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Probabilitv-Based Weather Products 

THE CERTAINTY OF UNCERTAINTY: UNDERSTANDING AND EXPLOITING 
PROBABILITY-BASED AVZATION WEATHER PRODUCTS 

Thomas A. Guinn and Randell J. Barry 
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Introduction 
Probability-based weather forecasts (i. e., forecasts that quantify uncertainty) have been available for certain 

weather elements for over 40 years; for example, the probability of precipitation forecast. More recently, probability 
forecasts designed specifically for aviation have become widely available on the internet through two National 
Weather Service (NWS) forecast centers, the Aviation Weather Center (AWC) and the Environmental Modeling 
Center (EMC). Although these probability-based products are generally not recognized by the Federal Aviation 
Administration @AA) for operational use, their potential is beginning to be recognized by the aviation community. 
For example, the Joint Program Development Office (JPDO) Next Generation Air Transportation System 
(NEXTGEN) Air Trafic Management (ATM)-Weather Integration Plan cites probabilistic forecasts as playing a key 
role in future air -c management decision support tools by the year 2023 (JPDO, 2010). Specifically, the JPDO 
identified the integration of weather uncertainty information (i.e., probabilities and confidence information) into 
decision-support tools as the highest of four levels of weather integration into the air trafiic management system. 

The American Meteorological Society in a policy 
statement (AMS, 2008) also recognized that probability 
forecasts offer benefits over categorical (yedno) forecasts. 
They specifically stated that the "dissemination and 
effective communication of uncertainty information will 
lead to substantial economic and social benefits" (AMS, 
2008). They attniute the reason for the benefit to the ability 
of the end user to improve decision making by explicitly 
accounting for uncertainty (AMS, 2008). 

In addition to the AMS, the NWS has also made 
similar observations regarding the benefits of exploiting 
probability-based forecasts. The NWS additionally 
highlighted the importance of end-user understanding of 
probability-based information. They noted uncertainty 
information is currently not widely used or even l l ly  
understood by the general public despite the potential for 
improved decision making for a wide range of operations 
(NRC, 2006). 

To address this deficiency, the NWS commissioned 
a committee in 2005 to investigate and provide 
recommendations as to how they could more effectively 
estimate and communicate uncertainty in weather and 
climate forecasts (NRC, 2006). A key finding in the report 

was a need for enhanced, enterprise-wide, educational 
initiatives to improve communication and use of uncertainty 
information- They indicated that these education initiatives 
should focus on three critical areas: (a) undergraduate and 
graduate information, @) recurring forecaster training, and 
(c) user outreach and education (NRC, 2006). 

To support the NWS initiatives described above, 
the goal of this paper is to provide a non-technical primer 
for current or future aviation professionals on probability- 
based weather forecast information currently available to the 
aviation community. The information provided herein is 
appropriate for use in a graduate or undergraduate setting as 
well as user outreach and education. The paper provides 
aviation educators a starting point for classroom discussions 
on the use of weather uncertainty information in aviation 
operations. The topics covered in this paper include three 
techniques currently used to determine forecast uncertainty, 
current aviation weather products that employ these 
techniques, and the potential benefits of exploiting 
uncertainty information in aeronautical decision making, 
aviation operations, and NEXTGEN. 

-- -- - -- -- 
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Probability-Based Weather Products 

In contrast to subjective methods for assessing 
aviation weather forecast uncertainty, objective methods 
attempt to provide a more repeatable process that removes 
forecaster skill andlor bias fiom the uncertainty of the 
forecasted event. Advances in numerical weather prediction, 
computer processing speeds, and statistical techniques have 
allowed meteorologists to quantify the degree of uncertainty 
in weather forecasts using a variety of objective methods. 
Objective methods rely solely on the observational data and 
numerical weather prediction models; thus, they are 
repeatable. That is, when given the same data, an objective 
method will produce the same probabilitied every time 
because the data is independent of the individual 
forecaster's input. 

Although a variety of methods exist for producing 
objective, probability-based forecasts and diagnostics, this 
paper will explore three techniques used to produce 
aviation-specific products currently available on NWS 
websites. These techniques include: (a) ensemble modeling, 
(b) Model Output Statistics (MOS), and (c) fUzzy logic 
techniques. The products created by these methods include 
the Short-Range Ensemble Forecast (SREF) aviation 
product suite available h m  the NWS EMC, the Localized 
Aviation MOS Program (LAMP) product available on the 
NWS home website, and the Current Icing Potential (CIP) 
product available on the AWC ADDS. All three methods 
use different approaches, but the end goal is the same-they 
all attempt to create objective probabilities of occurrence for 
a variety of weather criteria. These methods as well as some 
of their strengths and weaknesses are discussed below. 
Ensemble Techniques and the SREF Model Aviation 
Product Suite. 

Traditional numerical weather prediction (NWP) 
forecast products are "deterministic" in nature. That is, the 
initial state of the atmosphere determines the future state of 
the atmosphere, and for any given time in the future, there 
is only one possible outcome. As mentioned earlier, the 
atmosphere is inherently chaotic; therefore, small errors in 
our observations of the initial state of the atmosphere can 
grow rapidly leading to significant forecast error. The 
sources of errors in our observations are numerous. First, it 
is physically impossible to observe the entire atmosphere at 
any one time. There exist significant gaps in data collection, 
especially over less-populated regions and the oceans. In 
addition, operational costs of launching weather balloons 
with radiosondes make it unfeasible to observe the upper- 
levels at high spatial and temporal resolution. In the U.S. 

these observations are limited to only two per day at each 
observing site and have an average horizontal spacing of 
approximately 3 15km in the United States (FMH-3,2006). 
Secondly, all observing systems contain some degree of 
instrument error; even in situ observations from automated 
surface observing stations (ASOSs) contain error. Because 
of these errors, our observation networks only provide an 
approximation or "best guess" of the true state of the 
atmosphere. 

In addition to observing errors, once the 
observations are collected, this irregularly spaced data must 
then be interpolated to a uniform grid to simplify and 
expedite calculations within the numerical models. This 
interpolation process also introduces error. 

The gridded "best guess" of the true state of the 
atmosphere is then used as the initial input to the computer 
model (i. e., the model initialization). This initialization is 
then used to solve a complex set of equations governing 
atmospheric motion to produce estimates of the future state 
of the atmosphere. It should be mentioned that the term 
"numerical model" simply refers to the set of equations and 
numerical method used to create the forecast. Numerical 
models can differ in resolution, fundamental equations, 
numerical techniques, approximations (or  
parameterizations), etc. 

Since we traditionally have only a single initial 
data field or "best guess," the model calculations can only 
provide a single possible outcome for any given hture time. 
However, because our best guess of the true state of the 
atmosphere inherently contains some degree of error, any 
forecasts stemming from this initial state will also contain 
error. The error growth can be-very rapid because the 
equations governing the atmospheric flow are highly non- 
linear; meaning, small changes in the initial conditions can 
have disproportionately large effects on output. 

The classic example of a non-linear process often 
used in the classroom is the "straw that broke the camel's 
back." Assume you have a camel and you load single bale 
of hay to the camel's back causing it to sag one inch. 
Likewise, a second bale of hay causes the camel's back to 
sag two inches, and so on. This is a linear relationship. Now, 
after several bales ofhay have been loaded, a single piece of 
straw is loaded causing the camel's back to collapse. This is 
a non-linear response. The breaking of the camel's back 
(i. e., the complete the collapse) was disproportionate to the 
added amount of weight. Likewise, in the atmosphere, small 
differences in model initial data, under certain conditions, 
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can lead to significantly different forecast results. 
This same effect will also occur if identical initial 

conditions are used in slightly different numerical models. 
An example of this is when two models approximate small- 
scale processes, such as convective motions, slightly 
differently. Because of differences, the two models could 
produce different, but equally likely, forecast results despite 
having identical initial conditions. 

The results from deterministic model forecasts 
therefore depend both on our ability to accurately represent 
the initial state of the atmosphere as well as our ability to 
mathematically describe the physical 'processes governing 
atmospheric motion. (Note that the former error would exist 
even if a "perfect" NWP model existed.) Ensemble 
techniques seek to quantify the uncertainty in the model 
forecast by examining model results h m  a large number of 
models using a wide range of initial conditions rather than 
simply using one model with one set of initial conditions. 

The ensemble technique is relatively simple in 
concept. They quantify uncertainty by solving one or more 
deterministic NWP models (typically between 15 and 50) 
using several different but equally likely initial states of the 
atmosphere, where each individual model solution is 
referred to as a "member" of the ensemble. The models may 
be all the same, all different, or a combination. The 
variations in both models and initial conditions are designed 
to help capture the range of possible future states of the 
atmosphere. Since running 15-50 numerical models is far 
more computationally expensive than running a single 
deterministic model, each ensemble member is typically run 
at a slightly lower resolution than the operational versions 
of the individual deterministic models to minimize the total 
number of computations required. 

When using ensemble techniques, the initial states 
of the atmosphere are chosen using a variety of techniques, 
most typically by introducing small perhubations to a 

"control" initial data field. The perturbations, however, are 
not purely random, but rather are chosen to excite fast 
growing errors, to capture the widest range of possible 
outcomes (Toth & Kalnay, 1997). The end result of the 
ensemble process is multiple, equally likely forecasts from 
which probabilities can easily be determined. The simplest 
probabilities are determined by directly comparing the 
number of ensemble members that forecasted a specific 
event to the total number of ensemble members. For 
example, if only five of twenty ensemble members predict 
icing at a specific location and flight level, the probability of 
icing at that location and flight level would be 25%. 

The Short Range Ensemble Forecast (SREF) 
Aviation Product Suite provides probabilistic forecasts of 
several aviation parameters (e.g., icing, turbulence, 
instrument meteorological conditions, thunderstorms) for 
various thresholds (e.g.. light, moderate, severe), for 
multiple flight levels. At the present time, the SREF 
aviation product suite is considered experimental and not for 
operational use; however, the product information is readily 
available on the NWS EMC website for examination. The 
SREF uses three different models (although there are 2-4 
slight variations of each model) and multiple different initial 
conditions to create 21 ensemble members (Zhou et aL, 
2009). These members are then used to create a suite of 14 
aviation-specific forecasts out to 87 hours. The SREF 
aviation pages are available for CONUS, Alaska and 
Hawaii. Figure 2 shows an example of a24-hour forecast for 
icing at 15,000ft MSL over CONUS. As mentioned earlier 
the probabilities are simply created by evaluating the 
number of members that forecast "yes" for icing at any 
given model grid point and dividing by the total number of 
model members. This is a purely binary membership; that is, 
the grid point either meets the criteria or it doesn't, there is 
no evaluation of how closely a grid point meets the criteria. 
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11 SREF: Ptabability sf. icing at F1150 24H FCST 
%am 032: M oy 28 201 1 1, Verifitsd The: 032: Q5/29$2011 

Fi~4re 2. Sample Shm-Rnng~ E~scnahtc Fo~rmst (SREF) Aviation Suite probability of icing forecast For 15,QOOR MSI , 
at 03Z on May 29,281 7 .  

63

Guinn and Barry: The Certainty of Uncertainty: Understanding and Exploiting Probab

Published by Scholarly Commons, 2012



Probability-Based Weather Products 

To understand filly the quality of the ensemble 
forecast for operational decision making, the user of the 
information must be familiar not only with ensemble 
techniques in general, but the specific algorithms used to 
forecast the hazard of interest as well. For example, the 
SREF aviation suite uses a very simple icing algorithm that 
examines only the relative humidity and the air temperature. 
The relative humidity helps identifil the potential for clouds, 
while the temperature helps determines if the cloud droplets 
will be super-cooled. Specifically, ifthe relative humidity at 
a grid point exceeds 70%, while the temperature at the same 
grid point lies between O'C and -10"d, the grid point is set 
to "yes" for icing (Zhou et aL, 2004). The assumption, based 
on observations, is clouds will likely be present when the 
relatively humidity is greater than 70%, and the clouds will 
likely contain super-cooled water if the temperature is 
between 0°C and -10'C. It should be noted that a grid point 
with a temperature of -10.1'C and a relative humidity of 
75% willbe identified as a'ho" for icing, despite being only 
one tenth of a degree outside the "yes" range for icing. As 
we'll see in later sections, "fuzzy logic" techniques attempt 
to account for how closely a grid point meets a threshold 
rather than a simple binary or "yes/no" evaluation. 
Model Output Statistics (MOS) and the Localized 
Aviation MOS Product (LAMP). 

The second method of producing objective, 
probability-based forecasts is MOS. MOS products, in 
general, were developed to identifil and exploit statistical 
relationships between numerical model forecasts for 

individual locations and the weather that actually occurred 
at the locations. The motivation for the technique is that 
while model forecasts for locations may not always be 100°/o 
accurate, there are likely correlations between the model 
forecast and the observed weather at the same location. If 
these correlations are quantified over long periods of 
observations, statistical relationships can be developed to 
improve the model forecasts at individual sites as well as 
produce probabilities. 

As mentioned previously, NWP models perform 
their computations at uniformly spaced grid points. The 
distance between individual grid points typically ranges 
between 12-40km or greater for most operational models. 
As a result, the forecast for a particular airport may be based 
on model grid points that are located 6-20km away. Figure 
3 provides an example of a model grid. The dots represent 
evenly spaced grid points where model calculations are 
performed, and the x-marks represent individual forecast 
locations, such as cities or airports. Forecast information for 
the x-marks must be interpolated h m  the nearest model 
grid points. No matter how accurate the model forecast at 
each grid point, the forecast at a specific location will 
always contain a certain degree of spatial error (except in 
the rare instance where the grid point and location are 
identical). This error is especially significant if the location 
in question and nearest the grid points are over significantly 
different terrain. In addition, and as mentioned previously, 
the model equations and approximations themsdves are not 
perfect. 
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Figure 3. Representative example of model grid points (black dots) using a 20km grid spacing. The x- 
marks represent locations of interest such as such as cities or airports. The model data is only calculated at 
the grid points and must therefore be interpolated to the x-marks. 

These errors and errors like these (e.g., poor initial 
representation of the data) can be addressed as follows. 
Even though these errors may produce inaccurate results at 
a location, if the model consistently prod;lces similar errors 
for similar situations, having a priori knowledge of these 
errors may be used to improve the forecast as well as 
produce objective probabilities. For a simple example, 
assume a numerical model routinely under-predicts 
precipitation at a location. However, after examining several 
years of forecast data from a specific NWP model, 
forecasters observe that when the model predicts a relative 
humidity of 70% for the location, precipitation is observed 
in 90% of the time. Using this information, a simple 
algorithm may be constructed using the model-derived 
relative humidity forecast to not only improve the 
precipitation forecast but provide a probability of 
precipitation forecast for the obse~ations site as well. That 
is, whenever the model forecasts a relative humidity of 70% 
relative humidity for that specific location, the probability of 

precipitation for that location is 90%, assuming the statistics 
used in the algorithm were fi-om a sufficiently large data 
sample to be considered representative. 

In the previous example there was only a single 
predictor (relative humidity) for the "predictand" 
(precipitation). In reality there may be many predictors that 
contribute to the probability of occurrence of precipitation. 
Again using the previous example, the forecasters may also 
notice that it only rains 60% of the time when the relative 
humidity is 70% the winds are from the north. A new 
algorithm could be developed that makes use of both 
predictors. The goal of MOS data is to find and quantify 
these correlations to create statistical relationships (i.e., 
regression equations) relating the model forecast for a 
location to the likelihood of observed weather conditions. 
Once the statistical relationships are known, they can be 
applied to the deterministic forecasts to either improve 
forecast accuracy or create probabilities of a variety of 
events (e.g., precipitation, thunderstorms). 

- - 
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In reality, the MOS algorithms are much more 
complicated than the simple examples just presented. They, 
in fact, typically involve many different possible predictors 
for a specific forecast variable (the "predictand") and they 
are often stratified by season. It must also be noted that the 
statistical algorithms are dependent on both the specific 
location the model used in the forecast. Each location of 
interest, usually a single observing location but can also be 
expanded to represent a small region, requires a separate and 
distinct statistical algorithm relating model output to the 
observed weather. Once established, the statistical 
relationships remain valid until the mchel is updated (or the 
climatology of the location changes significantly). Any 
changes to the model require the development of updated 
statistical relationships, which require several Seasons of 
data to create. For this reason, the version of the 
deterministic model used for MOS guidance is not always 
the most recent version of the numerical model used for 
traditional deterministic model output. 

So far we have only discussed the use of model 
data as predictors; however, predictors are not limited to 
model data alone. The most current observation at a location 
often correlates very strongly with the predictand. For 
example, if it's currently raining at a location, the statistics 
may show there is a higher probability rain will still be 
occurring one hour later. Since the output h m  deterministic 
models is often not available for several hours after the 
model calculations start, the current observations provide 
updated information. This updated information has been 
found to have strong predictive value in MOS guidance 
(Ghirardelli, 2005). For this reason, observations are also 
used as predictors in the MOS process. 

In 1997, the NWS began running the Localized 
Aviation MOS Program (LAMP) locally at NWS forecast 
offices to provide hourly MOS data containing aviation- 
specific forecast parameters (e-g., ceiling, visibility, wind 
gusts) out to 20 hours (Ghirardelli, 2005) . The program 
was "redeveloped" in 2005, and rather than being run 
locally at each NWS forecast office, the new LAMP product 
was designed to run at the NWS Environmental Modeling 
Center (EMC) and disseminated via the internet. This new 
LAMP became operational in July 2006 and is available on 
the NWS website, providing hourly MOS guidance out to 25 
hours. 

LAMP data is unique in that it uses MOS output 
from another model as a predictor in addition to pure model 
output. So in a sense, LAMP is the "MOS of a MOS." 

Page 66 

LAMP uses the NWS's Global Forecast System (GFS) 
model MOS as a starting point. The GFS is a global-scale 
model, meaning it covers the entire globe, and the MOS data 
from this model (GFS-MOS) data is currently issued four 
times daily at 002, 062, 122, and 182. Because of the 
computational requirements for running a global-scale 
model, the data is typically not available until approximately 
four hours after the model calculations start. In addition, the 
forecast output from each GFS-MOS model is only provided 
in 3-hr increments. For aviation flight planning; however, 
hourly forecast updates (rather than 6-hour updates) with 
output in 1 -hour increments (rather than 3-hour increments) 
are more beneficial to operations. The current version of the 
LAMP model is run each hour, updating the GFS-MOS with 
the most current observations, to provide a 25hr forecast in 
1-hr increments. Since the LAMP model relies heavily on 
the GFS-MOS as a predictor, it is referred to as the "GFS- 
LAMP" on the NWS website. In addition to the GFS-MOS 
data and current observations, the GFS-LAMP also uses 
three simple deterministic models (a sea-level pressure 
model, an advection model, and a moisture model) as 
additional predictors. 

The end-product of the GFS-LAMP is a suite of 
textual and graphical web products providing a 25-hour 
forecast in 1-hr increments of key aviation parameters, 
including wind speedldirection, ceiling, visibility, 
precipitation, and thunderstorms. However, LAMP does not 
provide any information regarding traditional en route 
hazards such as icing, turbulence, and mountain 
obscurations. The entire suite of LAMP products is updated 
every hour. It should be noted that although LAMP was 
completed and fully operational in 2009, it has not been 
approved by the FAA as a primary or supplementary 
aviation weather product for operations. 

Traditionally, MOS data has been displayed as a 
text product providing location-specific forecasts of a 
variety of weather parameters. This is true for the GFS- 
LAMP. Figure 4 shows a typical text-based GFS-LAMP 
product for Topeka, KS issued for 14UTC on 28 May 20 1 1. 
The leftmost column provides the weather parameter in 
question, including temperature, dew point temperature, 
wind direction and speed, etc. While probabilities could be 
provided for all values using the statistical algorithms, the 
text product provides only the most likely value for most 
parameters. Probabilities are only used in this product for 
the hourly probability of precipitation (PPO), the 6-hour 
probability of precipitation (P06), and the 2-hour 
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probability of thunderstorms (TP2). A detailed description 
of all parameters can be found on the NWS website. 
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Figure 4. Sample GFS-LAMP Text Product for Topeka, KS issued at 142 on May 28,201 1. 
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The MOS guidance probabilities differ fiom the 
ensemble probabilities in that MOS data compares a single 
model's forecast to the actual observations or climatology at 
individual sites. Ensemble models on the other hand 
examine the results of multiple model forecasts, with no 
knowledge of how the model performs at individual 
locations. MOS data therefore attempts to bring the inherent 
forecast uncertainty more in line with the observed 
climatology of the site; whereas ensemble forecasts attempt 
to provide detailed information regarding the forecast 
uncertainty or predictability of a particular weather event 
(Zhu et al., 2002). A key advantage to the ensdble method 
is that if the models change, there is no need to establish 
new statistical algorithms that relate the new model 
performance to observations. 
Fuzzy Logic Techniques and Current Icing Potential 
(CIP) Product. 

A third technique for developing probabilistic 
information involves "fuzzy logic." Fuzzy logic techniques 
provide uncertainty information by examining relationships 
between the predictor and the predictand in a different way. 
Fuzzy logic recognizes that not all relationships are binary, 
(i. e., simple "yes/no7' relationships), and that significant gray 
areas can exist. As we discussed earlier, the SREF icing 
algorithm assumes icing is only observed between the 
temperatures of O"C to -1O'C when the relative humidity 
greater than 70%. Using a binary logic system would imply 
there is zero potential for icing when the relative humidity 
is 70% but the temperature is -10.lgC. While the potential 
for icing at a grid point is 100% if the relative humidity is 
the same, but the temperature is a mere 0.l0C warmer. In 
reality this is not the case. In our example, observational 
studies indicate a greater kquency of occurrence of icing 
events for the temperature range 0 to -10C. However it also 
remains relatively high until -20'C is reached (Schultz and 
Politovich, 1992). So rather than using distinct thresholds, 
fbzzy logic algorithms instead examine how closely, or the 
degree to which, a threshold is met. 

An example of the application of this technique is 
the creation of a fuzzy-logic tool to study the problem of 
aircraft structural icing developed by Bernstein et a1 (2005). 
This product evolved h m  a research model to the 
operational Current Icing Potential (CIP) currently available 
on the AWC ADDS website as an FAA recognized 
supplemental product (i.e., it is authorized for enhanced 
situational awareness use only and is only to be used in 

conjunction with one or more FAA-designated primary 
products). 

Since the CIP is designed to provide the potential 
for structural icing, the CIP process first begins with 
identifying current 3D locations of visible moisture (i. e., 
clouds and precipitation) using current surface, radar, and 
satellite information. Once the areas of visible moisture are 
identified, fuzzy logic membership functions are applied to 
determine the potential for icing within the areas of visible 
moisture. The fuzzy membership functions were designed 
to identify the potential for icing based on a four parameters 
(temperature, cloud-top temperature, vertical velocity, and 
relative humidity). Bemstein et al. (2005) derived these 
functions by comparing several years of pilot reports of 
icing to numerical model data of temperatures, relative 
humidity and vertical velocities as well as satellite 
observations of cloud-top temperature. The functions, 
referred to as "maps," provide a measure ofthe kequency of 
observed icing events for each of the four parameters. 

For example, Bernstein et al. (2005) evaluated over 
19,000 pilot reports (PIREPS) of icing and noted icing was 
observed most fiequently when the temperature was -7C. 
The fkquency of occurrence dropped off sharply for warmer 
temperatures and more gradually for colder temperatures. 
The resulting temperature map (T-) based on this data 
effectively creates a fuzzy membership function relating the 
potential for icing to the model forecasted temperature. 
Figure 6a shows the T, functions used in the model for 
both convective and non-convective scenarios as well the 
observed data curve kom which the maps were derived. 
Note that Bernstein et al. (2005) adjusted the T,, function 
to improve CIP performance, so, it does not identically 
match the frequency of occurrence based solely on a 
comparison of pilot reports to the model data. The Tmp 
shows a 100% potential for icing when the temperature is 
between approximately -4°C to -7'C, drops gradually to 0% 
by -25'C (or -30°C if clouds are determined to be 
convective) and rapidly drops rapidly to 0% by 0°C. By 
providing a relationship between the temperature and the 
potential for icing, the need for simple binary 'Yeslno" 
thresholds is eliminated. The potential for icing doesn't 
jump instantaneously from 100% to 0% as the temperature 
changes h m  -7'C to -8'C. Instead, the potential for icing 
gradually decreases as the temperature drops below -7'C. As 
mentioned earlier, however, temperature alone is not the 
only parameter that can affect icing. Bernstein et al. (2005) 
also identified cloud-top temperature, relative humidity, 
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model vertical velocity, and proximity to known PIREPS as 
key indicators. 

Figure 6a and b. T,, (a) and (b) lmes used m the CIP algorithm and the observed hquency 
occurrence lines (normalized by the number of PIREPS available). Note that T,,,,,, varies depending on 
whether or not the observed weather scenario is convective or non-convective. (From Bernstein, et a1 
(2005) 
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Relative humidity is particularly important to icing 
determination because the observing systems only detect 
cloud tops (via satellite) and cloud bases (via surface 
observations). In some instances, the cloud top could 
potentially result fiom a high cloud while the observed 
cloud base could result fiom a completely different low 
cloud. Relative humidity is therefore needed to help detect 
the potential for cloud layers between the observed cloud 
base and observed cloud top. As with temperature, Bernstein 
et al. (2005) created a fuzzy relative humidity membership 
function (RHw) relating the potential for icing to the 
relative humidity. Again these were based on'over 19,000 
PIREPS. The potential for icing is 100% when the relative 
humidity is greater than 95% and then gradually decreases 
to OYO at a relativehumidity of 30% (Fig. 6b). Again the 
RHw was adjusted slightly h m  the observed hquency of 
occurrence to produce improved model performance. 

Cloud-top temperatures are also important because 
they indicate the possibility of ice crystals near the top of the 
cloud. Ice crystals, when falling through a region of super- 
cooled water droplets cause the water droplets to fieeze. 
Once the droplets fieeze, the cloud is considered to be 
"glaciated" and no longer poses a structural-icing threat. 
Using as a similar technique as discussed for temperature, 
Bernstein et al. (2005) observed the potential for icing to be 
100% for cloud-top temperatures warmer than -12'C and 
then smoothly drop to 20% for cloud-top temperatures less 
than -5OC. 

Once the fuzzy membership functions or "maps" 
for each parameter are known, the CIP process uses the 
potential for icing fiom each ofthe membership functions to 
determine the initial probability for icing. This is most 
typically calculated by multiplying all icing potentials; that 
is, the initial probability of icing determined fiom the 
potential for icing based on temperature times the potential 
for icing determined h m  the cloud-top temperature times 
the potential for icing determined from the relative 
humidity. For example, if the potential for icing due to 

Probability-Based Weather Products 

temperature is 0.90, the potential for icing due to cloud top 
temperature is 0.80, and the potential for icing due to 
relative humidity is 0.85, the initial probability for icing 
would be 61% (0.9 x 0.8 x 0.85 x 100%)). Note that this 
specific algorithm for determining the initial probability for 
icing is not identical for all icing events; but rather, it varies 
slightly depending on the actual weather scenario, e.g., 
multiple cloud layers vs. single cloud layers (Bernstien et 
al., 2005). 

Once the initial icing probability is determined, the 
CIP process determines the final icing probability by 
adjusting the initial value up or down based on the 
proximity to known PIREPS of icing, as well as numerical 
model predicted values of vertical motion and super-cooled 
liquid water (Bernstein et al., 2005). For example, the initial 
probability of icing is increased near locations where 
PIREPS confirm the presence of icing conditions as well as 
within regions where the model predicts super-cooled water 
and upward vertical motion. On the other hand, the initial 
icing probability is decreased if the model predicts 
downward vertical motion within region. It should be noted 
that the absence of PIREPs or even negative icing PlREPs 
do not decrease the probability of icing since the absence of 
a report doesn't negate the existence of icing and negative 
icing PIREPS are sometimes indicative of embedded ice- 
fiee pockets within a larger icing region (Bernstein et al., 
2005). 

Figure 7 shows an example of the CIP valid at 
14UTC on 28 May 201 1, depicting the probability of icing 
at 15,000ft MSL. Also depicted on the chart are icing 
symbols denoting locations of observed icing used in the 
preparation of the chart. It should be noted that the CIP is 
only an icing analysis tool; that is, it does not provide a 
forecast for the probability of icing. However, the ADDS 
website does offer a Forecast Icing Potential (FIP) product 
which also uses fuzzy logic techniques based solely on 
model predicted data. 
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By combining the consequences of flying in a 
given weather event with the probability of occurrence of 
that same event, the severity of risk can readily be 
determined. The consequences can even be tailored to the 
specific skill-level of the pilot. For example, a visual flight 
rule (VFR) student solo pilot would most likely assess the 
consequences of inadvertently flying into instrument 
meteorological conditions (IMC) as catastrophic. On the 
other hand, a 1,500-hour instrument-rated pilot would likely 
assess the consequences of inadvertyntly flying into IMC 
weather as negligible. Therefore, using Fig. 8, the student 
pilot's risk would be serious to high if the likelihood of IMC 
weather was judged to be any category other than 
improbable. However, the instrument rated pilot's risk 
would be at most medium, even if the likelihood of IMC 
were near 100%. It should be noted that to properly use such 
a chart, vague terms such as "remote" or "occasional" would 
need to 6e quantified and tailored for operational use. This 
would then be consistent with the quantification of forecast 
probability. 

Not only can using uncertainty information 
potentially improve risk management, but research has 
shown the incorporation of weather forecast uncertainty 
information into the decision process can result in 
potentially significant operating-cost savings (Zhu et al., 
2002; Keith, 2003; Keith & Leyton, 2007). These benefits 
are most commonly achieved through use of cost-loss 
models. 

Simple cost-loss models examine the cost of taking 
action compared to the potential loss if protective measures 
are not taken. An extremely simple example of a cost-loss 
model is a flight traiuing school that could suffer significant 
damage if aircraft were not relocated prior to the onset of a 
50 knot wind event. If the potential loss due to damage (L) 
were, for example, $2 million and the cost of evacuating the 
aircraft a safe distance (C) were, for example, $200,000, the 
cost-loss ratio (C/L) would be approximately 0.10 
(neglecting any unprotectable losses that could occur even 
if all planes were safely evacuated). The flight school would 
therefore be wise to evacuate the aircraft anytime the 
probability of occurrence of 50 knot winds exceeded 10%. 
If the school took action for probabilities less than 1O0h, 
over time the cost of evacuation would exceed the loss due 
to aircraft damage. Likewise, taking action only when the 
probability of a 50 knot wind event exceeds a higher 
threshold, for example 25%, would likely result in damage 

costs that greatly exceed protective costs. Of course, this 
assumes the probabilities i?om the forecasts are reliable. 
That is, when a probability of 40% is predicted, the event 
occurs 40% of the time. 

Research shows economic value is added when 
probability-based forecasts are used. Economic value is 
positive when the probability forecast provides better results 
(i.e., less expense) than if the user relied solely on the 
climatological probability of occurrence for their decision to 
take protective action or not. Zhu et al. (2002) demonstrated 
that the use of forecast probabilities greatly extended the 
potential range of cost-loss ratios where economic value was 
increased. Thus probability forecasts add greater value for 
a greater number of potential users, fiom those with high 
cost-loss ratios (i.e., the cost of protection is nearly equal to 
the potential for loss) to those with small cost-loss ratio (i. e., 
the cost of protective action is much less than the potential 
for loss). 

Keith (2003) and Keith and Leyton (2007) 
demonstrated the potential economic value of combining 
probability forecasts with cost-loss models to determine 
when it was cost-effective for aircraft to carry extra he1 for 
diversions potentially necessitated by low clouds andlor 
ceilings. Carrying extra fuel provides the pilot more options 
for landing, such as longer holding-patterns to wait for 
weather to improve or being able to attempt a landing with 
sufficient fuel to return to cruise altitude and proceed to an 
alternate airport if the landing attempt unsuccessll. 
However, carrying extra fuel unnecessarily adds extra 
caniage weight and therefore adds expense due to increased 
fuel burn. Similar to 2 % ~  et al. (2002), Keith (2003) and 
Keith and Leyton (2007) established critical thresholds 
based on detailed cost-loss analyses. Probability forecasts 
were then applied to determine if the economic value of the 
decision process was greater than the economic value of a 
decision process that relied solely on deterministic (yeslno) 
terminal aerodrome forecasts (TAFs ). 

In Keith (2003), forecast probabilities were 
generated simply by asking TAF forecasters to provide a 
subjective degree of confidence in their forecast of ceiling 
and visibility. These subjective probabilities were then 
applied to a cost-loss model to determine the need to carry 
extra fuel. In this first study, Keith (2003) only examined 
one specific flight profile. The economic value of the 
decision process using probability-based forecasts was then 
compared to the economic value of the same decision 
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process using purely deterministic forecasts. In Keith and 
Leyton (2007), a similar but more robust study was 
conducted. The new study had two significant changes. 
First, the new study examined a much wider range of 1 aircraft flight profiles provided by American Airlines. 
Second, the study used objective probability forecasts rather 
than subjective probabilities. The objective forecast 
probabilities were derived statistically (similar to MOS) but 
using only surrounding observations as predictors (Leyton 
and Fritsch, 2003). Both studies demonstrated significant 
cost-savings potential when probability forecasts combined 
with cost-loss models were incorporated intb the decision- 
making process. Specifically, Keith and Leyton (2007) 
demonstrated a potential 2.5% cost reduction in American 
Airline's annual $4 billion fuel expense. 

The potential benefits of determining and 
exploiting uncertainty information in aviation weather 
forecasts has also been recognized by the JPDO responsible 
for the NEXTGEN air traffic management system. 
Probabilistic weather data is planned for use in several air 
traffic management decision support tools that will compare 
the probability of an event occurring against the operational 
risk tolerance to produce decisionquality output (JPDO, 
20 10). 

For example, weather forecast uncertainty 
information is planned to be used in conjunction with air 
traflic congestion models to improve strategic traffic flow 
management. Air traflic congestion models use historical air 
traffic data to determine the probability of increased air 
traffic congestion caused by the occurrence of weather 
events (e.g., convection, turbulence, icing) at specific 
locations (both horizontal and vertical) at specific times. 
However, rather than basingthe probability of congestion on 
a simple binary byes/no" forecast of a constraining weather 
event occurring, ensemble weather models would be used to 
provide the likelihood of the event occurring (JPDO, 20 10). 
That is, the probability information fiom the congestion 
models would be used in conjunction with the probability of 
occurrence of the weather events themselves to provide a 
more accurate description of the potential for air f l c  
capacity reductions in any given region. When the 
probability of air traffic congestion at a location due to a 
weather event exceeds a tolerable threshold, the air 
navigation service provider can take appropriate actions to 
manage the anticipated congestion (JPDO, 2010). 

In addition to en route congestion, forecast weather 
uncertainty information for terminal weather is also planned 
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for use in assessing ground delays and airport capacity, 
since forecasts of ceiling and visibility, surface winds, 
precipitation, winter weather, and convective activity can all 
have a significant impact on the available airport capacity at 
any individual airport. An example of such a use is 
forecasting the fog bum-off time at the San Francisco 
International Airport (SFO). Fog has a significant impact on 
airport capacity at SF0 when the early morning fog doesn't 
bum off but rather it persists well into the late morning rush 
of air traffic anivals. To help minimize impacts, research is 
being accomplished to incorporate weather uncertainty 
information into the SF0 ground delay program (GDP) 
algorithms. The goal is to use probability forecasts of fog 
burn-off times in conjunction with GDP algorithms to help 
determine optimal aircraft arrival times in an effort to 
minimize delays and manage risks, such as excessive 
airborne holding, diversions, and controller workload 
(JPDO, 20 10). 

While these are only two examples of several 
methods identified in the JPDO NEXTGEN Weather and 
Air Traffic Management Integration Plan for integrating 
weather forecast uncertainty information into decision 
support tools, they do help highlight the important role 
uncertainty information is expected to play in the future of 
air traffic management operations. 

Summary and Conclusions 
Uncertainty in weather forecasts is an unavoidable 

aspect of the prediction process, but having a priori 
knowledge of the degree of uncertainty provides the 
decision-maker a more complete picture of the expected 
environmental conditions and potential impact to their 
operations. Research to combine forecast uncertainty 
information with operational decision-support tools (such as 
cost-loss models) has demonstrated significant potential cost 
savings for various aspects of aviation operations. In 
addition, the JPDO NEXTGEN leadership has placed 
significant emphasis on the use of uncertainty information 
in future air traffic congestion mitigation and airport 
capacity planning. 

There are a variety of methods for objectively 
determining forecast uncertainty in aviation weather 
products. Three such methods were discussed in this paper, 
ensemble modeling, model output statistics, and "fuzzy" 
logic algorithms. These methods are currently used to 
produce, respectively, the SREF aviation product suite, the 
LAMP, and the CIP, which are currently available fkom 
NWS websites. It should be emphasized, however, that the 
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only product discussed in this article currently recognized 
by the FAA is the CIP icing product, and this product is only 
recognized as a supplemental product for enhanced 
situational awareness. 

Because of the potential benefits of uncertainty 
information and the extensive planned use in NEXGEN, 
instructors in aviation, especially at the graduate level, have 
a responsibility to open discussions with students regarding 
the exploitation of uncertainty information in aviation 
operations. While this paper provides a basic primer on 
three currently used methods for determining objective 
uncertainty information, it is by no me& exhaustive. Many 
others techniques are being developed or currently used in 
the research environment. 

Before using any uncertainty information the user 
should be knowledgeable of the strengths and limitations of 
the product. Questions to ask include, how is the uncertainty 
assessed, is it objectively determined or subjectively 
determined? Is the uncertainty information well-calibrated 
such that when a 40% probability of occurrence is given, the 
event occurs 40% of the time? What algorithms are used to 
determine if the hazard exists? If the probabilities are based 
on climatology, how long of a historical record was used? 
If the record is too short, the product may be incapable of 

predicting extreme events. These are just a few of a long list 
of potential questions that could be discussed in an academic 
setting. 

Although the use of objective uncertainty 
information provides the potential for improved decision- 
making, the information has little use unless combined with 
a decision support tool. To exploit uncertainty information 
to the fullest requires the user to thoroughly analyze their 
operations and tolerable risks to develop appropriate 
decision-support tools. This is not always straightforward 
and often requires the use of extremely complex decision 
models. Extensive research for the NEXTGEN effort is 
currently being conducting in this area. Again, discussions 
in this area are also well-suited for the academic as well as 
operational environment. 

On a final note, this article was not intended to 
make an expert out of the reader, but rather to increase 
awareness of the projected increased use of uncertainty 
information in weather information as well as provide a 
sample of methods used to assess uncertainty information. 
The goal is to provide a basic overview of the issue as well 
as help stimulate discussion both in the classroom and in 
operations regarding the use of weather forecast uncertainty 
information in aviation operations..) 
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