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Very low frequency subionospheric remote sensing
of thunderstorm-driven acoustic waves
in the lower ionosphere
R. A. Marshall1 and J. B. Snively2

1Department of Aeronautics and Astronautics, Stanford University, Stanford, California, USA, 2Department of Physical
Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA

Abstract We present observations of narrowband subionospheric VLF transmitter signals on 20 March
2001, exhibiting coherent fluctuations of over 1 dB peak to peak. Spectral analysis shows that the
fluctuations have periods of 1–4 min and are largely coherent. The subionospheric propagation path of
the signal from Puerto Rico to Colorado passes over two regions of convective and lightning activity, as
observed by GOES satellite imagery and National Lightning Detection Network lightning data. We suggest
that these fluctuations are evidence of acoustic waves launched by the convective activity below, observed
in the 80–90 km altitude range to which nighttime VLF subionospheric remote sensing is sensitive. These
observations show that VLF subionospheric remote sensing may provide a unique, 24 h remote sensing
technique for acoustic and gravity wave activity. We reproduce this event in simulations using a fluid model
of gravity and acoustic wave propagation to calculate the ionospheric disturbance, followed by an
electromagnetic propagation model to calculate the perturbation amplitude at the location of the VLF
receiver. Simulation results show that a very large and coherent convective source is required to produce
these amplitude perturbations.

1. Introduction

Convectively generated gravity waves (GWs) are routinely observed in the mesosphere and ionosphere; they
influence atmospheric circulation, structure, and variability at mesospheric and thermospheric altitudes
[e.g., Fritts and Alexander, 2003, and references therein]. Lesser known are the effects of acoustic waves on
the upper atmosphere [e.g., Las̆tovic̆ka, 2006]. Significant evidence exists for atmospheric waves of 1–5 min
periods in the F region ionosphere associated with severe weather in the troposphere [Georges, 1973, and
references therein]. Waves with frequencies above the Brunt-Väisälä frequency have also been observed in
airglow image [Hecht et al., 2002] and spectral data [Pilger et al., 2013]. Acoustic and gravity waves were also
observed in the F region ionosphere following the 2011 Tohoku, Japan, earthquake and tsunami as modifi-
cations to the ionospheric electron density [e.g., Matsumura et al., 2011; Galvan et al., 2012, and references
therein]; in situ satellite measurements detected acoustic waves in the F region with periods of ∼1 min that
perturbed the neutral density by up to ∼11% [Garcia et al., 2013].

Acoustic waves are not easily observed in airglow imager data, due to relatively weak airglow perturbations
except directly above sources and the need for imaging cadences of less than a minute [Snively, 2013]. In
this paper, we present observations of acoustic waves propagating through the D region ionosphere using
VLF subionospheric remote sensing (VLF-SRS). This technique is extremely sensitive to fluctuations in the
D region electron density in a narrow altitude range near 85 km (the VLF reflection height). This method
provides a 24 h, weatherproof, high-time-resolution detection method for acoustic and gravity waves propa-
gating through the D region. It appears most sensitive to acoustic waves that produce horizontally coherent
perturbations over the VLF wave propagation paths between transmitters and receivers.

2. Observations

Stanford has operated the Holographic Array for Ionosphere and Lightning Research (HAIL) since the late
1990s, primarily to study the effects of lightning on the D region ionosphere [e.g., Johnson et al., 1999;
Peter and Inan, 2005; Marshall et al., 2006]. Each VLF receiver consists of orthogonal magnetic loop anten-
nas, which are fed into a low-noise preamplifier. The signals are then filtered and amplified again before
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Figure 1. (left, first and second panels) VLF narrowband amplitude data for NAU transmitter (Puerto Rico) measured
at Walsenburg, Colorado. (left, third panel) Spectrogram of VLF amplitude variations, demonstrating periodic oscil-
lations in 1–3 min period range. (left, fourth panel) Histogram of NLDN-reported lightning activity during this night.
(right, first panel) Map of VLF transmitter paths from NAU in Puerto Rico to HAIL sites and lightning activity from NLDN
shown with colors representing UT time. (right, second panel) GOES-8 infrared image at 04:02 UT, showing cloud cover
corresponding to thunderstorm activity shown above.

digitization. Amplitude and demodulated phase of known narrowband VLF transmitter signals in the
∼20–50 kHz range are recorded at 50 Hz sampling rate, 24 h a day. Further details of the recording systems
can be found in Cohen et al. [2010].

Figure 1 (right, first panel) shows the locations of the NAU transmitter in Puerto Rico (40.75 kHz, 100 kW radi-
ated power) and selected VLF receivers of the HAIL array. Colored symbols represent lightning discharges
reported by the National Lightning Detection Network (NLDN); the color varies with time from blue (3 UT)
to red (10 UT), with the color scale shown on the right. Clearly there was significant lightning activity, and
likely convective activity, at this time in the Southeastern United States.

Figure 1 (left, first panel) shows narrowband VLF amplitude data recorded at Walsenburg, Colorado. Figure 1
(left, first panel) is simply a zoomed-in view of Figure 1 (left, second panel) from 6 to 7 UT. Figure 1 (left,
third panel) is a spectrogram of the filtered amplitude data, after removing the background variation on
time scales greater than 12 min, in order to focus on the short-period variations. In the spectrogram, the
impulsive features near 5 UT and 8 UT are “early VLF” perturbations caused by transient ionization in the D
region ionosphere created by the lightning quasi-electrostatic field and/or electromagnetic pulse [e.g., Inan
et al., 1995; Marshall et al., 2006].

This event is characterized by short-period fluctuations starting at about 6:08 UT. For the first 17 min these
fluctuations appear to be coherent with a period of 1–1.5 min. At 6:25 there are approximately two cycles
with a period closer to 3 min, followed by another 22 min of 1–2 min period fluctuations. The fluctuations
reach as high as ∼1.2 dB peak to peak, comparable to very large early VLF and lightning-induced electron
precipitation events [Marshall et al., 2006; Peter and Inan, 2007].

Based on the 1–3 min periods of the fluctuations shown in Figures 1 and 2, we argue that these fluctua-
tions are a signature of acoustic waves (AWs) driven by storm activity below, propagating up to, and through
the D region ionosphere. It is well known that in Earth’s middle atmosphere, gravity waves are typically lim-
ited to intrinsic periods of ∼4 min or longer and acoustic waves to periods of ∼5 min or shorter, with some
variation with altitude and ambient conditions [e.g., Snively, 2013, Figure 1a].
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Figure 2. Narrowband VLF data recorded on 20 March 2001, at five HAIL sites, as shown on the map in Figure 1. Blue
curves are raw 1 Hz sampled data; red curves are low-pass filtered to reduce noise fluctuations.

Figure 1 (right, second panel) shows satellite imagery from the GOES-8 satellite at 04:02 UT on this day, 2 h
before the onset of the oscillations; the next available GOES image was at 07:30 UT, after the oscillations. The
lightning activity in Figure 1 can clearly be associated with the two circled storms, a large tropical storm off
the southeastern tip of Florida (storm 1) and a small squall line over the Florida panhandle (storm 2).

Figure 2 compares the VLF narrowband data of five VLF receiver sites, namely, Cheyenne, Boulder, Colorado
Springs, Walsenburg, and Las Vegas. All five sites observed similar fluctuations; we note that the sites at
Walsenburg and Colorado Springs observed the largest fluctuations, and the northernmost site, Cheyenne,
observed the smallest fluctuations. While spectrograms from each site show similar features to those in
Figure 1, the five sites do observe amplitude fluctuations slightly out of phase with each other. This suggests
that a component of the wave was propagating perpendicular to the paths (i.e., north/south) rather than
parallel to the paths.

In addition to NAU amplitude data, we have investigated phase data for NAU and amplitude data for the
VLF transmitter signals from NAA (Maine), NLK (Washington state), and NPM (Hawaii). Phase data from NAU
exhibit some periodic fluctuations similar to the amplitude data, but the SNR is much lower. Amplitude and
phase data from NAA, NLK, and NPM do not exhibit fluctuations similar to those shown in Figure 2. These
observations suggest that the source of the fluctuations is on the NAU-to-Colorado paths, far from the
overlapping NAA paths.

We cannot determine from this data set alone if the perturbation occurred at the location of one or both
of the two storms identified in Figure 1 or some other location (i.e., nearer to Puerto Rico). However, if the
waves originated from storm 1, they would have to be >210 km wide at the altitude of the ionosphere in
the direction perpendicular to the paths in order to appear on all five transmitter paths. If they originated
from storm 2, they would have to be >340 km wide at the ionosphere. Either scenario requires a source that
is spatially extended and (on average) coherent to produce a sufficiently directive acoustic wave field in the
D region.

Another feature of the data in Figures 1 and 2 that offers clues to the source is the paucity of very strong
“early VLF” events, despite the lightning activity directly below the signal paths. Early VLF events are pro-
duced by large lightning discharges, typically those with large charge moments, due to ionization produced
by the quasi-electrostatic field directly above the lightning discharge [Pasko et al., 1998]. They do not always
appear in the VLF data even when there is an ionospheric disturbance [Marshall and Inan, 2010], but they
occur more readily when they are near the transmitter [Haldoupis et al., 2010]. There is in fact a single 1.0 dB
early VLF event apparent in Figure 1, occurring at 4:56:15 UT on all five paths shown in Figure 2. NLDN did
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not report a lightning discharge within 15 s of this event; it is possible that it occurred near the NAU trans-
mitter, beyond NLDN’s coverage. However, there are no other early VLF events on 20 March from the NAU
transmitter to HAIL. This suggests that the lightning activity shown does not exhibit large charge moments,
and thus there is negligible direct electromagnetic coupling to the lower ionosphere.

3. Simulation

We wish to determine the possible AW source configurations that lead to this large-amplitude perturba-
tion on the VLF narrowband signal. To reproduce this perturbation, we use a two-step modeling procedure.
First, we use a fluid model of gravity and acoustic wave propagation, with a predefined source input, to
calculate the disturbance to the upper atmosphere. Second, we input the atmospheric disturbance to an
electromagnetic propagation model of the subionospheric VLF transmitter signal.

3.1. Acoustic and Gravity Wave Model
Acoustic wave propagation is simulated using the model of Snively [2013], which may be operated either in
Cartesian or cylindrically axisymmetric forms (to investigate radially localized versus horizontally extended
sources). It solves the compressible Euler equations with gravity using a finite volume method [e.g.,
LeVeque, 2002] implemented in a modified version of Clawpack (www.clawpack.org). It accounts for viscous
and thermal diffusion and source terms arising from geometry [see Snively, 2013, section 2.1, and references
therein]. A disturbance approximating a series of convective updrafts and downdrafts is imposed as a body
force (in units of N/kg ≡ m/s2):

Fs(x, z, t) = 0 exp

(
−
(x − x0)2

2𝜎2
x

−
(z − z0)2

2𝜎2
z

−
(t − t0)2

2𝜎2
t

)
cos(𝜔t) (1)

where 𝜎x (or 𝜎r) and 𝜎z specify the disturbance size in lateral (or radial) and vertical dimensions, 𝜎t is the
disturbance duration modulated by frequency 𝜔, and 0 is the amplitude. The altitude z0 of the source is
held constant at 12 km and the vertical size is 𝜎z = 3 km. We investigate variations in the lateral (or radial)
size 𝜎x (or 𝜎r) from 3 km to 150 km, and amplitude 0 from 0.01 to 0.2 N/kg.

In addition to source parameters, we vary the background ionosphere profile to investigate its effects on the
perturbation amplitude. The ionospheric profile choice has the strongest effects on the VLF transmitter elec-
tromagnetic (EM) wave propagation and also affects the shape and altitude of the disturbance produced in
the AGW model. We discuss the choices of ionospheric profile in the next section.

3.2. EM Propagation Model
To simulate the propagation of the VLF transmitter signal, we use a segmented long-path finite-difference
frequency domain (FDFD) model of subionospheric VLF propagation [Chevalier and Inan, 2006]. This model
allows for arbitrarily specified electron density and collision frequency in 2-D (altitude range, cylindrical
coordinates) [Marshall and Inan, 2010]. We begin with an ionospheric electron density profile specified
either by the International Reference Ionosphere (IRI) model [Bilitza and Reinisch, 2008] or the Wait and Spies
[1964] (WS) model where the electron density ne in cubic centimeters at altitude h is given by

ne(h) = 1.43 × 107 exp(−0.15h′) × exp
[
(𝛽 − 0.15)(h − h′)

]
(2)

where h′ is a reference altitude, typically 83–87 km, and 𝛽 is a “sharpness” parameter, which is typically
varied between 0.5 and 0.9. Note that 𝛽 is effectively the inverse of the ionosphere scale height; higher 𝛽 cor-
responds to a smaller scale height, or sharper profile near h′. We also use an MSIS-E-90 atmospheric density
profile [Hedin, 1991], from which the collision frequency is specified by 𝜈e = (qe∕me)∕𝜇e, with the electron
mobility 𝜇e = 1.4856N0∕N, and N is the neutral density as a function of altitude [e.g., Pasko et al., 1997]. We
use the same ionosphere and atmosphere profiles in the propagation mode and the fluid model in each
particular case. We input the disturbance produced by the fluid model at the approximate location along
the great-circle-path of one of the two thunderstorms (over either South Florida or the Florida panhandle).
The model takes into account real ground conductivity and magnetic field direction and amplitude for the
specified path.
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3.3. Simulation Results
Figure 3 shows example simulation results from this model. This case uses a WS ionosphere model with
h′ = 87 km and 𝛽 = 0.9, the highest and sharpest ionosphere profile considered. The disturbance has an
amplitude of 0 = 0.05 N/kg, and a size 𝜎x = 150 km, located over the Florida panhandle (storm 2). As with
all simulation cases, 𝜔 corresponds to a period of 60 s, t0 = 360 s, and 𝜎t = 60 s (i.e., the source includes
only two to three cycles at the source period). Figure 3a shows the 2-D H𝜙 component (i.e., perpendicular
to the page) versus altitude and along the transmitter path for the “ambient” case. Typical of these simula-
tions, one can immediately see mode interference; reflection from the base of the ionosphere at 85 km; and
amplitude decay with distance, primarily due to spreading in the Earth-ionosphere waveguide. Figures 3b
and 3c show the electron density and collision frequency disturbances calculated from the fluid model as a
percent change from the ambient. The FDFD model is then rerun with the modified ionosphere, and the dif-
ference in decibel amplitudes is shown in Figure 3d. This perturbation exceeds 5 dB at many locations in the
2-D space, due to shifting of the interference nulls. However, along the ground (Figure 3e), the perturbation
is somewhat more regular and rarely exceeds 1 dB.

Figure 3e shows that a VLF receiver located at some distance x along the x axis would measure the pertur-
bation shown at that location. In our experimental setup, the VLF receiver is at the far right end of the path
(4500 km from NAU). The amplitude at any given location is highly sensitive to the mode interference in the
waveguide, which is sensitive to the poorly known electron density profile, which varies considerably both
in time and space [e.g., Marshall and Inan, 2010]; as such, the end point of this figure is a poor predictor of
the actual measured amplitude. To make a statistical prediction of the measured perturbation, we calculate
a distribution of perturbation amplitudes in the last 1500 km of the path at 500 m increments. We then cal-
culate the probability that the measured perturbation at a given location is greater than 0.05 dB (roughly
the threshold of detectability in the data) and the perturbation amplitude for which the probability exceeds
50% (i.e., the median). In the case shown, there is a 90.6% chance that the perturbation measured at any
given point will exceed 0.05 dB, and the 50% probability threshold is 0.16 dB. For comparison, the measured
amplitude perturbation in Figures 1 and 2 reaches ∼0.6 dB.
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Table 1. Summary of Simulationsa

Source Source Source Size VLF Reflection NILDP
Type 0 (in x or r) Ionosphere h′, 𝛽 Height (1016 e−/m) P > 50% (dB)

“First test” 0.1 50 km WS 85, 0.9 85 km ∼0.4 ∼0.01
“Realistic ionosphere” 0.1 50 km IRI-like 85.3 km ∼0.16 ∼0.01
“h-beta tests” 0.1 50 km WS 83–87, 0.5–0.9 83–87 km ∼0.6–6 0.02–0.5
“Corrugated ne” 0.05 3 km WS 87, 0.7 87 km ∼0.1–0.2 ∼0.01
“Large source size” 0.05 150 km WS 87, 0.9 87 km ∼2–3 0.05–0.18
“Two sources, IRI” 0.02, 0.04 150, 50 km IRI 82 km ∼1–2 0.01–0.06
“Two sources, WS” 0.02, 0.04 150, 50 km WS 87, 0.9 87 km ∼0.6–2 0.03–0.1

aThe VLF reflection height is derived from the electron and neutral density profiles. The last two columns are measured from the EM
propagation simulations.

We aim to determine the source parameters (amplitude and size) and ionospheric conditions under which
the measured perturbation can be reproduced. For this purpose, we have run a variety of simulations with
different source amplitudes and sizes as described in section 3.1. We vary the ionosphere by using either an
IRI ionosphere or a WS profile, with h′ varied from 83 to 87 km, and 𝛽 varied from 0.5 to 0.9. All simulations
use the MSIS-E-90 atmospheric profile for the time and location of storm 1. The ionosphere and atmosphere
profiles lead directly to an estimate of the VLF reflection height hR, which is the altitude at which 𝜔2

p = 𝜈e𝜔

[Ratcliffe, 1959]; hR is not necessarily the same height as h′, depending on the MSIS-E-90 profile, but in our
simulations |hR − h′| ≤ 1 km. Table 1 summarizes the simulation runs and output parameters. The “two
sources” cases separately simulate a 150 km, cylindrically symmetric source near South Florida or a 50 km
wide Cartesian source over the Florida panhandle at the locations of storms 1 and 2, respectively.

We follow the method of Peter and Inan [2007] to compare the density disturbance to the measured pertur-
bation amplitude. Since the VLF wave is most sensitive to Δne and Δ𝜈e in a narrow altitude range around hR,
we define the “integrated line density perturbation” NILDP as the change in electron density integrated along
the transmitter-receiver path, through an altitude range Δh = 6 km centered around hR:

NILDP = ∫
lrcvr

lxmtr
∫

hR+Δh∕2

hR−Δh∕2
Δne(l, h)dh dl (3)

This is a modest change from the method of Peter and Inan [2007], who integrated strictly from 80 to 85 km
altitude, irrespective of the ionospheric conditions; this modified measurement looks specifically at the
density change around the VLF reflection height, where the wave-ionosphere interaction is strongest.

Figure 4 shows NILDP for two particular cases from the “two sources” set of runs. Both of these cases use the
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see the text for description of the source inputs.

WS ionosphere profile, with h′ =
87 km and 𝛽 = 0.9. As described
earlier, the “panhandle source” case
places a 50 km wide 2-D Cartesian
source at the location of storm 2,
on the Florida panhandle, with an
amplitude of 0 = 0.04 N/kg. The
“South Florida” case places a 150 km
wide, cylindrically symmetric source
at the location of storm 1, near the
tip of Florida, with an amplitude of
0 = 0.02 N/kg. We observe that
these two cases yield maximum NILDP

of ∼1.5 × 1016 el/m; the smaller,
although larger-amplitude, panhan-
dle source provides a smaller NILDP

due to the reduced spatial extent of
the disturbance along the VLF path.

It is notable that, in both cases, the
density fluctuations exhibit
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approximately five cycles at the
source period, while the source itself
had only two to three cycles. This
arises due to the ground reflection of
downward acoustic waves launched
simultaneously by the tropospheric
sources, leading to a second packet
of coherent waves that follows the
initial packet.

Figure 5 shows the results of a large
number of simulations, comparing
NILDP and ΔA, the perturbation ampli-
tude measured by the VLF receiver.
The absolute value of the amplitude
perturbation is taken here for com-
parison. It is found that positive NILDP

values may produce either positive
or negative ΔA perturbations to the
VLF signal, depending on the location
of the receiver (perhaps contribut-
ing to the observed phase differences
between receivers). The scattered

points are color coded by the VLF reflection height for that simulation. We observe that a reasonable corre-
lation exists between these parameters. The inverse slope, corresponding to 𝛼ILDP in Peter and Inan [2007],
is 2.06 × 1016 el/m/dB; for comparison, Peter and Inan [2007] found 𝛼ILDP = 5.1 × 1016 el/m/dB, albeit for
only two cases of lightning-induced electron precipitation. We have similarly tested an “integrated collision
frequency perturbation” parameter, but it does not correlate as strongly with ΔA.

These results show that to produce a 0.5 dB amplitude perturbation, we require NILDP of ∼1017 el/m. Only
a handful of our simulations produce disturbances of this magnitude, but it is within the range that physi-
cally reasonable simulations can reproduce (resulting in acoustic wave disturbances at ∼100 Pa within the
source). In general, the largest perturbations are found for large sources (both in amplitude and size) and
with ionospheric profiles that are high (large hR) and sharp (large 𝛽). Intuitively, higher hR means the EM
wave can probe to a higher altitude, where the AW also has higher amplitude, due to exponential growth
with altitude. Higher 𝛽 is less intuitive but may imply that the EM wave is less attenuated in the altitude
range just below the reflection height, so more of the wave reaches hR and just above.

4. Discussion and Conclusions

We have presented the first observation of acoustic waves observed in VLF subionospheric remote sensing.
We hypothesize that these waves are launched by thunderstorm/convective activity in one of two thun-
derstorms occurring along the VLF signal path. We model the acoustic wave propagation and disturbance
of the overlying ionosphere and the VLF transmitter signal propagation in the Earth-ionosphere wave-
guide and estimate the source amplitude and size necessary to produce the observed signature. We find
that very large sources (producing wave perturbations to D region electron density tens of percent, span-
ning >100 km radially) are required to produce the observed perturbation of 0.5 dB. We further find that the
perturbation is larger for higher hR and larger 𝛽 (i.e., sharper ionospheric profiles).

The correlation between NILDP and ΔA also suggests that waves able to significantly perturb the NILDP will be
most readily observable. This provides an observational “filtering” mechanism; acoustic waves that are hor-
izontally coherent in the D region, due to high source directivity, appear most likely to produce strong NILDP

perturbations and also produce strong ΔA perturbations. Less directive sources that produce “corrugated”
wave fields with many alternating wavelengths (in the radial direction) through the D region yield small
NILDP perturbations on average. This also suggests a filtering effect for gravity waves; their horizontally peri-
odic structure may tend to produce weak NILDP perturbations for waves propagating along the direction of
the VLF signal, due to integrated cancelation through alternating phase fronts. Gravity waves propagating

MARSHALL AND SNIVELY ©2014. American Geophysical Union. All Rights Reserved. 5043



Journal of Geophysical Research: Atmospheres 10.1002/2014JD021594

perpendicular to the VLF path, with sufficiently long horizontal wavelengths and extents, may produce NILDP

perturbations more effectively. These selective filtering effects will be investigated in future work; however,
we suggest that they may provide a mechanism for coherent signatures to arise despite the relatively broad
wave spectra anticipated above realistic convective sources.

Thus, under the hypothesis that the perturbation is caused by convective activity in the troposphere, a very
large wave source is required. We cannot definitely correlate this observation to convective AW activity, but
we can rule out a few other possibilities. This disturbance is unlikely to have been caused by earthquake
activity [e.g., Matsumura et al., 2011]; no earthquakes were recorded in North America on this day by the US
Geological Survey. It is also unlikely to be caused by propagation of waves from higher latitudes (i.e., auro-
ral forcing), because no similar activity was observed on the NAA-to-HAIL paths north of the NAU-to-HAIL
paths. However, the geomagnetic A index on this day was 105 at high latitudes and 27 at midlatitudes, as
documented on the NOAA Space Environment Center website. A moderate-to-strong geomagnetic storm
occurred from 00:00 to 18:00 UT. The high-latitude A index value was the highest for all of 2001. It is possi-
ble that this geomagnetic disturbance is alternately responsible for the observed perturbation or perhaps
responsible for modifying the D region ionosphere to make observation of the convectively driven AW more
favorable. There is also the possibility that the acoustic waves were generated by a meteor entering the
atmosphere, similar to Hecht et al. [2002]. However, the observations in that paper occurred at the time of
a meteor shower, while the present event does not; and the Hecht et al. [2002] event had no convective
activity nearby with which to correlate, while the present event clearly does.

An alternative explanation for the large observed amplitude perturbation is revealed in the 3500–4000 km
range of Figure 3. In this region the AW perturbation to the VLF wave reaches 1 dB over a wide area, but the
average disturbance that is measurable from 2500 to 4000 km is only 0.16 dB due to the regions of smaller
perturbation. It is possible that the ionospheric conditions at the time of this event enabled a fortuitously
large perturbation to be measured just at the receiver, i.e., that the range was near optimal for detecting
this disturbance. If that is the case, we expect this event to be an unusual event. Statistical searches have
uncovered other similar events with smaller amplitudes; however, a detailed statistical study of AW event
occurrence in VLF-SRS is ongoing and left for future work.
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