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Abstract

Recent nonlinear atmospheric models have provided important insight into acoustic
waves generated by seismic events, which may steepen into shocks or saw-tooth trains
while also dissipating strongly in the thermosphere. Although they have yielded re-
sults that agree with with observations of ionospheric perturbations, dynamical mod-
els for the diffusive and stratified lower thermosphere often use single gas approxima-
tions with height-dependent physical properties (e.g. mean molecular weight, specific
heats) that do not vary with time (fixed composition). This approximation is simpler
and less computationally expensive than a true multi-fluid model, yet captures the
important physical transition between molecular and atomic gases in the lower ther-
mosphere. Models with time-dependent composition and properties have been shown
to outperform commonly used models with fixed properties; these time-dependent
effects have been included in a one-gas model by adding an advection equation for
the molecular weight, finding closer agreement to a true binary-gas model (e.g. Wal-
terscheid and Hickey [2012]).

Here, a one-dimensional nonlinear mass fraction approach to multi-constituent
gas modeling, motivated by the results of Walterscheid and Hickey, is presented. A
flux-differencing finite volume method of is implemented in Clawpack with a Riemann
Solver to solve the Euler Equations including multiple species, defined by their mass
fractions, as they undergo advection. Viscous dissipation and thermal conduction are
applied via a fractional step method. The model is validated with shock tube prob-
lems for two species, and then applied to investigate propagating nonlinear acoustic
waves from ground to thermosphere, such as following the 2011 Tohoku Earthquake
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and rocket launches. The limits of applicability are investigated for vertically prop-
agating acoustic waves near the cut-off frequency, and for simulations of steepening
waves at finite spatial resolution. The addition of a mass fraction density introduce
noticeable fluctuations to the state of the atmosphere that can account for modula-
tion of acoustic waves. The model developed also has potential uses in parametric
studies, complementing more costly 2D and 3D models.
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Chapter 1

INTRODUCTION

1.1 Scientific Background

This chapter contains a review of important literature and introductory material that
provide basis for this thesis. The behavior of acoustic waves that propagate through
transition regions in the atmosphere depend on composition. Studies on acoustic wave
generation and their characterization are shown. This chapter’s conclusion outlines
the content of chapters that follow, and describes the contributions of this thesis.

1.1.1 Standard Atmosphere

Earth’s atmosphere consists of four layers defined by variations of temperature with
altitude: the troposphere, stratosphere, mesosphere, and thermosphere separated by
the tropopause, stratopause, and mesopause respectively. The atmosphere’s stratifi-
cation contributes to vertically varying atmospheric properties, e.g. variations of the
near exponential decay of pressure and density with altitude, which also influences
atmospheric wave propagation. To understand the effects of vertical variations of the
atmosphere on wave propagation, the layers will be described.

1
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Troposphere

The bottom-most layer of Earth’s atmosphere is the troposphere, that extends
from the ground to around 10-20 kilometers. This is the densest region of the atmo-
sphere, containing roughly four-fifths of the mass and 99% of the water vapor. This
region is characterized by a temperature gradient that decreases at a rate of about 8.5
K/m. As a result of the water vapor and temperature variations, most of the weather
occurs in this region. Natural processes and extreme weather may create acoustic or
gravity waves in this region that propagate upwards.
Stratosphere

The stratosphere is above the troposphere, is bounded at the bottom by the
tropopause and at the top by the stratopause, and extends between 20-50 kilometers.
This region holds about 20% of the atmosphere’s mass. The temperature and its
gradient increases with altitude due to the absorption of solar radiation. Ultraviolet
light breaks down oxygen into atomic oxygen and recombines with oxygen molecules
to create the ozone layer. An increase in temperature gradient results in an increase
in stability such that atmospheric waves can easily perturb the middle stratosphere
region.
Mesopshere

The mesosphere (altitude range: 50-85 kilometers), similar to the troposphere, has
a negative temperature gradient, but is rarefied compared to the layers below. At the
top of the mesosphere, the ionosphere begins as electron and ion densities increase.
The mesopause transition region of the upper mesosphere and the lower thermosphere
is where atmospheric waves experience dramatic growth. The mesosphere has been
difficult to study due to its altitude, but the mesopause is readily measured due
to airglow and metal layers. As gravity waves reach the mesopause, they are often
responsible for significant turbulence due to energy dissipation, and acceleration of
flows due to their momentum flux.
Thermosphere

The most rarefied of the five layers is the thermosphere, which is located above the
mesopause (around 90 kilometers). The temperature increases in this region due to
solar radiation, and stabilizes in the exosphere. Similar to the upper mesosphere, it is
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Figure 1.1: The atmosphere’s major constituents number density variations (left)
and temperature variations with altitude. The layers are defined through regions of
a temperature gradient equal to zero, or through a sign change from previous layer.
The profile was obtained from NRLMSISE-00 Picone et al. [2002].
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difficult to study the motion of the thermosphere without indirect measurements such
as of ionospheric densities. Atmospheric waves have a significant contribution to the
variability of atmospheric parameters. Waves with large scale (both horizontal and
vertical) will often dominate the wind field in the mesophere and lower thermosphere
(MLT) [Vadas et al., 2003], and can often break, which produces body forces that
drive large scale circulations and secondary waves [Vincent, 2015]. The lower ther-
mosphere experiences vertical dynamical mixing in the transition region, and, due to
the atmosphere’s rarefaction, molecular diffusion produces gravitational separation
of species. This thesis seeks to contribute to the modeling of acoustic waves at very
low frequencies in this region – the mesosphere and lower thermosphere – as their
composition varies dramatically with altitude.

1.1.2 Literature Review

Waves in the atmosphere have been studied indirectly by measurements and theory
for over two hundred years. The early 1900s saw advancements in our understand-
ing of atmospheric waves which resulted in the classification of the different types
of atmospheric waves. The accessibility of instruments, maturity of theory, and ad-
vent of numerical models has resulted in considerable interest in the study of waves
in the atmosphere, especially in the last fifty years. Current research areas include
the attempt to identify signatures of large scale geophysical disturbances through at-
mospheric waves, and the investigation, via numerical models, of physical processes
caused by waves in the atmosphere. Due to the large volume of work involved with
waves in the atmosphere, this thesis will focus on acoustic waves only, excluding grav-
ity waves. Atmospheric acoustics became more prominent along with measurements
of infrasound in literature during the late 1960s after the invention of echosonde, or
sodar along with measurements of infrasound Gossard and Hooke [1975]. Before the
work of this thesis is outlined, it is relevant to include the work done in this branch
of atmospheric waves, e.g. infrasonic acoustics, related to the work outlined in this
thesis. The reader is encouraged to read Whitham [1999] and Pierce [1989] for more
complete descriptions of nonlinear acoustic waves.
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1.1.3 Acoustic Wave Observations

Acoustic waves can be generated in the atmosphere as a result of a number of sources,
which are reviewed in this section to better understand the processes leading to verti-
cally propagating acoustic waves. Infrasonic waves can occur due to man-made distur-
bances, such as nuclear detonations, and natural processes, such as severe storms and
earthquakes. Ionospheric disturbances with time scales of acoustic waves have been
measured over the past fifty years; Gossard and Hooke [1975] and McKisic [1997] are
among those that have reviewed different sources for the purpose of infrasonic mon-
itoring. Baker and Davies [1968] classified waves in the ionosphere that followed a
nuclear detonation near Johnston and Christmas Islands in the Pacific and in Novaya
Zemlya. The wave fluctuations were calculated from radio waves reflected from the
F2 layer (at altitudes between 150-200 kilometers) measured with a 4,5 and 10MHz
ionosonde, converting signal variations into changes of ionization and electron density.
From the changes in ionization, they were able to deduce the group velocity of waves,
which were compared to theoretical acoustic and gravity mode dispersion relations.
Most of the observed waves with 30s - 10min periods were found to be in the acoustic
domain. Their results supported Row [1966], who created a simple closed-form ap-
proximation of long-period pulse propagation in an isothermal stratified atmosphere.
He applied his model to the Novaya Zemlya nuclear detonation and the 1964 Alaskan
earthquake, which were interpreted with the use of similar techniques stated above.
Row’s findings offer an interpretation of the long-period oscillations data collected in
the F-region, in the case of the nuclear detonations, but his model neglected impor-
tant physical processes, such as the effects of viscosity and thermal conduction, which
were known to play a role in theory.

Ionosonde data played an important role in the early establishment of acoustic-
gravity wave measurements and their interpretations. The combination of theo-
retical predictions of group velocities compared to experimental data measured by
Wickersham [1966] and King [1965] revealed fully ducted, acoustic-gravity modes
where they were expected, but not previously observed. Wickersham [1966]’s work
matched theoretical velocities with lower experimental velocities provided by Stoffre-
gen [1962]. Kanellakos [1967] was able to match their theoretical-empirical formula
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to the ionosonde data from various stations following the detonation of nuclear bomb
test approximately 450 km southwest of Johnston Island to determine the influence of
Earth’s magnetic field on the interaction of a neutral acoustic-gravity wave, assumed
horizontal travel, as it interacts with ionized constituents of the upper atmosphere.
The latter paper formed much of its basis on the results of Hines [1960] and Hines
[1965] that discussed the role of internal atmospheric gravity waves in heat transfer
in the upper atmosphere.

Disturbances in the ionosphere measured by height variations in the phase of
ionospherically reflected radio waves are also caused by singular, large scale surface
events. Smaller more common disturbances, e.g. lightning, were also suspected as
a source of ionospheric disturbances during the 1960s, with notable observations by
Anderson [1960]. His observations were analyzed by Pierce and Coroniti [1966] who
indicated the oscillations observed in storm cells should act as sources of waves. They
predicted that waves with 10min periods would be produced. Years later, 3-5 minute
periods wave trains were observed and Pierce and Coroniti [1966], concluded the
frequency was doubled due to non-linear interactions in the source. Within the 3-10
minute period waves observed, only narrow bands were seen at high altitudes which
was later given a qualitative explanation by Chimonas and Peltier [1974] as a result
of interference of multiple reflections between the lower troposphere and the lower
thermosphere.

Acoustic-gravity wave observations were first appreciated during the 1960s-1980s,
confirming theoretical predictions with measurements based on measured ionospheric
perturbations from ionosodes. Yeh and Liu [1974] provided a comprehensive, the-
oretical, review and characterization of the sources of acoustic-gravity waves based
on their effects in the upper atmosphere. The sources of acoustic-gravity waves were
sorted into: impulsive sources, sources due to seismic activity such as earthquakes,
magnetic-storm related sources (e.g. displacement of supersonic auroral arcs due
to the Lorentz Force), medium-scale disturbances due to mountain waves or severe
storms, and short-period, (specifically infrasonic) disturbances, due to moving auro-
ral jets. These categorizations come from observations reported in previous papers,
such as a correlation between the high frequency Doppler recorder in Honolulu that
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measured ionospheric perturbations at 300 kilometers, which was compared to seis-
mograph data of a Rayleigh component of the seismic wave in Oahu, Hawaii. The
time it took for the Rayleigh waves to arrive to Oahu at a predicted rate of 3.9 km/s
with a 25 second period was compared to the time it took for the atmospheric dis-
turbance to arrive to the Doppler recorder which matched well with the predicted
value.

Yeh and Liu [1974] reviewed multiple methods of acoustic-gravity wave detection,
and reported upper atmospheric heating due to acoustic-gravity waves, which was the
focus of Hickey et al. [2001]. Hickey et al. [2001] conducted their study on acoustic
waves revealing that persistent short period waves were primarily responsible for the
heating of the upper thermosphere. Blanc [1985] also reviewed upper atmosphere dis-
turbances related to energetic infrasonic sources, which include earthquakes, volcanic
eruptions, polar aurora, convective storms, rocket launches, and powerful explosions.
The characteristics of the waves depend on the source of the disturbance, for instance
through vertical displacement of the ground displacements in the case of buried explo-
sions. Although acoustic wave propagation in the atmosphere had its own theoretical
studies, and observations (see Gossard and Hooke [1975] for an extensive list of early-
known sources of infrasound), acoustic waves studies became more prevalent in the
1990s when the use of GPS data became a prominent medium of atmospheric wave
detection.

Calais and Minster [1995] used GPS data gathered from the 1994 Mw = 6.7

Northridge earthquake to estimate fluctuations to ionospheric electron content. Data
gathered from a GPS network is discussed in the terms of total electron content
(TEC). They used the delayed radio broadcast signals of four GPS observables and
converted the delayed signals in the ionosphere into TEC, and produced results that
agreed well with numerical predictions, e.g. Davies and Archambeau [1994]. GPS
arrays provide researchers with the opportunity to observe the source of an atmo-
spheric wave, and the shock near, or above where the source originated. This allowed
for more robust studies, leading to the development of theory and characterizations
of acoustic waves in TEC. Afraimovich et al. [2000] used GPS data to investigate the
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parameters of shock-acoustic waves generated during rocket launches. They devel-
oped an interferometric method to determine shock-acoustic wave parameters, such
as phase velocity, that could determine the wave parameters without a priori informa-
tion of the site and time of a rocket launch, as opposed to traditional radio-detection
techniques. Several case studies were considered, e.g. SOYUZ rocket launches, and it
was found that all of the general launches produced characteristic N-waves, with pe-
riods between T = 270− 360 seconds, and amplitudes that exceeded the background
TEC fluctuations. Previous publications had uncertain localization of the shock’s
region of generation, and varied definitions of fundamental parameters to define the
shock acoustic wave, in the case of Karlov et al. [1980], and Nagorsky. [1998, 1999]
who studied the Apollo mission launches. The ionospheric oscillation periods mea-
sured varied from 6 to 90 minute, and the propagation velocity was in the range of
600-1670 m/s, with several accompanied waves recorded after the first shock measure-
ment. Afraimovich et al. [2000] identified shock-acoustic wave period in the range of
270-360 seconds, with wave vector angle of 35− 60◦, and a phase velocity of 900-1200
m/s which approaches the sound velocity at heights in the F-region which makes it
possible to identify the sound nature of a TEC perturbation. GPS facilitated iono-
spheric observation that led Artru et al. [2004] to describe tsunami-induced gravity
waves, which were predicted by Peltier and Hines [1976]. A continuation of Artru
et al. [2005] led to an atmosphere-ocean coupled model which, when the ocean fre-
quencies are above transition frequency, render acoustic-gravity waves that radiate
their energy into the upper atmosphere. They concluded the acoustic-gravity waves
of oceanic origin may have an observable impact on the upper atmosphere.

Contemporary measurements of atmospheric waves involve a combination of the
aforementioned methods of detection as well as other remotely sensed sensors. Obser-
vations made with GRIPS (GRound-based Infrared P-Branch Spectrometers) allowed
Le Pichon et al. [2013] to develop an automatic identification of spectral features and
association to distinct infrasound sources based on airglow observation. These ob-
servations were validated for case studies of infrasonic waves of orgraphic origin (e.g.
mountain associated waves), and due to volcanic and meteorological activity. The al-
gorithm developed allowed several sources of infrasonic waves to be categorized based
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on their amplitude at the mesopause region, and their period based on the airglow
data. Farges et al. [2005] used a combination of cameras, and microbarometers to
capture information on more than 130 sprites, to identify infrasound signals gener-
ated by sprites through simultaneous observation. Propagation times were estimated
with use of a paraxial ray tracing model [Virieux et al., 2004]. Many acoustic wave
observations come from a large-scale source and have limited instances of observation,
whereas Le Pichon [2002] and Garces et al. [2004] characterized acoustic wave propa-
gation and atmospheric characteristics based on a wide range of data. In the case of
Le Pichon et al. [2005], they monitored active volcanoes in the Vanuatu archipelago
and determined mesospheric zonal winds are underestimated in the range of 20-50m/s.
Volcanic sources are unique since eruptions often involve a sudden, uncorked pressure
release at the top of the volcano and hot gazes and rock fragments are ejected incur
acoustic or shock waves. Le Pichon [2002] compared the measurements of daily micro-
baragraph data from France of supersonic Concorde flights between North America
and Europe. The signals were used to investigate the effects of atmospheric vari-
ability on long-range sound propagation and compared to predictions obtained from
theoretical ray path tracing in an atmospheric model; whose results include the abil-
ity to estimate wind velocity fluctuations at the reflection heights based on ground
measurements.

The sources of atmospheric acoustic waves, and their effects on the atmosphere are
not limited to the cases discussed above. For more material, the reader is encouraged
to read comprehensive reviews, such as McKisic [1997] and Pichon et al. [2010].

1.1.4 Acoustic Wave Models

The nonlinear processes in the atmosphere challenge scientists and engineers to bal-
ance necessary computations, done through the simplification of mathematical models
and inclusion of necessary physical processes, to produce solutions that agree with
measured quantities at reasonable cost. However, there are some processes that are
necessary to include numerical simulations of atmospheric waves, and the assumptions
made depend on the region of the atmosphere in question and the type of processes
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which are dominant. There are processes that are known to have minimal effects in
the thermosphere such as eddy diffusion, ion drag, and the Coriolis force, that can
be ignored for acoustic waves. Del Genio et al. [1978] showed wave-induced diffusion
results in the phase and amplitude relationships between density fluctuations of in-
dividual atmospheric constituents to agree with AE-C satellite observations with a
two-dimensional, two-gas, hydrostatic (isothermal), inviscid neutral atmosphere. As
opposed to the observations of Dudis and Reber [1976] who studied acoustic-gravity
waves in an isothermal atmosphere in diffusive equilibrium, but neglected the diffu-
sive separation caused by the waves. Del Genio et al. [1978] results supported the
notion that molecular diffusion above the turbopause prevented the atmosphere from
being well-mixed which affects wave propagation.

Numerical models began to develop more after the 1990s. Hickey et al. [2001]
proposed vertically propagating thermospheric acoustic waves, due to thunderstorms,
could be the source of oscillations in the F-region. Walterscheid et al. [2003] reached
a similar conclusion with their axisymmetric, f-plane, nonlinear, time-dependent nu-
merical model, which they used to simulate acoustic waves in the mesosphere and
thermosphere by intense deep convection in the troposphere. The implications of
their work supports Hickey et al. [2001] conclusions, and the measurements made by
Meriwether et al. [1996], who suggested acoustic waves might be responsible for the
equatorial hot spot observed in airglow data over the Andes Mountains. Krasnov et al.
[2007] conducted a parameteric study to determine when an acoustic wave, launched
from Earth’s surface, "broke". They found that the location of the "transformation
zone", is inversely correlated to the acoustic wave frequency. The "transformation
zone" absorbs a large part of the acoustic signal which contributes to the heating that
has been detected and measured in that region.

Chum et al. [2016] highlighted the importance of nonlinear numerical simulations
through a comparison of a linear and nonlinear numerical models of ionospheric fluc-
tuations measured by continuous Doppler sounding at an altitude of 185 kilometers
after a magnitude Mw = 8.3 earthquake offshore of the Coquimbo region of Chile in



CHAPTER 1. INTRODUCTION 11

2015. The measured vertical velocity of ground surface motion was used as bound-
ary conditions in the system of compressible viscous fluid equations. The nonlin-
ear numerical simulation of infrasound propagation explained the observed waveform
with higher accuracy than the linear numerical model whenever the velocity of the
air particles became comparable with the local sound speed. The role of nonlinear
effects on the measured atmospheric response due to the earthquake was explored
through the reduction of the initial perturbation (by 10−3) which resulted in the ab-
sence of the N-shaped pulse. One-dimensional models, such as used by Chum et al.
[2016], are valuable in their applicability to various case studies at low computational
cost, at the expense of generality of geometry and assumptions about propagation.
Direct numerical simulations of the two-dimensional unsteady, single-gas, compress-
ible Navier-Stokes equations with thermoviscous effects included, were presented by
Sabatini et al. [2016], using a high-order-finite-difference time-domain algorithm. The
purpose was to study the long-range infrasound propagation through direct numerical
simulation, including comparisons between linear and nonlinear sources which, like
Chum et al. [2016], identified shock and N-wave formations in the upper atmosphere
that correlated to the nonlinear sources. Molecular dissipation and nonlinearities are
both increased by the decrease of the mean density with altitude.

Walterscheid and Hickey [2001, 2005] found vertically propagating acoustic waves
can significantly contribute to thermospheric heating. Walterscheid and Hickey [2001]
used a used a full-wave model to investigate whether dissipation of acoustic waves
cools or heats the thermosphere. They found that vertically propagating acoustic
waves can increase in scale from the mesosphere to the thermosphere and contribute
significantly to the heating of the upper atmosphere. Walterscheid and Hickey [2005]
used the same model used in Walterscheid and Hickey [2001] to examine acoustic wave
generation by winds over hilly terrain. The results of their simulations could explain
thermospheric hot spots near the Andes as reported by Meriwether et al. [1996].

Walterscheid and Hickey [2012] investigated gravity waves, where they imposed
variations of compositional effects through the comparison of two one-gas full wave
models: one where the molecular mass was fixed (fluctuations are zero), and the other
where the molecular mass is conserved after parcel displacement. The gas models were
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compared to a binary-gas model (mixture of atomic oxygen and molecular nitrogen).
When the molecular mass is conserved, the results agreed with their binary-gas model
which implied molecular mass variation contributes to the accuracy of the model.
While acoustic waves at high frequencies do not meaningfully modulate composition,
nonlinear acoustic waves at low frequencies can, which will be investigated in this
thesis.

Zettergren et al. [2017] analyzed GPS-derived TEC to study the ionospheric
response to infrasonic-acoustic waves caused by the 2011 Tohoku earthquake and
tsunami. Their 2D simulations combined an ionospheric model, that captures chem-
ical production and loss, and impact ionization with an atmospheric model, which
solves for the neutral dynamics through the Euler equations coupled with solutions
for molecular viscosity and thermal conduction. The neutral dynamics model is a
variant of that used in Snively and Pasko [2008], which solved a similar set of equa-
tions for an inviscid atmosphere to describe thermally ducted wave modes in the lower
thermosphere from a tropospheric source. Matsumara et al. [2011] had modeled the
same earthquake and tsunami with a two-dimensional nonlinear neutral numerical
model (with the basic state of the atmosphere derived from the NRLMSISE-00 em-
pirical model) with an impulsive upward surface motion as the source of the perturba-
tions. Although their source was weaker, they found dominant frequencies near the
epicenter that indicated acoustic resonances between the ground-surface and lower
thermosphere were excited by the earthquake. Thus, the ionospheric oscillations de-
tected in the TEC were mainly due to the motion of the neutral atmosphere. Similar
model simulations was reported in Zettergren and Snively [2013] and Zettergren and
Snively [2015] also concluding that ionospheric signatures could provide insight into
the forcing of the upper atmosphere from below, under a variety of sources and con-
ditions. The 1D models developed in this thesis will be fully compatible with ones
used previously by Zettergren and Snively [2015], but including additional physics.
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1.1.5 Problem Formulation

This thesis is concerned with the development of a new approach that will be useful in
modeling low frequency nonlinear acoustic waves while capturing the resulting mod-
ulation of the atmosphere. Interesting results can be achieved with linearized models,
as shown above, however, nonlinear processes cannot be neglected as shown by Chum
et al. [2016]. Other types of numerical approaches to atmospheric infrasonic propa-
gation have been done, such as ray tracing, parabolic models, or normal mode theory
which are beyond the scope of this thesis. Acoustic wave propagation, especially in
the transition region between the mesosphere to the thermosphere remains a perti-
nent area of study, one this thesis seeks to make a contribution. A one-dimensional,
nonlinear, mass fraction approach to multi-constituent gas modeling, motivated by
the results of Walterscheid and Hickey [2001, 2012], that captures important physical
transitions between molecular and atomic gases in the lower thermosphere is devel-
oped. The model will use NRLMSISE-00 as the basic state of the initial atmosphere
and solves for perturbations made to it. It will be applied to a range of test cases for
validation and to investigate modulation of composition and parameters.

1.1.6 Organization of the Thesis

Chapter 1 has served to introduce the reader to the literature relevant to the study
of acoustic waves and to provide general background development. There is ter-
minology that is developed in this chapter, which will be useful in later chapters,
especially in the mathematical formulation of this study. Chapter 2 provides the
theoretical basis of the thesis, and shows the equations that govern the gases in the
atmosphere and introduces the mass-fraction density approach to be used. There are
several assumptions that are made within this chapter which are necessary for their
discrete treatment in a numerical model. Chapter 3 will discuss the discretization
of the equations discussed in Chapter 2, with an emphasis on the implementation of
CLAWPACK, and the various methods and assumptions that accompany this soft-
ware suite. In addition, validation of important cases, such as a shock tube test and
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Riemann problem, are shown. Chapter 4 investigates the properties of the mass-
fraction model where the results of the 1D mass-fraction model are compared to the
results of higher-dimensional models. Lastly, Chapter 5 will discuss the conclusions
reached in from the material in Chapter 4, and describe future uses for this model.
The Appendix will provide additional details that were not developed in the main
chapters.



Chapter 2

MATHEMATICAL MODEL

List of Symbols

Symbol Description
ρ Density [kgm−3]
v Velocity [m/s]
g Acceleration due to gravity [m s−2]
γ Specific heat ratio
R Specific gas constant
cs Speed of sound [m s−1]
p Pressure [Pa]
E Energy [J]
q Variables of state
Hs Scale height [m]
H Enthalpy [J]
k Wave number [m−1]
Ys Mass-Fraction density of species s
u Velocity used for single gas model [m s−1]
ωA Acoustic cutoff frequency
ωN Brunt-Väisälä frequency
χ′ Perturbation of variable "χ"
χr Radial value of variable "χ"
χ0 Background value of variable "χ"

15
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2.1 Physical and Mathematical Basis

2.1.1 Stratified Atmosphere

Earth’s middle atmosphere and lower thermosphere can be approximated as an ideal
mixture of ideal gas comprising its major components O, O2, and N2. This approx-
imation requires the atmosphere’s highly variable components, e.g. water vapor or
ozone, be treated separately from the primary atmospheric gases Salby [2012]. To
begin, the equation of state for an ideal single-component gas takes the form:

p = ρRT, (2.1)

where p, ρ, and T refer to the pressure, density, and temperature of the gas, and
R = R∗/M , where R is the specific gas constant, R∗ is the universal gas constant, and
M is the molecular mass of the gas. The equation of state and the hydrostatic equation
can be applied to an unperturbed, isothermal atmosphere. Consider Newton’s second
law applied to an area dA; the columns of air experience a force pdA and a column of
air incrementally higher experiences a force (p+dp)dA. After the forces are balanced
with buoyancy, the equilibrium equation that results is

dp

dz
= −ρg = − pg

RT
. (2.2)

In this relation, net vertical acceleration is zero and it is assumed that there are no
other physical processes present. Equation 2.2 is known as the hydrostatic balance
equation which describes a gas that is at rest White [2008]. It describes the vertical
pressure gradient as a function of the gas layer’s weight above it. The hydrostatic bal-
ance equation has an analytical solution under the assumption of a locally isothermal
gas and a constant acceleration due to gravity. Equation 2.2, when integrated from
a reference altitude z0 to a higher altitude z, leads to a solution of an exponentially
decaying density and pressure with altitude:

(p, ρ) = (p0, ρ0) exp

(
−
∫ z

z0

dz′

Hs

)
, (2.3)
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Figure 2.1: The atmosphere’s density and pressure with altitude (left) and the tem-
perature and speed of sound with altitude (right).

where the scale height Hs is introduced as Hs = RT/g. The scale height describes
the altitude over which the atmosphere’s density reduces by a factor of e (Euler’s
number). If the reference altitude z0 = 0, the result of integration is

(p, ρ) = (p0, ρ0) exp (−z/Hs). (2.4)

The speed of sound is dependent on the compressibility of the medium through which
it propagates, usually expressed as the material’s Bulk Modulus.
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Figure 2.2: The mean molecular weight (left), mass fraction density (center), and the
specific heat ratio and specific gas constant (right) as a function of altitude.
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In the case of a gas, the compressibility depends on the specific heat ratio γ and
pressure p, expressed as

c2s = γRT =
γp

ρ
, (2.5)

where γ = cp/cv is the ratio of specific heat constant pressure cp divided by specific
heat constant volume cv. The ratio of specific heat reflects the layers of the atmosphere
that are mixed. The lower atmosphere is dominated by diatomic gases (N2), where
γ = 1.4, whereas in the upper atmosphere γ = 1.67, which is the value for monatomic
gases. To calculate for the value in regions of mixed composition, the relation for
specific heat ratio is given by Banks and Kockarts [1973]:

γ =
7([N2] + [O2]) + 5[O]

5([N2] + [O2]) + 3[O]
, (2.6)

where the brackets [·] represent the number density of the compound inside the brack-
ets. The definitions outlined above, in particular the locally isothermal atmosphere,
are assumed to derive a linear dispersion relation for acoustic-gravity waves in Section
2.1.3.

2.1.2 Euler Equations

The Euler equations are a system of nonlinear partial differential equations that
describe the conservation of momentum, mass, and energy in a compressible fluid:

∂ρ

∂t
+∇ · (ρ~v) = 0, (2.7)

∂

∂t
(ρ~v) +∇ · (ρ~v~v) +∇p = −ρ~g, (2.8)

∂E

∂t
+∇ · {(E + p)~v} = −ρ~g · ~v. (2.9)

They are closed under the ideal gas law and the definition of energy:

E =
p

γ − 1
+

1

2
ρ(~v · ~v). (2.10)
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These equations are a special case of the Navier-Stokes equations with no rotational,
viscous, or thermal conduction terms. The Euler equations neglected terms, associ-
ated with the fluid’s viscosity and thermal conduction, will be addressed together in
the Section 2.1.4; rotational forces are negligible for waves considered in this thesis.

2.1.3 Linear Dispersion

To determine characteristics of a stratified atmosphere, the two dimensional linear
Euler equations are considered for the conditions where a dispersion relation can
arise. For this derivation, atmosphere with no background wind is assumed. In
addition, density and pressure do not vary in the horizontal direction. The linearized
state, in terms of atmospheric primitive variables, takes the following form:(

ρ

p

)
=

(
ρ0

p0

)
+

(
ρ′

p′

)
,

(
vx

vz

)
=

(
��v0,x

��v0,z

)
+

(
v′x

v′z

)

Where the subscript 0 represent the background values and the ′ represent the per-
turbed value. If the background quantities remain time-invariant and the perturba-
tions are assumed small enough to where the products of first order perturbations
can be neglected, the two-dimensional, compressible, linearized Euler Equations for
a compressible and stratified atmosphere are obtained:

∂ρ′

∂t
= −ρ0

∂v′x
∂x
− ρ0

∂v′z
∂z
− v′z

∂ρ0
∂z

, (2.11)

∂v′x
∂t

= − 1

ρ0

∂p′

∂x
, (2.12)

∂v′z
∂t

= − 1

ρ0

∂p′

∂z
− ρ′

ρ0
g, (2.13)

∂p′

∂t
= −v′z

∂p0
∂z
− γp0

(
∂v′x
∂x

+
∂v′z
∂z

)
. (2.14)
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Equations 2.11-2.14 can be combined to determine a dispersion relation with the
assumption that velocity and pressure are described with plane waves:

(v′, p′) = (v′z, p
′
z) exp [j (kxx− kzz − ωt)].

When the Euler equations and hydrostatic atmosphere assumptions are combined
(see [Hines, 1960] for a complete derivation), a wave equation arises

d2v′z
dz2
− gγ

c2s

dv′z
dz

+
k2x
ω2

[
g2γ

c2s
− ω2

]
v′z = 0. (2.15)

The perturbed gas vertical acceleration (∂v′z/∂z) in Equation 2.15 is eliminated when
the velocity is scaled by a factor of

√
ρs/ρ0 where ρs is the density at a reference

altitude. The scaled term is a result of the conservation of kinetic energy and the
earlier assumption of hydrostatic equilibrium which has density exponentially decrease
with altitude. The vertical velocity will also increase exponentially with altitude. The
perturbed variables can be rescaled by:

v′z = w′z

√
ρs
ρ0
.

Using Equation 2.15, a wave equation for the normalized vertical wave perturbation
is shown in Equation 2.16.

d2w′z
dz2

+

[
ω2 − ω2

A

c2s
− ω2 − ω2

N

v2φ

]
w′z = 0, (2.16)

k2z =
ω2 − ω2

A

c2s
− ω2 − ω2

N

v2φ
, (2.17)

where vφ = ω/kx is the horizontal phase velocity. The assumption of an isothermal
stratified atmosphere helps to deduce intrinsic characteristics of the atmosphere that
are relevant to this study. The Brunt-Väisälä frequency, ωN , is the frequency at which
a parcel of air in a stratified atmosphere, when displaced vertically, will naturally
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Figure 2.3: Dispersion curves for wave propagation in a compressible, gravitationally
stratified medium for a given height in the atmosphere. Image adopted from Vigeesh
et al. [2017] and Gossard and Hooke [1975].

oscillate. For this isothermal case it is:

ωN =
g

cs

√
γ − 1. (2.18)

As this thesis focuses on acoustic waves, attention is also directed towards the acoustic
cutoff frequency. The acoustic cutoff frequency, ωA, is the minimum frequency of a
vertically-propagating acoustic wave and can generally be defined by [Gossard and
Hooke, 1975]

ω2
A =

1

4
c2s

[
d

dz
ln (ρ0)

]2
. (2.19)
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For acoustic wave motion in an isothermal atmosphere, as assumed in the derivation
of Equation 2.16, the expression becomes:

ωA =
gγ

2cs
. (2.20)

These definitions help to characterize the types of problems that can be solved, by
classifying wave propagation regimes.

2.1.4 Viscous Diffusion and Thermal Conduction

The Euler equations do not include viscous diffusion (molecular viscosity) or thermal
conduction terms, which are important for acoustic wave dissipation in the ther-
mosphere. As infrasonic acoustic waves propagate through the atmosphere, they
experience damping by other processes as well, as described in the work done by
Sutherland and Bass [2004]. However, these terms are neglected due to the spectra of
interest. The primary diffusion processes take the form of Fick’s second Law, within
the one-dimensional form as follows

∂Φ

∂t
= D∂

2Φ

∂x2
, (2.21)

where Φ is the quantity being diffused and D is the diffusion coefficient. The ex-
pressions for viscous and thermal diffusion can be deduced after the Navier-Stokes
equation are simplified from the Euler equations; to arrive at an expression in the
same form as Equation 2.21 that numerically can be solved by time-splitting. The
Navier-Stokes momentum equation is realized when viscosity is added to the Euler
equations.

∂(ρ~v)

∂t
+∇(ρ~v~v) +∇p = µ∇2~v +

1

3
∇(µ∇ · ~v)− ρ~g, (2.22)
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The Euler equations and diffusive terms are solved separately using a time-split
method which takes the following form

∂u

∂t
= F (u) +G(u), (2.23)

where F (u), G(u) represent parts of a differential equation that will be solved sepa-
rately. The general Euler equations prior to have been established in Equation 2.7-2.9
prior to, and the 1D numerical discretization will be presented in Chapter 3. The
following address the diffusive equations:

Thermal Conduction

Thermal conductivity for this study is considered for the perturbed states in the Euler
equations. An expression modeling the effects of thermal conduction can be derived
starting from the conservation of energy for a fluid in the atmosphere. In simplest
form, thermal conduction is expressed via Fourier’s Equation

~q = −κ∇T, (2.24)

where κ is the thermal conductivity coefficient. The expression for heat flux combined
with the equations given in the diffusion section (another form of the Navier-Stokes
equations) results in Equation 2.25

∂E

∂t
= −∇ · {(E + p)~v} − ρ~g~v︸ ︷︷ ︸

Euler energy equation

+ (∇ · τ) · ~v +∇ · ~q︸ ︷︷ ︸
viscous and

thermal conduction

, (2.25)

where τ are the stress tensor in [N/m2]. The notation here indicates two portions of
the conservation equation that will be solved using a time-split method. The focus of
this section is on the viscous and thermal conductivity portion which take the form

∂E∗

∂t
= ∇ · ~q + (∇ · τ) · ~v, (2.26)
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where E∗ represents the time-split energy that solves the thermal conduction sepa-
rately from the Euler energy equation in Equation 2.25. The effects of viscous stress
on energy redistribution is negligible compared to the thermal conduction, so the vis-
cous tensor term is approximated using the form shown by recalculating the kinetic
energy distributed by viscosity. If the energy in Equation 2.26 is defined as

E∗ = q = ρcpT, (2.27)

where cp is the specific heat, constant pressure. With the assumptions listed above,
the one dimensional thermal conduction equation:

∂T ∗

∂t
=

κ

ρcp

∂2T ∗

∂z2
= α

∂2T ∗

∂z2
, (2.28)

where T ∗ is the time-split Euler temperature, and α is the thermal diffusivity in m2s−1.
Equation 2.28 takes the form of the one dimensional heat equation, which has well
established numerical solutions that are presented in Section 3. Thermal diffusivity
is dependent on chemical composition, density, temperature, etc. and are usually
approximated since there isn’t a useful general solution. The thermal conductivity
coefficients κ used in this thesis are determined with an empirical relationship as
shown in Rees [1989]

κ =

∑
j

Cjnj∑
j

nj
TB. (2.29)

The parameter B is a fit coefficient and has a value of B = 0.69 for all major at-
mosphere species. nj is the concentration of the jth constituent, Cj is the numerical
coefficients approximated for the empirical equations (whose values are shown in Ta-
ble 2.1), κ is the thermal conductivity in [erg cm−1s−1K−1]. An example of a thermal
diffusivity profile (m2/s) that was used in this thesis is shown in Figure 2.4.
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Figure 2.4: The empirical dynamic viscosity and thermal conductivity derived in
Rees [1989] with altitude (left). The Prandtl number (right) is defined as the ratio of
thermal diffusivity to kinematic viscosity.
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Table 2.1: Tables of the major atmospheric constituents and their fit parameters for
thermal conductivity and viscosity obtained from Rees [1989]

j Aj Cj

N2 3.43× 10−6 56
O2 4.03× 10−6 56
O 3.90× 10−6 75.9
He 3.84× 10−6 299
H 1.22× 10−6 379

Viscosity

Viscosity describes a fluid’s resistance to deformation, and measures how strongly
layers are coupled by friction. Molecular viscosity becomes significant in the atmo-
sphere due to large collisional scales. These processes become significant in the upper
atmosphere, for example dynamic viscosity, µ in [Pa · s], is used as the constant of
proportionality in Newton’s Law to relate shear stress to a velocity gradient and kine-
matic viscosity, ν = µ/ρ in m2s−1 will be used in the final numerical expression for
applied physical viscosity. The momentum equation from Equation 2.22 divided by
the density (with the assumption that the perturbed density is negligible is separated
into a time-split format. Considering only the viscous terms:

∂ ~v∗

∂t
= ν∇2~v +

ν

3
∇(∇ · ~v)

1

ρ
, (2.30)

where the kinematic viscosity, ν = µ/ρ has replaced the dynamic viscosity. The two
labeled portions of Equation 2.30 indicate the viscous effects will take a similar form
to the thermal conduction solution. In one-dimension, the viscous equation takes the
form

∂v∗z
∂t

=
4ν

3

∂2v∗z
∂z2

, (2.31)

where v∗z is the time split vertical velocity that is solved separately from the Euler
Equations. Similar to the thermal diffusivity calculation, kinematic viscosity depends
on several parameters. To calculate the kinematic viscosity, an empirical expression
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derived by Rees [1989] is used to calculate the dynamic viscosity ηj

η =
∑
j

AjT
B, (2.32)

where ηj is the dynamic viscosity in [gm cm−1s−1], and Aj is the numerical coefficients
approximated for the empirical equations (shown in Table 2.1). A typical profile
for the molecular viscosity with altitude is shown in Figure 2.4. Molecular Theory
states conductivity κ is directly proportional to ν. For air in a temperature range of
200K ≤ T ≤ 1000K with a constant specific heat at constant pressure cp [Rees, 1989]

Pr ≡
νρcp
κ
≈ 4γ

9γ − 5
, (2.33)

where Pr is the Prandtl number which is a metric to compare momentum diffusion
to thermal diffusion. Prandtl values less than one indicate thermal diffusion is the
dominate process in the fluid. Eddy viscosity which results from small-scale vorticity
is ignored since its effects are unimportant in the thermosphere where molecular
viscosity is dominant.

2.1.5 Chapter Summary

This chapter has presented the mathematical basis and the acoustic wave equations
of motion and dispersion used in this thesis. It also provided a reference for the
numerical methods presented in the next section. Parameters that characterize a
one-gas system and a stratified atmosphere, such as the ideal gas law for a mixture,
the speed of sound, and molecular diffusion and thermal conductivities were defined.
The Euler equations, a simplified, non-diffusive Navier-Stokes equations, were pre-
sented in their one-dimensional form. Diffusive processes, molecular viscosity and
thermal conduction, are important when discussing the processes that occur in the
thermosphere, will be time-split from the Navier-Stokes equations and approximated
in one-dimension in the form of Fick’s Law.



Chapter 3

NUMERICAL MODEL

IMPLEMENTATION

This chapter focuses on the numerical methods that are used to solve the one-
dimensional Navier-Stokes equations. The methods discussed apply Leveque’s Con-
servation Laws Package, or CLAWPACK [LeVeque, 2002] to solve the Euler equations.
Using a a Flux-limited second order Godonuv method with an approximate Riemann
solver. The diffusive parts of the Navier-Stokes equation are time-split and solved
with a forward in time, centered in space (FTCS) explicit Euler method. Compo-
sitional variation via an advected mass-fraction density is introduced and extended
into higher-dimensional cases under the assumption of radial symmetry. The mass-
fraction model ability to handle discontinuities is validated with a shock tube test as
done in Sod [1978].

29
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Figure 3.1: A grid perspective of a finite volume cell with a left and right flux going
into (and out of) it.

3.1 Finite Volume Methods

The Euler equations are a hyperbolic system of conservation laws that, in one-
dimension, take the following form:

∂q

∂t
+
∂f(q)

∂x
= Ψ, (3.1)

where Ψ is a source term and f(q) is the flux function of q, which is the conserved
quantity. A numerical approach involves dividing space and time into a grid, or cell,
similar to that seen in Figure 3.1. After the quantities in (Equation 3.1) are integrated
for a cell the general form of an FVM arises

Qn+1
i = Qn

i −
∆t

∆x

(
F n
i+1/2 − F n

i−1/2
)
, (3.2)

where Qn
i approximates the average value over the ith cell at time tn, and F n

i±1/2 are
the fluxes based on the approximate values of Q. Note: The subscript i refers to
a spatial grid, whereas superscripts n refer to the temporal grid. There are myriad
FVM variations that exist, which may be appropriate for different types of problems
The reader is encouraged to read LeVeque [2002] to learn more about FVMs.
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Stability of FVMs are described using the Courant-Friedrich Lewy (CFL) number,
which imposes the condition: "A numerical method can be convergent only if its
numerical domain of dependence contains the true domain of dependence of the PDE,
at least in the limit as ∆t and ∆x to zero" [LeVeque, 2002]. For the case of the Euler
equations information cannot travel faster than the local speed of sound, and for our
method, it should not move further than one cell per time step. The CFL condition
is quantified by

CFL ≡
∣∣∣∣u∆t

∆x

∣∣∣∣ ≤ 1, (3.3)

where u is the speed at which information propagates in the medium, ∆x, ∆t are
the grid size in space and time respectively. A notable stability complication can
occur when the problem involves discontinuities, which is especially important due
to Earth’s stratified atmosphere, and the nature of processes such as shocks that can
occur in the atmosphere. The FVM used by CLAWPACK is a second order Godonuv
Method [LeVeque, 2002], which solves the Riemann Problem at each boundary. Thus,
it adapts naturally to problems with steep solutions or shocks.

3.1.1 Godunov’s Wave-Propagation Method

Godunov’s method is ideal for nonlinear acoustic waves and shocks because it solves
the Riemann problem at each boundary and, although it is alone first order accurate,
it can be reconstructed to achieve higher resolution. The method used is a flux limited
wave propagation method that takes a similar form to (Equation 3.2). Consider the
quasi-linear form of a system of conservation equations:

∂~q

∂t
+ A

∂~q

∂x
= 0, A =

∂f(~q)

∂~q
, (3.4)

where A is the Jacobian matrix which will define the characteristics of the system of
equations.
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F-wave Method From Bale et al. [2003]

For a linear system, the solution to the Riemann problem can be expressed as a
set of waves. The Jacobian matrix A can be characterized with eigenvalues λ and
eigenvectors R if A is defined as A = RΛR−1 where:

Λ± =


(λ1)±

(λ2)±

. . .

(λm)±


Qi−Qi−1 =

m∑
p=1

αpi−1/2r
p ≡

m∑
p=1

Wp
i−1/2

(3.5)

The characteristic variables W can be viewed as "waves" defined as W = R−1q.
They are referred to as waves since the state variable Q is seen as a superposition of
eigenvectors in space-time, or equivalently a superposition of waves with eigenvalues
λm. To put the original FVM in terms of "waves" transforms Equation 3.2 to:

Qn+1
i = Qn

i −
∆t

∆x
(A+∆Qi−1/2 + A−∆Qi+1/2)

F n
i±1/2 = A±∆Qi±1/2

(3.6)

where the superscripts ± refers to the values derived from right (+)or left (-) going
waves. For the Euler equations, the Roe solver from Roe [1981] is used to define the
Jacobian matrix A.

This thesis uses the flux-based wave decomposition, or "f-wave" method, created
by Bale et al. [2003] that decomposes the flux difference as a linear combination of
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eigenvectors R. The solution for Qn+1
i is given by:

Qn+1
i = Qn

i −
∆t

∆x

(
A+∆Qi−1/2 + A−∆Qi+1/2

)︸ ︷︷ ︸
Godunov Method

− ∆t

∆x

(
F̃i+1/2 − F̃i−1/2

)
︸ ︷︷ ︸

Flux-Limited Waves

F̃i−1/2 =
1

2

Mw∑
p=1

sgn(spi−1/2)

(
1− ∆t

∆x

∣∣∣spi−1/2∣∣∣) Z̃pi−1/2.
(3.7)

where s refers to the speed of sound of the wave that arises from the eigenvalues
and Z̃pi−1/2 refers to the flux limited "f-wave". The "f-wave" and "wave" methods
take similar forms in terms of the characteristics. The eigenvalues in Equation 3.5 do
not change with the "f-wave" method, but the "f-wave" definition is based on flux
differencing:

fi(Qi)− fi−1(Qi−1)−∆xΨi−1/2 =
m∑
p=1

βi−1/2r
p
i−1/2 ≡

m∑
p=1

Zpi−1/2

βi−1/2 = R−1i−1/2(fi(Qi)− fi−1(Qi−1)−∆xΨi−1/2).

(3.8)

Numerical solutions to partial differential equations are susceptible to numerical dif-
fusion, dispersion, artificial oscillations, and smoothing of wave fronts, especially in
fluid dynamics. To account for these processes, flux limiters have been developed
to sustain realistic values and eliminate artifacts with controlled numerical viscosity.
Limiters φ(θ) depends on the slope θ of the state variable and the sign of the velocity:

θpi−1/2 =
ZpI−1/2
Zpi−1/2

, I =

i− 1 if ū > 0

i+ 1 if ū < 0
(3.9)

The limiter used in CLAWPACK is the monotonized central limiter developed by van
Leer [1974], given by:

φ(θ) = max [0,min (2θ, 0.5(1 + θ) , 2] , (3.10)

which tends towards φ = 2 as θ → ∞. Limiter functions can also be used to raise
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the order of accuracy of another method. Godunov’s method is first order accurate,
but with a Flux limiter that satisfies the second order criteria of Total Variation
Diminishing (TVD), the method approaches second order accuracy. The reader is
encouraged to read Sweby [1984] to learn about several of the flux limiter types and
TVD criteria. CLAWPACK applies limiters to "waves" instead:

W̃p
i−1/2 = φ(θpi−1/2)W

p
i−1/2, (3.11)

Z̃pi−1/2 = spi−1/2W̃
p
i−1/2 = φ(θpi−1/2)Z

p
i−1/2. (3.12)

The CFL condition still abides by the definition in Equation 3.3 to ensure stability.
The above discretizes the Euler equations which includes gravity. The value for

gravity has to balance the model in steady state, so from the relation for hydrostatic
equilibrium (Equation 2.2), a discretized expression for the acceleration due to gravity
arises:

gi = −
p∗i − p∗i−1

∆z

2

ρ∗i + ρ∗i−1
, (3.13)

where the subscript asterisks are used to denote the initial state. The reason for the
approximation can be seen visually in Figure 3.2. The value of gravity experiences
some fluctuations away from average especially in the lower thermosphere. Since
the empirical atmosphere does not exhibit an ideal steady state, the value of gravity
derived from the hydrostatic equilibrium fits the uses of this model better than the
Newtonian approximation, balancing the atmosphere to high precision.

3.1.2 Methods for Parabolic Equations

The diffusion equations are solved via a time-split method which follows the Euler
Equations (as shown in the previous sections) and accounts for the effects of thermal
conductivity and viscosity. The diffusion equations that are considered in this the-
sis both have a similar form of one-dimensional Fick’s Law as described in Chapter
2. Similar to the Euler equations, the diffusive equations can be discretized into a
grid (Figure 3.3, right panel). A solution to a discrete one-dimensional parabolic
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Figure 3.2: Gravity as calculated by Newton’s law (black) and calculated using
NRLMSISE-00 atmospheric properties with hydrostatic equilibrium.

equation takes the form of a Finite Difference Method (FDM). Common FDMs in-
clude forward-in-time-centered-in-space (FTCS), backward-in-time-centered in space
(BTCS), Crank-Nicholson, etc. The two FDMs discussed in this thesis are the im-
plicit Euler (FTCS) and the explicit Euler (BTCS). Both methods are second-order-
in-space/first-order-in-time and can take the form of

Un+1
i = AUn

i 1 ≤ i ≤ n− 1, (3.14)

where A is used to denote the symmetric, constant coefficient matrix that are involved
with FDM problems. In methods similar to FTCS, the constant coefficient matrix is
a diagonal dominant tridiagonal matrix. The properties of the A shape the solution,
and can be used to determine an efficient way to solve the system. FDMs have
stability restrictions which can be described with the Fourier Number (Fo) , but
further discussions are simplified if the matrix properties of the A matrix is used to
characterize a method’s stability.
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Implicit
Explicit
Implicit and Explicit

Figure 3.3: A grid used in a one dimensional finite difference method (left) and the
progression of the discretized diffusion values (right).

Implicit FDM

The implicit FDM is a method that requires more calculations per time step than
explicit methods, but guarantees convergence. This method takes the form

un+1
j = unj +

D∆t

∆z2
(un+1

j+1 − 2un+1
j + un+1

j−1 ), (3.15)

AIUn+1
i = Un

i . (3.16)

where AI refers to the implicit A matrix from Equation 3.14. The matrix AI has the
form of a tridiagonal matrix

AI =



1 + 2r −r
−r 1 + 2r −r

. . . . . . . . .

−r 1 + 2r −r
−r 1 + 2r


, (3.17)
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where r = D∆t(∆z2)−1. This method is unconditionally stable which makes it sus-
ceptible to converging to an approximate solution. The implicit method is preferred
for problems where the diffusion requires a larger time step. However, the explicit
solution will be used for this thesis.

Explicit FDM

Arguably the most well known method is the explicit forward in time, centered in
space method which has a similar form to the implicit FDM, but with all known
variables on the right-hand-side. This takes the form, [Potter et al., 1976]

un+1
j = unj +

D∆t

∆z2
(unj+1 − 2unj + unj−1), (3.18)

Un+1
i = AEUn

i . (3.19)

or, in matrix form:

AE =



1− 2r r

r 1− 2r r
. . . . . . . . .

r 1− 2r r

r 1− 2r


, (3.20)

where AE refers to the Amatrix for the explicit method, and r has the same definition
that is shown for the implicit method. Unlike the implicit BTCS, this method is
conditionally stable and is constrained by

Fo =
D∆t

∆z2
≤ 1

2
, (3.21)

where Fo is the numerical Fourier number. If the condition above is met, this method
is favorable since it requires less calculations per time step and is easier to imple-
ment. The implicit method requires more computational calculation time and its
unconditional stability also makes it susceptible to inaccuracy for long time steps.
The accuracy of the explicit solution is beneficial and it can be applied at a low cost.
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3.1.3 Mass-Fraction Density

This thesis explores numerical solutions to the one-dimensional Euler equations with
the addition of an advected mass fraction density to describe modulation of composi-
tion. This model treats the atmosphere as a multi-constituent single gas that moves
with velocity u, under the influence of gravity and diffusion. The ideal gas law and the
Euler equations assume a single fluid that moves with a uniform velocity, appropriate
for a multi-constituent gas where the species are coupled. Alternative methods would
also require equations of motion, internal energy, and state for each of the species and
the effects due to collisions, similar to Hickey et al. [2015]. Instead, compositional
variation is realized through the mass fraction density, as proposed by to Hickey et al.
[2001] in a single fluid. Equations 2.7 - 2.9 are shown in one dimension:

ρ

ρu

E


t

+


ρu

ρu2 + p

u(E + p)


x

=


0

−ρg
−ρgu

 , (3.22)

E =
p

γ − 1
+

1

2
ρu2. (3.23)

The latter is an updated equation of state and the subscripts represent partial deriva-
tives (·)t, (·)x denotes time and spatial derivative respectively. It is convenient to work
in terms of its quasilinear form. Equation 3.4 applied to the Euler equations become

A =


0 1 0

1
2
(γ − 3)u2 (3− γ)u γ − 1

1
2
(γ − 1)u3 − uH H − (γ − 1)u2 γu

 , (3.24)

~q = [ρ, ρu,E]T ,

Enthalpy is introduced as H = ρ(E + p)−1. The addition of mass-fraction density
expands the Jacobian matrix shown in Equation 3.24 but preserves the original three.
The changes will be explored in the following sections. The mass fraction density of a
species "s", Ys, is defined as the ratio of the species substance to the total substance
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[Abgrall and Karni, 2000].

Ys =
ρs
ρ
.

An important trait about the mass fraction density is Ys ∈ [0, 1]. This becomes
important in determining the validity of the mass fraction density solution. A non-
conservative mass fraction density and a conservative mass fraction density were in-
vestigated in this thesis. The latter leads to different forms of additional advection
equations. Note that in the cases shown γ, ν, α, and R are functions of composi-
tion (tracked by the mass fraction) and thus updated continuously throughout the
simulations.

Non-conservative Mass Fraction Density

The non-conservative mass fraction density takes the form of a linear advection equa-
tion. In one dimension:

∂Ys
∂t

+ u
∂Ys
∂x

= 0, (3.25)

where Ys denotes the mass fraction density of species "s". The addition of one species
results in a simple change to the Jacobian matrix

A =


0 1 0 0

1
2
(γ − 3)u2 (3− γ)u γ − 1 0

1
2
(γ − 1)u3 − uH H − (γ − 1)u2 γu 0

0 0 0 u

 , (3.26)

~q = [ρ, ρu,E, Y1]
T . (3.27)
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The addition of ns species results in:

A =



0 1 0 0 · · · 0 0
1
2
(γ − 3)u2 (3− γ)u γ − 1 0 0 · · · 0

1
2
(γ − 1)u3 − uH H − (γ − 1)u2 γu 0 0

. . . ...

0 0 0 u
. . . . . . ...

0 · · · . . . . . . . . . ...
... . . . 0

0 0 0 0 0 0 u


, (3.28)

~q = [ρ, ρu,E, Y1, · · · , Yns−1]T ns ≥ 1, (3.29)

where ns is the number of species. The mass fraction density of the remaining gas
Yns can be determined from

Yns = 1−
ns−1∑
i=1

Yi. (3.30)

The f-waves used in the Euler equations are unaffected by the extra terms of u since
this version is non-conservative. If W from Equation 3.5 is defined as W = R−1α,
the non-conservative mass-fraction density method would define as α = Y1,L − Y1,R.

Conservative Mass-Fraction Density

The conservative mass-fraction density advects the quantity ρYs

∂(ρYs)

∂t
+
∂(ρuYs)

∂x
= 0. (3.31)



CHAPTER 3. NUMERICAL MODEL IMPLEMENTATION 41

The Jacobian matrix that follows for ns species is:

A =



0 1 0 0 · · · · · · 0
1
2
(γ − 3)u2 (3− γ)u γ − 1 0 0 · · · 0

1
2
(γ − 1)u3 − uH H − (γ − 1)u2 γu 0 0

. . . ...

−uY1 Y1 0 u
. . . . . . ...

−uY2 Y2 0 0
. . . ...

...
...

...
... . . . . . . 0

−uYn−1 Yn−1 0 0 · · · 0 u


, (3.32)

~q = [ρ, ρu,E, ρY1, · · · , ρYn−1]T ns ≥ 1. (3.33)

The last species can be determined from Equation Equation 3.30. The validation
and derivation of the conservative mass-fraction density is in Appendix A. Mass-
fraction density is a conservative quantity, so the use of a conservative advection
equation seems natural. However, the characteristic equations that arise from the
conservative mass-fraction density add complexity to the solution of the systems of
equations since the f-waves are scaled by the mass-fraction density. The impact of the
conservative versus the non-conservative mass fraction density on species evolution
in time for infrasonic waves were found to produce negligible effects such that the
non-conservative version is used in this thesis.

3.1.4 Multi-dimensional Symmetry

Scenarios that involve radial symmetry can often be transformed from a complex
multi-dimensional problem to a one-dimensional problem. If the Euler equations can
be solved along a single coordinate variable r, often with a geometric source term,
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such that terms that solely depend on the θ-direction can be ignored [LeVeque, 2002]:

ρt + (ρU)r = −α
r

(ρU) ,

(ρU)t +
(
ρU2 + p

)
r

= −α
r

(
ρU2

)
,

Et + ((E + p)U)r = −α
r

((E + p)U) .

(3.34)

Here α = ndim− 1, where α is the geometric coefficient, ndim is the number of dimen-
sions; ndim = 1, 2, 3 for cartesian, cylindrical, and spherical symmetry respectively.
Radially symmetric solutions are useful in testing and validation of numerical codes.
There are often geometric sources of acoustic waves that are known to have radial
symmetry; several examples are shown Chapter 4.

3.1.5 Riemann Solver Validation

The Sod problem, outlined by Sod [1978], is a one-dimensional discontinuity problem
that can reveal a numerical scheme’s ability to capture shocks and contact discontinu-
ities with a small number of cells. The Sod problem initial state and properties of the
final state are shown in Figure 3.4. A shock tube, closed at its ends and divided into
two equal regions by a thin diaphragm, is filled with the same gas, but with different
thermodynamic properties, namely pressure and density, at rest. Once the diaphragm
is ruptured, a high-speed flow is initiated, which propagates from the region with more
energy to the region with less energy. The gas at high pressure expands through rar-
efaction waves and flows into the low pressure. As a result, the low-pressure region
is compressed, so much that a shock wave is generated. The initial separation of the
gases is maintained through a fictitious discontinuous membrane that travels towards
the lower pressure gas. The Riemann problem is established by the discontinuous
physical properties that occur across the shock wave and contact discontinuity. For
the shock, there is only a jump discontinuity in the density. The Sod test can be
applied to the Euler equations under the assumption of an isothermal system with no
diffusive terms (viscosity and conductivity are removed from the model). There is an
analytical solution that can determine the shock, discontinuity, and left and right fan
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Figure 3.4: One-dimensional Sod test with initial conditions (t = 0) and after some
time ts. After t = 0, the diaphragm is ruptured and the gas with higher pressure qL
expands to the region of lower pressure qR.
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slopes. These can be determined with the use of initial conditions and their influence
on other parameters in the system. Recall from Chapter 2 that

c(R,L) =

√
γp(R,L)
ρ(R,L)

,

where the subscripts (R,L) are used to represent the left and right portions of the
tube. The slopes are consistent of linear equations that depend on a nonlinear relation
known as the Rankine-Hugoniot condition. This condition is valid for the pressure
jump across the shock

P =
pL
pR

[
1− (γ − 1)(cR/cL)(P − 1)√

2γ (2γ + (γ + 1)(P − 1))

]2γ/(γ−1)
, (3.35)

where P , the pressure jump across the shock is the variable of interest. The implicit
function can be solved through root-approximation methods such as the Newton-
Raphson method, or bisection method. The relations to determine their values are
as follows

ushock = uR + cR

√
γ − 1 + (γ + 1)P

2γ
, (3.36)

ucontact = uL +
2cL
γ − 1

[
1−

(
P
pR
pL

) γ−1
2γ

]
. (3.37)

The slopes of the regions of interest can be predicted with

x = x0 + t

ushock Shock wave

ucontact Contact Discontinuity
(3.38)

For our cases of interest, next, γ is a function of composition that is then tracked by
the mass-fraction densities.
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Table 3.1: Sod test simulation parameters for Riemann problem validation
Time Domain t = [0,2]

Tube’s extent in grid x = [-2,2]
Spatial Resolution ∆x = 3.33 · 10−3

Temporal Resolution ∆t = 0.02
Left Domain Gas Properties qL = (1, 0, 3)T

Right Domain Gas Properties qR = (1, 0, 1)T

Application to Model

The model’s performance can be tested when compared to the theoretical predictions
made from the previous section. This will be conducted with the initial conditions:

qL =



ρL

uL

pL

Y1,L

Y2,L


=



3

0

3

0

0


, qR =



ρR

uR

pR

Y1,R

Y2,R


=



1

0

1

1

0


where the last parameter has been translated from E to p through the equation of
state:

E =
p

γ − 1
+

1

2
ρu2.

The grid considered in this analysis has time t = [0, 2] and the position x = [−2, 2],
with the membrane at x0 = 0. Note: qL and qR are interchangeable such that the
conditions presented can be reversed. The results of the Sod test Figures 3.5 - 3.7
give a contact and shock slope that matches with the predicted gas velocities with
an error of less than 3%. Figures 3.6 - 3.7 demonstrate the modulation of atomic
oxygen, a feature that can be calculated with the mass-fraction density method.
Atomic oxygen is shown to modulate after both the shock and contact discontinuity
speeds. This test was performed with several initial conditions and the performance
of the model gave gas velocities within 5% of the predicted values. The error is
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Figure 3.5: Sod test with shock wave and contact discontinuity labeled as white
lines and calculated from the analytical solution. The results for initial conditions in
Table 3.1 are shown in the left, while the reverse of Table 3.1 are shown on the right.

consistent despite atomic oxygen starting from the left or right side of the tube. In
Sod [1978], several finite difference methods were surveyed, including the Godunov
method. The error evaluated for the Godunov method was within 5%, which is a sign
that the difference from theory in the mass-fraction density model is in part due to
the numerical method. The mass-fraction density did not fall outside the permissible
range of Ys ∈ [0, 1], which indicates the non-conservative mass-fraction model will
remain within realistic values in this test.
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Figure 3.6: Parameters from the Sod test with the conditions found in Table 3.1,
when atomic oxygen begins on the left.
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Figure 3.7: Parameters from the Sod test with the conditions found in Table 3.1, but
qL and qR are reversed, when atomic oxygen begins on the left.
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3.1.6 Chapter Summary

This chapter presented the numerical methods that are used to discretize the Euler
equations and the diffusion equations that were developed in Chapter 2. CLAWPACK
is used to solve the Euler equations, and the time-split diffusion equations are solved
with an explicit forward in time, centered in space method, as opposed to an implicit
method. A conservative and non-conservative mass-fraction density method was in-
troduced in this section as an addition to the Euler equations. The results of using
a conservative mass-fraction model nearly match the ones using a non-conservative
mass-fraction model. Since the non-conservative model requires fewer computations
to solve, that is the model that was chosen. The effects of a non-conservative mass-
fraction model on the Riemann Solver used in Leveque’s CLAWPACK were validated
with the Sod test and via the case studies in Chapter 4.



Chapter 4

INVESTIGATIONS OF

PARAMETER EFFECTS

4.1 Model Applicability and Extent

The purpose of this chapter is to investigate the properties of the mass-fraction den-
sity model outlined in this thesis by subjecting it to different test cases and comparing
them to previously published work. The three cases studied are (1) the shock over
the epicenter of the 2011 Tohoku Earthquake as reported by Zettergren et al. [2017];
(2) simulations of experimental results obtained from Mabie et al. [2016] compared
to a 2D axisymmetric MAGIC model simulation; (3) and the shock source approxi-
mating the Misty Picture Experiment, as modeled by Sabatini et al. [2016]. These
cases were chosen because they result in different spectra and amplitudes of verti-
cally propagating waves to show how the model will behave when sources near the
acoustic cut-off frequency, or sources with large amplitudes, are simulated. There
are some physical limitations exhibited by one-dimensional models, which are seen
through the comparison of the simulations and discussion. This section also shows
the effects of compositional variation has on the characteristics of the atmosphere
and acoustic wave propagation and the variability of the species as a function of the
source amplitude and frequency, which can be enabled or disabled for each case study.

49
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4.1.1 Tohoku Earthquake

Background and Setup

The 11 March, 2011 earthquake off the Pacific coast of Tohoku (Tohoku Earthquake),
triggered powerful tsunami waves that reached heights up to 40.5 meters; until now, it
is the most powerful earthquake recorded in Japan. The epicenter location was about
70 kilometers east of the Oshika penisula of Tohoku, with an underwater hypocenter at
around 29km deep Duputel et al. [2011]. The earthquakes began in a subduction zone,
where one plate slides beneath another into the mantle which built up energy that was
released in the form of an earthquake Duputel et al. [2011]. Several instruments were
able to track the beginning and evolution of the earthquake, whose list includes seis-
mometers (ocean bottom, or by land), GPS data, which observed crustal movements,
earthquake related ionospheric perturbations, data from accelerogram, etc. Duputel
et al. [2011]. The earthquakes impact the upper atmosphere first through vertical
displacements of the Earth’s crust or ocean surfaces which produce low-frequency
acoustic (infrasound; periods 1-4 minutes) and gravity waves (periods > 5 min) Kom-
jathy et al. [2013]. These waves can achieve significant amplitudes during upward
propagation as the gases experience exponential velocity growth through the rarefied
upper atmosphere, until dissipation dominates in the thermosphere. The ionospheric
fluctuations, via ionospheric total electron content (TEC), can provide the basis for
comparisons of models and experimental data. The atmosphere-ionosphere model in
Zettergren et al. [2017] used a sinusoid in time, enveloped by a Gaussian in space as
a simplified source of the disturbance. The source takes the form

vz = As sin (ωt) · (uH(t)− uH(t− tw)) , (4.1)

where uH refers to the Heaviside step function. The numerical parameters used in
Equation 4.1 can be found in Table 4.1. The source was applied to the ground
boundary condition as an imposed velocity which adds to the momentum term of the
Euler equations. The rest of the boundary conditions terms were open with a scale
term that was derived in Chapter 2, and applied to perturbations of the conservative
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Table 4.1: Table of parameters and source characteristics for the Tohoku, or Zetter-
gren et al. [2017] case study

Parameters Description Value
As Source Amplitude 0.015ms−1
tw Temporal Width 180s
ω Angular Frequency 0.0349rad s−1
tc Peak forcing time 0s

∆z Spatial Resolution 100m
tmax Simulation Duration 3600s

variables. The mass-fraction density of atomic oxygen and molecular oxygen were
tracked during this simulation. From Equation 3.30, the remaining concentration of
gas can be calculated which, for this study, is assumed to be molecular nitrogen.

Model Results

Figure 4.1 shows the general results of the one-dimensional simulation through wave
properties and the mass fraction density. The perturbations seen in the mass-fraction
density for oxygen are similar to the acoustic Mach number above 120 kilometers. This
region holds the highest concentration of atomic oxygen, although the atmosphere is
sparse. Since the source is strong, there is an opportunity for the waves to reflect
from the atmosphere and the ground to create down-flows in addition to resonance.
This can be seen through the perturbation in the Acoustic Mach Number at time
t = 20 minutes at an altitude range of z = 480 − 600 kilometers. The source "turns
off" after three minutes, so the oscillations that continue past the onset of the waves
are caused by resonances that occur after a certain frequency is excited. Despite the
strength of the source, the atomic oxygen mass fraction density remains numerically
bounded by zero and unity. The atomic oxygen mass-fraction density is modulated at
altitudes above 500 kilometers, and the variations can be seen in the atomic oxygen
plotted in a logarithmic scale.

The 1D model gives comparable results to Zettergren et al. [2017] 2D model (above
the source) seen in Figure 4.2. Two primary differences are the source amplitudes and
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Figure 4.1: The acoustic Mach number (top right), speed of sound (top left), atomic
oxygen mass fraction density (bottom left), and atomic oxygen in log scale (bottom
right).
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Figure 4.2: The velocity profile of a one-dimensional simulation of the Tohoku Earth-
quake as done by Zettergren et al. [2017] compared to the results of the 1D mass
fraction density simulation (right).

the velocity at higher altitudes around the time of 6:05am as seen in Figure 9 of Zetter-
gren et al. [2017]. The source amplitude for the 1D mass-fraction density simulation
is about two times less than the one used in Zettergren et al. [2017] due to less geo-
metric dispersion. Zettergren et al. [2017] also shows the effects of amplitude on the
wave fronts at the source frequency. The 1D model is able to capture similar wave
steepening, which can be seen through a parametric study that varied the frequency
and duration of the source Figure 5.1. The simulation’s dependence on amplitude,
frequency, and resolution can highlight a physical limit to the 1D model. The 1D
model saturates the wave field of the first arriving waves at lower source amplitudes
(while preserving similar wave amplitude) than the 2D model when they run simula-
tions at the same resolution. However, the cases in Figure 5.1 were run with the same
amplitude but at a higher spatial resolution (100m), which resulted in more down
flow.

The variations of composition can be seen in specific heat ratio in Figure 4.3. The
amplitude of the source is strong enough to impact the specific heat ratio in both the
onset of the source and the resonances that occur afterwards. The modulation of the
specific heat appears to capture the strongest features of the vertically propagating
acoustic wave. In the region of the strongest down-flow (t = 20min), the model varies
the most with respect to the initialized profile, by a few percent. The variation is
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Figure 4.3: The variation in the acoustic cutoff frequency ωA [rad/s] (left) and the
specific heat ratio (right) due to the mass-fraction density model.

primarily dependent on the amplitude and frequency of the source.

4.1.2 Mabie et al. Rocket Launch

Background and Setup

One Antares rocket was launched from the Wallops Flight Facility (WFF) Mid-
Atlantic Regional Spaceport on 9 January 2014 carrying a 1261 kilogram payload.
Mabie et al. [2016] sought to investigate acoustic waves in the ionosphere to improve
the understanding of energy transport from the lower to upper atmosphere using an
advanced high-frequency radar (VIPR), to measure plasma displacements in the F re-
gion. These disturbances are usually identified by deformations in ionograms. Mabie
et al. [2016] method allows for the detection of lower amplitude acoustic waves and
provides basis for these disturbances to be modeled. Since the acoustic wave activity
that resulted was less energetic than in the case of Tohoku, it was more difficult to
observe in the integrated total electron content (TEC) data. For this case, a small
spherically-symmetric forcing is specified at ground level, defined as r = 0. The rocket
launch induced disturbance was modeled by a small amplitude Gaussian source with
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open boundary conditions at the top of the domain and solid wall boundary condi-
tions at the bottom of the domain (r = 0) to represent the ground. The source takes
the form of Equation 4.2. The radial Gaussian envelope term at r = 0 that takes a
similar form with spatial half-width.

Fs = As exp

(
−
[
t− tc√

2tw

]2
−
[

r√
2rx

]2)
, (4.2)

The value of the parameters used in this case study and their description can be found
in Table 4.2.

Discussion

Figure 4.4 and Figure 4.5 show the resulting velocity evolution over the source com-
pared to the MAGIC 2D cylindrical atmosphere model. The Figure 4.4 demonstrates
the spherically symmetric 1D model is able to capture the acoustic waves similarly to
the 2D cylindrical simulation. Similar to the Tohoku case, the amplitudes of the 1D
simulation vs. the 2D are slightly less, but at low amplitudes, the difference is less
since geometric dispersion is affected by the scale of the source, which in this case, is
closer to a "point source". The results shown in Figure 4.5 show similar wave time
scales and amplitudes to the data shown in Figure 4 of Mabie et al. [2016]. Here,
a phase shift is revealed that is continued as altitude increases and time goes on.
The 1D simulation shows the acoustic wave advancing faster than the 2D simulation
which may be a result of the effects of compositional variation on the speed of sound,

Table 4.2: Table of parameters and source characteristics for the 1D simulation for
the acoustic wave observations reported by Mabie et al. [2016]

Parameters Description Value
As Source Amplitude 0.2 ms−2
tw Temporal Width 7.5s
tc Peak forcing time 37.5s

∆r Spatial Resolution 250m
tmax Simulation Duration 1200s
rx Spatial Half-Width 2km
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Figure 4.4: Velocity profiles as inspired by Mabie et al. [2016] observation of a rocket
launch with the use of the 1D model (right) compared to the 2D (left) version of the
MAGIC model.

or geometrical dispersion. The latter is the more likely of the two since the source
amplitude is too weak to cause significant composition modulation (a variation of
γ less than 10−5% difference for vertical wave velocities that achieve a maximum of
100 m/s or less). The vertical velocity calculated by the mass-fraction density, where
composition is varied, also shows higher amplitudes as it propagates higher in the
thermosphere. This phenomena is present in all of the cases done with this model.
The effects of compositional variations for various sources of acoustic waves can be
seen in Section 4.2.

The results of these models can help improve observations made in a similar way
as Mabie et al. [2016] since they relied on numerical approximations to estimate the
time of arrival of the acoustic wave to propagate from the ground to the altitude of
the VIPR observation. Their calculations depended on approximate values for the
speed of sound which is impacted by the composition variation. At the amplitudes
reported by Mabie et al. [2016], the variations are negligible. However, if the source
amplitude increases by an order of magnitude, compositional variations could impact
the speed of sound, which would affect the interpretation of VIPR measurements in
Mabie et al. [2016] algorithm.



CHAPTER 4. INVESTIGATIONS OF PARAMETER EFFECTS 57

600
Time (s)

-60

-40

-20

0

20

40

60

Ve
lo

ci
ty

  (
m

/s
)

Acoustic Pulse Evolution at r=0 km
z=150 km
z=200 km
z=250 km

Figure reveals dissipation (by viscosity and
conduction) of steepened acoustic waves

as they propagate in the thermosphere.

400 500 700 800 900 1000
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4.1.3 Misty Picture Experiment

Background and setup

On 14 May, 1987, a test was conducted by the United States Defense Nuclear Agency
(now the Defense Threat Reduction Agency), which involved the simulation of a
small nuclear bomb through the detonation of 2125 kilograms of Ammonium Nitrate
and Fuel Oil mixture into a 44-foot radius fiberglass hemisphere. The potential of
the blast was the equivalent of 4 kilotons of TNT. The objectives of the test was to
(1) provide an airblast, dust cloud, and ground shock environment for Department
of Defense (DOD) sponsored experiments, and (2) provide a thermal environment
for several experiments. The detonations provided a shock environment for which
weapons shelter systems could be studied. The test was conducted at White Sands
Missile Range, and was observed with a 60 barometric station network capable of
detection a 1 kiloton yield explosion anywhere on the globe [Gainville et al., 2008].

The source used to numerically simulate this case was adopted from Sabatini et al.
[2016]. Their work involved the characterization of the infrasonic source through the
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Table 4.3: Table of source characteristics for the Misty Picture Experiment
Parameters Description Value

As Source Scale 2.5× 102 Jm−3 s−1
bs Half Width of Source 600m
ωs Central Frequency 0.2π
Ts Emission Duration 10s
∆ Spatial Resolution 25m
∆t Temporal Resolution 0.18s
tmax Simulation Duration 1800s

(B1, B2, B3.B4, B5) Altitudes of Interest (5, 80, 120, 170, 90)km

analysis of overpressure and Energy Spectral Density (ESD). Overpressure refers to
the sudden onset of a pressure wave after an explosion that travel near the speed of
sound. The equation of the source and overpressure used for this study are shown
below

Λ(z, t) =
As
2

sin (ωst)
[
1− cos (ωst) exp

(
− log(2)z2

b2s

)]
t ∈ [0, Ts]

0 otherwise
(4.3)

Φ(z, t) =
p(z, t)− p̄(z)

As
√
ρ̄(z)

, (4.4)

where Λ refers to the forcing term that is added to the energy equation, As is the
source strength in (J m−3s−1), ωs is the central frequency in (Hz), bs is the half-width
of the source in (m), and Φ(z, t) refers to the overpressure as defined by Bergmann
[1945]. The parameters that define the setup of the experiment are shown in Table 4.3.
The boundary conditions were the solid wall for the bottom boundary and an open
top boundary. In order to match Sabatini et al. [2016]’s Cartesian 2D simulation,
cylindrical symmetry was implemented in the mass-fraction density model. A key
difference between the analysis is the speed of sound profile that was calculated with
the use of a spline in Sabatini et al. [2016] whereas in the 1D model, it is calculated
with the use of the atmospheric properties from the day and time of the experiment
as projected from NRLMSISE-00 [Picone et al., 2002].
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3

Figure 4.6: Results of nonlinear Misty Picture run from Sabatini et al. [2016] (dark
solid line) with the results of the 1D mass fraction density model with (dashed grey
line) compositional variation superimposed with the same scale. The solid slate grey
line (c) shows a run with no compositional variation.

Discussion

The overpressure at various altitudes are shown in Figure 4.6. The simulation results
match those of Sabatini et al. [2016] with a similar amplitude effect exhibited in the
previous case study. The amplitude shift seems to favor the acoustic velocity in higher
altitudes which might be indicative of the 1D model’s impact of the atomic oxygen
mass fraction density on the speed of sound. The linear cases studied in Sabatini
et al. [2016] show the importance of viscous and thermal terms since the N-wave from
the nonlinear case does not show up in the linear case. The differences from the
1D model and Sabatini et al. [2016] in Figure 4.6 can be due to a variety of factors.
In the 1D simulation, acceleration due to gravity, specific heat ratio, and specific
gas constant (R) are altitude dependent whereas they are constant in Sabatini et al.
[2016]. The diffusive terms are also treated differently which could influence the wave
propagation. The Prandtl number was fixed to Pr = 0.72 whereas the one used in
the 1D model is based on the actual composition.

To assess the numerical accuracy of the 1D mass-fraction density model, an N-wave
at 90km is analyzed at different spatial resolutions. Sabatini et al. [2016] conducted
a similar study with ∆z = 75, 100, 125, 150m and found convergence for the first two
lobes of the energy spectral density (ESD) which have most of the signals energy.
The higher frequencies exhibit larger variations from the higher resolution cases than
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Figure 4.7: Temporal signal at 90km (a) and the One-Sided energy spectral density
obtained at different spatial resolutions (b). The plot shows reasonable agreeement
with Figure 16 in Sabatini et al. [2016].

the lower ones which was expected. The maxima of the ESD spectrum display a f−2

behavior similar to the one shown in Figure 4.7. The ESD produced by the 1D model
shows a phase shift at the higher frequencies which may be due to the inability to
resolve the wavelength with enough points as the frequencies get higher. In addition,
the method used in this thesis is second order accurate while Sabatini et al. [2016]
used a fourth order method. However, for the higher resolution cases, the maxima
line up.

4.2 Effects of Compositional Variation

The analysis presented in previous sections have compared previously published work
with the results of the 1D mass-fraction density model. The differences between
the models can be a result of the higher-dimensional model’s ability to account for
physical dispersion and refraction processes that are not included in a 1D model.
To further characterize the mass-fraction density model simulations, the case studies
above are studied with and without compositional variation. When discussing species
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Figure 4.8: Speed of sound perturbations from a source similar to the 2011 Tohoku
simulation at three heights. The dashed and solid lines represent the speed of sound
calculated with and without specific heat ratio variation respectively.
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modulation, two parameters that affect wave propagation the most are the specific
heat ratio (γ) and the specific gas constant. These parameters affect the speed of
sound which then affects the wave velocity vz and other parameters such as the
vertical wave number (kz).

From the case studies above, it is reasonable to assume compositional variation
has an effect on the phase and amplitude of an acoustic wave with large amplitude
and low frequency, such as the ones shown in Figure 4.8. Here, compositional varia-
tions cause the speed of sound to vary within two percent of that calculated without
compositional variation. Stronger variations are found as the wave propagates higher
in the atmosphere, as the source amplitude increases, and the frequency approaches
the acoustic cut-off frequency. This is likely due to the speed of sound modulations
which are affected more dramatically as the source term gets stronger. Compositional
variation increasing with amplitude is reasonable since it is a nonlinear function of
the vertical velocity which is affected by the source.

The Misty Picture and Mabie et al. [2016] Rocket launch cases involve smaller
amplitudes and higher frequencies than the Tohoku case which makes the effects of
compositional variation less noticeable. For the Rocket Launch case, the composi-
tional modulation of γ varied by a maximum of 0.1% which affected the velocity by a
similar quantity, seen in Figure 4.9. At the top of Figure 4.9 is Figure 4.10 the rocket
launch case with a source amplitude at ten times the original value. The effects of
modulation are seen around the area where the amplitude of the velocity is greatest.
The effects of the variations in composition in this case seem to dampen the vertical
velocity and shift the velocity out of phase. A similar effect can be seen in Figure 4.8
at 150km. The differences in the velocities are small enough such that it can be
considered negligible. Similar to Figure 4.6, Figure 4.11 shows the work of Sabatini
et al. [2016] and the 1D model results with and without compositional modulation.
At the lower altitudes B2, match in terms of how smooth the overpressure is and
in the decrease of the waves amplitude relative to the sources initial strength. As
the wave propagates towards the thermosphere, an N-wave is formed and at higher
altitudes, the wave period increases. With the variation in composition, the modula-
tion matches the results of Sabatini et al. [2016] better than without, however this is
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Figure 4.9: Velocity of acoustic wave for the simulation inspired by the results of
Mabie et al. [2016]. The dashed lines are with compositional variation and the solid
lines are without. The top shows the run with parameters from Table 4.2, and the
bottom shows the same run with a source amplitude of ten times the one of the top
run.
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CHAPTER 4. INVESTIGATIONS OF PARAMETER EFFECTS 65

2 3

Figure 4.11: Results of misty picture run with the same parameters from Table 4.3,
but with a resolution of ∆z = 100m. Sabatini et al. [2016] run is shown in (dark solid
line) with the results of the 1D mass-fraction density with compositional variation
(dashed gray line) and without variation (dashed black line).

fortuitous since Sabatini et al. [2016] did not include compositional variation. This
indicates that species modulation does affect propagation, especially in the thermo-
sphere, and does modify the amplitude and arrival time of the acoustic wave. The
resolution for this run was increased and the result shows an wave that is shifted
from Sabatini et al. [2016]. The variations in this case were similar to the ones in the
Rocket Launch case, so the shift in phase could be a result of the method being more
diffusive at coarser resolutions.

4.3 Chapter Summary

The 1D mass fraction model underwent three case studies that sought to explore
its properties. In large amplitude simulations and in cases where the frequency ap-
proached the acoustic cut-off limit, the model remained stable. The effects of com-
positional variation were explored through a comparison of the same case studies
simulated with and without species modulation. The results of this show species
modulation is prevalent at altitudes greater than 200km, but at small enough ampli-
tudes to where the approximation is reasonable.



Chapter 5

SUMMARY AND SUGGESTIONS

FOR FUTURE WORK

5.1 Summary

One-dimensional models have several important uses, including studies that involve
parametric sweeps of atmospheric parameters to determine their influence on acoustic
waves in the atmosphere, and assessing the feasibility of running higher dimensional
simulations. The former is the basis of several studies and is usually done with 1D
models since they are computationally inexpensive. There exist numerous paramet-
ric studies that can be investigated with the model developed in this thesis; one
study that will be suggested below: Acoustic responses that do and do not exhibit
resonances.

5.2 Conclusion

This thesis covers the development and validation of a nonlinear compressible atmo-
spheric acoustics model that tracks mass-fraction densities of species. The model was
developed through the addition of a mass fraction density equation that is advected
along with the compressible Euler equations. The Euler equations are solved with
the use of CLAWPACK that applies finite volume methods to numerically solve the
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Euler equations through f-wave methods, as introduced in Bale et al. [2003]. The
Euler equations do not include the diffusive terms, molecular viscosity, and thermal
conductivity, so they are solved through a time-split solution through an explicit
forward-in-time-centered-in-space method of parabolic equations.

The 1D mass-fraction density developed showed little difference between its con-
servative and non-conservative forms such that the non-conservative form was used
since it involves less calculations. Both cases had mass-fractions that remained within
physical limits, regardless of the geometry of the problem. The results of the two mod-
els are similar for problems that involve multi-dimensional symmetry. The model was
validated through the use of a Sod test whose results showed similar results when
compared to the analytical solutions of the problem.

The model was tested through three cases of that varied in geometry, and source
amplitude through the use of symmetrical symmetry. It demonstrated its ability
to retain stability when it simulated the strong shock caused by the 2011 Tohoku
Earthquake. It was able to resolve smaller amplitude sources that involve high reso-
lution simulations in weaker sources such as the Misty Picture Experiment Sabatini
et al. [2016]. Since the model is one-dimensional, it is able to capture these pro-
cesses above the source, although multi-dimensional solvers achieve more accurate
results at greater cost. However, this model was able to produce similar results along
with the compositional variation. The compositional variations this model produces
have a small but measurable impact on the propagation of the wave. The speed of
wave propagation and its amplitude are affected due to their dependence on the com-
positionally dependent parameters such as the ratio of specific heat, viscosity, and
thermal conductivity. The areas that are most affected are the ones that are above
the mesosphere, due to presence of atomic oxygen.
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5.3 Future Work

5.3.1 Parametric Resonance Study

Acoustic wave pulses that propagate and evolve through the atmosphere have poten-
tial to become trapped between the ground and the lower thermosphere, depending
on the spectrum of the source that produced them, which can cause acoustic modal
resonances. Impulsive disturbances such as the 2011 Tohoku earthquake caused by
vertical movement of the ocean surface, contain frequencies that excite resonances in
the atmosphere whereas higher frequency events, such as the rocket launch reported
by Mabie et al. [2016] do not. These resonances have been numerically investigated
Matsumara et al. [2011], and confirm that acoustic resonance should be present fol-
lowing events that can excite them. By contrast, results by Chum et al. [2016] sug-
gest that higher frequency sources generate waves that are more likely to nonlinearly
steepen and dissipate, evolving into a shock-like "N-wave" pulse. Signatures reported
by Li et al. that followed from the 2016 Kaikoura earthquake event identify interme-
diate behavior of the atmosphere, including both steep wave and persistent oscillatory
features interpreted to be a result of complex multi-fault structure of the earthquake.

Two regimes of acoustic responses – those that do and do not exhibit excited res-
onances - can be distinguished through a series of parametric simulation case studies.
Acoustic response regimes can be investigated for sources of varied spectral content
and amplitude. An example of this is shown in Figure 5.1. The source used for this
search is the same as the one used in the 2011 Tohoku case study. Two parameters
were changed, the angular frequency and the temporal width of the source. From
this study, most waves experience the initial steepened acoustic wave, but the higher
frequencies with lower temporal width exhibit less resonance such as the case with
tw = 18s and ω = 0.35rad/s. Results from a study like this could suggest that the
presence (or absence) of measured resonances can provide insight into the spectral
characteristics of unknown sources.
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Figure 5.1: An example of a potential parametric study that changes the frequency
and envelope of a source to provide insight into spectral characteristics of unknown
sources.
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5.3.2 Future Model Additions

Mass Diffusion

The solutions to the diffusion equations use an explicit scheme which consumes a
lot of the time to ensure stability and accuracy. There are other implicit FDM
schemes, such as the trapezoidal rule, backwards differentiation formula (TRBDF),
which are more accurate and could require less computations. These solvers can also
be optimized with the use of parabolic equation speed-up algorithms known as Super-
Time-Stepping (STS) schemes. The algorithm can cut down the time it takes to solve
the diffusion terms.

Additionally, the effects of mass diffusion were not included but could be included
as a source term for the mass-fraction equations. Consider the mass-fraction density
equations in one dimension with a source Zs such that:

∂Ys
∂t

+ u
∂Ys
∂x

= Zs, (5.1)

with

Zs = Rs −
1

ρ

∂Js
∂x

. (5.2)

where Rs is the production of species s, such as by relaxation processes, and Js is
the diffusive mass-flux vector [Scott et al., 2017]. Including the effects of the species
diffusion could lead to a more complete model that has species interaction with one
another, that would produce similar results to a true multifluid, but at lower cost.
This may also help with simulations involving other wave dynamics.
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Appendix A

DERIVATIONS

A.1 Jacobian: Euler Equations

This is a demonstration of the derivation of the A matrix in the quasilinear form of
the Euler equations, for which characteristics will be obtained. These steps closely
follow the derivations of LeVeque [2002]. Start with:

ρ

ρu

E


t

+


ρu

ρu2 + p

u(E + p)


x

= 0,

and an ideal gas equation of state and the definition of energy:

E =
p

γ − 1
+

1

2
ρu2.

Now, expand the Euler Equations

ρt + (ρu)x = 0,

(ρu)t + ρxu
2 + 2ρuux + px = 0,

Et + u(Ex + px) + ux(E + p) = 0.

A – 1
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Note:

p = E(γ − 1) +
1

2
ρu2(1− γ) = 0,

px = Ex(γ − 1) +
1− γ

2
ρxu

2 + (1− γ)ρuux = 0.

The mass conservation equation stays the same. The momentum, and equation are
updated

(ρu)t + ρxu
2 + 2ρuux + Et(γ − 1) +

1− γ
2

ρxu
2 + (1− γ)ρuux = 0,

Et + u

(
Ex + Ex(γ − 1) +

1− γ
2

ρxu
2 + (1− γ)ρuux

)
+ ux (E + p) = 0.

Grouping like terms, the Euler Equations in terms of the EOS are written as:

ρt + (ρu)x = 0,

(ρu)t +
3− γ

2
u2ρx + (3− γ)uρux + (γ − 1)Ex = 0,

Et +
1− γ

2
u3ρx +

(
E + p

ρ
+ (1− γ)u2

)
ρux + γuEx = 0.

Note:

H =
E + p

ρ
,

So that:

ρt + (ρu)x = 0

(ρu)t +
3− γ

2
u2ρx + (3− γ)uρux + (γ − 1)Ex = 0,

Et +
1− γ

2
u3ρx +

(
H − (γ − 1)u2

)
ρux + γuEx = 0.
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Make note of

(ρu)x = ρxu+ ρux,

ρux = (ρu)x − ρxu.

Into the above

ρt + (ρu)x = 0

(ρu)t +
3− γ

2
u2ρx + (3− γ)u [(ρu)x − ρxu] + (γ − 1)Ex = 0,

Et +
1− γ

2
u3ρx +

(
H − (γ − 1)u2

)
[(ρu)x − ρxu] + γuEx = 0.

Grouping the like terms together again gives: Into the above

ρt + (ρu)x = 0,

(ρu)t +
γ − 3

2
u2ρx + (3− γ)u(ρu)x + (γ − 1)Ex = 0,

Et +

[
γ − 1

2
u3 − uH

]
ρx +

(
H − (γ − 1)u2

)
(ρu)x + γuEx = 0.

In matrix form:

A =


0 1 0

1
2
(γ − 3)u2 (3− γ)u γ − 1

1
2
(γ − 1)u3 − uH H − (γ − 1)u2 γu

 . (A.1)


ρ

ρu

E


t

+ A


ρ

ρu

E


x

= 0. (A.2)
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The eigenvalues of A are:

λ = [u− c, u, u+ c]T . (A.3)

The coefficients a1, a2 and a3 are found through noting that

a = R−1(qr − ql) = R−1∆ (A.4)

where R is the eigenvector matrix [r1, r2, r3]. The inverse is computed in Mathemat-
ica, and the multiplication is shown below

R =


1 1 1

u− c u u+ c

H − uc u2/2 H + uc

 , (A.5)

The value for a can be determined

a = R−1∆ = R−1,


ρl − ρr

(ρu)l − (ρu)r

El − Er

 . (A.6)

From this, the value for the "waves" are:

Wi = riai, (A.7)

a1r1 =


a1

a1(u− c)
a1(H − uc)

 a2r2 =


a2

a2u

a2u
2/2

 a3r3 =


a3

a3(u+ c)

a3(H + uc)

 . (A.8)
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So that the coefficients go as follows:

a2 = `, (A.9)

a3 =
1

2c
(∆2 + (c− u)∆1 − ca2) , (A.10)

a1 = ∆1 − a2 − a3, (A.11)

` =
γ − 1

c2
[(
H − u2

)
∆1 + u∆2 −∆3

]
. (A.12)

Non-conservative Mass Fraction Density

Consider the advected non-conservative mass-fraction density Y equation

Yt + uYx = 0. (A.13)

Which is already in the form for finding the Jacobian. The coefficient added is u
towards the end which gives the following matrix

A =


0 1 0 0

1
2
(γ − 3)u2 (3− γ)u γ − 1 0

1
2
(γ − 1)u3 − uH H − (γ − 1)u2 γu 0

0 0 0 u

 . (A.14)

Update Equation A.2 
ρ

ρu

E

Y


t

+ A


ρ

ρu

E

Y


x

= 0. (A.15)

Since the non-conservative method is not coupled with the state vector, the eigenval-
ues and eigenvectors found in Equation A.3-A.5 are not affected by the additional Y



APPENDIX A. DERIVATIONS A – 6

term. The values of a remain the same except for a4:

a4 = ∆4. (A.16)

The coefficients obtained from this derivation describe the values for the "wave"
method, which depends on the differences between qL and qR to calculate a. The
f-wave method used by CLAWPACK depends on the flux differences to obtain the β
coefficients. The coefficients from the "wave" method and f-wave method are related
through the wave speed

βi−1/2 = si−1/2ai−1/2. (A.17)

In the solver, the β coefficients are recovered automatically after solving from the
flux difference (as opposed to difference in q). For the mass-fraction advection, the
resulting f-wave is Z = s(∆4).
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