target variable (Airport Arrival Rate). These estimates were then compared with the 

actual AARs observed. This test used NWS LAMP model guidance that modeled future 

AARs out to 24 hours.  
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Figure 8. Four airport data mining example. 

 

Alternative designs. With the overall design and SEMMA previously described, 

alternative schemes were modeled and compared with the basic results found as outlined 

above. As previously mentioned, once the basic design was established in the SAS
®
 

Enterprise Miner
TM

, it was relatively easy to modify the data flows to evaluate changes in 

the basic design, e.g. designate a new target variable, or adjust the number of branches or 

leaf size in a decision tree. However, one caveat strictly observed was the need to 
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consistently apply any modeling changes to each airport data flow entered into the 

experiment.   

Using the techniques and tools previously described, additional statistical 

comparisons were made in order to create contrast with the basic model outputs. These 

were: 

 Model performance with selected input variables removed, particularly those 

which would not be available a priori, such as arrival or departure scores; and 

 Comparison of the performance of each type of model used across the 10 

airports selected for this study. 

Examining these data using these differing modeling approaches and techniques 

better isolated and ranked the input variables that determine impact on airport efficiency.    

Analytical tools and resources. The FAA Aviation System Performance Metrics 

data were extracted as a comma separated value file and then imported in Microsoft
®
 

Excel
TM

 2010 for initial inspection and reformatting. The IBM Statistical Package for the 

Social Sciences (SPSS
® 

versions 23 through 25) and Microsoft
®
 Excel

TM
 2010 were also 

used to conduct preliminary data analysis and exploration before the data are imported 

into the SAS
®
 Enterprise Miner

TM
 for modeling and also to merge the ASPM and NCEI 

hourly surface meteorological data sets. This study then used the SAS
®
 Enterprise 

Miner
TM

, version 14.1 for data mining, modeling, and scoring. The SAS
®
 Enterprise 

Miner
TM

 hosts a graphical interface and is relatively easy to use, even for those without 

strong programming skills.     
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Population/Sample 

In this study, ten airports were chosen. As previously reported, these airports are: 

a) Hartsfield-Jackson Atlanta International Airport, b) Los Angeles International Airport,

c) O’Hare International Airport, d) Dallas/Fort Worth International Airport, e) John F.

Kennedy International Airport, f) Denver International Airport, g) San Francisco 

International Airport, h) Charlotte Douglas International Airport, i) LaGuardia Airport, 

and j) Newark Liberty International Airport. These airports, a subset of the larger 77 

ASPM airport population performance-tracked by the FAA, were chosen for their varying 

geographic and climatological diversity as well as runway configuration complexity. 

Runway diagrams are provided in Appendix B.  

For each of the ten airports, a two-year sample of 15-minute interval ASPM 

performance metrics and weather observations was extracted from the FAA data base. 

This created 70,080 observations (rows of data) with 83 variables within each 

observation (or row) for each of the ten airports selected. A listing and description of the 

variables, which are consistent for all ten airports, may be found in Appendix A. Note, 

these data were also extracted at hourly-intervals resulting in 17,520 rows of data and 

included data compiled over multiple years. A two-year sample (2014 and 2015) was 

used to build and train the models, while a one-year sample (2016) was chosen to test the 

models using the Score function in SAS
®

 Enterprise Miner
TM

. The decision to use 2014

through 2016 data was based on using the most recent whole-year information available 

to train, validate, and test the models, as the FAA reports airspace performance and 

efficiencies annually by each calendar year. The fifteen-minute ASPM data set for each 
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airport studied represented the highest temporal resolution data available for all 83 

variables contained in these data.   

Additionally, the NCEI Global Surface Hourly Database was accessed to 

download additional weather parameters such as precipitation and dew point to augment 

the somewhat sparse meteorological information contained in the ASPM data sets. As 

with the ASPM data, hourly information was extracted for 2014 and 2015 to build and 

validate the models, while 2016 was withheld for modeling testing and scoring. The 

Global Surface Hourly data were somewhat freeform temporally, with observations taken 

near the top of each hour, and additional observations added between hours as 

meteorological conditions change, for example, a passing thunderstorm. Time-matching 

and merging the Global Surface Hourly data to the ASPM data was somewhat 

challenging, and these data sets were manually merged. The merged ASPM and hourly 

station meteorological data were of the same approximate sample size as the unmerged 

hourly ASPM data.   

Sources of the Data 

This research used performance information extracted from the FAA ASPM 

database, hourly station meteorological data pulled from the NOAA National Center for 

Environmental Information, and LAMP model output data presented at the NWS 

Meteorological Development Laboratory (MDL). Since the ASPM data are the principle 

foundation of this research, discussion of how these data are assembled and quality 

checked is offered here. 

The FAA collects and archives performance metrics from ASPM designated 

airports (of which there are currently 77) and flights by ASPM designated carriers (of 
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which there are currently 22). This includes all IFR traffic at these airports and by these 

carriers, and some information regarding VFR flights is also collected. The ASPM 

collection of data are broken into two major components, efficiency information and 

metric information. Efficiency information collects air traffic data resulting from fights at 

the ASPM 77 airports previously mentioned, while metric information traces individual 

flights that are used to more accurately describe delay information.   

According to the FAA (2016b), efficiency information may include missing data 

records, while the metric data are either complete sets or the missing values are estimated 

with some level of confidence. The reason to split these groups is based on the interest in 

collecting as much efficiency data as possible at each ASPM 77 airport (even though 

there may be sequences of missing values) and only relying on the more reliable metric 

data to calculate delay statistics. Note that the efficiency data focus on airport 

performance, while the metric data are based on individual flight delays. 

Additionally, the FAA (2016b) reports meteorological data are added into the 

ASPM data and include specific airport weather elements such as ceiling, visibility, 

temperature, wind speed, wind angle, as well as airport arrival and departure rates. 

Further,  

This combination of flight and airport information provides a robust picture of air 

traffic activity for these airports and air carriers. Preliminary next-day ASPM data 

is used by the FAA for close monitoring of airport efficiency and other aspects of 

system performance, and finalized ASPM data is invaluable for retrospective 

trend analysis and targeted studies. (para. 3) 
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The ASPM database is an amalgamation of multiple data sets. These include the 

Traffic Flow Management System (TFMS), a source of all flight level and departure and 

arrival point data for aircraft which have filed flight plans; ARINC, which includes out-

off-on-in (OOOI) data for ACARS equipped airlines; CountOps, providing additional 

OOOI information; Innovata, a private source of air carrier flight schedules; Airline 

Service Quality Performance (ASQP), in which the airlines provide updated information 

to OOOI inputs and final schedule data into the ASPM database; Unimpeded Taxi Times, 

a database that estimates unconstrained taxi times from runway to gate and serves as a 

baseline to estimate taxi delays; Operational Information System (OIS), which records 

runway configuration and arrival and departure rates every 15-minutes; and the National 

Weather Service, that provides hourly weather information through METARs 

(Meteorological Aviation Routine Weather Report), ASOS (Automated Surface 

Observing System), and QCLCD (Quality Controlled Local Climatological Data). Based 

on levels of quality control, QCLCD is held as “best” information, followed by ASOS, 

and then METARs. Data gaps in QCLCD data are filled by ASOS, and if unavailable, 

subsequently by METARs in order to form as complete a representative record of 

weather information as possible. 

A key driver in the creation of the ASPM database is the need to have meaningful 

metric information assembled into convenient and concise reports available for next-day 

assessment by senior FAA management at 0700 Eastern time (IT Works, 2014). Given 

the requirement to expeditiously present integrated information from multiple sources, 

next-day data are considered to be preliminary in nature and undergo quality control for 

final installation into the final database after 90 days. Because these data are used to 
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assess airport efficiency and performance that reflects directly on FAA, NWS, and airline 

personnel and provides senior-level managers with critical business intelligence 

necessary to make near real-time operational decisions, considerable efforts are made to 

ensure the data are quality controlled. These data are considered to be final ninety days 

after preliminary induction into the ASPM database.   

The database ranges from January 2000 for 55 airports and data for 20 more 

airports were added in October 2004. Arrival and departure rates and runway 

configuration information has been collected since January 1, 2000. Next-day data are 

posted by 0700 Eastern each week day (Federal Aviation Administration, 2015a). 

Data Collection Device 

The data were retrieved using the Aviation System Performance Metrics Internet 

provided graphical user interface (https://aspm.faa.gov/) to select and download data sets 

and time periods of interest. The header used for these data on the selection page is “FAA 

Operations & Performance Data.” In the case of this study, special and nearly unlimited 

access to these data (which are normally available to the public in generic formats) was 

granted to the author by the FAA. A data selection display from the ASPM graphical user 

interface is presented in Figure 9. In addition to the ASPM database, access to Airline 

Service Quality Performance (ASQP), Flight Schedule Data System (FSDS), Operational 

Network (OPSNET), Terminal Area Forecasts (TAF), Traffic Flow Management System 

Counts (TFMSC), and legacy ASPM data are also provided. 

Additional weather station data was also collected from the NOAA National 

Centers for Environmental Information (NCEI, formerly the National Climatic Data 

Center or NCDC) for each airport. These data include some weather parameters already 
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found in the ASPM data gathered by ASOS. Many additional weather parameters are also 

included in the NCEI station data, including precipitation and precipitation type. The 

additional weather parameters were merged with the ASPM data to examine the positive 

or negative effect this additional information provides in the model development, 

validation, and testing.   

For the meteorological data, NCEI hourly station data was accessed at: 

https://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505&countryabbv

=&georegionabbv=&resolution=40. The NWS MDL LAMP model output data were 

collected at: http://www.nws.noaa.gov/mdl/gfslamp/lavlamp.shtml. 

Figure 9. FAA ASPM Selection Interface. From https://aspm.faa.gov/sys/main.asp 

Treatment of the Data 

The FAA ASPM data were collected for each airport as large comma separated 

variable files and opened using Microsoft Excel
© 

2010. Within each airport file, the data 

were sequentially ordered by year, date, and hour (or quarter hour). Each airport file was 

then entered into SPSS
© 

to inspect for outliers, missing values, skewness, kurtosis, etc. 

This step is worthwhile, as SAS
® 

Enterprise Miner
TM

 can represent larger data set
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descriptive statistics by sampling, leading the researcher to believe there are fewer 

missing values than actually contained in the data set being assimilated. It is worthwhile 

to conduct data exploration using a familiar statistical analysis program and then to check 

findings between different software packages for confirmation. As an overview, and for 

each airport, the data were treated as follows: 

• Download ASPM at 15-minute and hourly intervals for 2014 and 2015,   

• Additionally, download ASPM 15-minute and hourly ASPM data for 2016, 

• Similarly, download the meteorological hourly station data for 2014 and 2015 to 

be combined with the ASPM, as well as for 2016. 

• The ASPM 15-min and hourly data, recorded in separate columns by year, date, 

hours, and minutes as “quarters,” were converted into minutes (e.g., 1-14, 15-29, 

30-44, 45-59 minutes).  

• Then, convert the ASPM data from local time to GMT in order to merge with the 

meteorological hourly station data.  

• Train and validate the decision tree, regression, and neural network models using 

the three 2014-2015 data sets (ASPM 15 min and hourly unmerged data, the 

hourly merged ASPM, and meteorological hourly station data). 

• After building and comparing the models using both the 15-min and hourly 

unmerged ASPM data, along with the merged near-hourly ASPM and 

meteorological data sets – score the models using 2016 data that also was 

similarly adjusted (as above, for the unmerged ASPM and merged ASPM and 

meteorological hourly station data). 
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• Score the models using the “Score” and “Save” functions in SAS
®
 EM

TM
 as well 

as SAS
®
 Studio

TM
. The “Save” function allows recovery to the predicted AAR 

target variable output in Microsoft Excel
© 

format. 

• Additionally, one model was selected for trial deployment and additional data 

manipulation was required to test the model real-time: LAMP guidance was 

assimilated into a useful SAS
®
 ingest data sets using manufactured variables (e.g. 

IMC/VMC) to mimic those used to build and validate the model. 

The modeling functions are discussed briefly below. 

Decision trees.  Decision trees tolerate missing values and are comfortable with 

non-linear inputs, are easy to interpret, but are prone to instabilities with a tendency to 

over-fit the solution and can struggle with simple linear or smoothly changing 

relationships (Wielenga, 2007). As the default settings for decision trees in SAS
® 

Enterprise Miner
TM

,
 
a maximum branch size of two was tested, with a depth maximum of 

six and a minimum categorical size of five. For an interval target rate (such as airport 

arrival rates), a “ProbF” splitting rule criterion was selected. These selection criteria were 

similarly used for each airport. 

Regression. Regression modeling is widely accepted but has a tendency to chase 

capricious trends in the data, is sensitive to input variable noisiness, and can be 

computationally burdensome (Wielenga, 2007). With the missing values imputed, focus 

was made on transforming the variables prior to regression. Using the “Transform” 

function, interval input variables were transformed using the “best” subroutine, and for 

class variables, “dummy indicators” were selected. For the regression itself, a stepwise 

backward linear regression was chosen to fit the interval target value. 
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Neural networks. Neural networks can ably handle smooth, non-linear data, but 

suffer from poor variable selection and are also prone to over-fitting. Therefore, it is 

important to remove unnecessary variables prior to the analysis (Wielenga, 2007). To try 

and alleviate this problem, the “AutoNeural” function was employed using a single layer 

approach in a default mode with a maximum of eight iterations. These results were then 

fed directly into the “Neural Network” function with default initialization seed of 

“12345” and a model selection criterion of “average error.” 

Model comparison. The Model Comparison function provides a quick reference 

for initial results and is a tremendous tool to use to interpret potentially misapplied or 

inconsistent settings across the multiple models being studied in the analysis. In this 

study, under assessment reports, the number of bins was set to 20, a ROC chart selected, 

and the selection statistic employed set to cumulative lift. The model output results for 

each selected city (decision tree, neural network, and regression) were reported based on 

ASE. ASE was the preferred model diagnostic because it provides common estimates of 

performance for regression, neural networks, and decision trees.  

For this study, the basic data mining outputs were:  

 Direct ASE, ROC, and Lift model scores for each airport; and 

 Relative variable worth (by airport) for each variable (including weather). 

Scoring. The models were tested by scoring. SAS
®
 scripts were created using the 

Score assessment function, and a different data set was loaded to test the model 

predictive capability by estimating the AARs using new input data. Fresh data were 

introduced from a later range of dates, i.e., 2016 airport data were evaluated using the 

models developed from 2014-2015 data sets and then the estimated 2016 AARs were 
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compared with the actual 2016 AARs observed. Additionally, predictive numerical 

weather guidance was fed into a deployed model the estimated AAR was compared with 

the actual airport arrival rates observed. NWS LAMP predictive numerical weather 

guidance was used to test real-world model performance out to 24 hours. 

Descriptive statistics. Representative descriptive statistics are presented in 

Appendix A and are broken into class and interval variables. Note the class variables 

contain some of the weather information used for this study. With the large number of 

interval variables used, the ASPM descriptive statistics and meteorological hourly station 

data are presented in multiple tables. The descriptive statistics were further explored and 

are presented along with the data mining results in Chapter IV for each of the ten airports 

studied. 

Reliability testing. Within the data mining approach used in this research, the 

reliability of this study foundationally rests on the quality of the quantitative input data 

that are, for the most part, collected by automated systems. As was discussed in the 

Sources of Data section, the FAA places a great deal of effort into reviewing data quality, 

and these data are not considered to be “final” until 90 days after their initial entry in 

order to undergo error checking before being placed in archive. Perhaps less well-

controlled, but also at the mercy of ambient environmental conditions that effect data 

collection instrumentation, are the hourly station NCEI meteorological data that were 

merged with the ASPM databases for each airport. The anomalies in these data are more 

difficult to discern. However, efforts were made to cross-check the meteorological inputs 

(e.g. wind speed, wind speed direction) between the ASPM meteorological data and the 

hourly surface meteorological data sets.     
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As Field (2009) reports, reliability exists “when an instrument can be interpreted 

consistently across different situations” (p. 11). Kulkarni et al. (2013) concisely bring 

reliability to the fore when they ran the same airport data through different statistical 

models and found largely the same the results. The authors noted: 

Finally, we also found that there was not significant variation in the performance 

of different data mining methods for this particular problem. The fact that 

different mining methods show no significant variation also provide further 

confidence in the results of data mining methods. (p. 13)   

With the data sources considered as credible, reliability testing was therefore based on the 

consistency of the results found in the different data mining models being utilized. The 

consistency of findings using three different modeling approaches at each airport confirm 

the results discovered by Kulkarni et al. 

Validity Assessment  

 Hair et al. (2010) note that validity “is the degree to which a measure accurately 

represents what it is supposed to” (p. 7). Within the overarching data mining paradigm 

used in this research, validation techniques lie in segregating the data used into training, 

validation, and testing sets. Fortunately, and as previously described, there are a large 

amount of data within the FAA ASPM and NCEI databases being considered in this 

study. Specifically, when using the ASPM 15-minute data, over 70,000 records 

assembled from the entire 2014 and 2015 ASPM databases were used for each airport to 

create and validate the models. Sixty percent of these data were used to create the initial 

three-model suite for each location (decision trees, linear regression, and neural network 

models), and 40 percent were used to validate these models. The validation data set, 
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recommended to be smaller than the training data set, was used to smooth potential over-

fitting in the models initially created with the training data sets.   

 Tufféry (2011) suggests the testing data set, employed to further validate model 

performance, should ingest data from an “out-of-time” sample (p. 553). That is, the 

model testing data should not be extracted/withheld from the same data set used to create 

and validate the initial models. Creating and validating the models using the 2014 

through 2015 data sets and then using 2016 data to score the models fully satisfies this 

requirement. Moreover, he also recommends that the data segment sizes be “generally of 

the same magnitude” (p. 34). Once again, with the training and validation data sets being 

split in a 60/40 manner over a two-year time scale (2014 and 2015), and the testing data 

set covering a single year (2016), this requirement was also honored. 

 Additionally, the 15-minute ASPM data were compared to the hourly ASPM data 

as well as the merged hourly-ASPM and NCEI meteorological inputs and testing data 

sets. Training, validation, and test model performance consistency was demonstrated 

between the 15-minute and hourly ASPM data sets. By base-lining the model 

performance observed in the 15-minute and hourly ASPM constructed models, models 

created with the merged ASPM and NCEI data were relatively compared as improved or 

degraded.   

Finally, as noted by Tufféry (2011), to identify the best models in each class 

(training, validation, and test), various statistical measures of model performance may be 

used. Since the model constructs employed in this research are not of the “same kind” 

(parametric and non-parametric), Tufféry indicates model error rates provide the best 

objective measure of relative model performance (p. 35). As a result, average square error 
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(ASE) was the primary statistic used to compare training, validation, and test model 

performance in this research. 

Summary 

A summary of the data analysis is shown in Figure 10. FAA ASPM were 

collected for 10 selected airports at both 15-minute and hourly intervals for 2014 through 

2016. Additionally, NCEI meteorological hourly station data was extracted for each 

airport over the same time period. These data were merged with the ASPM data. Then, 

using the SEMMA process and the 2014 – 2015 data, the unmerged 15-minute and 

hourly ASPM data were modeled using decision trees, neural networks, and linear 

regression, followed by the merged ASPM and meteorological data. From these three 

data sets, model performance was compared at each airport. Then, the models were 

scored using 2016 unmerged and merged data. Finally, a selected model was deployed 

predictively to estimate airport arrival rates in real-time using NWS LAMP weather 

guidance as the input variables in order to determine if weather factors can be used to 

predict airport arrival rates. 
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Figure 10. Data analysis schematic. 
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CHAPTER IV 

RESULTS 

FAA ASPM data were collected for ten airports with differing physical 

characteristics and geographic locations. This study used all available 2014 and 2015 

ASPM records to train and validate each model created and 2016 ASPM records to then 

score these models. Decision tree, linear regression, and neural network models were 

created using combined 2014 and 2015 ASPM data sampled at both 15-minute and 

hourly intervals. While the 15-minute data set offers three additional cases per hour when 

compared to the hourly ASPM data, it contains fewer weather input variables than the 

hourly data. In addition to the 15-minute and hourly ASPM data sets, a third data set was 

created by merging the ASPM hourly data with NCEI meteorological station data that 

adds a number of meteorological variables not found in either the 15-minute or hourly 

ASPM data. Using these three different data sets and by running three different models 

per data set; nine models were tested for each airport (90 models in total).  

Additionally, three different input conditions were tested for the 90 models 

created. The first input conditions used all of the weather variables available in each of 

the three data sets used, but also added the airport performance variables “Arrival 

Demand” and “Departure Demand” as inputs. While it is reasonable to estimate and use 

these two variables in a predictive system based on historical traffic loadings and time of 

day, it was desirable to estimate the arrival rates using only weather inputs, and these two 

variables were removed in the second running of the 90 models. Finally, in the third set 

of model runs, only weather variables were used as inputs, and additionally, cases 

between midnight and 0600 were removed (per Dhal et al. 2013, and others) to discover 
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the impact of removing periods of light airport traffic demands in the model analyses. 

These are the data used for reporting the results in this study, and they follow in later 

tables.  

The combined 2014 and 2015 data sets were partitioned 60 and 40 percent 

respectively to train, validate, and compare the performance of all of the models. 2016 

data were then used to score the models by using the Score node within the SAS
®

 EM
TM

. 

The 2016 scored data results yielded predicted arrival rates that were then compared with 

the actual arrival rates observed that year. These results are presented as tables as well as 

graphically. Finally, a present day case was run using NWS 24-hour predictive weather 

guidance to predict AARs, and this estimate was then compared with the actual arrival 

rate observed in hindsight.   

Demographics 

A table summarizing the airport demographics is provided in Table 3. The ten 

airports studied are briefly described below. The information was obtained from the 

FAA’s NextGen Web page that highlights the Core Thirty airports and its plans for 

modernization (https://www.faa.gov/NextGen/snapshots/airport/). Additionally, the 

AARs for each airport were reported from the FAA’s ATCSCC Operational Information 

System (https://www.fly.faa.gov/ois/). 
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Table 3 

Airport Demographics Summary 

Airport 

Number 

of 

Runways 

Arrival/ 

Departure 

Configs 

Max 

AAR 

Min 

AAR 

Passenger  

Enplanements 

(millions) 

Cargo Moved 

(metric tons) 

ATL 10 17 132 18 50.5 1,200,000 

CLT  8 13 92 35 21.5    211,944 

DEN 12 19 152 32 28.2    646,566 

DFW 14   7 120 30 31.3 1,800,000 

EWR 6   9 48 16 19.9 1,300,000 

JFK 8 12 60 26 29.2       1,500.000 

LAX 8 10 80 12 39.6       3,100,000 

LGA 4 11 40 24 14.7       7,586 

ORD 16 11 114 32 37.5       4,200,000 

SFO 8 19 54 25 25.7          590,110 

Note. 2016 data provided by FAA (2017).   

 

Hartsfield-Jackson Atlanta International Airport. The FAA notes that the 

Hartsfield-Jackson Airport is the busiest airport in the world, with 50.5 million passenger 

enplanements in 2016. The airport supported the movement of over 1.2 million metric 

tons of freight and mail in 2016 and is the primary hub for Delta Airlines. Airport Arrival 

Rates range from 132 (VMC 3600/7) to 18 (low IMC) per hour using 17 different arrival 

and departure runway combinations that are determined by traffic demands and local 

weather. The airport supports 10 runways at a field elevation of 1,026 feet above sea 

level. The airport diagram is presented in Appendix B as Figure B1.   

Charlotte Douglas International Airport. The FAA reports that the Charlotte 

Douglas International Airport is the second largest airport on the East Coast and was the 

10th busiest in United States in 2016. The facility enplaned 21.5 million passengers and 

moved 211,944 metric tons of cargo in 2016 and is the hub for the merged US 
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Airways/American Airline partnership. Airport arrival rates vary between 92 (VMC) to 

35 (IMC) per hour using 13 different arrival and departure runway combinations set by 

traffic demands, noise abatement, and local weather. The airport hosts eight runways at a 

field elevation of 748 feet above sea level. The airport diagram is presented in Appendix 

B as Figure B2. 

Denver International Airport. The FAA reports that Denver International 

Airport was the sixth busiest facility in North America in 2016 with 28.2 million 

passenger enplanements and transported 646,566 metric tons of cargo. The airport 

supports United Airlines, Southwest Airlines, and Frontier Airlines as its major domestic 

carriers. Airport arrival rates range from 152 (optimal VFR) to 32 per hour when north-

south operations are not available due to high crosswinds. There are 19 different arrival 

and departure runway combinations that utilize 12 runways. The airport elevation is 

5,434 feet above sea level, and the airport diagram is presented in Appendix B as Figure 

B3. 

Dallas/Fort Worth International Airport. According to the FAA, Dallas/Fort 

Worth Airport was the fourth busiest airport in North America with 31.3 million 

passenger enplanements and hosted 1.8 million metric tons of cargo operations in 2016. 

The airport serves as the major hub and headquarters for American Airlines. Airport 

Arrival Rates vary between 120 (VMC) to 30 (IMC) per hour depending on weather 

conditions. Its 14 runways support seven major arrival and departure configurations. The 

airport elevation is 607 feet above sea level, and the airport diagram is presented in 

Appendix B as Figure B4.  
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Newark Liberty International Airport. The FAA reports that Newark Liberty 

International Airport was the 15
th

 busiest airport in 2016 with 19.9 million passengers 

enplaned. Additionally, the airport serves as the small package operations center for the 

New York and New Jersey area and processed 1.3 million metric tons of cargo in 2016. 

The airport also is a secondary hub for United Airlines. Airport arrival rates range from 

48 (VMC with favorable winds for runway 11) to 16 (low IMC with single runway 

operations) per hour. Newark’s six runways support nine different arrival and departure 

configurations. The airport elevation is 17 feet above sea level, and the airport diagram is 

presented in Appendix B as Figure B5.   

New York-John F. Kennedy Airport. The FAA reports the New York-John F. 

Kennedy Airport was the fifth busiest with 29.2 million passenger enplanements, and 

additionally 1.5 million metric tons of cargo was moved through the facility in 2016. It is 

a major international terminal that supports more than 70 airlines. Airport Arrival Rates 

range from 60 (VMC 2000/3) to 26 (low IMC) per hour. Its eight runways support 12 

different arrival and departure combinations. The airport is 13 feet above sea level, and 

an airport diagram is presented in Appendix B as Figure B6. 

Los Angeles International Airport. According to the FAA, the Los Angeles 

International Airport was the second busiest airport in North America in 2016 with 39.6 

million passenger enplanements and 3.1 million metric tons of cargo and mail processed 

through the terminal. The airport serves as a hub for American Airlines, United Airlines, 

Alaska Airlines, and Virgin America. Airport arrival rates range from 80 (VMC 2000/3) 

to 12 (IMC with noise abatement) per hour. Its eight runways support 10 different arrival 
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and departure configurations. The airport elevation is 128 feet above sea level, and an 

airport diagram is presented in Appendix B as Figure B7.   

New-York LaGuardia Airport. According to the FAA, the New York-

LaGuardia Airport is the 19
th

 busiest in North America in terms of passengers with 14.7 

million passenger enplanements in 2016. Additionally, 7,586 metric tons of cargo was 

processed through the terminal that year. The airport hosts a number of major carriers 

including American Airlines, Delta Airlines, JetBlue Airlines, Southwest Airlines, and 

United Airlines. Airport arrival rates range from 40 (VMC 3200/4) to 24 (low IMC) per 

hour, and its four runways support 11 different arrival and departure configurations. The 

airport is 21 feet above sea level, and an airport diagram is presented in Appendix B as 

Figure B8.   

Chicago O’Hare International Airport. The FAA notes Chicago O’Hare 

International Airport is the third busiest airport in North America with 37.5 million 

passenger enplanements in 2016 and 4.2 million metric tons of cargo processed. The 

airport is a major hub for American Airlines and United Airlines. Airport arrival rates 

range from 114 (VMC 2000/3) to 32 (low IMC) when north winds exceed allowable 

East-West flow crosswind components. Sixteen runways support 11 different arrival and 

departure combinations. The field elevation is 680 feet above sea level, and an airport 

diagram is presented in Appendix B as Figure B9. 

San Francisco International Airport. According to the FAA, San Francisco 

International Airport had 25.7 million passenger enplanements and processed 590,110 

metric tons of cargo in 2016. The airport is a major hub for United Airlines. Airport 

arrival rates range from 54 (VMC) to 25 (low IMC) per hour. The use of Simultaneous 
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Offset Instrument Approaches (SOIA) for runways 28L/28R requires 1,600 foot ceilings 

and four mile visibility and yields a 36 arrival rate per hour. Eight runways support 19 

different arrival and departure configurations. The field elevation is 13 feet above sea 

level, and an airport diagram is presented in Appendix B as Figure B10.   

Summary. All ten airports selected for this study are part of the FAA’s “Core 30” 

and are located in major metropolitan areas that see exceptionally high passenger and/or 

air cargo demands. Some of the airports are capacity constrained by physical airport 

layout or by geographical location and associated weather and climate conditions. 

 As an example, it is very difficult to improve upon the current efficiency of 

LaGuardia Airport given its physical runway and taxiway layout, with very limited ramp 

space due to airport parking on the south side of the runways and the East River/Long 

Island Sound on its north side. As a result, it may be regarded as “half an airport” in 

terms of its limited ramp and taxiway space compared to more modern airport designs. 

Nonetheless, it runs 11 arrival and departure configurations for its four runways based on 

traffic demands and weather conditions – all in an attempt to maximize its efficiency and 

capacity. LGA moved 26.9 million passenger enplanements in 2016, not far behind 

Newark (EWR) at 35.6 million enplanements. Although LaGuardia is used very sparingly 

to transport air cargo, it operates at full capacity based on high passenger demands during 

its daily routine unless its AARs are blunted by weather conditions or other NAS 

problems.    

Similarly, it is easy to envision that Newark (EWR) and Kennedy (JFK) are also 

pushed to maximum capacity each day based on their respective passenger enplanements 

along with cargo volumes that far exceed those found at LGA. In fact, based on Table 3, 
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the maximum AAR of LaGuardia, Newark, and Kennedy combined is 148, which falls 

just short of Denver’s maximum capacity (152), but does exceed Atlanta (132), Dallas/Ft. 

Worth (120) and Chicago (114). However, when passenger enplanement volume is 

considered, the three New York/New Jersey airports combined (63.8 million 

enplanements) exceed the numbers hosted by Atlanta (ATL), Los Angeles (LAX), 

Chicago (ORD), or Dallas/Ft. Worth.   

In addition to normal near-capacity daily traffic demands, the three New 

York/New Jersey airports can be affected by adverse weather conditions in the summer 

months (thunderstorms) and the winter months (winds and winter weather), along with 

Chicago (ORD). Charlotte/Douglas (CLT), Atlanta (ATL), and Dallas/Ft. Worth (DFW) 

undergo occasional winter weather but are largely constrained in capacity by 

thunderstorms or ceilings. Denver (DEN) also can have occasional but significant winter 

weather but is more largely constrained by wind direction and speeds. Finally, the two 

West Coast airports, Los Angeles (LAX) and San Francisco (SFO), are predominately 

affected by marine-layer stratus/fog predominately found in the summer months.   

It should also be noted that several airports support large air cargo operations. 

Chicago O’Hare and Los Angeles International airports reported 4.2 million and 3.1 

million metric tons processed in 2016, respectively, followed by the Dallas/Ft. Worth (1.8 

million metric tons), John F. Kennedy (1.5 million metric tons), Newark Liberty (1.3 

million metric tons) and Atlanta Hartsfield (1.2 million metric tons) airports. In addition 

to already large passenger volumes, the air cargo loading demands on these airports 

suggest extended daily hours of operations. 
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While there are a number of variables that influence airport capacity, airports that 

run consistently at maximum capacity (e.g. LGA, EWR) are potentially good targets for 

estimating ARRs using predictive weather inputs. Many of the capacity constraining 

input variables (e.g. NAS sector volumes and facility limitations) are daily system-based 

constraints levied by constant traffic demands rather than episodic adverse weather 

conditions. Against the backdrop of near-constant demand for maximum capacity, the 

prediction of adverse weather events that further limit arrival rate capacity might allow 

for meaningful AAR estimation using historically documented airport response to similar 

weather conditions.   

Descriptive Statistics 

Descriptive statistics were assembled for the three data sets: 15-minute, Hourly, 

and Hourly Merged. In the three sets listed, the number of available weather variables 

increase from the 15-minute, to the Hourly, and then Hourly Merged data sets. The 

Hourly Merged data set encompasses all the weather variables contained in the 15-minute 

and Hourly data and adds weather variables beyond those two data sets. Therefore, the 

non-categorical variables are presented as descriptive statistics for each airport using the 

encompassing Merged Hourly data set.  

The 15-minute (quarterly hour) data contain a simple set of weather data. These 

are CEILING (measured in hundreds of feet), TEMP (or temperature, measured in 

degrees Fahrenheit), VISIBLE (or visibility, measured in statue miles), WIND_ANGLE 

(or wind angle, measure in degrees), and WND_SPED (or wind speed, measured in 

knots). A categorical variable, MC (meteorological conditions) completes the weather 

variables contained in the 15-minute data set and reports if the terminal weather 



107 

 

conditions were IFR (I) or VFR (V). While the weather variables are limited in the 15-

minute data sets, there are four times the number of cases than contained in the Hourly 

and Hourly-Merged data sets. Additionally, most of these variables can be extracted 

directly from the NWS LAMP airport predictive weather forecasts with relatively minor 

derivation. This makes the 15-minute models attractive to deploy operationally. 

The Hourly data adds four additional interval variables to the 15-minute data. 

These are NEARBYTS (or nearby thunderstorms) that counts the number of 

thunderstorms detected by nearby ASOS stations within 50 miles of the terminal, 

N_CEILING (or nearby ceiling, measured in hundreds of feet) reporting the lowest 

ceilings detected by ASOS stations within 50 miles, SEVERITY (or severity, measured 

as an impact variable of 0, 1, 2, or 3), that assesses local weather impacts on airport 

operations, and WIND (or wind), an impact variable designed to assess the combination 

of wind speed and wind direction on airport operations. Additionally, the Hourly data 

contains the categorical variable, WTHR_TYPE (or weather type) that describes weather 

conditions impacting traffic flow, for example, VCTS –RA denotes thunderstorms in the 

vicinity with light rain.  

Close inspection of the WIND and N_CEILING variables revealed that instead of 

containing weather impact assessment information they simply repeated the same 

information as the WIND_SPED and CEILING variables already described in the 15-

minute data sets. Therefore in this study, the Hourly data introduces only three new 

variables beyond those contained in the 15-minute data sets. These are NEARBYTS, 

SEVERITY, and WTHR_TYPE. Perhaps the FAA will further develop the WIND and 

N_CEILING as impact variables at a later date.   
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Finally, the Hourly-Merged data set joins the Hourly FAA ASPM data with the 

near-hourly NCEI meteorological station data, adding both redundant and new weather 

variables into the modeling analyses. As an example, CEILING is found in both the 

ASPM and NCEI (as CLG, or ceiling) data sets, but unlimited ceilings are reported as the 

numeric character 999 in the ASPM data, while unlimited ceilings in the NCEI data are 

reported as 722, making the two data sets appear to be more different than they actually 

are (surface hourly abbreviated data format and variable descriptors may be found at 

https://www.ncdc.noaa.gov/cdohtml/3505doc.txt).  In any case, the 722 or 999 unlimited 

ceiling variables were found to occur often, and were left in the analysis unaltered to 

represent a ceiling with no observed upper-level boundary. 

The two data sets are not perfectly time matched, and the NCEI data times needed 

to be advanced or retarded in time to synch the variables to the nearest hour, as well as to 

adjust the GMT times to local time to match the FAA ASPM data formats. Therefore, a 

great deal of time was spent merging the Hourly ASPM and near-hourly NCEI 

meteorological data sets.  Using IBM SPSS
®
, attempts were made to interleave the two 

data sets that allowed all data from both sets to be preserved, but the interleaving based 

on time left large gaps between time steps in both data sets, with far too many missing 

variables left to impute. Ultimately, the smaller NCEI data were rounded to the nearest 

hour and then appended to the ASPM hourly data using Microsoft
®
 Excel

TM
 2010. Of 

particular interest in the NCEI data are variables not seen in the ASPM data and what 

roles they assume when variable importance is examined. Variable descriptive statistics 

are presented in Tables 4 through 13 below. Additionally, the variable definitions are 
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contained in Appendix A as Tables A5 for FAA ASPM data and A6 for NCEI 

Meteorological Station data. 

 

Table 4 

ATL Merged Two-year Descriptive Statistics 

 

Variable N Range Min Max Mean 

Std. 

Deviation 

VISIBLE (st. miles) 17516 10.000 0.000 10.000 9.010 2.501 

TEMP (F) 17516 89.000 6.000 95.000 62.958 16.021 

WND_ANGL (deg) 17052 360.000 0.000 360.000 190.730 114.566 

WND_SPED (kt) 17516 41.000 0.000 41.000 7.615 4.638 

WIND (kt) 17516 41.000 0.000 41.000 7.615 4.638 

N_CEILING (100s 

ft within 50 miles) 

17516 998.000 1.000 999.000 450.320 441.097 

SEVERITY (0,1,2,3) 17516 3.000 0.000 3.000 0.284 0.736 

NEARBYTS (TS 

Within 50 miles  

17516 13.000 0.000 13.000 0.299 1.146 

SPD (MPH) 17515 33.000 0.000 33.000 7.560 4.593 

CLG (100s ft) 17514 721.000 1.000 722.000 381.450 311.776 

VSB (st. miles) 17515 10.000 0.000 10.000 9.159 2.309 

TEMP (F) 17515 89.000 6.000 95.000 63.005 16.065 

DEWP (F) 17515 88.000 -12.000 76.000 50.340 17.556 

SLP (mb) 16828 36.900 1000.600 1037.500 1018.437 5.243 

ALT (in) 17515 1.060 29.570 30.630 30.085 0.147 

STP (mb) 17514 34.900 964.600 999.500 981.579 4.820 

PCP01(lq water in) 16867 2.110 0.000 2.110 0.006 0.045 

Valid N (listwise) 16383      
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Table 5 

 

CLT Merged Two-year Descriptive Statistics 

 

Variable N Range Min Max Mean 

Std. 

Deviation 

CEILING (100s ft) 17516 998.000 1.000 999.000 457.254 443.657 

VISIBLE (st. miles) 17516 10.000 0.000 10.000 9.178 2.236 

TEMP (F) 17512 92.000 7.000 99.000 61.396 16.945 

WND_ANGL (deg) 16707 360.000 0.000 360.000 150.602 121.808 

WND_SPED (kt) 17513 36.000 0.000 36.000 6.027 4.175 

WIND (kt) 17516 36.000 0.000 36.000 6.026 4.175 

N_CEILING (100s 

ft within 50 miles) 

17516 998.000 1.000 999.000 457.254 443.657 

SEVERITY (0,1,2,3) 17516 3.000 0.000 3.000 0.272 0.732 

NEARBYTS (TS 

within 50 miles) 

17516 10.000 0.000 10.000 0.155 0.686 

SPD (MPH) 17512 34.000 0.000 34.000 6.003 4.139 

CLG (100s ft) 17513 721.000 1.000 722.000 382.635 312.625 

VSB (st. miles) 17515 10.000 0.000 10.000 9.311 2.046 

TEMP (F) 17515 92.000 7.000 99.000 61.463 16.996 

DEWP (F) 17515 86.000 -12.000 74.000 47.283 18.290 

SLP (mb) 16965 49.100 991.900 1041.000 1018.245 6.006 

ALT (in) 17514 1.430 29.310 30.740 30.081 0.172 

STP (mb) 17513 47.300 965.200 1012.500 990.721 5.696 

PCP01(lq water in) 16961 1.320 0.000 1.320 0.005 0.035 

Valid N (listwise) 16136      
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Table 6 

 

DEN Merged Two-year Descriptive Statistics 

 

Variable N Range Min Max Mean 

Std. 

Deviation 

CEILING (100s ft) 17514 998.000 1.000 999.000 506.047 439.972 

VISIBLE (st. miles) 17514 10.000 0.000 10.000 9.195 2.331 

TEMP (F) 17493 118.000 -18.000 100.000 50.969 20.114 

WND_ANGL (deg) 16905 360.000 0.000 360.000 177.960 98.632 

WND_SPED (kt) 17506 40.000 0.000 40.000 9.930 5.396 

WIND (kt) 17514 40.000 0.000 40.000 9.926 5.399 

N_CEILING (100s 

ft within 50 miles) 

17514 998.000 1.000 999.000 506.047 439.972 

SEVERITY (0,1,2,3) 17514 3.000 0.000 3.000 0.312 0.857 

NEARBYTS (TS 

within 50 miles) 

17514 6.000 0.000 6.000 0.095 0.450 

DIR (10s of deg) 16736 980.000 10.000 990.000 220.161 185.327 

SPD (MPH) 17503 51.000 0.000 51.000 9.857 5.317 

CLG (100s ft) 17513 722.000 0.000 722.000 414.733 303.707 

VSB (st. miles) 17512 10.000 0.000 10.000 9.310 2.151 

TEMP (F) 17508 117.000 -17.000 100.000 51.045 20.218 

DEWP (F) 17511 87.000 -23.000 64.000 31.503 15.444 

SLP (mb) 16918 61.100 985.300 1046.400 1013.843 7.491 

ALT (in) 17512 1.510 29.260 30.770 30.044 0.185 

STP (mb) 17498 43.400 810.500 853.900 833.029 5.339 

PCP01(lq water in) 16957 0.800 0.000 0.800 0.002 0.018 

Valid N (listwise) 15559      
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Table 7 

DFW Merged Two-Year Descriptive Statistics 

Variable N Range Min Max Mean 

Std. 

Deviation 

CEILING (100s ft) 17515 998.000 1.000 999.000 500.802 445.071 

VISIBLE (st. miles) 17515 30.000 0.000 30.000 9.388 2.064 

TEMP (F) 17376 90.000 15.000 105.000 66.728 17.837 

WND_ANGL (deg) 17159 360.000 0.000 360.000 167.588 98.661 

WND_SPED (kt) 17485 40.000 0.000 40.000 10.652 5.626 

WIND (kt) 17515 40.000 0.000 40.000 10.633 5.639 

N_CEILING (100s 

ft within 50 miles) 

17515 998.000 1.000 999.000 500.802 445.071 

SEVERITY 

(0,1,2,3) 

17515 3.000 0.000 3.000 0.215 0.670 

NEARBYTS (TS 

within 50 miles) 

17515 18.000 0.000 18.000 0.386 1.654 

DIR (10s of deg) 16725 980.000 10.000 990.000 193.740 153.842 

SPD (MPH) 17510 36.000 0.000 36.000 10.692 5.637 

CLG (100s ft) 17513 721.000 1.000 722.000 410.467 309.995 

VSB (st. miles) 17515 10.000 0.000 10.000 9.461 1.747 

TEMP (F) 17515 90.000 15.000 105.000 66.501 18.045 

DEWP (F) 17515 79.000 -4.000 75.000 51.350 16.673 

SLP (mb) 16955 51.700 994.100 1045.800 1016.215 6.507 

ALT (in) 17514 1.480 29.390 30.870 30.027 0.185 

STP (mb) 17512 49.200 973.900 1023.100 995.070 6.139 

PCP01(lq water in) 16990 1.790 0.000 1.790 0.004 0.041 

Valid N (listwise) 15753      
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Table 8 

EWR Merged Two-year Descriptive Statistics 

 

Variable N Range Min Max Mean 

Std. 

Deviation 

CEILING (100s ft) 17516 998.000 1.000 999.000 406.210 429.012 

VISIBLE (st. miles) 17516 10.000 0.000 10.000 9.138 2.312 

TEMP (F) 17503 96.000 1.000 97.000 55.265 19.536 

WND_ANGL (deg) 17020 360.000 0.000 360.000 186.719 115.547 

WND_SPED (kt) 17516 37.000 0.000 37.000 9.106 5.453 

WIND (kt) 17516 37.000 0.000 37.000 9.106 5.453 

N_CEILING (100s 

ft within 50 miles) 

17516 998.000 1.000 999.000 406.210 429.012 

SEVERITY (0,1,2,3) 17516 3.000 0.000 3.000 0.312 0.796 

NEARBYTS (TS 

within 50 miles) 

17516 16.000 0.000 16.000 0.121 0.775 

SPD (MPH) 17516 36.000 0.000 36.000 9.057 5.419 

CLG (100s ft) 17516 721.000 1.000 722.000 345.082 306.470 

VSB (st. miles) 17516 10.000 0.000 10.000 9.247 2.150 

TEMP (F) 17516 97.000 1.000 98.000 55.268 19.577 

DEWP (F) 17516 94.000 -16.000 78.000 40.782 20.081 

SLP (mb) 17515 61.200 982.700 1043.900 1017.311 7.626 

ALT (in) 17515 1.810 29.020 30.830 30.044 0.226 

STP (mb) 17508 61.200 981.700 1042.900 1016.334 7.633 

PCP01(lq water in) 17512 1.260 0.000 1.260 0.005 0.032 

Valid N (listwise) 16999      
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Table 9 

 

JFK Merged Two-year Descriptive Statistics 

 

Variable N Range Min Max Mean 

Std. 

Deviation 

CEILING (100s ft) 17516 998.000 1.000 999.000 414.491 429.637 

VISIBLE (st. miles) 17516 10.000 0.000 10.000 9.147 2.363 

TEMP (F) 17504 92.000 3.000 95.000 54.920 18.191 

WND_ANGL (deg) 17377 360.000 0.000 360.000 195.278 108.785 

WND_SPED (kt) 17515 37.000 0.000 37.000 11.058 6.007 

WIND (kt) 17516 37.000 0.000 37.000 11.057 6.007 

N_CEILING (100s 

ft within 50 miles) 

17516 998.000 1.000 999.000 414.491 429.637 

SEVERITY (0,1,2,3) 17516 3.000 0.000 3.000 0.318 0.806 

NEARBYTS (TS 

within 50 miles) 

17516 15.000 0.000 15.000 0.104 0.698 

DIR (10s of deg) 16672 980.000 10.000 990.000 212.878 128.282 

SPD (MPH) 17516 37.000 0.000 37.000 11.057 6.001 

CLG (100s ft) 17515 721.000 1.000 722.000 353.698 306.605 

VSB (st. miles) 17516 10.000 0.000 10.000 9.262 2.194 

TEMP (F) 17516 92.000 3.000 95.000 54.919 18.225 

DEWP (F) 17515 97.000 -22.000 75.000 41.151 20.149 

SLP (mb) 17513 61.600 982.500 1044.100 1017.613 7.659 

ALT (in) 17514 1.820 29.020 30.840 30.053 0.226 

STP (mb) 17513 61.600 981.900 1043.500 1016.853 7.661 

PCP01(lq water in) 17499 1.670 0.000 1.670 0.005 0.035 

Valid N (listwise) 16511      
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Table 10 

 

LAX Merged Two-year Descriptive Statistics 

 

Variable N Range Min Max Mean 

Std. 

Deviation 

CEILING (100s ft) 17513 998.000 1.000 999.000 618.956 456.959 

VISIBLE (st. miles) 17513 10.000 0.000 10.000 9.129 2.018 

TEMP (F) 17510 61.000 37.000 98.000 65.078 7.569 

WND_ANGL (deg) 16688 360.000 0.000 360.000 177.466 110.182 

WND_SPED (kt) 17512 36.000 0.000 36.000 6.915 5.046 

WIND (kt) 17513 36.000 0.000 36.000 6.915 5.046 

N_CEILING (100s 

ft within 50 miles) 

17513 998.000 1.000 999.000 618.956 456.959 

SEVERITY (0,1,2,3) 17513 3.000 0.000 3.000 0.208 0.616 

NEARBYTS (TS 

within 50 miles) 

17513 8.000 0.000 8.000 0.015 0.209 

SPD (MPH) 17511 36.000 0.000 36.000 6.899 5.045 

CLG (100s ft) 17503 721.000 1.000 722.000 491.351 312.349 

VSB (st. miles) 17512 10.000 0.000 10.000 9.243 1.888 

TEMP (F) 17507 61.000 37.000 98.000 65.101 7.578 

DEWP (F) 17496 69.000 3.000 72.000 52.473 11.272 

SLP (mb) 16876 28.200 1000.800 1029.000 1014.767 3.572 

ALT (in) 17509 0.830 29.560 30.390 29.971 0.104 

STP (mb) 17504 27.800 989.300 1017.100 1003.090 3.502 

PCP01(lq water in) 16882 0.620 0.000 0.620 0.001 0.011 

Valid N (listwise) 15992      
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Table 11 

 

LGA Merged Two-year Descriptive Statistics 

 

Variable N Range Min Max Mean 

Std. 

Deviation 

CEILING (100s ft) 17516 998.000 1.000 999.000 421.943 434.629 

VISIBLE (st. miles) 17516 10.000 0.000 10.000 9.150 2.313 

TEMP (F) 17497 91.000 3.000 94.000 55.264 18.846 

WND_ANGL (deg) 17218 360.000 0.000 360.000 189.905 113.515 

WND_SPED (kt) 17515 33.000 0.000 33.000 10.281 5.474 

WIND (kt) 17516 33.000 0.000 33.000 10.280 5.474 

N_CEILING (100s 

ft within 50 miles) 

17516 998.000 1.000 999.000 421.943 434.629 

SEVERITY (0,1,2,3) 17516 3.000 0.000 3.000 0.302 0.781 

NEARBYTS (TS 

within 50 miles) 

17516 15.000 0.000 15.000 0.110 0.722 

SPD (MPH) 17512 33.000 0.000 33.000 10.239 5.479 

CLG (100s ft) 17510 721.000 1.000 722.000 359.352 309.295 

VSB (st. miles) 17513 10.000 0.000 10.000 9.264 2.141 

TEMP (F) 17513 91.000 3.000 94.000 55.272 18.874 

DEWP (F) 17513 90.000 -16.000 74.000 40.088 19.600 

SLP (mb) 17509 62.000 981.700 1043.700 1017.155 7.663 

ALT (in) 17511 1.830 28.990 30.820 30.039 0.227 

STP (mb) 17502 61.900 980.700 1042.600 1016.148 7.668 

PCP01(lq water in) 17506 1.070 0.000 1.070 0.005 0.032 

Valid N (listwise) 17178      
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Table 12 

 

ORD Merged Two-year Descriptive Statistics 

 

Variable N Range Min Max Mean 

Std. 

Deviation 

CEILING (100s ft) 17515 997.000 2.000 999.000 387.123 428.618 

VISIBLE (st. miles) 17515 9.880 0.120 10.000 8.967 2.395 

TEMP (F) 17495 108.000 -16.000 92.000 49.156 21.521 

WND_ANGL (deg) 17334 360.000 0.000 360.000 186.382 106.568 

WND_SPED (kt) 17514 34.000 0.000 34.000 9.968 5.455 

WIND (kt) 17515 34.000 0.000 34.000 9.967 5.455 

N_CEILING (100s 

ft within 50 miles) 

17515 997.000 2.000 999.000 387.123 428.618 

SEVERITY (0,1,2,3) 17515 3.000 0.000 3.000 0.388 0.891 

NEARBYTS (TS 

within 50 miles) 

17515 17.000 0.000 17.000 0.264 1.310 

SPD (MPH) 17511 37.000 0.000 37.000 9.925 5.429 

CLG (100s ft) 17509 720.000 2.000 722.000 333.732 309.289 

VSB (st. miles) 17511 9.900 0.100 10.000 9.113 2.208 

TEMP (F) 17511 108.000 -16.000 92.000 49.159 21.600 

DEWP (F) 17511 104.000 -27.000 77.000 37.621 20.673 

SLP (mb) 17481 59.500 984.300 1043.800 1016.862 7.819 

ALT (in) 17509 1.710 29.060 30.770 30.022 0.223 

STP (mb) 17494 56.700 960.300 1017.000 992.185 7.398 

PCP01(lq water in)       

Valid N (listwise) 17266      
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Table 13 

 

SFO Merged Two-year Descriptive Statistics 

 

Variable N Range Min Max Mean 

Std. 

Deviation 

CEILING (100s ft) 17513 998.000 1.000 999.000 573.885 459.553 

VISIBLE (st. miles) 17513 10.000 0.000 10.000 9.625 1.332 

TEMP (F) 17509 61.000 32.000 93.000 59.988 7.239 

WND_ANGL (deg) 17381 360.000 0.000 360.000 202.654 112.895 

WND_SPED (kt) 17511 40.000 0.000 40.000 9.502 6.855 

WIND (kt) 17513 40.000 0.000 40.000 9.501 6.855 

N_CEILING (100s 

ft within 50 miles) 

17513 998.000 1.000 999.000 573.885 459.553 

SEVERITY (0,1,2,3) 17513 3.000 0.000 3.000 0.126 0.494 

NEARBYTS (TS 

within 50 miles) 

17513 5.000 0.000 5.000 0.006 0.114 

SPD (MPH) 17509 40.000 0.000 40.000 9.487 6.876 

CLG (100s ft) 17507 721.000 1.000 722.000 457.487 317.029 

VSB (st. miles) 17512 10.000 0.000 10.000 9.701 1.169 

TEMP (F) 17506 58.000 35.000 93.000 59.998 7.252 

DEWP (F) 17504 48.000 18.000 66.000 50.929 6.653 

SLP (mb) 16855 36.800 994.800 1031.600 1016.375 4.595 

ALT (in) 17511 1.080 29.380 30.460 30.015 0.136 

STP (mb) 17501 36.600 994.300 1030.900 1015.836 4.597 

PCP01(lq water in) 16852 0.710 0.000 0.710 0.001 0.015 

Valid N (listwise) 16694      

 

Model Comparison 

Ninety models were trained and validated. Three data sets were assembled for 

each of the 10 selected airports: a) a 15-minute ASPM data set with a limited number of 

meteorological variables, b) an Hourly data set, that essentially takes the information 

contained from the 15-minute ASPM data set at the top of each hour and introduces 

several more meteorological variables not contained in the 15-minute data, and c) a 
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merged data set containing the Hourly ASPM data and NCEI meteorological station data 

that introduce even more weather variables (beyond the hourly ASPM) into the model 

decision making process.   

As previously stated, training and validating the 90 models was an iterative 

process. Initially, two non- meteorological variables, Arrival Demand and Departure 

Demand, were included into these analyses as input variables. It seemed reasonable to 

include them as they can be estimated based on day of week and time of day, but it was 

also desirable to isolate the effects of weather elements on airport capacity. Therefore, the 

two non-meteorological variables were removed, and the models were re-trained and 

validated with little change in the original Airport Arrival Rate ASEs.    

Ultimately, the models were rerun again with the more quiescent nighttime hours 

between midnight and 0600 (local time) data removed. For the most part, removing these 

cases improved the overall ASE scores for each model. The training and validation 

results for this set of model runs are presented in Table 14 below. The lowest validation 

ASE scores are found in the models derived from the 15-minute data, but it should be 

noted these errors were being captured in 15-minute periods vice one-hour intervals.  

 In an effort to directly compare the models, the square root of the validated model 

ASEs were compared. In the cases of the 15-minute models, to account for a full hourly 

error, the square root of the ASE was multiplied by four. Using this method, the lowest 

value found amongst the nine validated models constructed for each airport determined 

the best performing model. These results are presented in Table 15, and the bolded text 

indicates the best single model selected for scoring using the fresh 2016 data for each 

airport. The 2016 scored results are presented in the Scoring section. 
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Of the 10 best airport models selected, four used the Hourly data, four used the Hourly 

Merged data, and two used the 15-minute data. Seven models were decision tree models, 

while the remaining three were neural network models. While the linear regression 

models performed comparatively well, none were selected for scoring using this process. 

In general, all the validated model square root ASEs were very close in value for each 

airport studied and are presented in Table 15.   
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Table 14 

AAR Average Squared Error Using Three Different 2014-2015 Data Sets 

Airport 

Model 

Type 

Two-

Year 15 

Min 

Train 

Two-

Year 15 

Min 

Validate 

Two-

Year 

Hourly 

Train 

Two-

Year 

Hourly 

Validate 

Two-

Year 

Merged 

Train 

Two-

Year 

Merged 

Validate 

ATL DT 4.752 4.814 65.532 64.819 62.575 62.997 

 

REG 5.337 5.299 72.811 69.978 54.796 68.683 

 

NN 6.831 6.801 338.314 340.788 56.902 67.322 

CLT DT 5.808 5.557 159.709 169.243 77.283 92.306 

 

REG 6.079 5.773 154.710 167.217 68.300 96.175 

 

NN 5.808 5.553 152.551 168.933 70.238 93.343 

DEN DT 19.574 20.068 299.353 306.152 283.857 304.407 

 

REG 20.447 20.436 292.867 304.474 245.504 307.783 

 

NN 19.724 19.927 288.300 302.687 236.060 298.844 

DFW DT 11.410 11.806 177.488 184.039 174.958 182.804 

 

REG 11.964 12.206 174.161 185.924 154.132 203.038 

 

NN 11.603 11.964 171.411 184.039 161.996 193.713 

EWR DT 0.904 0.907 13.620 14.965 13.139 14.616 

 

REG 1.010 0.977 14.112 14.914 11.936 84.826 

 

NN 1.737 1.753 12.957 15.073 10.654 14.538 

JFK DT 4.908 5.036 79.979 82.259 73.747 77.306 

 

REG 5.113 5.122 77.608 82.152 69.547 82.021 

 

NN 6.127 6.224 107.219 107.064 72.647 82.714 

LAX DT 15.647 12.777 253.978 65.632 255.484 66.015 

 

REG 16.586 13.617 253.790 66.111 235.103 73.110 

 

NN 16.314 13.628 260.433 76.657 236.812 66.624 

LGA DT 1.392 1.482 20.819 20.220 22.879 22.037 

 

REG 1.507 1.535 22.175 21.899 20.099 23.459 

 

NN 1.690 1.752 37.305 37.305 20.840 22.249 

ORD DT 9.305 9.418 136.466 138.579 135.506 141.509 

 

REG 9.957 9.740 135.395 142.009 97.411 179.135 

 

NN 9.804 9.909 125.792 138.353 125.728 166.420 

SFO DT 2.609 2.671 30.871 34.855 30.059 34.862 

 

REG 2.820 2.857 35.411 38.019 31.543 38.611 

  NN 2.758 2.866 32.182 35.048 27.458 35.158 

Note. Decision tree (DT), regression (REG), and neural network (NN). Bold indicates 

best model selected from each data set based on ASE. 
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Table 15 

Comparison of Square Root of Validated 2014/2015 Model ASE  

Airport 

Model 

Type 

Sq. Root of 

15 Min 

Data ASE 

Sq. Root of  

Hourly Data 

ASE 

Sq. Root of 

Merged Data 

ASE 

ATL DT 8.776 8.051 7.937 

 REG 9.208 8.365 8.287 

 NN 10.431 18.460 8.205 

CLT DT 9.429 13.009 9.608 

 REG 9.611 12.931 9.807 

 NN 9.426 12.997 9.661 

DEN DT 17.919 17.497 17.447 

 REG 18.082 17.449 17.544 

 NN 17.856 17.398 17.287 

DFW DT 13.744 13.566 13.521 

 REG 13.975 13.635 14.249 

 NN 13.836 13.566 13.918 

EWR DT 3.810 3.868 3.823 

 REG 3.954 3.862 9.210 

 NN 5.296 3.882 3.813 

JFK DT 8.977 9.070 8.792 

 REG 9.053 9.064 9.057 

 NN 9.979 10.347 9.095 

LAX DT 14.298 8.101 8.125 

 REG 14.761 8.131 8.550 

 NN 14.766 8.755 8.162 

LGA DT 4.870 4.497 4.694 

 REG 4.956 4.680 4.843 

 NN 5.295 6.108 4.717 

ORD DT 12.276 11.772 11.896 

 REG 12.484 11.917 13.384 

 NN 12.592 11.762 12.900 

SFO DT 6.537 5.904 5.904 

 REG 6.761 6.166 6.214 

  NN 6.771 5.920 5.929 

Note. Decision tree (DT), regression (REG), and neural network (NN). Bold indicates 

best model selected overall by airport based on the square root of ASE. Square root of 

15-minute data ASE multiplied by four to account for a full hour of potential error.  
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Variable Importance 

Variables were identified by their relative importance in the splitting decisions 

made by the decision tree models. All the variables are weather inputs except for ALH, 

which is Adjusted Local Hour. This hourly local time allowed the models to recognize 

the airport demands are potentially time dependent and repeating. Year, month, date, 

hour, and minutes were used as input variables for all 90 models created.  

 Decision trees. In order to gain a sense of how the variable importance ranked by 

each airport, the top five variables are listed for the 15-minute, Hourly, and Hourly 

Merged data sets in Tables 16, 17, and 18, respectively. Examining the 15-minute 

variable importance (Table 16), there is little similarity of variable importance between 

airports, although it might be argued that ceilings and temperatures are of more 

importance than visibilities and wind speeds. Of more interest is how the variables are 

added into the decision processes. Table 17 ranks the top five variables for each airport 

using the Hourly data.   



124 

Table 16 

15-minute Data Decision Tree Variable Importance

Airport 1st Var 2nd Var 3rd Var 4th Var 5th Var 

ATL MC TEMP CEIL VIS ALH 

CLT ALH MC CEIL VIS TEMP 

DEN CEIL TEMP VIS ALH WND_S 

DFW TEMP MC ALH VIS WND_A 

EWR VIS TEMP ALH WND_S CEIL 

JFK MC ALH TEMP WND_A CEIL 

LAX ALH CEIL WND_A TEMP VIS 

LGA WND_A TEMP CEIL VIS WND_S 

ORD WND_A TEMP CEIL VIS WND_S 

SFO ALH CEIL WND_A VIS WND_S 

Note. ALH is adjusted local hour, CEIL is ceiling, MC is met condition, TEMP is 

temperature, VIS is visibility, WND_A is wind angle, and WND_S is wind speed. 

Importance compares within each airport for the three data sets, as more and different 

Table 17 

Hourly Data Decision Tree Variable Importance 

Airport 1st Var 2nd Var 3rd VAR 4th VAR 5th VAR 

ATL MC TEMP VIS NBTS CEIL 

CLT MC CEIL SEV WND_A NBTS 

DEN CEIL TEMP VIS NBTS WIND 

DFW MC TEMP ALH NBTS SEV 

EWR CEIL TEMP ALH WIND VIS 

JFK MC CEIL WND_A VIS TEMP 

LAX ALH CEIL WIND VIS SEV 

LGA WND_A SEV CEIL TEMP WX_TYP 

ORD WND_A SEV CEIL TEMP WX_TYP 

SFO ALH CEIL WND_A SEV VIS 

Note. ALH is adjusted local hour, CEIL is ceiling, MC is met condition, NBTS is nearby 

thunderstorms, SEV is severity, TEMP is temperature, VIS is visibility, WND_A is wind 

angle, WIND is wind speed, WND_S is wind speed, and WX_TYP is weather type.   

Several changes or replacements of variable importance between the 15-minute 

and Hourly data sets are noteworthy within each airport. The first is that the weather 
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impact variable SEV, or severity, has displaced other variables found in the 15-minute 

data as a top five variable in five out of the ten airports (it actually occurs as a top-eight 

or better variable in all ten airports). NBTS, or nearby thunderstorms, also moves into the 

top five most important variables for ATL, CLT, DEN, and DFW and becomes the sixth 

most important variable (not shown) for LGA and ORD. Curiously, out of nine total 

weather variables examined in the Hourly data, NBTS was not selected at any level of 

importance for EWR, JFK, or LGA. Nor was NBTS of interest for LAX or SFO, but this 

is understandable given the west coast maritime climate patterns prevalent at these 

airports inhibit the growth of thunderstorms. WX_TYP, or weather type, a descriptor of 

various types of weather, creeps into the top five as the fifth most important variable for 

LGA and ORD. It also is used by DEN (7th), CLT (8
th

), DFW (8
th

), JFK (8
th

), and SFO 

(10
th

). Finally, WIND has replaced WND_S (or wind speed) at EWR (4
th

) and LAX (3
rd

) 

as top five variables of importance. Recall the WIND variable appears to have been 

created to account for wind speed and direction as a combined impact variable, but for 

each airport studied it simply mimics the wind speed variable (shown in the descriptive 

statistics as WND_SPED). Therefore, these two variables are considered to be 

indistinguishable in this study. 

Examining the Hourly Merged data as shown in Table 19, the combination of the 

FAA ASPM data with the NCEI meteorological data is evident as several meteorological 

data not found in the ASPM 15-minute or Hourly data have become variables that fall 

within the top five of importance. Most notable among these is DEWP, or dew point, is 

listed for ATL, DEN, and DFW. Also added as new variables are AW, or auto-observed 

present weather, and GUS, or gusts. Several of the NCEI meteorological variables have 
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replaced essentially the same meteorological variables already found in the FAA ASPM 

data, and these are TEMP_1 (that mimics TEMP), and VSB (that mimics VIS). However, 

it should be noted these sister variables may not contain exactly the same values due to 

the rounding of the NCEI data to the nearest hour used to merge these data. That is, the 

merge between the ASPM and NCEI data sets may not be precisely time-synchronized. 

In any case, if there are differences, the values for these variables are very close and 

follow the same trends within the data time series. Several other new variables of lower 

importance can be found in the 14 variables contained in the Hourly Merged data. These 

are ALT (altimeter), CLG (mimics CEIL, or ceiling), DIR (mimics WND_A, or wind 

angle), PCP01 (amount of last hourly precipitation as liquid water in inches), PCP06 

(amount of last six hour of precipitation as a liquid water in inches), and SKC, or sky 

conditions. Based on decision trees, the variable importance rankings are presented in 

Tables 18 through 28. Additionally, a decision tree output schematic for ATL Hourly 

Merged data set is presented in Appendix B as Figures B11 and B12 (the image is split 

into two parts for viewing clarity). 
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Table 18 

Hourly Merged Data Decision Tree Variable Importance 

Airport 1st Var 2nd Var 3rd VAR 4th VAR 5th VAR 

ATL MC DEWP VIS NBTS CEIL 

CLT ALH MC CEIL SEV NBTS 

DEN CEIL DEWP ALH VSB AW 

DFW MC DEWP ALH TEMP_1 AW 

EWR CEIL TEMP_1 ALH SPD VSB 

JFK MC ALH CEIL WND_A TEMP_1 

LAX ALH CEIL VSB WIND VIS 

LGA DIR AW CEIL WIND WND_A 

ORD DIR AW CEIL WIND WND_A 

SFO ALH CEIL SEV GUS VIS 

Note. ALH is adjusted local hour, AW is auto-observed weather, CEIL is ceiling, DEWP 

is dew point, DIR is wind direction, GUS is gust, MC is met condition, NBTS is nearby 

thunderstorms, SEV is severity, TEMP_1 is temperature, VIS and VSB are visibility, 

WND_A is wind angle, WIND is wind speed, and WND_S is wind speed. 
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Table 19 

ATL Decision Tree Variable Importance for Three Data Sets 

        Ratio of 

Data Set/ Number of 

 

Validation 

Variable Splitting 

 

Validation to Training 

Name Rules Importance Importance Importance 

15 MIN 

    MC 1 1.000 1.000 1.000 

TEMP 13 0.448 0.424 0.946 

CEILING 11 0.365 0.324 0.889 

VISIBLE 11 0.333 0.331 0.994 

ALH 7 0.274 0.246 0.898 

WND_ANGL 7 0.156 0.105 0.671 

WND_SPED 4 0.079 0.086 1.084 

HOURLY 

   MC 1 1.000 1.000 1.000 

TEMP 9 0.423 0.403 0.954 

VISIBLE 7 0.305 0.288 0.944 

NEARBYTS 4 0.305 0.282 0.925 

CEILING 7 0.282 0.254 0.901 

ALH 4 0.243 0.237 0.978 

WIND 1 0.072 0.048 0.666 

SEVERITY 1 0.038 0.052 1.359 

HOURLY MERGED 

  MC 1 1.000 1.000 1.000 

DEWP 2 0.472 0.451 0.955 

VISIBLE 2 0.280 0.262 0.935 

NEARBYTS 6 0.263 0.226 0.861 

CEILING 4 0.237 0.184 0.778 

ALH 3 0.227 0.233 1.027 

SKC 3 0.194 0.201 1.038 

TEMP 2 0.127 0.117 0.920 

TEMP_1 1 0.103 0.073 0.712 

CLG 1 0.100 0.075 0.750 

AW 1 0.098 0.081 0.836 

WIND 2 0.080 0.050 0.618 

PCP01 1 0.051 0.066 1.296 
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Table 20 

CLT Decision Tree Variable Importance for Three Data Sets 

        Ratio of 

Data Set/ Number of 

 

Validation 

Variable Splitting 

 

Validation to Training 

Name Rules Importance Importance Importance 

15 MIN         

ALH 5 1.000 1.000 1.000 

MC 1 0.618 0.615 0.996 

CEILING 6 0.272 0.278 1.023 

VISIBLE 7 0.210 0.214 1.020 

TEMP 6 0.199 0.164 0.824 

WND_ANGL 3 0.168 0.088 0.526 

WND_SPED 1 0.066 0.062 0.944 

HOURLY 

   MC 1 1.000 1.000 1.000 

CEILING 6 0.475 0.468 0.986 

SEVERITY 3 0.411 0.440 1.071 

WND_ANGL 1 0.227 0.000 0.000 

NEARBYTS 1 0.191 0.188 0.986 

VISIBLE 1 0.146 0.000 0.000 

WIND 2 0.121 0.121 0.999 

WTHR_TYPE 1 0.104 0.103 0.988 

HOURLY MERGED 

  ALH 5 1.000 1.000 1.000 

MC 1 0.628 0.627 0.999 

CEILING 3 0.248 0.250 1.007 

SEVERITY 2 0.237 0.235 0.991 

NEARBYTS 1 0.133 0.107 0.804 

WND_ANGL 2 0.133 0.098 0.735 

CLG 2 0.107 0.059 0.549 

SKC 1 0.090 0.089 0.989 

AW 1 0.089 0.070 0.794 

WIND 2 0.071 0.059 0.828 

PCP01 1 0.064 0.061 0.951 
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Table 21 

DEN Decision Tree Variable Importance for Three Data Sets 

    

Ratio of 

Data Set/ Number of 

  

Validation 

Variable Splitting 

 

Validation to Training 

Name Rules Importance Importance Importance 

15 MIN 

 

      

CEILING 11 1.000 1.000 1.000 

TEMP 13 0.562 0.526 0.935 

VISIBLE 13 0.449 0.436 0.971 

ALH 8 0.333 0.340 1.022 

WND_SPED 5 0.200 0.170 0.851 

WND_ANGL 4 0.150 0.090 0.598 

HOURLY 

    CEILING 6 1.000 1.000 1.000 

TEMP 3 0.464 0.364 0.784 

VISIBLE 6 0.378 0.395 1.045 

NEARBYTS 1 0.173 0.183 1.058 

WIND 1 0.114 0.163 1.436 

SEVERITY 1 0.076 0.062 0.822 

WTHR_TYPE 1 0.056 0.026 0.463 

HOURLY MERGED 

   CEILING 6 1.0000 1.0000 1.0000 

DEWP 1 0.4876 0.4490 0.9208 

ALH 4 0.3304 0.3003 0.9089 

VSB 4 0.3185 0.3060 0.9607 

AW 1 0.2723 0.2482 0.9117 

TEMP 1 0.2417 0.1534 0.6348 

PCP06 1 0.1587 0.0735 0.4631 

VISIBLE 3 0.1416 0.1375 0.9707 

WIND 1 0.0955 0.1079 1.1298 

NEARBYTS 1 0.0891 0.0703 0.7893 

GUS 1 0.0787 0.0116 0.1478 

PCP01 1 0.0693 0.0219 0.3155 
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Table 22 

DFW Decision Tree Variable Importance for Three Data Sets 

        Ratio of 

Data Set/ Number of 

  

Validation 

Variable Splitting 

 

Validation to Training 

Name Rules Importance Importance Importance 

15 MIN     

TEMP 15.000 1.000 0.952 0.952 

MC 1.000 0.938 1.000 1.066 

ALH 5.000 0.551 0.579 1.052 

VISIBLE 9.000 0.499 0.512 1.026 

WND_ANGL 7.000 0.415 0.362 0.873 

CEILING 11.000 0.400 0.387 0.965 

WND_SPED 1.000 0.088 0.098 1.112 

HOURLY     

MC 1.000 1.000 1.000 1.000 

TEMP 3.000 0.789 0.635 0.805 

ALH 4.000 0.605 0.521 0.862 

NEARBYTS 5.000 0.470 0.357 0.760 

SEVERITY 2.000 0.457 0.408 0.893 

CEILING 4.000 0.415 0.361 0.869 

WIND 1.000 0.192 0.108 0.564 

WTHR_TYPE 1.000 0.126 0.110 0.871 

HOURLY MERGED    

MC 1.000 1.000 1.000 1.000 

DEWP 4.000 0.786 0.737 0.938 

ALH 3.000 0.509 0.431 0.846 

TEMP_1 5.000 0.498 0.505 1.015 

AW 1.000 0.484 0.398 0.822 

NEARBYTS 3.000 0.392 0.235 0.600 

CEILING 4.000 0.376 0.357 0.950 

ALT 4.000 0.260 0.257 0.987 

WTHR_TYPE 1.000 0.158 0.074 0.470 

VISIBLE 1.000 0.144 0.119 0.824 
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Table 23 

EWR Decision Tree Variable Importance for Three Data Sets 

    

Ratio of 

Data Set/ Number of 

  

Validation 

Variable Splitting 

 

Validation to Training 

Name Rules Importance Importance Importance 

15 MIN 

    VISIBLE 5 1.000 1.000 1.000 

TEMP 11 0.621 0.587 0.946 

ALH 5 0.441 0.409 0.927 

WND_SPED 6 0.398 0.410 1.029 

CEILING 12 0.385 0.379 0.985 

WND_ANGL 10 0.357 0.339 0.951 

HOURLY 

    CEILING 2 1.000 1.000 1.000 

TEMP 1 0.497 0.352 0.708 

ALH 3 0.468 0.455 0.971 

WIND 8 0.455 0.463 1.019 

VISIBLE 5 0.392 0.391 0.999 

SEVERITY 2 0.302 0.313 1.038 

WND_ANGL 2 0.258 0.038 0.149 

HOURLY MERGED 

   CEILING 4 1.000 1.000 1.000 

TEMP_1 2 0.535 0.453 0.846 

ALH 3 0.463 0.457 0.986 

SPD 1 0.351 0.320 0.911 

VSB 2 0.349 0.283 0.813 

AW 2 0.291 0.270 0.927 

WIND 5 0.272 0.248 0.910 

VISIBLE 1 0.238 0.244 1.025 

DEWP 2 0.153 0.090 0.590 

GUS 1 0.141 0.003 0.022 

PCP06 1 0.119 0.065 0.541 

ALT 1 0.096 0.076 0.791 

WTHR_TYPE 1 0.093 0.077 0.828 

SKC 1 0.089 0.055 0.618 
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Table 24 

JFK Decision Tree Variable Importance for Three Data Sets 

    

Ratio of 

Data Set/ Number of 

  

      Validation  

Variable Splitting 

 

Validation to Training 

Name Rules Importance Importance Importance 

15 MIN     

MC 1.000 1.000 1.000 1.000 

ALH 8.000 0.783 0.789 1.008 

TEMP 11.000 0.594 0.468 0.787 

WND_ANGL 10.000 0.536 0.428 0.800 

CEILING 10.000 0.511 0.519 1.016 

VISIBLE 7.000 0.270 0.231 0.856 

WND_SPED 4.000 0.196 0.102 0.522 

HOURLY     

MC 1.000 1.000 1.000 1.000 

CEILING 5.000 0.523 0.404 0.772 

WND_ANGL 1.000 0.418 0.240 0.575 

VISIBLE 3.000 0.264 0.216 0.816 

TEMP 1.000 0.142 0.071 0.501 

WIND 1.000 0.133 0.075 0.566 

SEVERITY 1.000 0.072 0.038 0.528 

WTHR_TYPE 1.000 0.064 0.050 0.783 

HOURLY MERGED     

MC 1.000 1.000 1.000 1.000 

ALH 4.000 0.754 0.707 0.938 

CEILING 4.000 0.516 0.396 0.767 

WND_ANGL 3.000 0.475 0.330 0.693 

TEMP_1 2.000 0.276 0.159 0.576 

WIND 3.000 0.174 0.165 0.946 

VSB 2.000 0.141 0.062 0.436 

STP 1.000 0.129 0.083 0.647 

SPD 1.000 0.114 0.119 1.042 

VISIBLE 1.000 0.102 0.000 0.000 

ALT 1.000 0.098 0.084 0.854 

WTHR_TYPE 1.000 0.097 0.029 0.298 
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Table 25 

LAX Decision Tree Variable Importance for Three Data Sets 

    

Ratio of 

Data Set/ Number of 

  

Validation 

Variable Splitting 

 

Validation to Training 

Name Rules Importance Importance Importance 

15 MIN 

ALH 5 1.0000 1.0000 1.0000 

CEILING 11 0.219 0.221 1.011 

WND_ANGL 6 0.217 0.186 0.859 

TEMP 10 0.182 0.154 0.843 

VISIBLE 6 0.130 0.140 1.077 

WND_SPED 3 0.116 0.113 0.975 

MC 1 0.009 0.000 0.000 

HOURLY 
    ALH 1 1.000 1.000 1.000 

CEILING 5 0.851 0.741 0.871 

WIND 4 0.302 0.173 0.572 

VISIBLE 3 0.168 0.148 0.882 

SEVERITY 1 0.137 0.130 0.953 

MC 1 0.046 0.016 0.340 

HOURLY MERGED     

ALH 1 1.000 1.000 1.000 

CEILING 3 0.837 0.730 0.872 

VSB 1 0.169 0.000 0.000 

WIND 2 0.150 0.170 1.132 

VISIBLE 1 0.089 0.058 0.658 

SEVERITY 1 0.061 0.075 1.225 
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Table 26 

LGA Decision Tree Variable Importance for Three Data Sets 

    

Ratio of 

Data Set/ Number of 

  

Validation 

Variable Splitting 

 

Validation to Training 

Name Rules Importance Importance Importance 

15 MIN 

WND_ANGL 8 1.000 1.000 1.000 

TEMP 14.000 0.710 0.534 0.752 

CEILING 11.000 0.574 0.613 1.070 

VISIBLE 5.000 0.565 0.543 0.963 

WND_SPED 6.000 0.371 0.280 0.755 

ALH 2.000 0.156 0.097 0.619 

HOURLY     

WND_ANGL 4.000 1.000 1.000 1.000 

SEVERITY 1.000 0.608 0.715 1.175 

CEILING 4.000 0.591 0.529 0.896 

TEMP 1.000 0.352 0.000 0.000 

WTHR_TYPE 2.000 0.299 0.194 0.650 

NEARBYTS 1.000 0.225 0.221 0.984 

WIND 2.000 0.223 0.119 0.535 

HOURLY MERGED     

DIR 2.000 1.000 1.000 1.000 

AW 1.000 0.645 0.790 1.226 

CEILING 5.000 0.638 0.538 0.844 

WIND 4.000 0.362 0.290 0.801 

WND_ANGL 1.000 0.234 0.152 0.651 

NEARBYTS 1.000 0.195 0.198 1.016 
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Table 27 

ORD Decision Tree Variable Importance for Three Data Sets 

    

Ratio of 

Data Set/ Number of 

  

Validation 

Variable Splitting 

 

Validation to Training 

Name Rules Importance Importance Importance 

15 MIN 

    WND_ANGL 8 1.000 1.000 1.000 

TEMP 14 0.710 0.534 0.752 

CEILING 11 0.574 0.613 1.070 

VISIBLE 5 0.565 0.543 0.963 

WND_SPED 6 0.371 0.280 0.755 

ALH 2 0.156 0.097 0.619 

HOURLY 

    WND_ANGL 4 1.000 1.000 1.000 

SEVERITY 1 0.608 0.715 1.175 

CEILING 4 0.591 0.529 0.896 

TEMP 1 0.352 0.000 0.000 

WTHR_TYPE 2 0.299 0.194 0.650 

NEARBYTS 1 0.225 0.221 0.984 

WIND 2 0.223 0.119 0.535 

HOURLY MERGED 

   DIR 2 1.000 1.000 1.000 

AW 1 0.645 0.790 1.226 

CEILING 5 0.638 0.538 0.844 

WIND 4 0.362 0.290 0.801 

WND_ANGL 1 0.234 0.152 0.651 

NEARBYTS 1 0.195 0.198 1.016 
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Table 28 

SFO Decision Tree Variable Importance for Three Data Sets 

    

Ratio of 

Data Set/ Number of 

  

Validation 

Variable Splitting 

 

Validation to Training 

Name Rules Importance Importance Importance 

15 MIN 

    ALH 11 1.000 1.000 1.000 

CEILING 7 0.936 0.977 1.045 

WND_ANGL 5 0.237 0.228 0.964 

VISIBLE 7 0.223 0.210 0.943 

WND_SPED 6 0.159 0.152 0.957 

TEMP 2 0.057 0.061 1.072 

MC 1 0.019 0.020 1.059 

HOURLY 

    ALH 7 1.000 1.000 1.000 

CEILING 2 0.938 0.962 1.026 

WND_ANGL 4 0.225 0.184 0.820 

SEVERITY 2 0.205 0.166 0.809 

VISIBLE 3 0.163 0.096 0.591 

WIND 3 0.151 0.135 0.898 

MC 2 0.108 0.086 0.796 

WND_SPED 1 0.031 0.019 0.602 

WTHR_TYPE 2 0.030 0.032 1.076 

HOURLY MERGED 

   ALH 8 1.000 1.000 1.000 

CEILING 1 0.932 0.959 1.028 

SEVERITY 2 0.204 0.166 0.812 

GUS 1 0.163 0.179 1.098 

VISIBLE 3 0.163 0.093 0.573 

CLG 1 0.149 0.100 0.675 

DEWP 1 0.135 0.090 0.663 

DIR 2 0.117 0.071 0.611 

WND_ANGL 1 0.081 0.062 0.766 

WIND 2 0.078 0.045 0.585 

PCP01 1 0.067 0.054 0.819 

MC 1 0.056 0.000 0.000 

WND_SPED 2 0.056 0.020 0.359 

VSB 1 0.040 0.039 0.967 
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Regression. While regression models were not selected as a single “best” overall 

model for any of the 10 airports included in this study, both EWR and JFK had regression 

models as the best validated models within class for the hourly data sets (see Table 15). 

Recall a stepwise backward linear regression was run for all the data sets at each airport. 

It is worthwhile to examine these results more closely to gain an understanding of the 

variables that best contributed to the variance models by the regression.   

At EWR, the variables initially entered into the regression were adjusted local 

hour, ceiling, temperature, meteorological conditions, nearby thunderstorms, nearby 

ceilings, severity, visibility, wind, wind angle, and wind speed. After several iterations, 

the meteorological conditions and nearby thunderstorm variables were removed from the 

regression due to lack of significance. At the final iteration of the backwards regression, 

the ceiling variable was not considered to be significant (Pr > |t| at 0.0138) leaving 

adjusted local hour, temperature, nearby ceilings, severity, visibility, wind, wind angle, 

and wind speed as the top eight variables of influence on the regression. Using the largest 

absolute values from the Analysis of Maximum Likelihood Estimates for each variable, 

the top five variables of most importance based on estimate were: visibility (-3.8430), 

wind angle (-1.9857), temperature (1.7292), nearby ceilings (-1.6277), and adjusted local 

hour (1.2897). Note that visibility, wind angle, and nearby ceilings were negatively 

correlated.   

At JFK, the same input variables were entered into the stepwise backwards 

regression. These were adjusted local hour, ceiling, temperature, meteorological 

conditions, nearby thunderstorms, nearby ceilings, severity, visibility, wind, wind angle, 

and wind speed. Within the first several iterations, the variables wind and severity were 
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removed due to lack of significance. Of these variables, ceiling, nearby ceilings, nearby 

thunderstorms, temperature, visibility, wind angle, and wind speed were found to be 

significant. Using the largest absolute values from the Analysis of Maximum Likelihood 

Estimates for each variable, the top five variables of most importance based on estimate 

were wind angle (5.3805), temperature (4.3010), visibility (-3.9264), nearby ceilings      

(-3.0898), and nearby thunderstorms (1.6552). Note that visibility and nearby ceilings 

were negatively correlated.   

Model Reliability and Validity 

Model reliability discussion begins with the data collected to build the models, 

followed by the construction of the models themselves, and the quality of data 

subsequently collected to evaluate the models.  In this study, the foundational data are the 

FAA ASPM performance metrics that have been collected to evaluate airport/terminal 

performance by the FAA since 2000 for 55 selected airports, with an additional 20 

airports added in 2004. 

As already noted, these ASPM data have also been merged with NCEI 

meteorological station data containing additional weather variables collected at the same 

ASOS location and overlap the meteorological data found in the ASPM database. In 

general, the ASPM data were found to be of very high quality with nearly no missing 

values. Problems were discovered with outliers; for example, the 2016 15-minute DEN 

data reported AARs of 800 for 47 cases (out of 26,352 cases scored when the nighttime 

cases were removed), clearly not possible with a published AAR maximum of 152 per 

FAA OIS. Therefore, these 47 cases were list-wise removed, and the model was scored 

again.  
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The NCEI meteorological station data also undergo a great deal of scrutiny but 

may suffer from missing or misleading variable values due to ASOS sensor error or 

station data recording capabilities. However, the additional NCEI information was simply 

appended to the hourly FAA ASPM data in order to expand the potential reach of the 

weather variables contained in the NCEI database to those already included in the FAA 

ASPM Hourly data sets in the model analyses. In addition to adding fresh weather 

variables to each analysis, these data mergers for each airport created redundant 

variables, e.g., Wind_ANGL (wind angle, FAA ASPM data) and DIR (wind direction, 

NCEI meteorological station data) that were found in both data sets. In building the 

Hourly-Merged data models, all the weather variables from both the ASPM and NCEI 

were used. The time-match merging of the FAA ASPM and NCEI data offered the 

opportunity to compare common variables contained in both data sets, such as ceiling, 

wind speed, and visibility. For the most part, even if the rounded hourly time-merger of 

the ASPM and NCEI data was not perfect, across the 10 airports considered (except for 

CLT, where the Hourly Merged validated model results were greatly improved over the 

Hourly data models), the output results were extremely close when comparing the Hourly 

and Hourly Merged model validation ASE results (please see Table 14). This indicates 

the added meteorological variables contained in the NCEI data did not degrade the results 

found in the less meteorologically comprehensive models constructed with the Hourly 

ASPM data.   

Additionally, while the input data were not without minor problems, the data sets 

are quite large. The 2014/2015 ASPM two-year data contain roughly 70,080 cases for the 

15-minute data, and 17,520 cases for the Hourly data. The Merged (Hourly ASPM and 
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near-Hourly NCEI) data also contained roughly 17,520 cases for the 2014/2015 

combined data. Similarly, the 2016 data withheld and used in scoring contain the same 

variables contained in both the FAA and NCEI data sets, support a similar 15-minute and 

Hourly ratio of cases, and are roughly half of the case numbers reported for the two-year 

data sets.  

The models were consistently created using identical parameters from airport to 

airport. This was achieved by copying the 15-minute, Hourly, and Hourly Merged model 

templates and pasting them separately to a new page within SAS
®
 EM

TM 
for each studied 

airport. This ensured the same input variables were used or withheld, and also confirmed 

the variable imputation and transformation protocols used for the regression and neural 

network models was the same for all ten airports. The only changes made between each 

airport was the loading of the 2014/2015 input data to train and validate the models, as 

well as correctly imputing the 2016 data used to score the best model selected for each 

airport.   

As Kulkarni et al. (2013) noted, that three different modeling methods yield such 

similar outcomes lends credence to the reliability of this data mining approach. Three 

distinctly different models: decision trees, neural networks, and linear regression were 

tested with strikingly similar validated average squared errors regardless of the model 

used. These results confirm Kulkarni’s et al. observations. 

Per Tufféry (2011), model validity should be established through the use of an 

“out of date” testing data set. This was accomplished by using fresh 2016 data to score 

the selected best model for each airport. It is also of note that the 2016 data sets used to 

score the models were of roughly the same size as the 2014/2015 training and validation 
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sets that pulled from 60 and 40 percent of the two-year population, respectively. These 

scoring results are presented in the following section. 

Scoring 

Selected models were scored using a full year’s worth of 2016 ASPM or 

combined ASPM and NCEI merged data. As was described before, the 2016 data 

variables needed to take on the same form as those used to train and validate the 2014-

2015 models. Specifically, this means the 2014-2015 data had the 2400 through 0600 

(local time) cases removed, and additionally, the hourly ASPM data needed to be merged 

with the near-hourly NCEI meteorological station data, (again with the 2400 through 

0600 cases removed). The models with the lowest ASE in each data set were scored for 

each airport. Within each data set, models noted in Table 14 as bolded selections are 

those with the lowest ASE. Again, the 15-minute data sets only estimate an error for a 

quarter of an hour, while the hourly data estimate model error for 60 minutes. Selection 

of the best model was an automated process in using the Model Compare node in SAS
®
 

EM
TM

. In estimating the best model based on ASE, it is apparent that SAS
®
 EM

TM 
was 

swayed simply by selecting the lowest ASEs, rather than considering the nuances 

involved in comparing the merits of a 15-minute model with an hourly model. Therefore, 

effort was made to directly compare the 15-minute models with hourly models by 

comparing the square root of the model ASE. As previously stated, the square root of the 

15-minute model ASEs were multiplied by four (assuming a worst case 15-minute 

additive hourly error) and compared with the hourly models, and the model with the 

lowest square root ASE was selected for scoring. This allowed the best model (out of 

nine) to be selected for each airport, as shown in Table 15.   
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SAS
®
 EM

TM 
provides a scoring node that was used to predict the 2016 AARs 

using the weather inputs from the three data sets. Using the best model of the nine created 

for each airport as described in Table 15, the models were scored using 2016 data with 

2400 to 0600 cases removed. These results are presented in Tables 29 through 38. In each 

table, within the header, the model chosen to score is labeled (DT, NN, REG) and reflects 

the results noted in Table 14 (above) between actual AAR observed in 2016 and the 

predicted AAR estimated by the model. To give a sense of model fit graphically, 

histograms depicting the difference between the actual airport AAR observed and the 

values estimated by SAS
®
 EM

TM 
are presented, as well as error residuals, separately, are 

presented as Figures 11 through 30.   

For the histograms, a perfect score would place the actual and predicted AAR 

differences at zero for all cases considered. Thus, the larger the actual and model estimate 

AAR differences are, the larger the spread by cases become and tend to flatten the 

histograms as shown for each airport studied below. In addition, large horizontal 

displacements from the origin on the X-axis indicated the likely presence of outliers in 

the scored data inputs. Subsequent model and data input reevaluation was warranted if 

the difference spread tended to exceed the maximum AAR as presented in Table 3 titled 

Airport Demographics Summary. 
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Table 29 

ATL Observed Versus Predicted AAR in Scored 2016 Data  

  

ATL DT  

15 MIN  

ATL DT 

HOURLY  

ATL DT   

 MERGED 

Mean 0.981 3.692 3.067 

Standard Error 0.012 0.083 0.083 

Median 1.033 4.126 3.178 

Mode 2.663 4.126 3.178 

Standard Deviation 1.942 6.702 6.717 

Sample Variance 3.773 44.916 45.121 

Kurtosis 11.569 9.072 8.933 

Skewness -2.116 -1.592 -1.463 

Range 35.802 131.191 131.191 

Minimum -26.585 -84.980 -84.980 

Maximum 9.217 46.211 46.211 

Sum 25842.290 24319.620 20189.520 

Count 26352 6588 6584 

Note. Hourly merged DT model selected from the nine-model suite for scoring with 2016 

data.   

 

Figure 11. Difference between ATL actual and predicted AAR in scored 2016 data.  
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Figure 12. Observed ATL arrival rates versus predicted AAR residuals. 

 

Table 30 

CLT Observed Versus Predicted AAR in Scored 2016 Data 

  

CLT NN  

15 MIN 

CLT REG 

HOURLY 

CLT DT 

 MERGED 

Mean -0.614 -2.608 -3.630 

Standard Error 0.019 0.167 0.150 

Median -0.353 0.613 -0.155 

Mode 2.647 1.039 2.093 

Standard Deviation 3.144 13.514 12.157 

Sample Variance 9.882 182.640 147.787 

Kurtosis 4.643 4.344 5.831 

Skewness -0.862 -1.985 -0.855 

Range 25.256 79.032 105.686 

Minimum -14.404 -56.489 -61.883 

Maximum 10.852 22.543 43.804 

Sum -16173.000 -17179.000 -23900.000 

Count 26352 6588 6584 

Note. 15-minute NN model selected from the nine-model suite selected for scoring with 

2016 data.   
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Figure 13. Difference between CLT actual and predicted AAR in scored 2016 data.  

 

Figure 14. Observed CLT arrival rates versus predicted AAR residuals.  
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Table 31 

DEN Observed Versus Predicted AAR in Scored 2016 Data  

  

DEN NN  

15 MIN 

DEN NN 

HOURLY 

DEN NN 

 MERGED 

Mean 2.441 10.338 9.120 

Standard Error 0.051 0.391 0.183 

Median 2.593 10.889 10.861 

Mode -20.862 -83.449 27.184 

Standard Deviation 8.244 31.772 14.865 

Sample Variance 67.965 1009.467 220.953 

Kurtosis 329.162 354.792 5.877 

Skewness 15.663 16.389 -1.596 

Range 204.688 819.771 152.443 

Minimum -22.917 -92.840 -92.840 

Maximum 181.771 726.931 59.603 

Sum 64311.070 68108.600 59952.870 

Count 26352 6588 6574 

Note. Hourly merged NN model selected from the nine-model suite for scoring with 2016 

data. 

 

 

Figure 15. Difference between DEN actual and predicted AAR in scored 2016 data.   
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Figure 16. Observed DEN arrival rates versus predicted AAR residuals. 

 

Table 32 

DFW Observed Versus Predicted AAR in Scored 2016 Data  

  

DFW DT  

15 MIN 

DFW NN 

HOURLY 

DFW DT 

 MERGED 

Mean 0.761 3.572 3.472 

Standard Error 0.020 0.151 0.150 

Median 1.187 5.151 5.172 

Mode 2.638 17.151 6.674 

Standard Deviation 3.164 12.284 11.840 

Sample Variance 10.010 150.902 140.178 

Kurtosis 3.742 2.188 2.100 

Skewness -1.049 -0.859 -0.813 

Range 39.195 151.598 134.910 

Minimum -26.362 -96.849 -80.860 

Maximum 12.833 54.748 54.050 

Sum 20061.420 23531.650 21583.590 

Count 26352 6588 6217 

Note. Hourly merged NN model selected from the nine-model suite for scoring with 2016 

data.  
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Figure 17. Difference between DFW actual and predicted AAR in scored 2016 data.  

 

 

Figure 18. Observed DFW arrival rates versus predicted AAR residuals.  
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Table 33 

EWR Observed Versus Predicted AAR in Scored 2016 Data 

  

EWR DT  

15 MIN 

EWR REG 

HOURLY 

EWR NN 

MERGED  

Mean 0.112 0.281 0.039 

Standard Error 0.006 0.046 0.048 

Median 0.146 0.476 0.372 

Mode 0.146 0.604 0.605 

Standard Deviation 0.961 3.757 3.811 

Sample Variance 0.924 14.113 14.524 

Kurtosis 24.853 25.935 26.877 

Skewness -2.336 -2.578 -2.759 

Range 16.231 55.676 55.691 

Minimum -10.850 -41.944 -43.265 

Maximum 5.381 13.732 12.426 

Sum 2961.300 1848.910 239.540 

Count 26352 6588 6218 

Note. 15-minute DT model selected from the nine-model suite for scoring with 2016 data. 

 

 

Figure 19. Difference between EWR actual and predicted AAR in scored 2016 data.   
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Figure 20. Observed EWR arrival rates versus predicted AAR residuals. 

 

Table 34 

JFK Observed Versus Predicted AAR in Scored 2016 Data  

  

JFK DT  

15 MIN 

JFK REG 

HOURLY 

JFK DT 

 MERGED 

Mean 0.123 0.325 0.394 

Standard Error 0.014 0.107 0.104 

Median 0.281 1.003 0.726 

Mode 1.835 9.351 1.780 

Standard Deviation 2.216 8.679 8.397 

Sample Variance 4.909 75.326 70.502 

Kurtosis 1.473 1.064 1.207 

Skewness -0.735 -0.748 -0.688 

Range 18.510 69.865 73.138 

Minimum -13.266 -50.576 -49.738 

Maximum 5.244 19.289 23.400 

Sum 3250.260 2137.990 2591.280 

Count 26352 6588 6584 

Note. Hourly merged DT model selected from the nine-model suite for scoring with 2016 

data.  
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Figure 21. Difference between JFK actual and predicted AAR in scored 2016 data.  

 

 

Figure 22. Observed JFK arrival rates versus predicted AAR residuals.  
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Table 35 

LAX Observed Versus Predicted AAR in Scored 2016 Data  

  

LAX DT 

 15 MIN 

LAX DT 

HOURLY 

LAX DT 

 MERGED 

Mean -0.284 -2.038 -1.856 

Standard Error 0.015 0.089 0.091 

Median -0.198 -0.084 -0.452 

Mode -0.198 -0.084 -0.452 

Standard Deviation 2.386 7.250 7.397 

Sample Variance 5.693 52.560 54.709 

Kurtosis 141.651 17.943 16.610 

Skewness -7.643 -3.765 -3.477 

Range 61.788 72.744 68.434 

Minimum -56.200 -57.858 -56.452 

Maximum 5.588 14.886 11.983 

Sum -7484.900 -13425.110 -12214.920 

Count 26352 6588 6581 

Note. Hourly DT model selected from the nine-model suite for scoring with 2016 data. 

 

 

Figure 23. Difference between LAX actual and predicted AAR in scored 2016 data.   
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Figure 24. Observed LAX arrival rates versus predicted AAR residuals. 

 

Table 36 

LGA Observed Versus Predicted AAR in Scored 2016 Data  

  LGA DT 15 MIN 

LGA DT 

HOURLY 

LGA DT 

 MERGED 

Mean 0.119 0.489 0.505 

Standard Error 0.007 0.052 0.052 

Median 0.349 1.553 2.154 

Mode 0.349 -5.899 2.154 

Standard Deviation 1.156 4.198 4.199 

Sample Variance 1.336 17.624 17.635 

Kurtosis 12.497 14.613 13.454 

Skewness -2.141 -2.484 -2.411 

Range 15.242 52.900 49.081 

Minimum -9.651 -38.520 -37.846 

Maximum 5.591 14.380 11.235 

Sum 30921.000 3223.330 3321.950 

Count 25986 6588 6584 

Note. Hourly DT model selected from the nine-model suite for scoring with 2016 data.    
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Figure 25. Difference between LGA actual and predicted AAR in scored 2016 data.  

 

 

Figure 26. Observed LGA arrival rates versus predicted AAR residuals.  
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Table 37 

ORD Observed Versus Predicted AAR in Scored 2016 Data  

  

ORD DT 

 15 MIN 

ORD NN 

HOURLY 

ORD DT 

 MERGED 

Mean 2.009 8.278 7.960 

Standard Error 0.020 0.146 0.145 

Median 2.179 10.335 6.340 

Mode 2.174 12.210 6.340 

Standard Deviation 3.181 11.833 11.745 

Sample Variance 10.121 140.013 137.947 

Kurtosis 6.908 7.377 7.606 

Skewness -1.829 -1.876 -1.696 

Range 37.641 144.466 141.964 

Minimum -18.821 -66.494 -65.298 

Maximum 18.820 77.972 76.667 

Sum 52948.800 54533.670 52398.270 

Count 26352 6588 6583 

Note. Hourly NN model selected from the nine-model suite for scoring with 2016 data. 

 

 

Figure 27. Difference between ORD actual and predicted AAR in scored 2016 data.   
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Figure 28. Observed ORD arrival rates versus predicted AAR residuals. 

 

Table 38 

SFO Observed Versus Predicted AAR in Scored 2016 Data  

  

SFO DT 

 15 MIN 

SFO DT 

HOURLY 

SFO DT 

 MERGED 

Mean -0.048 -0.075 -0.201 

Standard Error 0.012 0.085 0.087 

Median 0.211 2.930 2.246 

Mode 1.211 2.930 2.246 

Standard Deviation 1.921 6.921 7.051 

Sample Variance 3.689 47.895 49.715 

Kurtosis 1.411 2.039 2.263 

Skewness -0.601 -0.740 -0.866 

Range 18.926 46.269 47.604 

Minimum -12.317 -24.070 -24.754 

Maximum 6.610 22.198 22.850 

Sum -1256.800 -496.660 -1321.900 

Count 26352 6588 6581 

Note. Hourly DT model selected from the nine-model suite for scoring with 2016 data.  
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Figure 29. Difference between SFO actual and predicted AAR in scored 2016 data.  

 

 

Figure 30.  Observed SFO arrival rates versus predicted AAR residuals.  
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Numerical Weather Model Prediction of AAR 

With the basic models and modeling strategies established, it was desirable to test 

the efficacy of using basic weather variables to estimate the AARs a priori. For this 

effort, NWS numerical weather data estimates were fit into the FAA 15-minute ASPM 

data formats so that the models created could be used in a true predictive sense to test if a 

24-hour forecast of weather parameters from NWS can yield useful estimates of FAA 

airport arrival rates as established by FAA air-traffic managers.   

As an example, NWS LAMP output data were obtained and reformatted to be 

accepted into the SAS
®
 EM

TM 
frameworks established within the 15-minute modeling 

format. The 15-minute ASPM data contain the fewest number of weather variables of the 

three variable sets used in this study but generally had favorable ASEs in the train and 

validation model output results and also did well when scored. As a result, these data are 

ideal for a simple scoring test in assessing airport AARs using LAMP weather guidance. 

Variables that needed to be reformatted or created from the LAMP data into ASPM 

format include WIND_ANGLE, WIND_SPED, CEILING, VISIBILTY, ALH, 

GMT_YMDHM, and MC. With the LAMP model output limited to 24 hours, a data set 

was collected on November 15, 2017, with a valid forecast period beginning at 1700 

GMT on November 16
th

 and running through 1700 GMT on November 17
th

. These data 

were then re-formatted to represent ASPM variables, scored within the SAS
®
 EM

TM
, and 

were subsequently compared to the actual AARs observed and recorded in the FAA 

ASPM database on November 18
th

. Compared to the data sets used to train and validate 

the models, the NWS 24-hour data sets are very small. Nonetheless, the initial test results 

were encouraging. Actual airport arrival rates minus the predicted airport arrival rates for 
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a 15-minute decision tree model at LaGuardia are presented in Table 39. A histogram 

showing the differences between the actual and predicted AARs (by frequency of cases) 

is presented as Figure 31. 

 

Table 39 

LGA Observed Versus Predicted AAR in Scored 20171116 Data 

Statistic LGA LAMP 24 HR 

Mean 0.856 

Standard Error 0.096 

Median 0.583 

Mode 0.583 

Standard Deviation 0.789 

Sample Variance 0.623 

Kurtosis 0.282 

Skewness 0.092 

Range 3.623 

Minimum -1.417 

Maximum 2.206 

Sum 57.340 

Count 67.000 
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Figure 31. LGA difference in observed versus predicted AAR 20171116 data.  

 

 Model usefulness for estimating AARs will be discussed in Chapter Five; the 

relevance of this demonstration is NWS predictive weather model guidance can 

potentially be applied a priori to estimate airport arrival rates in a 24-hour cycle. The date 

chosen for the collection of these data was happenstance and represents a typical day in 

the NAS with changing weather conditions impacting the New York airspace. A positive 

observed versus predicted AAR represents an underestimated arrival capacity at 

LaGuardia, while the opposite (negative) difference marks an over-estimation of airport 

capacity based on weather input variables and local time.  
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CHAPTER V 

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

The intent of this research was to objectively examine the usefulness of applying 

weather information predictively to estimate airport arrival rates (AAR). Set by National 

Airspace Managers and not completely determined by environmental conditions, AARs 

are the result of a human decision making process with multiple inputs that may be 

confounding in post analysis. Nonetheless, airport arrival rates are certainly influenced by 

prevailing and forecast weather conditions and are therefore influenced by environmental 

factors that can be at least partially explained and potentially modeled using weather 

variables as inputs. Ten major airports with differing physical characteristics, 

geographically and climatologically dispersed, were studied to determine how predictive 

weather information might be used to estimate future airport AARs as an operational 

first-guess decision support tool for airspace managers.   

Discussion 

George Box’s pragmatic quote, “all models are wrong, but some are useful” 

(1979, p. 202) provides excellent guidance in exploring the meaningfulness of the results 

discovered in Chapter Four. Nine models were developed and tested for each of 10 

airports by using three different types of models and three data sets, and from the nine 

models developed for each airport, the best performing model was identified based on 

model validation from withheld 2014/2015 data. To identify the best model performance 

at each airport, recall that the square roots of the ASEs were compared, with the square 

root of the 15-minute model’s ASEs multiplied by four to estimate an hourly error. This 
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allowed the 15-minute, Hourly, and Hourly Merged model validation results to be 

directly compared for each airport (please refer to Table 15, p. 122.  

When placed in an operational context by scoring the 2016 data, were any of 

these models useful? That is, did they provide meaningful AAR prediction when applied 

practically? To answer this question, closer examination of model performance at each 

airport is required. Tables 29 through 38 in Chapter Four provide descriptive statistics of 

the residual differences found between the observed versus predicted AARs by scoring a 

full year of 2016 data and are depicted for each airport, but more insight is needed 

regarding how the models behaved under changing weather conditions and to identify 

model strengths and weaknesses. To accomplish this inspection, an arbitrary threshold of 

10 percent (or less) of the maximum AAR for each airport was selected as an acceptable 

error for a useful AAR estimate.   

Recalling the maximum arrival rates for each airport are contained in Table 3 (p. 

100), this implies that the maximum acceptable error (absolute value of observed minus 

predicted AAR) for an AAR prediction at DEN would be 15.2 (or 15), while at LGA the 

threshold for acceptable model performance would be an AAR predictive error of four. 

Additionally, simple line plots of the observed AAR minus predicted AAR versus actual 

AAR are presented for each airport, so a visual depiction and interpretation of model 

performance can be more easily understood. A model with little difference between 

observed versus predicted AARs would have a residual error near zero for all cases, 

creating a line that hugs the origin along the X-axis for the entire range of AARs 

observed; however, even as an idealized case, such a model would likely be over fit and 
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therefore of little operational value. What follows is a brief discussion of the scoring 

results for the single model selected for each airport using the 2016 data sets.   

Hartsfield-Jackson Atlanta International Airport. The Hartsfield-Jackson 

Atlanta International Airport has a maximum arrival rate of 132, so an acceptable error 

based on 10 percent of the maximum AAR is an absolute value of the observed minus 

predicted AAR of 13. These results were derived from the decision tree model using the 

merged hourly ASPM and meteorological station data. This model and data set 

combination was selected as the best model based on model validation using data 

withheld from the 2014/2015 data. Figure 32 shows the line graph of the difference 

between the actual and predicted AAR plotted against the actual AAR. The highlighted 

area of the graph is of interest and depicts the residuals (difference between the actual 

and predicted AAR) when the AAR is roughly above 80. Note there are multiple 

predicted values for each actual AAR scored, hence a vertical “stair step” or “saw tooth” 

pattern is observed in the residuals for all the airport plots presented. Examining the 

variable importance for Atlanta using this data set, the top five variables ranked by order 

of importance in supporting the model decision making were: 1) meteorological 

conditions (IMC versus VMC), 2) dew point, 3) visibility, 4) nearby thunderstorms, and 

5) ceiling.   

At first glance, the model performed poorly when actual AARs were low, likely 

due to presence of adverse weather or when other capacity limiting factors were 

encountered, such as a closed runway. This can be seen as an over-forecast of airport 

capacity where the difference between the actual and predicted AARs are negative and 

the over-forecasts are observed at the lower left-hand section of the figure. However, 
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further scrutiny of the data revealed that of the 6,584 cases scored using the 2016 hourly 

merged data, there were only five cases where the actual AAR fell below 80. Recall an 

AAR represents the number of aircraft an airport can accept in 60 minutes based on its 

physical runway configuration, weather conditions, and other factors and is measured in 

whole numbers. 

Therefore, the output was replotted for ATL with the five cases where the AARs 

fell below 80 are not shown by limiting the range of the X axis and are presented in 

Figure 33. This is simply an expansion of the highlighted portion of Figure 32, although 

the curve has been interpolated across the multiple residuals plotted for each actual AAR 

using a cubic spline for clarity. If the useable error limit (again, arbitrarily set) is a 

positive or negative AAR difference of 13, acceptable model performance may be seen at 

actual AARs of roughly 105 or higher. An actual AAR of 105 or higher accounts for all 

but 296 cases scored using the 2016 data: 6,288 of the 6,584 cases, or 95.5 percent of the 

total cases analyzed. 

 
Figure 32. ATL actual and predicted difference versus actual AAR. 
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In fact, 91.6 percent of all the 2016 cases studied had an absolute observed minus 

predicted AAR error of less than 13, and over half the cases had an AAR error less than 

four. However, even in the replotted graph presented in Figure 33, the decision tree 

model struggles with the 296 cases with AARs below 105. Again, over-forecast of airport 

capacity is seen at lower AARs, and a slight under-forecast of airport capacity is noted as 

the actual AAR climbs to its 132 maximum.    

  

Figure 33. ATL actual and predicted difference versus actual AAR (replot). 

 

Charlotte Douglas International Airport. The Charlotte Douglas International 

Airport has a maximum arrival rate of 92, so an acceptable error based on 10 percent of 

the maximum AAR is an absolute value of the observed minus predicted AAR of nine. 

Figure 34 shows the line graph of the difference between the actual and predicted AARs 

plotted against the actual AAR. These results were derived from the neural network 

model using the 15-minute ASPM data. This model and data set combination was 
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selected as the best model based on model validation using data withheld from the 

2014/2015 data. Recall the 15-minute data have four times the number of cases contained 

in the hourly data. Also, that the 15-minute observed versus predicted AAR acceptable 

difference is one quarter of the hourly data previously set at nine based on the hourly 

AAR maximum, with the 15-minute errors roughly set at two or less. Examining the 

variable importance for Charlotte using the 15-minute decision tree data set, the top five 

variables ranked by order of importance in supporting the model decision making were: 

1) adjusted local hour, 2) meteorological conditions (IMC versus VMC), 3) ceiling, 4) 

temperature, and 5) wind angle.    

 
 

Figure 34. 15-minute CLT actual and predicted difference versus actual AAR. 

 

 

Looking at the graph, the neural network model performance begins to stair step 

into acceptable model performance near an AAR of 12 (for the 15-minute model), with 

amplitude of nearly 10, which makes meaningful AAR prediction difficult. This 
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characteristic appears to result from the model cycling around a centered value. It is 

interesting to note that vertical sections of the saw tooth line match themselves with 

observed whole AAR numbers, and it is easy to visualize a fairly good model fit by 

following the mean of the AAR differences between AARs of 15 and 21 per quarter hour.   

If acceptable performance of the Charlotte 15-minute neural network model is 

based on an AAR observed versus predicted error of two (or less), only 59.3 percent of 

the 26,352 cases derived from the scored 2016 data meet this threshold. Again, the model 

tends to overestimate airport capacity at lowered AARs while clearly underestimates 

capacity with higher AARs. In a relative sense, the Charlotte model does not perform as 

well as that demonstrated for Atlanta. 

Denver International Airport. The Denver International Airport has a maximum 

arrival rate of 152, so an acceptable error based on 10 percent of the maximum AAR is an 

absolute value of the observed minus predicted AAR of 15. Figure 35 shows the line 

graph of the difference between the actual and predicted AAR plotted against the actual 

AAR. These results were derived from the neural network model using the Merged 

Hourly ASPM and meteorological station data. This model and data set combination was 

selected as the best model based on model validation using data withheld from the 

2014/2015 data. Examining the variable importance for Denver using the 15-minute 

decision tree data set, the top five variables ranked by order of importance in supporting 

the model decision making were: 1) ceiling, 2) temperature, 3) visibility, 4) adjusted local 

hour, and 5) wind speed.   
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Figure 35. DEN actual and predicted difference versus actual AAR. 

 

 

The Denver neural network model that employs the Merged Hourly data set 

performs better at lower AAR rates than at higher rates. This is a different modeling 

response when compared with both Atlanta and Charlotte. Using the acceptable model 

performance with an ARR observed versus predicted error of 15, the lower AAR of 75 up 

to roughly 125 falls within the maximum AAR ten percent error threshold. Conversely, 

above the actual AAR of 125, this neural network model tends to under-forecast actual 

arrival rates observed within the 2016 scored data.   

Within the lower rate AAR cases observed, and outside the acceptable threshold 

of a negative 15 AAR, the number of cases used to develop these predictions is low. Out 

of 8,760 cases studied in 2016 for Denver, 605 have an observed versus predicted AAR 

error that is lower than negative 15. On the other end of the predictive spectrum, 2,822 of 

the 2016 cases exceed (under-forecast) the positive 15 AAR observed versus predicted 

difference threshold which again favors the assessment that this neural network model 
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better supports conditions when airport arrival rates are lowered due to weather than 

during conditions when favorable weather supports arrival rates above 120. Similar to 

Charlotte, only 60.6 percent of the cases analyzed fall within the 10 percent error 

threshold of the plus or minus observed versus predicted AAR absolute differential of 15. 

While the Denver model is only marginally useful overall, it shows some degree of 

promise when weather conditions constrain, or lower, AARs. 

Dallas/Fort Worth International Airport. The Dallas/Fort Worth International 

Airport has a maximum arrival rate of 120, so an acceptable error based on 10 percent of 

the maximum AAR is an absolute value of the observed minus predicted AAR of 12. 

Figure 36 shows the line graph of the difference between the actual and predicted AARs 

plotted against the actual AAR. These results were derived from the decision tree model 

using the merged hourly ASPM and meteorological station data. This model and data set 

combination was selected as the best model based on model validation using data 

withheld from the 2014/2015 data. Examining the variable importance for Dallas/Fort 

Worth using this data set, the top five variables ranked by order of importance in 

supporting the model decision making were: 1) meteorological conditions (IMC versus 

VMC), 2) dew point, 3) adjusted local hour, 4) auto-observed present weather (AW), and 

5) nearby thunderstorms. 

In general, the results for DFW are unstable, with the model over-forecasting 

airport capacity at lowered AARs and under-forecasting at the higher AARs. While the 

mean of the amplitudes look fairly good in actual AARs of approximately 78 through 

110, there are a number of positive and negative spikes where the AAR differential easily 

exceeds the plus or minus 12 thresholds. Of the 6,217 cases derived from the 2016 scored 
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data, only 65.3 percent satisfy a less than the 12 absolute differential of observed minus 

predicted AARs. 

 

Figure 36. DFW actual and predicted difference versus actual AAR.  

 

Newark Liberty International Airport. The Newark Liberty International 

Airport has a maximum arrival rate of 48, so an acceptable error based on 10 percent of 

the maximum AAR is an absolute value of the observed minus predicted AAR of 4.8, or 

five. Figure 37 shows the line graph of the difference between the actual and predicted 

AAR plotted against the actual AAR. These results were derived from the decision tree 

model using the 15-minute ASPM data. This model and data set combination was 

selected as the best model based on model validation using data withheld from the 

2014/2015 data. Again, the 15-minute data have four times the number of cases contained 

in the hourly data. Also, the 15-minute observed versus predicted AAR acceptable 

difference is one quarter that of the hourly data previously set at five based on the hourly 



172 

 

AAR maximum and is roughly set at 1.25. Examining the variable importance for 

Newark using this data set, the top five variables ranked by order of importance in 

supporting the model decision making were: 1) visibility, 2) temperature, 3) adjusted 

local hour, 4) wind speed, and 5) ceiling.   

 
Figure 37. EWR actual and predicted difference versus actual AAR. 

 

 

In examining the 15-minute data for Newark, 87.2 percent of the 26,352 cases fall 

within the 1.25 AAR observed minus predicted threshold. Similarly, the Hourly Merged 

2016 scored decision tree model that had very similar square root of average squared 

error as the 15-minute decision tree model was also checked for performance. The results 

were nearly identical; 86.8 percent of the 6,218 cases fell within the plus or minus five 

AAR hourly data error threshold. 

New York-John F. Kennedy Airport. The New York-John Kennedy Airport has 

a maximum arrival rate of 60, so an acceptable error based on 10 percent of the 
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maximum AAR is a value of the absolute values of the observed minus predicted AAR of 

six. Figure 38 shows the line graph of the difference between the actual and predicted 

AAR plotted against the actual AAR. These results were derived from the decision tree 

model using the merged hourly ASPM and meteorological station data. This model and 

data set combination was selected as the best model based on model validation using data 

withheld from the 2014/2015 data. Examining the variable importance for Kennedy using 

this data set, the top five variables ranked by order of importance in supporting the model 

decision making were: 1) meteorological conditions (IMC versus VMC), 2) adjusted 

local hour, 3) ceiling, 4) temperature, and 5) wind speed.    

 
 

Figure 38. JFK actual and predicted difference versus actual AAR. 

 

As with some of the other models, difficulty with over-forecasting airport 

capacity occurred at the lower spectrum of AARs. Looking at the graph and associated 

data, there are 236 cases out of 8,780 where the observed AAR was less than a negative 

35, and the model struggles to correctly map these outlying events. Further, only 44.4 
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percent of the 2016 cases scored fell within the plus or minus six AAR error thresholds 

for this decision tree. The steepness of the line’s curve suggests that this decision tree 

model only performs well between AARs of 38 through 57.   

Los Angeles International Airport. The Los Angeles International Airport has a 

maximum arrival rate of 80, so an acceptable error based on 10 percent of the maximum 

AAR is an absolute value of the observed minus predicted AAR of eight. Figure 39 

shows the line graph of the difference between the actual and predicted AARs plotted 

against the actual AAR. These results were derived from the decision tree model using 

the Hourly ASPM data. This model and data set combination was selected as the best 

model based on model validation using data withheld from the 2014/2015 data. 

Examining the variable importance for Los Angeles using this data set, the top five 

variables ranked by order of importance in supporting the model decision making were: 

1) adjusted local hour, 2) ceiling, 3) wind speed, 4) visibility, and 5) severity.   

   

Figure 39. LAX actual and predicted difference versus actual AAR. 
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The steepness of the curve is similar to that seen in the JFK plot, but the 

frequency of scored cases falling within the plus or minus eight AAR observed minus 

predicted AAR differential suggest that the performance of this decision tree model is 

good. Of the 2016 scored cases examined, 91.7 percent fall within the plus or minus eight 

AAR differential error thresholds. This suggests the cases that fall outside of this 

threshold range are limited in number. Checking the data set, 620 cases fall below the 

negative eight AAR differential error threshold, while only 16 cases exceed the positive 

eight AAR differential error threshold. This further supports that the bulk of the cases do 

fall within the arbitrary AAR differential error thresholds and suggests the LAX Hourly 

decision tree owns far better predictive performance than what is graphically depicted in 

Figure 40.   

New-York LaGuardia Airport. The New York LaGuardia Airport has a 

maximum arrival rate of 40, so an acceptable error based on 10 percent of the maximum 

AAR is an absolute value of the observed minus predicted AAR of four. Figure 40 shows 

the line graph of the difference between the actual and predicted AAR plotted against the 

actual AAR. These results were derived from the decision tree model using the 2016 

scored Hourly ASPM data. This model and data set combination was selected as the best 

model based on model validation using data withheld from the 2014/2015 data. 

Examining the variable importance for New York LaGuardia using this data set, the top 

five variables ranked by order of importance in supporting the model decision making 

were: 1) wind angle, 2) severity, 3) ceiling, 4) temperature, and 5) weather type.    
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Further inspection revealed 68.3 percent of the 8,784 cases derived from the 2016 scored 

cases fall within the plus or minus four AAR observed minus predicted AAR error 

differential of four. With this decision tree model, there were 2,333 cases with an error 

lower than the minus four differential error, and 467 cases with an AAR differential error 

greater than positive four. Overall, this model’s performance can be regarded as 

marginal. 

 

Figure 40. LGA actual and predicted difference versus actual AAR. 

 

Chicago O’Hare International Airport. The Chicago O’Hare International 

Airport has a maximum arrival rate of 114, so an acceptable error based on 10 percent of 

the maximum AAR is an absolute value of the observed minus predicted AAR of 11. 

Figure 41 shows the line graph of the difference between the actual and predicted AAR 

plotted against the actual AAR. These results were derived from the neural network 

model using the Hourly ASPM data set. This model and data set combination was 
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selected as the best model based on model validation using data withheld from the 

2014/2015 data. Examining the variable importance for Chicago using the hourly 

decision tree data set, the top five variables ranked by order of importance in supporting 

the model decision making were: 1) wind angle, 2) severity, 3) ceiling, 4) temperature, 

and 5) weather type.   

While good model performance is noted between AARs of 90 to 110, the neural 

network model is ineffective at the lower spectrum of AARs (unlike CLT and DEN) as 

well as at the highest AARs. Only 45.1 percent of the 6,588 scored 2016 cases satisfy the 

plus or minus 11 AAR differential errors previously established. Without post-run 

correction, it is difficult to imagine this model has useful real-world application. 

 
 

Figure 41. ORD actual and predicted difference versus actual AAR. 

 

San Francisco International Airport. The San Francisco International Airport 

has a maximum arrival rate of 54, so an acceptable error based on 10 percent of the 

maximum AAR is an absolute value of the observed minus predicted AAR of five. Figure 
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42 shows the line graph of the difference between the actual and predicted AAR plotted 

against the actual AAR. These results were derived from the decision tree model using 

the Hourly ASPM data. This model and data set combination was selected as the best 

model based on model validation using data withheld from the 2014/2015 data. Sixty-

eight percent of the 6,588 cases derived from the 2016 scored data satisfied the AAR plus 

or minus error differential of five. In its present form, the SFO appears to have marginal 

real-world application. Examining the variable importance for San Francisco using this 

data set, the top five variables ranked by order of importance in supporting the model 

decision making were: 1) adjusted local hour, 2) ceiling, 3) wind angle, 4) severity, and 

5) visibility. 

 
Figure 42. SFO actual and predicted difference versus actual AAR. 

 

 

Summary. Of the 90 models created for 10 different airports, the best 10 for each 

airport (using the square root of average squared error from the 2014-15 validated data) 

were directly compared by scoring the models using fresh 2016 data. These results are 
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summarized in Table 40 and are based on the percent of cases that fall within the 

arbitrarily set acceptable threshold of plus or minus 10 percent of the airport’s maximum 

AAR. The model selected as “best” for a given airport was based on ASE criteria 

established after model validation. Recall to directly compare the models, the square root 

of the validated model ASE was used, and in the cases of the 15-minute models, the 

square root of the ASE was multiplied by four to account for a full hour of potential error. 

Using this method, the lowest value found amongst the nine validated models constructed 

for each airport determined the best model (as presented in Table 15). Further, based on 

this procedure, the models were ranked overall from one to 10 (best to worst) by 

comparing the 2014/2015 model validation results, and these rankings are depicted in 

Table 40. Also, the type of model considered to be the best performer for each airport is 

included in the table (decision tree or neural network). Finally, the “best” model selected 

was supported by one of three data sets, and the data set used to create each of these 

models is presented for the ten airports studied.   

 

 

 

 

 

 

 

 

 



180 

 

Table 40 

Model Performance Summary and Rankings  

Airport Percent of 

Cases within 

10 Percent of 

Maximum 

AAR* 

Validated 

Model Ranking 

based on 

Squared Root 

of ASE** 

Model Type Data Set Used 

LAX 91.7 5 Decision Tree Hourly 

ATL 91.6 4 Decision Tree Hourly Merged 

EWR 87.2 1 Decision Tree 15-minute 

LGA 68.3 2 Decision Tree Hourly 

SFO 68.0 3 Decision Tree Hourly 

DFW 65.3 9 Decision Tree Hourly Merged 

DEN 60.6 10 Neural Network Hourly Merged 

CLT 59.3 7 Neural Network 15-minute 

ORD 45.1 8 Neural Network Hourly 

JFK 44.4 6 Decision Tree Hourly Merged 

Note. *Based on scoring results using 2016 data. **Based on model validation using 

withheld 2014/2015 data. 

 

Reviewing these results, several features are salient. The first, the question if any 

of these models are useful appears to have been answered. Based on the actual scoring of 

large 2016 data files, LAX, ATL, and EWR demonstrate meaningful performance that 

could potentially be applied operationally. Marginal, but perhaps useful model 

performance might be gleaned from LGA, SFO, and DFW, as their overall successful 

results fall within ten percent of each airport’s maximum AAR and are loosely within one 

standard deviation of acceptable model performance based on all cases scored for one 

year. The other four models studied, DEN, CLT, ORD, and JFK, appear to have little 

useful operational application based on the 2016 model scoring results, although the DEN 

model with poor overall performance might be of value in predicting lowered AARs 

when environmental conditions deteriorate. Also of interest, model performance when 
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scoring the 2016 data was different from the model validation results noted when 

withheld 2014/2015 data were used to validate the 90 models.   

Conclusions 

This study sought to examine detailed historical National Airspace System airport 

performance archives as well as environmental data to see if there are meaningful signals 

in these data that could gainfully apply databased machine learning predictively. Decision 

tree, neural network, and linear regression models were created and validated for 10 

geographically dispersed airports with different arrival capacities using comprehensive 

FAA ASPM airport performance and NOAA NCEI 2014/2015 environmental data sets. 

The “best” models, based on the squared root of the validated model ASE, were scored 

using a full year’s worth of data 2016 with the same formats as those used to previously 

create and validate the models. While many variables were available to apply to the 

prediction of airport arrival rates in these data sets, ultimately it was decided to only use 

weather variables in estimating airport arrival rates, as the ultimate goal of this research 

was to determine if National Weather Service predictive weather model guidance could 

potentially be fed into the models created to estimate key airport AARs. It was hoped this 

effort could ultimately support FAA National Airspace Managers to estimate NAS 

capacity a priori in order to more efficiently regulate air traffic flows in weather-

constrained airspace.   

Using only weather variables to create, validate, and score the models, the results 

were mixed but positive. Based on this approach, three airports: ATL, EWR, and LAX all 

exhibited superior 2014/2015 validated model performance as well as when scored using 

the 2016 data. All three of these “best” airport models placed within the top five of the 
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ten airport models created and validated, and all were decision tree models. Interestingly, 

while the top three models after scoring were all decision tree models, each employed a 

different type of data: LAX using Hourly, ATL using Hourly Merged, and EWR using 

15-minute data sets.   

Seven of the 10 airport models gravitated toward decision trees, while the 

remaining three airport models settled on neural network models, with linear regression 

models failing to be selected for any airport as a “best” model overall – regardless of data 

set selected. This is likely due to the non-linear relationships between the predictors and 

target variable; nonetheless, the regressions performed surprisingly well and perhaps 

reflect the power of using this modeling approach with a very large number of cases 

(over 15,000 to build and verify and over 6,000 cases to score the models). The large 

number of cases used appears to overpower the need to meet the basic parametric linear 

regression constraints required to assure the selected sample is an unbiased representation 

of the population being estimated. In this study, all of the available cases were applied, 

and a linear regression was selected specifically to estimate a continuous AAR variable. 

While linear regression was not selected as a “best” model for any of the ten airports, 

Table 15 (p. 122) shows how favorably the linear regression modeling technique behaved 

(for the most part) against the non-linear decision tree and neural network models 

ultimately selected as the “best” models. 

Model performance was, for the most part, remarkably consistent across each of 

the three model types created (decision tree, neural network, or linear regression models), 

and all model types used three different training and validation data sets. Based on the 

2016 scored data, at least three airport model and data set combinations, ATL (DT, 
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Hourly Merged), EWR (DT, 15-minute), and LAX (DT, Hourly) demonstrate a 

predictive capability that could potentially be deployed operationally. LGA and SFO, 

with validated model rankings (based on the squared root of the ASE) of two and three, 

respectively, were somewhat disappointing when the 2016 scored model results were 

reviewed. However, the top five models, based on the model validation squared root of 

ASE, were also within the top five models based on the scored 2016 data – but the 

ranking orders were shuffled (Table 40).   

Based on the performance parameters used in this study, why does the EWR 

model rise to the top of the three New York airports while LGA and JFK have less 

successful results, given these three airport locations experience nearly the same weather 

conditions? Considering the models tested and scored, the simple answer is the weather-

based variables affect each airport model differently as meaningful predictors in 

capturing AAR variability, and this performance is relative to other non-weather inputs 

that also play roles in determining the AAR. The three airport models ranked the 

importance of weather variable inputs differently, and only EWR included visibility 

within its top five input variables – as its highest ranked variable of importance. Also, 

EWR has a known weather constraint based on its Runway 11 crosswind component that 

significantly lowers its AAR when this runway becomes unavailable. Better results were 

expected at SFO due to the marine stratus conditions that have such a large impact on its 

AARs, but the results when evaluating the 2016 scored data were marginal (68.0 percent 

of all cases falling within 10 percent of maximum AAR). More research is needed here. 

A great deal of effort went into assembling three different data sets used to create, 

validate, and score the models for each airport. Recall when moving from the 15-minute 
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to the Hourly, and finally the Hourly Merged data sets, the number of weather input 

variables increased. The 15-minute data sets, with the fewest number of variables, offer 

the advantage of four times the number of cases contained in either the Hourly or Hourly 

Merged data sets and can be easily applied to create and score the models without 

modification of the native weather variables provided by the FAA. Similarly, once 

downloaded and uncompressed, the Hourly ASPM data are also in a format easily 

ingested into SAS
®
 EM

TM
 and offer several additional weather variables not found in the 

15-minute ASPM data sets. Merging the FAA ASPM airport performance data with the 

NOAA NCEI meteorological station data was tedious, as the NCEI data are not 

necessarily collected at the top of the hour and are updated throughout each hourly cycle 

in changing weather conditions, creating an uneven number of records between the two 

different data sets that must be reconciled when the files are merged.   

Based on the 2016 scored model results, the 15-minute data only supported two 

“best” case models (EWR and CLT), while the Hourly data supported four such models 

(LAX, LGA, ORD, SFO), and the Hourly Merged data supported the remaining four 

“best” models (ATL, DEN, DFW, and JFK). Again, the top three “best” models (ATL, 

EWR, and LAX) used the Hourly Merged, 15-minute, and Hourly data sets, respectively. 

Within the 10 airports studied, the Hourly and Hourly Merged data sets outperformed the 

15-minute data (even with four times the number of cases contained in the 15-minute 

data), indicating the additional weather variables contained in the Hourly and Hourly 

Merged data improved model performance overall. However, if a model is to be deployed 

to predict an airport’s AAR tomorrow, the level of effort needed to extract the variables 

used to support the selected predictive AAR model algorithms from NWS weather data 
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inputs needs to be considered. The LGA 24-hour model deployment example (pp. 159-

161) only used relatively simple-to-derive weather inputs found in the NWS LAMP 24-

hour model. But note the LAMP model provides hourly-time step outputs, so to feed a 

15-minute based model, the hourly data needs to be replicated into four 15-minute time 

steps for each hour, and fidelity is lost in artificially repeating input information that 

could better support the 15-minute time-based algorithms if the data were supplied to the 

predictive AAR model using a weather model with a native 15-minute temporal 

resolution. In other words, a numerical weather model with 15-minute (or shorter) time 

steps would best support one of the 15-minute predictive AAR models created in this 

study. Alternatively, if an hourly model is being used, the additional weather variables 

added to the hourly data beyond those found in the relatively simple 15-minute ASPM 

data (e.g. Nearby Thunderstorms) must be extracted or approximated from the NWS 

models used to predict future weather conditions. The greater the complexity of the 

observed weather variables used to create the predictive AAR models, the greater the 

level of effort needed to approximate these same variables from the feeding NWS 

numerical weather models, raising the level of difficulty in deploying models constructed 

with more weather variables. Also, the number of forecast hours contained in the NWS 

weather models depends on the model selected. Some models run out to 80 hours and 

beyond, while higher temporal resolution models with shorter time steps (e.g. 15-

minutes) cover a relatively shorter overall period of time (e.g. 24 hours). So, in designing 

a deployable predictive system, the underlying weather model used as input to the AAR-

estimating model should match the weather model’s native time steps, areal resolution, 
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and extractable parameters. A weather-based predictive AAR model that cannot be easily 

supported by an underlying environmental model is not useful. 

Theoretical importance. This research built on the work of others in the 

development and limited testing of models that use environmental variables to estimate 

AARs, most notably, Smith (2008) and Kulkarni, Wang, & Sridhar (2013). Much of the 

results from these previous efforts have been confirmed here. This study should be noted 

for its extension in practical model application. Specifically, with models constructed and 

validated, efforts were made to seek the best of the three models created for each airport 

by testing the models with three different data sets. Then, using the predictive software 

developed in SAS
®
 EM

TM
, the selected model for each airport was tested using a full 

year’s worth of 2016 data leading to a fair approximation in how estimating AARs based 

on weather parameters and date and time inputs might perform if deployed operationally.   

Three different types of models were tested: decision trees, linear regression, and 

neural networks. In the end, linear regression did not emerge as a “best” model (based on 

ASE) for any of the 10 airports examined, but was surprisingly competitive when 

compared with the decision tree and neural network results. Eight of the 10 “best” models 

were decision trees, and the other two were neural network models. A notable difference 

in the decision tree and neural network models was seen in the processing time needed to 

train and validate the two model types. The decision tree models were trained and 

validated in seconds using SAS
®
 EM

TM
, but the neural network models could sometimes 

take over 10 minutes to complete their training and validation runs. It should be further 

noted that this issue was of little consequence when the models were scored, as the code 

generated from the validated models ran very quickly during scoring regardless of model 
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type. The key point is the decision trees were both computationally efficient and achieved 

good overall performance based on the results of this study. 

The value in using weather parameters (and time of day) to estimate AARs was 

analyzed. As applied here, while the final results were mixed, useful relationships were 

established using these inputs at ATL, EWR, and LAX. Then, as demonstrated at LGA, a 

model was deployed for 24-hours using NWS LAMP station forecast data. With little 

modification of the LAMP data as the weather parameter inputs, AARs were generated 

predictively, and this effort offered insight toward building an objective and potentially 

automated airport capacity estimation system based on numerical weather guidance 

inputs. 

Practical importance. The potential ability to translate changing weather 

conditions into impacts affecting airport capacities and subsequently the en route NAS 

overall is of major importance to the FAA, NWS, and the airline industry. The ability to 

estimate AARs predictively at major airports offers the opportunity for National Airspace 

Managers at en route air traffic control centers and at the FAA National Command Center 

to more efficiently support NAS operations. Estimating the weather impacts on Core 30 

airport capacities is critical to managing the entire NAS as a whole, and would support 

efficient aircraft sequencing by enabling well-placed ground holds and ground stops that 

result in lowering the number of total minutes spent in airborne holding and fewer flight 

diversions as aircraft approach en route fuel minimums. 

Credible weather information with associated traffic flow impacts, perhaps out to 

several days, would be regarded as high-value intelligence by NAS managers and the 

airlines. Such forecasts would provide advanced information on potential airspace 
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loadings, FAA controller and airport operations staffing requirements, and airline 

industry needs as the NAS responds to changing weather conditions. An approaching 

winter storm associated with an offshore coastal low pressure system moving up the 

northeastern seaboard from Charlotte, NC, through Boston, MA, is an excellent scenario 

that illustrates the value of a priori weather information. Which airports will receive rain 

and which airports will be shut down due heavy snowfall? What will be the timing of 

these events? How many additional staff should the FAA and airports call out to keep the 

approach instrumentation systems and facilities clear of snow? Where do the airlines 

want their aircraft parked during this storm, and how quickly can they reconstitute a 

normal operational cadence?    

Recommendations 

Based on the findings of this research, estimating airport arrival rates (AARs) 

based solely on weather inputs is challenging. Nonetheless, three out of the 10 airports 

studied appear to demonstrate meaningful and useful results based on scoring full-year 

2016 data sets. Using two years’ worth of FAA ASPM and combined NCEI 

meteorological station data to train and validate the models, and subsequently scoring the 

models with single year 2016 FAA ASPM and merged NOAA NCEI environmental data, 

the ATL, EWR, and LAX models performed well in estimating AARs using 

meteorological input variables alone. Additionally, a simple test in deploying an LGA 

decision tree model moved beyond scoring the 2016 data and subsequently input NWS 

LAMP predictive weather guidance to estimate 24 hours of future (and unknown) AARs 

using the 2014/2015 model created in this study with favorable results (pp. 160-162). 

This research sought to establish the practicality of data mining weather variables 
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contained within archived airport performance records as a potential unlock in predicting 

future AARs and concentrated on the comparison of three different model types (decision 

trees, neural networks, and linear regression) using three different data sets at 10 selected 

airports. However, the overarching aim was to estimate how a predictive system, running 

in real-time and using improved NWS weather model guidance might estimate future 

airport arrival rates throughout the NAS. Based on the preliminary results found here, 

thoughts on potential next-steps in building an objective predictive AAR system are 

presented below as future research directions. 

Future research direction. Given the lessons learned from this study, 

recommendations are made in three categories: data, models, and creating a predictive 

system. There are number of improvements that can be made within these three 

categories. It is hoped some of these recommendations might be easily and usefully 

applied to further research. 

Data. Data are foundational to any data modeling or statistical system. The FAA 

ASPM data provide a wealth of reliable information that has been meticulously archived 

over a relatively long period of time. It is difficult to envision building an AAR 

estimating system without these data. The 15-minute ASPM data provide a limited 

number of weather variables that are fairly easy to extract from existing NWS predictive 

weather models, e.g. IMC or VMC, wind speed and direction, etc. More weather 

variables can be found in the Hourly ASPM data, although several variables are 

redundant to those already contained in the 15-minute data, and similarly even more 

weather information was contained in the Hourly Merged data sets constructed by 

combining the FAA hourly and NCEI near-hourly data sets. With respect to collecting 
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airport weather information for this study, none of these data sets alone are ideal, and 

they must be cobbled together forensically in hindsight. In particular, the FAA ASPM 

data were assembled to monitor and measure specific airport performance metrics, and 

the NCEI station data are principally designed to collect and archive weather and climate 

information supporting environmental interests. The weather information in the ASPM 

data is added to help explain airport performance, while the NCEI station data is designed 

to capture changing weather conditions for the environmental sciences. Time-matching 

these two data feeds that frustratingly are derived from the same instrumentation located 

at each airport is difficult. It would be well worth the effort of future researchers to better 

understand if the weather information contained within the FAA ASPM archives actually 

contains more weather variables than the few that are presented in the 15-minute or 

Hourly data outputs, and if so, if this larger set of weather information can be accessed 

for research purposes. Regardless of the weather information contained in the archive, it 

would be beneficial to collect meteorological information in real-time while a predictive 

AAR system is deployed so that data can be tracked and constantly monitored for quality 

and accuracy. 

Models. Of the three models studied in this research (decision trees, neural 

networks, and linear regression) the non-linear models performed best. Most notably, 

decision trees were superior based on the 10 airports and three data sets examined. While 

not examined in this study, Smith (2008) found good results using a support vector 

machine (SVM) model. Other non-linear models could also be explored. Most notably, 

SAS
®
 EM

TM
 offers a high performance decision tree and SVM models that operate 
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parallel in-memory algorithms in a much higher performance environment than the one 

used in this study.  

Regardless of model or operating environment used, the overall modeling strategy 

can also be revisited. For example, except for two neural network models (CLT, DEN), 

most of the models tended to struggle when conditions forced the AARs toward lower 

values. This is likely due to two reasons. First, the number of cases where low AARs 

were observed was relatively small in number, and second, in tending to search for “best 

fit” overall, the models tended to treat these few cases as outliers. Yet, cases where 

environmental (or other) conditions force lower AARs are of great interest to National 

Airspace Managers and are of far greater impact than those where the airport is operating 

near optimum efficiency. One method to overcome this problem might be to break the 

modeling domain into pieces in order to reduce the total range of possible AARs. 

Another possibility is to correct the model outputs during conditions resulting in lowered 

AARs through post-processing - if a consistent and repeatable bias can be discovered 

over time.   

Other model improvements should look toward introducing key non-weather 

variables as model inputs. This was briefly examined in this research by considering 

airport departure and arrival demands as input variables. The difficulty with this approach 

is that any input variable used to create the model must also be somehow derived through 

other modeling techniques or by real-time observation - if the model is to be deployed 

operationally. Box’s quote: “all models are wrong, but some are useful,” (1979, p. 202) is 

haunting; by adding more and more variables in a data mining environment, we can 
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construct an excellent model based on its training data but is over-fit, and as such would 

likely be of little operational value as a predictive tool. 

Predictive system. It is recommended that, one, or all three of the “best” models 

created here be experimentally deployed for continuous observation. While not the 

highest-ranked model per the evaluation criteria used in this study, EWR, as a 15-minute 

model, employs relatively simple weather variable inputs that could be estimated and 

autonomously produced from NWS LAMP numerical weather model guidance. Using the 

computer code generated in this study by the SAS
®
 EM

TM
 decision tree model, constant 

output of AARs fed by automated NWS meteorological weather input data could be 

monitored for accuracy in real-time for a lengthy period of time. The inspection of a 

prototype EWR predictive system would thoroughly examine the operational efficacy of 

this modeling approach and would also identify the strengths and weaknesses inherent 

with this system. Long-term observation and evaluation of such a system would shed a 

great deal of light on the positive and negative aspects of this modeling approach.  

More broadly, based on the findings of this recommended research, a grander but 

perhaps achievable vision could emerge. It is a continuously updating near-real time 

predictive AAR system that monitors a number of inputs, calculates expected outcomes, 

reconciles the differences between the expected versus observed outcomes, and then self-

adjusts to lower these differences for its next system run. In estimating AARs, it is 

anticipated that a large number of the input variables would be derived from numerical 

weather model guidance.   

The basic models and algorithms (likely non-linear) deployed would be created 

from research such as this. These models could consider many more inputs than were 
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used in this study and also could ingest local airport conditions that are often difficult to 

predict, such as a closed runway. High-resolution weather models would provide 

foundational input into the decisional model being deployed, while inputs that are 

difficult to reliably predict could be fed into the system as real-time observations. More 

than one decisional model may be operating simultaneously, and the model outputs could 

be compared and weighted as an ensemble system. Model uncertainty would be 

estimated, with higher ranges of uncertainty resulting in conservatively lowering the 

AAR at each airport being monitored. The overall system would monitor the United 

States “core thirty” airports and be fast enough to account for rapidly changing weather 

and traffic conditions needed to cover daily operations. Using impact-based thresholds 

established by National Airspace Managers, such a system could also offer AAR 

planning estimates out to several days, and as a result, would become a critical planning 

tool for improved NAS operational efficiencies in the future. These efficiencies would 

result in an improved passenger flight experience by reducing diversions, flight holding 

minutes, and in-aircraft ramp holds, and could significantly reduce the estimated $30B 

costs resulting from weather-generated flight delays.  
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Table A1 

Descriptive Statistics for DFW Class Variables 
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Table A2 

Descriptive Statistics for DFW Interval Variables 
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Table A2 

Descriptive Statistics for DFW Interval Variables (con’t.) 
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Table A3 

Partial Hourly Surface Meteorological Archive Example  

 

 

  

USAF WBAN YR--MODAHRMN DIR SPD GUS CLG SKC L M H VSB MW MW MW MW AW AW AW AW W

725300 94846 201601010000 260 15 *** *** SCT * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601010051 250 14 *** 722 SCT * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601010151 250 14 21 722 SCT * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601010251 250 13 *** 722 SCT * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601010351 250 10 *** 47 *** * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601010451 250 11 *** 42 *** * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601010551 250 17 *** 28 *** * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601010559 *** *** *** *** *** * * * **** ** ** ** ** ** ** ** ** *

725300 94846 201601010600 250 17 *** *** BKN * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601010651 250 13 *** 722 *** * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601010751 260 14 23 722 SCT * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601010851 270 15 22 722 SCT * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601010951 270 17 25 19 *** * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601011051 280 14 22 17 *** * * * 9.1 ** ** ** ** ** ** ** ** *

725300 94846 201601011151 270 11 *** 18 *** * * * 9.1 ** ** ** ** 71 ** ** ** *

725300 94846 201601011200 270 11 *** *** OVC * * * 8.8 71 ** ** ** ** ** ** ** *

725300 94846 201601011251 270 13 *** 19 *** * * * 9.1 ** ** ** ** 71 ** ** ** *

725300 94846 201601011351 270 14 *** 20 *** * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601011451 280 10 *** 20 *** * * * 10 ** ** ** ** ** ** ** ** *

725300 94846 201601011551 260 14 24 19 *** * * * 10 ** ** ** ** ** ** ** ** *
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Table A3 (Continued) 

 

  

USAF WBAN YR--MODAHRMN TEMP DEWP SLP ALT STP MAX MIN PCP01 PCP06 PCP24 PCPXX SD

725300 94846 201601010000 24 17 1025.6 ***** 1000.7 28 24 ***** ***** ***** ***** 2

725300 94846 201601010051 23 16 1025.8 30.26 1000.1 *** *** 0.00 ***** ***** ***** **

725300 94846 201601010151 23 16 1025.7 30.26 1000.1 *** *** 0.00 ***** ***** ***** **

725300 94846 201601010251 22 15 1025.6 30.26 1000.1 *** *** 0.00 ***** ***** ***** **

725300 94846 201601010351 23 15 1025.2 30.25 999.8 *** *** 0.00 ***** ***** ***** **

725300 94846 201601010451 24 16 1024.5 30.22 998.8 *** *** 0.00 ***** ***** ***** **

725300 94846 201601010551 24 16 1024.2 30.22 998.8 24 22 0.00 ***** ***** ***** 2

725300 94846 201601010559 **** **** ****** ***** ****** 28 *** ***** ***** 0 T***** 1

725300 94846 201601010600 24 16 1024.2 ***** 999.3 27 22 ***** ***** ***** ***** 2

725300 94846 201601010651 22 15 1023.5 30.2 998.1 *** *** 0.00 ***** ***** ***** **

725300 94846 201601010751 20 13 1023.3 30.19 997.8 *** *** 0.00 ***** ***** ***** **

725300 94846 201601010851 19 12 1023.3 30.19 997.8 *** *** 0.00 ***** ***** ***** **

725300 94846 201601010951 19 12 1022.8 30.18 997.4 *** *** 0.00 ***** ***** ***** **

725300 94846 201601011051 19 13 1022.9 30.18 997.4 *** *** 0.00T***** ***** ***** **

725300 94846 201601011151 20 14 1022.9 30.18 997.4 24 19 0.00T 0.00 T 0.02 ***** 2

725300 94846 201601011200 20 14 1022.9 ***** 998 28 19 *****  0.00 T 0.02 ***** 2

725300 94846 201601011251 22 15 1022.8 30.17 997.1 *** *** 0.00T***** ***** ***** **

725300 94846 201601011351 23 16 1022.4 30.16 996.8 *** *** 0.00T***** ***** ***** **

725300 94846 201601011451 24 17 1023.1 30.18 997.4 *** *** 0.00 ***** ***** 0.06 **

725300 94846 201601011551 24 18 1023.4 30.19 997.8 *** *** 0.00 ***** ***** ***** **
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Table A4 

Eight-Hour Lamp Model Output Example 

LaGuardia 24-Hour Lamp Forecast Data           

UTC 1 2 3 4 5 6 7 8 

TMP 57 57 57 56 56 56 56 55 

DPT 53 54 54 53 53 53 53 52 

WDR 9 10 11 12 12 11 12 11 

WSP 7 7 7 7 6 6 6 5 

WGS NG NG NG NG NG NG NG NG 

PPO 0 0 1 0 0 0 0 1 

PCO N N N N N N N N 

P06 3 5 16 16 
    

LP2 0 0 0 0 0 0 0 0 

LC2 N N N N N N N N 

CP2 0 0 0 0 0 0 1 1 

CC2 N N N N N N N N 

POZ 0 0 0 0 0 0 0 0 

POS 0 0 0 0 0 0 0 0 

TYP R R R R R R R R 

CLD OV OV OV OV OV OV OV OV 

CIG 4 4 3 3 2 2 2 2 

CCG 4 4 3 3 3 3 3 3 

VIS 7 7 7 7 7 7 7 6 

CVS 7 7 7 7 7 7 7 6 

OBV N N N N N N N BR 
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Table A5 

 

FAA ASPM Variable Definitions 

 

Name Level Definition 

ARR_RATE                                                         Interval   Airport Supplied Arrival Rate for Capacity 

CEILING                                                          Interval   Ceiling Measure in hundreds of feet 

MC                                                               Nominal    Meteorological Conditions (IFR or VFR) 

NEARBYTS Interval   Number of nearby TS within 50 miles per ASOS 

N_CEILING Interval   Nearby Ceilings within 50 miles per ASOS 

SEVERITY Interval   Assessed Weather Impact by Category 

TEMP                                                             Nominal    Temperature (F) 

VISIBLE                                                          Interval   Visibility in Nautical Miles 

WIND Interval   Wind Impact Categories (Airport Specific) 

WND_ANGL                                                         Nominal    Wind Direction (degrees from magnetic North) 

WND_SPED                                                         Nominal    Wind Speed (KT)  

WTHR_TYPE Nominal   Predominant Weather Categorized by Type  

 

Note. Bolded variables are contained in the Hourly ASPM, but not in the 15-minute Data 

set. 
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Table A6 

 

NCEI Meteorological Station Data Variable Definitions 

 

Name Level Definition  

ALT                                                              Nominal    Altimeter Setting 

AW                                                               Nominal    Auto-observed Present Weather 

CLG                                                              Nominal    Ceiling (hundreds of feet) 

DEWP                                                             Nominal    Dew point (F) 

DIR                                                              Nominal    Wind Direction in 36 Compass Degrees 990 is Variable 

GUS                                                              Nominal    Wind Gust, MPH 

H                                                                Nominal    High Cloud Type 

L                                                                Nominal    Low Cloud Type 

M                                                                Nominal    Middle Cloud Type 

MAX                                                              Nominal    Maximum Temp (F) 

MIN                                                              Nominal    Minimum Temp (F) 

MW                                                               Nominal    Manually-observed Present Weather 

PCP01                                                            Nominal    One-Hour Liquid Precip (inches to nearest 100th) 

PCP06                                                            Nominal    Six-Hour Liquid Precip (inches to nearest 100th) 

PCP24                                                            Nominal    24-Hour Liquid Precip (inches to nearest 100th) 

PCPXX                                                            Nominal    3 or 24-Hour Liquid Precip (inches to nearest 100th) 

SD                                                               Nominal    Snow Depth (inches) 

SKC                                                              Nominal    Sky Cover (by octal) 

SLP                                                              Nominal    Sea Level Pressure (millibars to nearest tenth) 

SPD                                                              Nominal    Wind Speed, (MPH) 

STP                                                              Nominal    Station Pressure (millibars to nearest tenth) 

TEMP                                                             Nominal    Temperature (F) 

VSB                                                              Nominal    Visibility (statute miles to nearest tenth) 

W                                                                Nominal    Past Weather Indicator 
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Figure B1. Hartsfield-Jackson Atlanta International Airport Diagram. 
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Figure B2. Charlotte Douglas International Airport Diagram. 
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Figure B3. Denver International Airport Diagram. 
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Figure B4. Dallas Forth Worth International Airport Diagram. 
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Figure B5. Newark Liberty International Airport Diagram. 
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. 

Figure B6. John F. Kennedy International Airport Diagram. 

N
E

-2
,  0

9
 N

O
V

 2
0

1
7

  to
  0

7
 D

E
C

 2
0

1
7

N
E

-2
, 

 0
9

 N
O

V
 2

0
1

7
  

to
  

0
7
 D

E
C

 2
0

1
7



215 

 

 

Figure B7. LaGuardia Airport Diagram. 
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Figure B8. Los Angeles International Airport Diagram. 
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Figure B9. Chicago O’Hare International Airport Diagram. 
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Figure B10. San Francisco International Airport Diagram. 
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Figure B11. ATL DT Diagram (Left-hand side of image). 
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Figure B12. ATL DT Diagram (Right-hand side of image). 
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