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Abstract We present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere
Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid
ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle
distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe
frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the
ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure
E⃗ × B⃗ convection away from the arc (poleward) and downflows of hundreds of m s−1 poleward of this arc,
indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic
Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of
Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by
transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region
we observe several hundred m s−1 upflow of the bulk thermal ions colocated with WPI; however, the mirror
force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly
neutral upwelling drivers). The low-altitude MICA observations serve to inform future ionospheric modeling
and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously
considered viable and (b) the occurrence of structured and localized upflows/downflows below where
higher-altitude heating rocesses are expected.

1. Introduction

In this paper we present a case study of the thermal ionospheric ion particle distributions that are the seeds
of high-latitude ion outflow to the magnetosphere. Energization at low ionospheric altitudes results in bulk
heating and transverse acceleration of the ions, which are eventually accelerated upward by the enhanced
parallel pressure gradient and/or the mirror force, starting upflow and leading to the outflow process
(see reviews by André and Yau [1997] and Horwitz and Moore [1997], and references within). These outflows
have been well measured at higher altitudes by particle instruments, in the form of ion conics, including mea-
surements at satellite altitudes [Hoffman, 1970; Shelley et al., 1972; Strangeway et al., 2005; Nilsson et al., 2006]
and by high-altitude sounding rockets [Arnoldy et al., 1996; Kintner et al., 1996; Lynch et al., 2007] where the
wave-particle interactions (WPI) have transversely accelerated these particles well beyond typical thermal
energies. Generally speaking, it has been thought that transverse heating by WPI occurs at a minimum alti-
tude of approximately 500 km on the nightside [Whalen et al., 1978; Yau et al., 1983; Arnoldy et al., 1992]. Many
investigations have shown that the outflow of oxygen into the magnetosphere has a profound effect on mag-
netospheric dynamics [Kronberg et al., 2014, and references therein], such as the generation of magnetosphere
sawtooth oscillations by ionospheric O+ outflow [Brambles et al., 2011] and changes in wave frequencies in
ion cyclotron waves [Lessard et al., 2015].
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The mechanisms responsible for ion upflow/outflow are well documented in the literature. The two funda-
mental plasma physics mechanisms for initiating heating and/or upflow, both present in this case study,
are frictional heating and heating by soft electron precipitation (older ground-based observation literature
traditionally identifies these mechanisms as Type 1 and Type 2 heating, respectively [Wahlund et al., 1992]).
Frictional heating is caused by collisions between ions and neutrals given a relative drift between the two
species and results in direct heating of the ions. This relative drift is typically produced by an electric field
causing the ions to E⃗ × B⃗ convect through the neutral atmosphere [Loranc et al., 1991; Wahlund et al., 1992].
In this sounding rocket case study we do not have the instrumentation to measure perpendicular currents;
therefore, we refer to the process of heating from ion-neutral collisions driven by convection as the more
generalized expression “frictional heating,” as opposed to Joule heating which results from currents driven
by an electric field [Vasyliunas and Song, 2005]. (For an interesting theoretical comparison of frictional versus
Joule heating, see Brekke and Kamide [1996].)

Theoretical and observational investigations correlate the degree of anisotropy (T⟂ > T∥) at a given altitude
with the strength of the electric field [Perraut et al., 1984; Glatthor and Hernández, 1990; Blelly et al., 2010;
Zettergren et al., 2011]. Conversely, heating by soft precipitation does not directly heat the thermal ions.
Electron precipitation heats the ambient ionospheric electrons, which thermally expand upward where the
ionospheric density is lower. This upward expansion creates an ambipolar electric field that accelerates the
ions upward, initiating the upflow process [e.g., Whitteker, 1977; Seo et al., 1997]. Additionally, recent obser-
vational and modeling studies have begun to stress the importance of neutral upwelling colocated with, and
perhaps as a seed process for, ion upflow and outflow [Lühr et al., 2004; Schlegel et al., 2005; Demars and Schunk,
2007; Sadler et al., 2012]. The MICA mission did not carry neutral instrumentation, so we cannot evaluate that
contribution for this case study event, but we expect that it should play a role in these processes.

Soft electron precipitation is the primary driver of Type 2 ion upflow. Analysis by Moen et al. [2004] and
Skjæveland et al. [2011] show a correlation between dayside episodic bursts of soft electron precipitation
(poleward moving auroral forms) and ion upflows. Auroral fields lines with soft precipitation often carry wave
power at Alfvén frequencies [e.g., Chaston et al., 2002]. These Alfvén waves can be a source for wave-particle
interactions through a nonlinear wave-breaking process that results in packets of broadband extremely low
frequency (BBELF) emission [Seyler et al., 1998]. Acceleration from wave-particle interactions results from a
resonance between the plasma wave frequency and the ion gyrofrequency [Chang and Coppi, 1981]. This
produces transverse acceleration of the ions, which manifests as a temperature anisotropy. The transversely
accelerated ions are then accelerated upward by the mirror force [Singh and Schunk, 1984; André et al., 1988;
Chang et al., 1986]. Ion acceleration may also be driven by Alfvén waves at altitudes above the aurora [Lysak,
1986; Li and Temerin, 1993; Stasiewicz et al., 2000; Chaston et al., 2004; Singh et al., 2007; Seyler and Liu, 2007].
At these higher altitudes, wave heating from wave-particle interactions can further energize the upwelled
ions, providing them sufficient energy to escape Earth’s gravitational pull and escape to the magnetosphere
[Strangeway et al., 2005].

At the low altitudes of this case study, collisions play a critical role in the local ionospheric dynamics. When
the ion-neutral collision frequency approaches the ion gyrofrequency, the emission of BBELF electrostatic ion
cyclotron waves is suppressed [Koepke et al., 1998]. When the ion-neutral collision frequency is comparable
to or larger than the ion gyrofrequency, a collision occurs before the ion has sufficient time to complete a
single gyration. For an anisotropic distribution of ions, these collisions will destroy the anisotropy and the
distribution will revert toward a steady state isotropic Maxwellian distribution [St-Maurice and Schunk, 1979].

In situ measurements of ion distributions at the low altitudes where upflow/outflow processes are seeded
are difficult because the observed distribution functions are dominated by flow, ram, and sheath effects.
Heelis and Hanson [1998] discuss using a retarding potential analyzer (RPA) and an ion drift meter to measure
low-energy plasma from an orbiting spacecraft. A more generalized review of low-energy plasma measure-
ment techniques is given by Moore et al. [1998]. Knudsen et al. [1998a, 2003] and Burchill [2003] discuss
several variations of a low-energy charged particle distribution imager used for measuring thermal ion
distribution functions from satellites [Knudsen et al., 1994, 1998b] and sounding rockets [Burchill et al., 2004,
2010]. The analysis we present here from the MICA campaign augments this previous work by making these
difficult measurements of thermal ion distribution functions at altitudes significantly lower than, and scales
significantly smaller than, many of those previously presented.

FERNANDES ET AL. MICA THERMAL ION ANALYSIS 1588



Journal of Geophysical Research: Space Physics 10.1002/2015JA021536

Remote sensing using ground-based measurements can circumvent the difficulties associated with in situ
measurements of thermal plasma, but these observations have their own limitations. Ground-based radar
measurements of the high-latitude ionosphere commonly observe low-altitude (<1000 km) ion energization
and upflow [Wahlund and Opgenoorth, 1989; Forme et al., 1995; Ogawa et al., 2009]. However, ground-based
radar measurements such as those by PFISR (Poker Flat Incoherent Scatter Radar) integrate over a large
horizontal pixel area (∼10 km×10 km per beam) at a range of 200 km. Beam-to-beam spacing is typically many
tens of km in the F region (for the 15-beam pattern used on MICA) with integration times of tens of seconds to
several minutes (M. Nicolls, personal communication, 2015). The combination of large pixel volume and long
integration time makes these radar measurements incapable of resolving the fine-scale structures in the ther-
mal ionosphere observed in situ by MICA. Additionally, because PFISR measures line-of-sight temperature, it
is unable to distinguish between perpendicular and parallel heating within the observed volume containing
the MICA trajectory (though this measurement within a common volume would be possible with multistatic
measurements). Thus, the relationship between specific fine-scale processes and their net statistical aggre-
gate effects remains an open question.

Many challenges impede proper analysis of in situ thermal ion distribution function data. In the low-energy
regime, the response of the instrument varies from the ideal because the measured thermal ion population
is very sensitive to the presence of the instrument. The plasma is distorted in the frame of the instrument
because of plasma flows, payload ram, and acceleration through the sheath that forms around the spacecraft.
The energies associated with these processes (a few eV) are large compared to the thermal energy (less than
0.5 eV). Extracting information about ion distribution function parameters from measurements of the thermal
plasma distribution function requires accounting for all of these plasma processes and the nonideal response
of the instrument in the low-energy regime. These techniques are essential to understanding the origin of the
upflow/outflow process, in particular the details of the distribution functions and possible circulation patterns
of the thermal ions at auroral field line foot points.

In this paper we describe the low-altitude in situ measurements of the thermal ion particle distributions
from the MICA nightside auroral sounding rocket with comparisons to the multifluid ionospheric model of
Zettergren and Semeter [2012]. The techniques and observations in this study differ from previous ionospheric
observations of the origins of ion outflow in several ways. The ion measurements are derived from a novel
forward-modeling technique that allows us to extract ion temperature and parallel flows from the saturated
measurement of the 2-D thermal ion distribution. This new technique is an extension of previous work in
which forward-modeling images of the in situ measured thermal ion distribution function were used to extract
geophysical quantities [Burchill, 2003; Knudsen et al., 2003; Burchill et al., 2004]. Our observations of the pro-
cesses that seed ion upflow/outflow are at altitudes below 325 km. Specifically, the observations of processes
influenced by WPI, and the occurrence of structured and localized upflows and downflows on a Type 2 field
line are at altitudes below where higher-altitude heating processes are expected. These low-altitude obser-
vations inform future ionospheric observations, modeling, and simulations of the need to consider heating
by WPI and structured parallel flows at altitudes lower than previously considered viable.

In sections 2.1 and 2.2 we describe the MICA mission and event. In sections 2.3 and 3.1 we present the MICA in
situ and ground-based data. In sections 3.2 and 3.3 we analyze the thermal ion data using a forward-modeling
technique. In sections 4.1 and 4.2 we present and discuss the results of our analysis. In section 4.3 we compare
the in situ data to a multifluid ionospheric model. In section 5 we present our conclusions.

2. Observations
2.1. MICA Flight Overview
The details of the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral
sounding rocket mission have been presented in Zettergren et al. [2014] and Lynch et al. [2015]. In this section
we present those details pertinent to the analysis of the thermal ion data.

MICA (NASA 36.273) launched from the Poker Flat Research Range in central Alaska on 19 February 2012 at
05:41:06.745 UT (or 18 February 2012 at 18:11:06.745 MLT). It reached an apogee of 325 km at T + 297.5 s. The
MICA payload traversed two discrete, localized arcs in the wake of a westward traveling surge. Here we focus
on the behavior of thermal ions in and poleward of the two small auroral arc structures.
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2.2. Instrumentation
The MICA campaign consisted of the science payload and a suite of ground-based instruments. The MICA
science payload split into a main payload and a subpayload. The spin axes of both payloads were aligned to
the local magnetic field within fewer than 4∘ throughout the flight. The final spin rate of the main payload
was approximately 0.6 Hz, and the final spin rate of the subpayload was approximately 0.4 Hz. The subpayload
separated from the main payload at T+98 s at a separation rate of 1.25 m s−1. The subpayload carried a thermal
electron retarding potential analyzer (ERPA) [Frederick-Frost et al., 2007], a Cornell University GPS Autonomous
Receiver (COUGAR) [Powell et al., 2002], and the Cornell Wire Boom Yo-yo (COWBOY) electric field instrument
[Lundberg et al., 2012a, 2012b]. As described by Lundberg et al. [2012b], the COWBOY instrument consists of
a pair of crossed 12.14 m dipole antennas. Potential difference is measured between the 4.45 cm spheres
at the end of each coaxial wire boom, as well as between each sphere and the payload skin. The antennas
were connected to two wave receivers: one measuring from DC to 500 Hz at a sample rate of 1 kHz and one
measuring from 20 Hz to 20 kHz. One sphere pair was equipped with an HF snapshot receiver that took 4096
samples at 4.8 MHz once every 10 ms. All data presented in this analysis were acquired with the DC (0–500 Hz)
plasma wave receiver.

The main payload carried a Billingsley fluxgate magnetometer (Billingsley TFM100G2). As described by Lynch
et al. [2015], the magnetometer acquired data at 1 kHz; these magnetic field data are despun from the payload
reference frame using a rigid body motion model of the payload dynamics [Horak, 2014]. The despun data are
differenced from an IGRF (International Geomagnetic Reference Field) model to find the deflections caused
by auroral currents. The data are smoothed but not band-pass filtered, in order to retain the proper phase of
the resulting signals.

Other instruments on the main payload include a second ERPA, a second GPS receiver, a suite of five thermal
ion retarding potential analyzers (PIPs or Petite Ion Probes), a toroidal electrostatic analyzer for measur-
ing precipitating electrons (the Bagel), a multineedle Langmuir probe (mNLP) [Moen et al., 2012; Bekkeng
et al., 2010; Jacobsen et al., 2010], and a top-hat thermal ion electrostatic analyzer (HEEPS-Thermal, HT ). The
results we present in this paper focus on the analysis of the thermal ion data from the HT (HEEPS-Thermal or
hemispherical energetic electrostatic particle spectrometer-thermal) instrument.

The HT instrument is based on a traditional stretched top-hat electrostatic analyzer detector design [Carlson
et al., 1983; Young et al., 1988]. The physical parameters of the HT (using the definitions given by Young et al.
[1988]) are the following: minor radius R1 =1.778 cm; major radius R2 = 1.905 cm; stretch radius RA = 6.096×
10−2 cm; and geometric factor (per pixel) G = 5.07×10−5 cm2 sr. The HT measures the thermal ion phase space
distribution f (v⟂, v∥) over a nominal energy range of 0.019–73 eV at a 2 kHz sample rate with a 128 ms energy
sweep period. The planar field of view (FOV) defined by the aperture is approximately 270∘ × 5∘. The HT is
mounted such that the spin axis is within the planar FOV; thus, the instrument was flown with the background
geomagnetic field B⃗0 located in the planar field of view (fewer than 4∘ separate the magnetic field vector and
the FOV plane). Payload spin sweeps the FOV plane through all directions perpendicular to B⃗0 allowing for
measurement of the full 3-D distribution function. Detailed analysis of the HT thermal ion data is discussed in
section 3.

The in situ measurements are interpreted in the context of a ground-based array of sensors including imagers
and radar. PFISR was run in a 15-beam mode allowing observations of plasma density and large-scale electric
fields. (See Zettergren et al. [2014] for a detailed description of the PFISR experiment and data from the MICA
campaign.) A Scanning Doppler Imager (SDI, a Fabry-Perot interferometer) at Poker Flat monitored E and F
region neutral winds and temperatures [Conde and Smith, 1998; Anderson et al., 2012a, 2012b]. A digital all-sky
imager was operating at Poker Flat, filtered for the oxygen red and green-line emissions (630.0 and 557.7 nm),
and in particular the N+

2 first negative emission at 427.8 nm, cycling through the three filters on a 12.5 s
cadence. A medium-field (47∘ field of view) imager, looking up the local magnetic field line, filtered for the
N+

2 first negative emission at 427.8 nm and operating at 16.4 Hz, was operating under the foot point of the
payload apogee at Venetie, Alaska.

2.3. Observations
Figure 1 shows a keogram display of the auroral event and the MICA payload traversal through the two auroral
arcs. This keogram, generated from the data acquired by the Venetie medium-field imager, is cut along the
line of the payload trajectory and displays electron energy flux calculated using the conversion factors of Rees
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Figure 1. Keogram showing an overview of the MICA event; the white line represents the MICA payload trajectory.
The keogram is cut along the payload trajectory from the medium-field imager, which was located at Venetie (foot point
of apogee) and centered on the local magnetic field line. The keogram shows electron energy flux calculated from the
optical data.

and Luckey [1974] and Strickland et al. [1989]. This keogram shows the time history of each point along the
trajectory (the diagonal white line indicates the MICA payload trajectory as a function of time).

Early in the evening (before this keogram), a quiet evening arc crossed Alaska. Magnetometer measurements
from the GOES satellite and camera data from the THEMIS camera array indicated the onset of a substorm that
launched a westward traveling surge toward Alaska. Minutes before the MICA launch, this westward traveling
surge crossed into the field of view of the Poker Flat and Fort Yukon all-sky imagers. This activity is seen in the
Figure 1 keogram from 5.66 to 5.70 UT. The rocket was launched into the wake of this surge. As shown in the
keogram the MICA payload transited the first arc, labeled ArcA, at 5.75 UT (flight time T + 233 s). A second
crossing, labeled ArcB, occurs at 5.77 UT (T + 286 s).

Figure 2 shows an overview of the in situ and ground-based observations during the MICA flight. The payload
transits ArcA from T + 233–241 s, defined by the optical data (Figure 2a); ArcB extends from T + 286–337 s,
defined by the current sheet signature in the magnetic field data (Figure 2c). Figure 2a shows the payload
altitude and the auroral intensity at the magnetic foot point of the payload from the Venetie medium-field
imager. This imager is filtered for the 427.8 nm blue line with an assumed peak altitude of 110 km. Figure 2b
is the DC-coupled electric field (0–500 Hz) rotated into a geomagnetic coordinate system. Figure 2c is the
DC-coupled magnetic field deflection (differenced from the IGRF model) rotated into the same geomagnetic
coordinate system. Note that the coordinate system used is geomagnetic-north (blue), geomagnetic-east
(red), geomagnetic-down, so the magnetic field data, the DC Poynting flux (presented later), and field-aligned
currents (FAC) are positive pointing downward toward Earth’s surface for this Northern Hemisphere
mission. The prominent feature in the magnetic field data is the large upward current sheet observed from
T+286–337 s as the payload moves northward through ArcB. Figure 2d is the large-scale field-aligned current
calculated from the curl of the magnetic deflection vector (calculation detailed in Lynch et al. [2015]).

The electric and magnetic field data presented in Figures 2b and 2c are used to calculate the DC electromag-
netic Poynting flux presented later in the analysis (section 4). This DC Poynting flux is the cross product of
the DC electric field (0–500 Hz) and the magnetic field deflection. Because both quantities are sampled at
1 kHz, the calculated Poynting flux covers the frequency range 0–500 Hz and thus includes power from DC
and Alfvénic sources.

Figure 2e shows the plasma density (from mNLP) and electron temperature (from subpayload ERPA). The
largest-scale features of the density profile are governed by altitude, with F region peaks observed at T +190 s
and T + 425 s. A density cavity is observed from approximately T + 200–375 s; as discussed by Zettergren
et al. [2014] this cavity is consistent with a hysteresis effect in the F region driven by the strong electric fields
preceding the recent passage of the westward traveling surge. Their modeling shows that the generation
and fast recombination of heavy molecular ions can leave density gaps in the F region for tens of minutes.
Furthermore, their analysis implies that these F region density cavities may persist in spite of the surge ion-
ization source enhancement in the E region. Figure 2f shows the ion temperatures parallel and perpendicular
to B⃗0, with a temperature anisotropy of T⟂∕T∥ = 1.3 for the first half of the flight (T + 163–285 s) and a nearly
isotropic temperature for the second half. Figure 2g shows the bulk parallel motion of the thermal ions for the
previously described temperature anisotropy, with positive along B⃗0 (positive flows are downflows).
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Figure 2. MICA in situ and camera data. The highlighted regions are ArcA (T + 233–241 s) and ArcB (T + 286–337 s). The
figure shows (a) intensity from the Venetie medium-field imager (black) and payload altitude (red); (b) electric field and
(c) magnetic field measurements in geomagnetic north (blue) and east (red) coordinates; (d) field-aligned current where
positive is along B⃗0; (e) electron density (black) and electron temperature (red); (f ) ion temperature parallel (blue) and
perpendicular (red) to B⃗0; and (g) parallel motion of thermal ions, where positive is downflow (parallel to B⃗0) and
negative is upflow.

The focus of this manuscript is the in situ thermal ion data presented in Figures 2f and 2g. These geophysical
parameters result from analysis using a forward model that generates ion images from a simulation of the
velocity distribution function. This forward model is driven by the in situ measurements of the plasma density
n, electric fields E⃗, and the spacecraft potential Φsc. The geophysical parameters that result from our analysis
are the gyrotropic thermal ion temperature, T⟂ and T∥, and the bulk parallel ion flow velocity, u∥. The analysis
technique is described in section 3.

3. Analysis
3.1. Thermal Ion Images
Analysis of the HT thermal ion data requires accounting for shifts and accelerations of the plasma as measured
in the instrument frame. The energies associated with these processes are large compared to the thermal
energy. The spacecraft is charged to several volts negative in the dark lower ionosphere [Siddiqui et al., 2011],
so the acceleration from the spacecraft potential dominates the energy response. We assume a thin-sheath
spherically radial acceleration of thermal ions to the instrument aperture, a simplifying assumption that
assumes the acceleration occurs in a region of zero thickness at the instrument aperture. As such, we limit our
analysis to times when the instrument FOV plane is within 20∘ of the perpendicular ram vector (the compo-
nent of the net flow perpendicular to the spin axis), because at these ram-facing times the sheath and ram
acceleration vectors are nearly parallel, and the thin-sheath approximation is accurate. We explicitly account
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for the E⃗ × B⃗ geophysical plasma flow and the ram (both measured quantities) as the payload travels through
the flowing thermal plasma (at approximately 1 km s−1, i.e., at speeds comparable to the ion thermal speed).

We have carefully excluded data that are contaminated by detector saturation. The region of uncontaminated
data was estimated by reproducing the saturation with our flight spare detector in the Dartmouth ELEPHANT
(Experimental Low Energy Plasma for Hemispherical Analyzer Nominal Testing) calibration chamber facil-
ity [Frederick-Frost and Lynch, 2007; Gayetsky and Lynch, 2011; Siddiqui et al., 2011]. We found that saturation
resulting in pitch angle imaging distortion occurs for count rates greater than 130 kHz. Considering then the
MICA flight data, we continually monitor the count rate and corresponding saturation limit, retaining only the
uncontaminated data. The saturation distorts the pitch angle imaging of the instrument in the energy bins
corresponding to the core of the distribution, meaning that we are limited to analyzing the higher-energy tail
of the distribution. The thermal ion data within this limited phase space window are analyzed by compari-
son with a 3-D Maxwellian representation of ionospheric thermal ions using a forward-modeling technique
within the same limited phase space window.

3.2. 3-D Maxwellian Model
The analysis of the uncontaminated HT thermal ion data is conducted by comparison to a modeled 3-D
Maxwellian representation of ionospheric thermal ions. As we will show later in section 4.1, collisionality at
these altitudes results in plasmas that are generally quite close to thermal equilibrium, with anisotropies
of only a few percent unless there are local drivers such as wave-particle interactions. This 3-D Maxwellian
representation of the ionospheric thermal ion distribution function is given by
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The plasma density is n; kB is the Boltzmann constant; mi is the ion mass; e is the fundamental electric charge;
T∥, T⟂1

, T⟂2
, u∥, u⟂1

, and u⟂2
are the temperatures and drift velocities, respectively, measured with respect to

the magnetic field direction. The spacecraft potential Φsc is given by Siddiqui et al. [2011] as

Φsc = −
kBTe

e
ln

(√
miTe

meTi

)
− Vss (2)

where me is the electron mass, Ti is the (isotropic) ion temperature, Te is the electron temperature (from ERPA,
Figure 2e), and Vss is the spacecraft sphere-to-skin voltage difference measured by the COWBOY. The first term
represents the idealized float potential of a perfectly conducting sphere; the second term is the measured
difference between such a sphere (the electric field probes) and the irregular nonideal spacecraft (this term
is reported positive and thus serves to further decrease the spacecraft potential). This measurement is from
the subpayload but provides a good representation of the main payload charging in the same nearby envi-
ronment. For this calculation (equation (2)) we assume Ti = Te which is a small error within the argument of
the natural logarithm.

We simplify equation (1) by treating the undisturbed plasma as gyrotropic; that is, T⟂1
= T⟂2

. Two examples
of this bi-Maxwellian distribution are shown in Figure 3. The mass is assumed to be 100% O+; this simplify-
ing approximation is based on the results of Zettergren et al. [2010], which show the ionosphere composition
to be 60–95% O+ at 250 km and 95–99% O+ at 300 km. Parameters in the forward model given by simul-
taneous time-dependent in situ measurements include the plasma density n (from mNLP), the spacecraft
potential Φsc (calculated from ERPA and COWBOY measurements), and perpendicular drift velocities u⟂1

and
u⟂2

(geophysical plasma flow from COWBOY and plasma ram from GPS). The flow measurements (from the
subpayload) have been despun into the geomagnetic reference frame, then spun up into the frame of the
main payload. The remaining parameters (temperatures T∥, T⟂, and the parallel drift velocity u∥) are adjusted
until the modeled distribution matches the in situ measured distribution within the limited phase space
window; this technique of adjusting the model to match the measurement is the “forward-modeling” tech-
nique. More specifically, we match the uncontaminated in situ data with the equivalent phase space density
from the model for each time sample when the plasma net flow direction is within 20∘ of the HT planar FOV.
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Figure 3. Two examples of the 3-D Maxwellian distribution function used in the forward model, for (left) isotropic and
(right) anisotropic distributions. The anisotropic distribution is defined by T⟂ / T∥ = 2.0 with T⟂1

= T⟂2
= T⟂. Both

examples of the model use T∥ = 0.21 eV and include a 1.5 eV spacecraft potential, which manifests as a hole in the
center of the distribution. These examples also include velocity drifts representing those from ram and geophysical
flows, which appear as an offset of the distribution from origin. The velocity drifts used are the following:
u∥ = 500 m s−1; u⟂1

= −500 m s−1; u⟂2
= 0 m s−1.

3.3. Forward Model
The forward-modeling technique involves adjusting the fit parameters in the 3-D Maxwellian model (temper-
ature and parallel drift velocity) until bulk parameters calculated from the model match the bulk parameters
calculated from the in situ measured distribution function. We begin this analysis by assuming the sim-
ple case of an isotropic ion temperature (T⟂ = T∥), though later we evaluate the impacts of anisotropy.
In order to quantitatively compare model and measurement, we develop two intermediate data products:
the weighted-average pitch angle (WAPA) and the net radial flux to the aperture (RFA). These data products
are independent of each other, but they are both dependent on the desired geophysical parameters of ion
temperature Ti and parallel drift velocity u∥.

The weighted-average pitch angle is given by

WAPA =
∑

i

∑
j Cij 𝛼i∑

i

∑
j Cij

(3)

where j is the index for summing over energy steps above the time-dependent saturation threshold, i is the
index for summing pitch angle bins over the range [0, 𝜋], Cij is the count rate at pitch angle bin i and energy
step j, and 𝛼i is the pitch angle of the particles associated with pitch angle bin i as they enter the detector
aperture. This WAPA is calculated both for the data and for the model, for a restricted window of phase space
limited by the time-dependent saturation cutoff count rate of 130 kHz. For the model we use equation (3) to
calculate the WAPA by converting the distribution function f given by equation (1) into a count rate Cij using

Cij = fij

2GE2
j

m2
(4)

where m is the mass, G is the geometric factor of the instrument, and Ej is the energy corresponding to energy
bin j.

The ideal net radial flux to the payload, by Liouville’s theorem, must be the same inside and outside the sheath,
despite any defocusing effects caused by the sheath. In defining the net radial flux to the aperture we make
the thin-sheath approximation in which we assume particle trajectories experience an instantaneous radial
acceleration at the boundary of the zero-thickness sheath. As discussed in section 3.1 we mitigate sheath
effects by limiting analysis to times when the ram vector is within 20∘ of the FOV plane. The net radial flux to
the aperture is given by

RFA =
∑

i

∑
j

Ej

2m2
fij ΔEj ΔΩi (5)
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Figure 4. An illustrative example of the minimization technique used for comparing in situ data and the forward model.
(left and middle) The intermediate data products weighted-average pitch angle (WAPA) and radial flux to the aperture
(RFA) differenced from their data equivalents, for a single HT image at a given flight time t, as functions of Ti,⟂ and u∥.
Specifically, these panels show the difference between the in situ data and the forward model for a series of parallel flow
velocities and temperatures. (right) These intermediate data products are combined as shown, in which the resulting
minimum yields the ordered pair (Ti,⟂, u∥) for the given time t. Color scales in all panels are normalized.

where j is the index for summing over energy steps above the time-dependent saturation threshold, i is
the index for summing pitch angle bins over the range [0, 𝜋], Ej is the energy associated with each energy
step j of the detector, ΔEj is the spacing of each energy step, ΔΩi is angular spacing of the solid angle of
acceptance, m is the ion mass, and fij is the distribution function given by equation (1). Like the WAPA, this
RFA is calculated both for the data and for the model, for a restricted window of phase space limited by the
time-dependent saturation cutoff count rate. Liouville’s theorem is only strictly true for the full distribution;
however, the comparison of in situ and modeled RFA above the saturation energy threshold gives reasonable
results. To calculate the RFA from the in situ data, we convert the count rate Cij to the distribution function fij

using equation (4).

Recalling that intermediate quantities WAPA and RFA are independent of each other but are both dependent
on Ti and u∥, we calculate these intermediate quantities for only the uncontaminated phase space, which
includes all energy bins above the step where the count rate at that time falls below the saturation cutoff of
130 kHz. Specifically, for each in situ thermal ion image at ram-looking sample times, we directly calculate the
WAPA and RFA using only the uncontaminated phase space. At each given time, we then use the model to
calculate the WAPA and RFA for the same uncontaminated phase space for a range of values of Ti and u∥. For
each ordered pair (Ti , u∥) we use a variation of the Lagrangian minimization technique to find the minimum
difference between in situ measurement and model for both WAPA and log(RFA). Figure 4 shows an illustrative
example of this differencing technique, showing the differenced WAPA, RFA, and the minimization of both
intermediate data products. (For the specific data calculations in this analysis, log(RFA) was used.) Repeating
this process for each valid thermal ion image results in a time series of Ti and u∥, our resultant geophysical
data products, shown in Figure 5.

Parts of the flight require accounting for possible temperature anisotropies in the thermal ion distribution. We
define the temperature anisotropy as the ratio of the perpendicular temperature to the parallel temperature:
T⟂∕T∥. The analysis for anisotropic populations is conducted as previously described with one caveat: a single
value of anisotropy is first imposed, and then the minimization technique is applied to the two intermediate
data products WAPA and log(RFA), resulting in time series of geophysical data products T⟂ and u∥ for each
anisotropy value. We then select the appropriate value for anisotropy based on the geophysical processes
driving the ion temperature, as discussed in sections 4.1 and 4.2. Based on these selection criteria we use the
geophysical data products T⟂ and u∥ to quantify the state of the ionosphere during the MICA event.

4. Discussion and Comparison to Previous Observations

In order to analyze the thermal ion data we divide the flight into two distinct periods based on which local
drivers are observed to control the thermal ion population. Referencing Figure 2, we split the flight into an
early interval (T + 163–285 s, includes ArcA) and a later interval (T + 286–421 s, includes ArcB). Referencing
Figure 6, during the later interval we will show that the DC electric fields are the primary controller of the
thermal ion temperature, whereas in the early interval frictional heating is not sufficient to explain the
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Figure 5. Time series of measured perpendicular ion temperature (top) and parallel ion velocity (bottom) for
anisotropies ranging from T⟂∕T∥ = 1.0–2.0. For T + 163–285 s our analysis introduces an anisotropy ranging from
1.1–2.0. Upon entering ArcB at T + 286 s, until T + 421 s, our analysis indicates a nearly isotropic distribution with a
maximum anisotropy of 1.08 (blue and red traces). Our analysis indicates that Ti is insensitive and u∥ is very sensitive to
choice of anisotropy.

observed temperatures and level of anisotropy; thus, other mechanisms must be considered. Throughout the
flight, ion upflows are observed but cannot be attributed to the mirror force at these low altitudes and ener-
gies. An example calculation of the mirror force for a 0.2 eV O+ ion at 275 km indicates that the gravitational
force is 17 times greater than the mirror force. Rather, the ion upflows likely result from heating of the ambient
plasma population followed by an increase in the ion and/or electron scale height to reestablish equilibrium.
At these low altitudes, an additional possibility is that neutrals are upwelling, and collisional and/or charge
exchange processes between ions and neutrals are driving the ion upwelling.

4.1. Quasi-Static Frictional Processes: T + 286–421 s
This interval of the flight is defined by the payload entering ArcB and includes the traversal of the arc as well
as the downward current region poleward of the arc. Figure 6 shows that the inflowing DC Poynting flux
is very low inside and poleward of ArcB. This can be interpreted in two ways: precipitation enhancing the
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Figure 6. In situ measurements of (top) the ion temperature, (middle) electric field power from 16 to 80 Hz, and (bottom)
calculated DC Poynting flux. ArcB is indicated at the top of the figure with the payload entering the arc at T + 286 s.
Prior to entering the arc there is no significant correlation between Ti and E′2. Within ArcB and the poleward downward
current region Ti and E′2 are strongly correlated, which we interpret as frictional heating driving the ion temperature.
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Figure 7. Relationship between in situ measurements of ion temperature and electric field E′ , the effective electric field
after accounting for the velocity of the neutrals. Solid/red markers are for T + 286–421 s including ArcB and the
poleward downward current region. The correlation coefficient in this region is R = 0.78. Empty/blue markers are for
times prior to T + 286 s and show no significant correlation (R = 0.16).

conductivity [Reiff , 1984] and reducing the ionospheric electric field [see Marklund [2009] and references
within] or the conversion of electromagnetic energy to particle energy in the U-shaped potential structure
inferred above ArcB [Wygant et al., 2000; Chaston et al., 2002; Paschmann et al., 2003; Dombeck et al., 2005]. The
minimal inflowing DC Poynting flux, the absence of Alfvénic activity (an indirect source for ELF WPI) in the
camera data, and the low ion temperatures (especially within ArcB) imply that there are no ELF wave-particle
interactions in this region. (A lone exception occurs at T + 350 s, in which a brief burst of BBELF corresponds
to a spike in the ion temperature, as seen in Figure 10; this localized downward current region is explored by
Lynch et al. [2015].)

In regions with no WPI and moderate to strong DC electric fields, frictional heating is the primary driver of the
thermal ion temperature [Schunk and Nagy, 2009; Kelley, 2009]. As shown in Figure 7, throughout this region
we observe a strong correlation between the ion temperature Ti and the DC electric field power E′2, with the
correlation coefficient (Pearson R) R = 0.78. However, this does not lead to significant upflow because Ti is
too low. We fit this relation using a linear least squares regression fitting technique; the resulting relationship
is given by

Ti = Tn + 37.5E′2 (6)

where Ti and Tn are the ion and neutral temperatures in eV, and E′ is the effective electric field in V m−1 after
accounting for the velocity of the neutrals, given by E⃗′ = E⃗+ u⃗n× B⃗. The neutral velocity u⃗n used in this analysis
is the average neutral wind velocity at 240 km altitude as measured by the ground-based SDI Fabry-Perot
interferometer: approximately 150 m s−1 N and 160 m s−1 W. This neutral velocity is small relative to the ram
(∼1 km s−1) but comparable to the electric field flow velocities. We obtain (from fitting to equation (6)) an
estimated average neutral temperature of Tn = 770 ± 230 K (or 0.066 ± 0.020 eV) over the altitude range
260–325 km. This is comparable to the neutral temperature reported by the ground-based SDI Fabry-Perot
interferometer (approximately 930 ± 50 K at 250 km). Equation (6) is compared with theoretical results for
regions with strong frictional heating and no WPI; comparing the slope (37.5 eV m2 V−2) with the theoretical
predictions by Schunk and Nagy [2009] (28.4 eV m2 V−2) and Zettergren et al. [2011] (30.2 eV m2 V−2) shows
basic agreement with theoretical predictions. The calculated dependence of Ti on E′2 in a region of strong
frictional heating with no WPI serves as a metric to validate our forward-modeling ion data analysis technique
despite the limitations of the data set.
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Figure 8. (left) Anisotropy generated by DC electric fields, calculated from the steady state solution to 13-moment
energy and pressure tensor equations and applied to the MICA flight. (middle) The modeled perpendicular and parallel
temperatures for O+ and NO+ . (right) The comparison of modeled O+ perpendicular temperature with ion and electron
temperatures measured in situ.

These DC electric fields generate a temperature anisotropy that can be calculated from a steady state solu-
tion to 13-moment energy and pressure tensor equations [Schunk, 1977; Blelly et al., 2010] which includes
both ion-neutral and Coulomb collisions (ion-ion and ion-electron). The calculation is done first for a system
of O+ and then NO+ ions. For executing this calculation we take DC electric field data, electron tempera-
ture data, and electron density data directly from the rocket measurements. Neutral densities have been
taken from MSIS00, but the solar and geomagnetic activities have been adjusted to yield thermospheric tem-
peratures consistent with the SDI ground-based measurements taken the night of the MICA flight. The DC
electric field-driven anisotropy predicted by this mathematical model and applied to the specific case of MICA
is shown in Figure 8. (Note that this steady state solution used to calculate anisotropy is distinct from the
multifluid ionospheric model to be presented in section 4.3.)

This analysis indicates the thermal ion temperature is isotropic or weakly anisotropic throughout the flight.
This weak anisotropy matches the prediction calculated from the Glatthor and Hernández [1990] results.
Inside ArcB (T + 286–337 s), the expected anisotropy is less than 1.01, corresponding to a perpendicular ion
temperature of 0.05–0.07 eV. In the DCR poleward of the arc, the expected anisotropy increases to 1.05 at
approximately T + 393 s and reaches a maximum value of 1.08 at T + 421 s; in this same region the perpen-
dicular ion temperature ranges from 0.09–0.15 eV. These temperature anisotropies are too weak to generate
measurable ion upflow. As a point of comparison, contemporaneous and collocated PFISR data indicate ion
temperatures in the range of 0.1–0.2 eV throughout the flight.

Knowing the limits of the DC electric field-driven anisotropy in this portion of the flight, we identify the blue
and red traces in Figure 5 (bottom) as the best estimates of the thermal ion upflows and downflows for this
period from T +286 s onward. In the DCR poleward of the arc (T +338–421 s) where the anisotropy is less than
1.1 (see Figure 8), we observe downflows of several hundred m s−1. Inside ArcB (T + 286–337 s) where the
temperature is approximately isotropic, we observe upflows ranging from a few tens to 300 m s−1. Coinciding
with the upflows in ArcB are enhanced electron temperature and field-aligned currents, as seen in Figure 2d
and 2e. Analysis by Cohen et al. [2015] of these observations of enhanced Te and FAC within ArcB are consis-
tent with models of Type 2 upflow, typically observed above the F region density peak. This observed upflow
is independent of the ion temperature, which is quite low throughout this region. This case study provides an
interesting juxtaposition of heating processes, as we observe frictional processes controlling the ion temper-
ature (typical of a Type 1 upflow event) in the vicinity of ArcB, but because the ions are cold, the ion upflow is
attributed to the ambipolar field resulting from the heated electron population, as is typical in a Type 2 upflow
event (though we allow for the possibility that ion-neutral collisions may also influence the upflow at these
low altitudes).

Within ArcB linear regression analysis indicates a strong positive correlation (R = 0.73) between the parallel
flows of the bulk thermal ions (u∥) and the field-aligned current (Jz). This observed relationship reflects the
statistical findings of Kervalishvili and Lühr [2013] who observed ion upflows that coincide with small-scale
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field-aligned currents. This fine-scale observation in the MICA case study shows a correlation between Jz and
u∥ to the level of local structuring within the arc (tens of kilometers) and not simply a large-scale statistical
correlation.

These observations are compared with the multifluid ionospheric model of Zettergren and Semeter [2012] in
section 4.3. They are also consistent with previous radar and satellite observations of field-aligned ion flows.
Jones et al. [1988] report nightside EISCAT measurements of ion upflow of 50–90 m s−1 at 300 km altitude, and
Semeter et al. [2003] report upflows of 150 m s−1 at this same altitude. Loranc et al. [1991] report premidnight
auroral zone upflows and downflows measured by the Dynamic Explorer 2 (DE2) satellite, with upflows pri-
marily in the range 100–250 m s−1 at altitudes between 216–400 km and downflows consistently smaller than
upflows. Downflows below the F region peak are quite common due to pressure and gravity forces driving
ions downward [Rishbeth and Garriot, 1969; Buchert et al., 2004].

Calculation of the in situ observed E⃗ × B⃗ drift velocity in this region indicates plasma is flowing horizontally
(perpendicular to B⃗0) at an average speed of 133 m s−1 with a component poleward from the long axis of
the nearly east-west aligned auroral arc. Within the arc, precipitation is heating the electrons, the ions are
upwelling, and no ion heating is observed; these observations are consistent with Type 2 upflow (though
neutrals may influence the ion dynamics at these low altitudes). Simultaneously, the bulk ion population is E⃗×B⃗
drifting poleward into the dark downward current region, where the plasma is out of the upflow region, and a
combination of collisions and gravity slows the upflow and causes the ions to fall back earthward. Because the
payload is near the F region peak, we cannot exclude the possibility of altitude dependence for these observed
downflowing ions. However, because of the sharp transition from upflow to downflow at the poleward edge
of ArcB, we presume the payload is traveling through perpendicularly structured regions of parallel flows.

These falling ions are observed by the MICA payload as downflowing ions poleward of the arc, in agreement
with statistical [Kervalishvili and Lühr, 2013; Redmon et al., 2010; Loranc et al., 1991; Wu et al., 2000] and remote
sensing [Ogawa et al., 2009] results showing downflowing ions measured poleward of upwelling populations.
While Redmon et al. [2010] use DMSP statistical data to show the boundary between upflows and downflows
corresponding to the poleward boundary of the auroral oval, our case study indicates a transition from upflow
to downflow at the poleward edge of the discrete arc (equatorward of the poleward boundary of the overall
auroral oval, as there are other discrete arcs northward of our in situ observations). Our case study aligns with
the statistical study of DE2 observations by Loranc et al. [1991] who found discrete regions of upflow and
downflow interleaved throughout the auroral zone.

We quantify our observations by calculating several parameters of this plasma circulation example. We mea-
sure the width of the heating region by extracting the size of ArcB from the Venetie imager data and calculate
the average E⃗ × B⃗ drift velocity vE×B = 133 m s−1. Assuming the upflow region extends the full width of ArcB,
we determine that the plasma reaches a height of 10–65 km above the payload before falling back toward
Earth after exiting the arc. A schematic of this ionospheric circulation is shown in Figure 9.

4.2. Processes Influenced by WPI: T + 163–285 s
Now we turn to the first half of the flight. Referencing Figure 7 for this early interval of the flight, we observe
no significant correlation between Ti and E′2, indicating that frictional heating is not the controlling heating
mechanism for the thermal ion population. Figure 8 (right) shows time series of Te (measured by ERPA), Ti,⟂
(from analysis of HT measurements), and the modeled O+ T⟂ (from the steady state solution to 13-moment
energy and pressure tensor equations shown in section 4.1). Inside and in the vicinity of ArcA (T +200–285 s),
linear regression analysis indicates very little correlation between Te and Ti (R = 0.14), which may be attributed
to hysteresis regulating the efficiency of thermal coupling between ions and electrons. The 13-moment
calculations show, in particular, that heat exchange between the electrons (which have been heated by pre-
cipitation), and the ions does not account for the high ion temperature excursions in the early flight. In this
region, linear regression analysis indicates that the correlation between Ti and the logarithm of ELF power
(16–80 Hz) is R = 0.25, while the correlation between Te and log ELF power is R = 0.23. It appears that mod-
est ion energy input due to wave-particle interactions may be required to produce these ion temperature
enhancements. We next examine ion heating possibly driven by WPI observed in the early flight, but further
modeling will have to await more detailed simulations capable of accounting for heating of the ions in the
presence of collisional effects.
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Figure 9. Cartoon showing plasma circulation. The ions are E⃗ × B⃗
drifting northward. When these ions pass into ArcB, they remain cold
but begin upflowing. MICA observes these upflowing ions inside ArcB
(T + 286–337 s). Once these ions exit the arc and thus exit the upflow
region, they enter the dark downward current region and fall
earthward, which MICA observes as downflows for T + 338–421 s.

In the early flight, MICA observes
inflowing DC Poynting flux of several
mW m−2 (Figure 6) as well as localized
increases in the in situ measured ELF
power (Figure 10). Near and within ArcA
(T + 200–285 s) we observe a weak
correlation (R = 0.25) between Ti and the
logarithm of the ELF wave power, shown
in Figure 10. Bursts of enhanced Ti and
ELF power are accompanied by precipi-
tating electrons with energy spectra from
0.5 to 2 keV indicative of Alfvénic activity
(these data, from the Bagel instrument,
are not shown because the instrument
lost power at approximately T + 254 s).
Several factors can account for the weak
and sporadic correlation between Ti and
the ELF wave power. Because the MICA
measurements come in the wake of a
westward traveling surge, prior heating
of the ionospheric plasma due to this

energy input likely affects the temperature resulting from a given ELF input. This complicates, to a degree,
the interpretation of the Ti/ELF correlation. Additionally, the horizontal flow of plasma through a fixed region
of heating/precipitation may also contribute to a poor local correlation between the ion temperature and
the measured ELF wave power. (It is interesting to note here that apparently equivalent bursts of ELF power
in the second half of the flight do not appear to affect Ti, with the exception of the aforementioned burst of
BBELF at T + 350 s.)

During this first half of the flight, video observations from the Venetie medium-field imager indicate Alfvénic
activity in the form of tall rayed auroral structures. Figure 11 shows a snippet from the in situ electric and
magnetic field data; during the period T + 200–235 s we see oscillations in the electric and magnetic
field data associated with Alfvén waves. We use these measurements to estimate the Alfvén velocity vA =
𝛿E∕𝛿B ≈ 200 km s−1. This corresponds to an Alfvén conductance ΣA = 0.25 S which is much smaller than the
Pedersen conductance ΣP = 20 S (calculated for the MICA case study by Lynch et al. [2015]), as is typical for
Alfvén waves [Paschmann et al., 2003]. These evidences of Alfvénic activity (an indirect source for ELF WPI)

Figure 10. Ion temperature and log ELF wave power (16–80 Hz). During the first half of the flight we observe weak and
sporadic correlation between the ion temperature and the ELF wave power (correlation coefficient R = 0.25 near and
within ArcA, T + 200–285 s). Hysteresis in the wake of the westward traveling surge and the horizontal flow of plasma
through fixed heating/precipitation can affect coupling between Ti and ELF wave power and result in a poor local
correlation.
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Figure 11. In situ electric and magnetic field data. We observe oscillations in the electric field data in the 0.1–10 Hz
range typically associated with Alfvén waves. Because these oscillations exist for a small number of cycles and are
irregular we cannot extract phasing information. However, we do extract an approximate Alfvén velocity
vA ≈ 200 km s−1.

from a variety of ground-based and in situ observations lead us to consider heating of the bulk thermal ion
population by wave-particle interactions.

We can calculate an idealized WPI heating effect ignoring the effects of collisionality and other processes, just
to determine whether there is enough ELF wave power to account for the observed ion heating. This ide-
alized WPI heating is calculated from the measured spectral energy density at the ion cyclotron frequency
using the quasi-linear technique described by Chang et al. [1986]. This simplifying calculation indicates that
the ELF-driven WPI alone is sufficient to raise the ion temperature from its origins at the neutral tempera-
ture of 0.066 eV to a level of 0.2 eV (above our observations) in the time it would take to move at a constant
upward velocity to our observation point. A more rigorous assessment awaits the inclusion of WPI effects in
the ionospheric model of Zettergren and Semeter [2012], but this rough calculation shows the WPI have the
potential to influence the ions here. Heating by WPI is typically in the transverse direction [Chang and Coppi,
1981], and therefore, our analysis of the thermal ion data for this interval must account for the possibility of a
temperature anisotropy beyond that generated by the DC electric fields.

At these collisional ionospheric altitudes, with observed in situ electric field magnitudes of less than
50 mV m−1, the maximum expected temperature anisotropy due to DC electric fields is approximately 1.05,
using the analysis described in section 4.1 and shown in Figure 8. When considering the effects of transverse
heating by WPI the temperature anisotropy can far exceed this. However, at these altitudes, the temperature
anisotropy will be governed by both ion-neutral and ion-ion collisions, which will tend to destroy any large
anisotropies [St-Maurice and Schunk, 1979].

Figure 5 shows the resulting time series of Ti and u∥ for temperature anisotropies ranging from 1.0–2.0.
Although the anisotropy generated by WPI heating could be higher than 2.0, the resulting u∥ shown in Figure 5
indicates a reasonable upper limit of 2.0 for the anisotropy, as any larger would result in an unreasonable inter-
pretation of the ion data with downflows in the many hundreds of m s−1 at altitudes below 300 km; larger
anisotropies also require unreasonably low ion temperatures.

Figure 5 indicates that the parallel bulk ion flow u∥ is quite sensitive to the inclusion of a temperature
anisotropy whereas Ti is mostly unaffected. The possible presence of WPI would result in this temperature
anisotropy but could not cause the colocated upflow, as the mirror force is more than an order of magnitude
weaker than the gravitational force at these low altitudes and ion energies. We attribute the ion upflow to the
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Figure 12. Results from two simulations using the ionospheric model of Zettergren and Semeter [2012] taken along the
MICA trajectory. Model inputs include electric field data E⟂ (from (top) PFISR and from (bottom right) MICA COWBOY
instrument) and electron energy flux Φw (from (top) Poker Flat all-sky imager and (bottom right) Venetie medium-field
imager). Model outputs include current density J|| and parallel ion flows v|| . Figure 12 (bottom right) is the fine-scale,
high-resolution simulation that encapsulates the apogee portion of the flight. Figure 12 (top) shows a lower resolution
simulation that covers the full rocket trajectory. The model flows are generally downward (positive), although upflows
occur at the region of strong precipitation in the fine-scale simulation, matching the upflows observed by the MICA
payload within ArcB.

ambipolar electric field generated by the increased electron scale height as the electrons are heated by bursts
of precipitation. We also cannot preclude the possibility of neutral upwelling driving the ion upflow through
collisional and/or charge exchange processes. This region is typical of Type 2 upflow, but the observations
are too low to observe the mirror force acceleration effects associated with electron precipitation and BBELF
typical of a Type 2 upflow event. The observations by MICA are the low-altitude signatures in the region in
which the upflow is initiated—these signatures are the seeds of ion upflow/outflow.

For this early half of the flight (T + 163–285 s) where WPI are to be considered, an important question arises
from this analysis: how do we choose the “correct” level of anisotropy? With the present data set and modeling
we can place bounds on the upflow velocities for this portion of the flight but are unable to identify the
exact degree of anisotropy. In this region (before T + 286 s), anisotropy values of 1.0–1.5 give upflows at
these altitudes, ranging from a few tens to a few hundred m s−1, and anisotropy values of 1.5 and 2.0 indicate
downflows. These flows are compared to modeling results in section 4.3.

4.3. Modeling
Two simulations are conducted using the model of Zettergren and Semeter [2012], by constraining the bound-
ary conditions using electric field and precipitation measurements as in Zettergren et al. [2014]. Electric field
inputs can be either ground-based PFISR measurements or MICA in situ measurements made by the COWBOY
instrument. Electron precipitation inputs come from either the all-sky imager at Poker Flat or the medium-field
imager at Venetie. In both cases, camera data is converted to electron energy flux.

The first is a fine-scale, high-resolution simulation that uses Venetie medium-field imager data to specify elec-
tron precipitation (0.5 s cadence) and MICA DC electric fields as measured by the COWBOY instrument [Lynch
et al., 2015]. This simulation encapsulates the apogee portion of the MICA flight. The second, larger-scale simu-
lation has a larger grid that contains the entire rocket trajectory. This simulation uses Poker Flat all-sky camera
data (13 s cadence) to specify electron precipitation, and PFISR measurements to specify the electric field
inputs. Unlike the previously shown steady state 13-moment model (used to calculate DC electric field-driven
anisotropy in section 4.1), this Zettergren and Semeter [2012] model includes currents but does not include
anisotropy.
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Upflows computed by the model depend critically on the time history of the plasma heating processes as
well as the electron density time history. Specifically, ion upflow is a fairly slow process that requires several
minutes to initiate and propagate to topside ionospheric altitudes [Zettergren and Semeter, 2012]. Hence, any
comparison of data with modeled ion upflows will be subject to error in time history of model drivers. In par-
ticular, the simulations are driven with a static electric field versus L shell profile (measured from the rocket)
and likely overemphasize ionospheric heating processes since the electric fields (and currents, to a lesser
degree) are fixed and have time to heat the ionosphere and cause upwelling. This overemphasis is apparent
in the modeled electron temperatures (not shown) in the fine-scale simulation, which exceed the measured
values by a factor of at least 2. The larger-scale simulation, which uses the all-sky camera data to constrain the
electron precipitation, has approximately correct electron temperature values.

Figure 12 shows modeled current densities, fields, and field-aligned velocities extracted along the path of
MICA. In the model there is a clear correlation between the upward currents and enhancements in upward
ion velocity at high altitudes. These are driven, in large part, by high electron temperatures. At the rocket
altitudes the flows are generally downward for the large-scale simulations, while for the finer-scale simula-
tion the intense precipitation and strong currents are able to create an ion upflow at the rocket altitudes,
as in the data. However, as previously mentioned, the modeled electron temperatures for the fine-scale run
greatly exceed those observed via the ERPA instrument on MICA. Hence, we are not able to obtain complete
agreement between modeled temperatures and velocities and those seen on MICA. This inconsistency is at
least partially due to the lack of knowledge of electric field time history but may also be a consequence of
low-altitude transverse ion heating, which is not presently included in this electrostatic model.

5. Conclusions

The thermal ion data from the MICA sounding rocket provide a case study of the response of thermal ion
kinetic particle distributions in two distinct regions defined by the processes driving the thermal ion behavior.
Using a 3-D Maxwellian model to replicate possible measured spectra, we calculate intermediate parame-
ters WAPA and RFA from the model and compare with equivalent parameters calculated from the in situ
data. Liouville’s theorem and the thin-sheath approximation allow us to couple these measured and modeled
intermediate parameters through a forward-modeling technique such that measurements inside the sheath
provide information about the state of the plasma outside the sheath.

In the second half of the flight, quasi-static frictional drivers control the ion temperature. We observe a
strong positive correlation between Ti and E′2 (R = 0.78) indicative of frictional heating. A linear fit indi-
cates a neutral temperature of 770 ± 230 K and good agreement with theoretical predictions. This strong
agreement between theory and data serves as a metric to validate our forward-modeling ion data analysis
technique. In this region the anisotropy is expected to be less than 1.10, and we observe upflows as large
as 350 m s−1 inside ArcB and downflows of several hundreds of m s−1 in the poleward downward current
region. Within ArcB we observe upflowing ions, enhanced electron temperature and strong FAC, typical of
electron precipitation-driven upflow (though we cannot preclude the possibility of neutrals influencing the
ion dynamics). Inside this arc the ion temperatures remain cold (independent of the upflow), and we observe
a positive localized correlation between the upflow and the FAC (R = 0.73).

In the first half of the flight we measure no significant correlation between Ti and E′2. We observe a large
inflowing DC Poynting flux, auroral arcs with vertical rayed structure, precipitating electron signatures, and
fluctuations in the electric and magnetic fields which are all indicative of Alfvénic activity and the indirect but
corresponding effects of heating, possibly by wave-particle interactions. We interpret this transverse heating
as a temperature anisotropy in the thermal ion distribution function, with the degree of anisotropy ranging
from 1.1–2.0. We observe upflows of several hundred m s−1 throughout the entire region, which we show
cannot be attributed to the mirror force. We attribute these upflows to the ambipolar electric field generated
by the increased electron scale height, and we allow for the possibility of neutral upwelling influencing the
bulk ion motion along the magnetic field. We also observe a positive correlation (R = 0.25) between Ti and the
logarithm of the ELF wave power near and within ArcA. While this does not demonstrate a one-to-one relation
between ELF waves and ion heating, the general correspondence between the two in this region suggests
that WPI does play a role in generating anisotropy levels that are significantly higher than can be explained
by steady state frictional heating.
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Our in situ measurements of thermal ion heating and upwelling, at small length scales, are consistent with
previous remote sensing and satellite statistical studies on large length scales (hundreds of kilometers) but
at altitudes lower than have been previously reported. Additionally, the local ionospheric structure observed
by MICA is below the resolution of radar or satellite measurements. Our comparisons with the ionospheric
model of Zettergren and Semeter [2012] reproduce some of the measured parallel flow structures, including
upflow in regions of strong precipitation and downflow in the poleward DCR. Inconsistencies between the
data and ionospheric model are partially due to lack of knowledge of the electric field time history, and incon-
sistencies early in the flight may be a consequence of low-altitude Alfvénic-driven ELF heating, which is not
yet accounted for in the model.

As mentioned previously, strong heating by WPI has been observed at altitudes as low as 500 km, but not
lower. This is consistent with the fact that the efficiency of a wave heating process would be destroyed by
collisions. With regards to gyroresonant wave heating (a likely contributor to transverse energization), it is
possible for ions to undergo many uninterrupted gyro-orbits between collisions at altitudes at least a few
neutral scale heights above 120 km, where the ion gyrofrequency and collision frequency are approximately
equal. This indicates that some level of wave heating is plausible over much of the MICA trajectory (D. Knudsen,
personal communication, 2015). This MICA case study has shown the need to consider the effects of WPI at
altitudes below 500 km. A more comprehensive study of wave heating in the weakly collisional F region is
planned for a future study.

The low-altitude observations of the MICA case study will serve to inform future ionospheric observations,
modeling, and simulations of, specifically, (a) the need to consider heating by wave-particle interactions at
altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows
and downflows on a Type 2 field line before and below where higher-altitude heating processes are expected.
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