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TWO-SCALE MICROSTRUCTURE DYNAMICS

ARKADI BEREZOVSKI, MIHHAIL BEREZOVSKI
and JÜRI ENGELBRECHT

Centre for Nonlinear Studies,
Institute of Cybernetics at Tallinn University of Technology,

Akadeemia tee 21, 12618 Tallinn, Estonia

Wave propagation in materials with embedded two different microstructures is
considered. Each microstructure is characterized by its own length scale. The dual
internal variables approach is adopted yielding in a Mindlin-type model including both
microstructures. Equations of motion for microstructures are coupled with the balance of
linear momentum for the macromotion, but not coupled with each other. Corresponding
dispersion curves are provided and scale separation is pointed out.

Keywords: Wave propagation; microstructured solids; double microstructure; dual inter-
nal variables.

1. Introduction

Modern advanced materials (composites, functionally graded materials, shape mem-
ory alloys, . . . ) are inhomogeneous by definition. Their properties are highly depen-
dent on their composition or the embedded microstructure. This microstructure is
characterized by a length scale which is usually smaller than a macroscale. Never-
theless, the influence of microstructure may not be necessary small, especially in
dynamics.

The prediction of the dynamical response of advanced materials over multiple
scales should include the tracking of microstructural evolution and the load trans-
fer between different constituents. There are different possibilities to describe the
microstructure influence. If the microstructure can be prescribed (like in laminates),
then the solution can be obtained by using rather simple governing equations for
constituents. The medium in this case is piecewise homogeneous but may be suf-
ficiently complex. In another limiting case, where existing microstructure is too
random, homogenization methods lead to a rather simple “effective” medium, but
the governing equations become much more complex in order to take into account
the microstructure influence.

An intermediate approach is the introduction of internal variables, which reflect
the influence of the microstructure at the macroscopic level of description. In 1940s,
Bridgman proposed an introduction of “a large scale thermodynamic parameter
of state”.1 These state parameters, which extend the state space, are called the
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internal (state) variables.2–4 Physically, internal variables represent an overall effect
of microscopic material structural characteristics.

Internal variables are independent variables and obey a special rate equation.
The introduction of internal variables can be beneficial when selected material
structural characteristics and their associated dissipations affect the local properties
significantly.5 It is hoped that a few aggregate internal variables will adequately
describe the microstructure. The thorough thermomechanical theory with internal
variables is presented recently by Maugin.6,7 The extension of this theory by weakly
non-local dual internal variables approach8 allows describe dynamical influence of
a microstructure on the wave propagation in solids.9–11

Usually, only one kind of the microstructure is considered. At the same time, the
direct numerical simulation of a pulse propagation in periodic laminates with two
substructures12 shows that even simple variation in the order of sublayers leads to
significant changes in the response of the whole laminate. The corresponding results
are presented in Figs. 1 and 2. The substructure composition is shown in the upper
part of each figure. Here the white corresponds to layers of the hardest material
and black denotes the softest one, and a material with intermediate hardness is
marked by grey. In the given examples, the distinction in composition consists in

4000 4200 4400 4600 4800 5000

Fig. 1. Pulse shape in “hard-soft-intermediate-soft-hard” double structure laminate.
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4000 4200 4400 4600 4800 5000

Fig. 2. Pulse shape in “hard-intermediate-soft-intermediate-hard” double structure laminate.

the interchange of soft and intermediate sublayers only. The difference in the corre-
sponding pulse shape is surprisingly large. This example demonstrates the necessity
in the investigation of the behavior of materials with at least two microstructures.

In this paper, the influence of a double microstructure is considered on the
example of the one-dimensional dispersive wave propagation in microstructured
solids. The paper is organized as follows. First, the dispersive wave equations are
recalled briefly in the next section. Then the dual internal variable theory for media
with a single microstructure is presented in Sec. 3. This theory is extended on the
case of double microstructures in Sec. 4. Dispersion curves for both single and
double microstructures are given in Sec. 5. In Sec. 6, it is demonstrated how the
scales can be separated depending on material parameters. Some conclusions are
given in last section.

2. Dispersive Wave Equations

The classical equation of linear elastic wave propagation in homogeneous solids in
the one-dimensional case reads

utt = c2uxx , (1)
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where u is the displacement, c is the elastic wave speed, and subscripts denote
derivatives.

The effect of periodic inhomogeneity (Figs. 1 and 2) manifests itself in slowing
down of the propagation and in dispersion of the signal. To describe the dispersion
effects, several modifications of the wave equation are proposed for wave propaga-
tion in heterogeneous materials. The simplest generalization of the wave Eq. (1) is
the linear version of the Boussinesq equation for elastic crystals13

utt = c2uxx + c2l2A11uxxxx , (2)

where l is an internal length parameter and A11 is a dimensionless coefficient.
Similar equations were obtained using the homogenization of a periodically layered
medium14–16 or using strain gradient theories.17 Here the dispersive term contains
fourth-order space derivative of the displacement.

Another generalization of the wave equation (1) is the Love-Rayleigh equation
for rods accounting for lateral inertia (cf. Ref. 18, p. 428)

utt = c2uxx + l2A12uxxtt , (3)

where A12 is again a dimensionless constant. This equation is derived also by other
authors.19–22 Here the fourth-order mixed derivative of the displacement character-
izes the dispersion.

A more general equation combining the two dispersion models gives16,23,24

utt = c2uxx − c2l2A11uxxxx + l2A12uxxtt . (4)

An extended model proposed by Engelbrecht and Pastrone25

utt = (c2 − c2A)uxx − c2l2A11uxxxx + l2A12uxxtt , (5)

contains a contribution of the microstructure on a slowing down of the propagation
velocity cA. In its turn, the Maxwell-Rayleigh model of anomalous dispersion13

introduces in consideration the fourth-order time derivative

utt = c2uxx +
l2A22

c2
(utt − c2uxx)tt . (6)

The fourth-order time derivatives are included also in the “causal” model for the
dispersive wave propagation proposed by Metrikine23

utt = c2uxx − c2l2A11uxxxx + l2A12uxxtt − l2

c2
A22utttt , (7)

and in the model based on the Mindlin theory of microstructure26 proposed in the
form27

utt = (c2 − c2A)uxx − p2(utt − c2uxx)tt + p2c21(utt − c2uxx)xx . (8)

In the last equation, p and pc1 determine time and length scales of the
microstructure, respectively, c1 can be associated with the wave propagation veloc-
ity in the microstructure itself.
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The unified equation for dispersion effects accompanying wave propagation in
microstructured materials in the one-dimensional case can be represented as

utt = (c2 − c2A)uxx + l2P (utt − c2uxx)xx

+
l2

c2
Q(utt − c2uxx)tt + c2l2Ruxxxx , (9)

where cA is the velocity shift due to the microstructure, and P, Q and R are
dimensionless coefficients. It is clear that the last microstructure model (9) includes
all the particular cases (2)–(8).

3. Single Microstructure

The unified model of microstructure (9) can be recovered by means of the dual
internal variable approach.8 In this approach, the internal variable ϕ is associated
with the distributed effect of the microstructure,2–4 and ψ is the auxiliary internal
variable.8 It is supposed that the free energy depends on the displacement gradient
as well as on the internal variable ϕ and its gradient. In the simplest case, only
the contribution of the second internal variable ψ itself is included in the quadratic
function of the free energy dependence10

W =
ρ0c

2

2
u2

x +Aϕux +A′ϕxux +
1
2
Bϕ2 +

1
2
Cϕ2

x +
1
2
Dψ2 , (10)

where A,A′, B, C and D are material parameters. This corresponds to the Mindlin-
type microstructure model28 where the internal variable ϕ represents microstrain.
Accordingly, material parameters A and B have dimension of energy per unit vol-
ume (Pa) with the evident multiplication by dimension of length for A′ and by its
square for C, respectively. The dimension of D will be clear from what follows.

The macrostress σ and microstress η are determined by the corresponding
derivatives of the free energy

σ =
∂W

∂ux
= ρ0c

2ux +Aϕ+A′ϕx , (11)

η = − ∂W

∂ϕx
= −A′ux − Cϕx , (12)

while the interactive internal force τ is

τ = −∂W
∂ϕ

= −Aux −Bϕ . (13)

For the dual internal variable we have, correspondingly,

ξ = −∂W
∂ψ

= −Dψ , ζ = − ∂W

∂ψx
= 0 . (14)

It can be checked that the intrinsic dissipation is calculated as10

Φ = (τ − ηx)ϕ̇+ (ξ − ζx)ψ̇ ≥ 0 . (15)
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The intrinsic dissipation can be vanished with a simple choice of evolution equations
for internal variables

ϕ̇ = R1(ξ − ζx) , ψ̇ = −R1(τ − ηx) , (16)

where R1 is an appropriate constant.
It follows from Eqs. (14) and (16)1 that

ϕ̇ = −R1Dψ , (17)

and the evolution equation for the dual internal variable can be rewritten in terms
of the primary one as the hyperbolic equation

ϕ̈ = R2
1D(τ − ηx) . (18)

As a result, we can represent the equations of motion in the form, which includes
only the primary internal variable

ρ0utt = ρ0c
2uxx +Aϕx +A′ϕxx , (19)

Iϕtt = Cϕxx +A′uxx −Aux −Bϕ , (20)

where 1/(R2
1D) can be associated with the internal inertia measure I.

To obtain the higher-order dispersion equation, we can determine the first space
derivative of the internal variable from Eq. (20)

Bϕx = −Iϕttx + Cϕxxx +A′uxxx −Auxx . (21)

The third mixed derivative ϕttx follows from Eq. (19)

Aϕttx = (ρ0utt − ρ0c
2uxx)tt −A′ϕttxx . (22)

Appeared fourth-order mixed derivative of the internal variable is calculated by
means Eq. (20)

Iϕttxx = Cϕxxxx +A′uxxxx −Auxxx −Bϕxx , (23)

and, in its turn, the fourth-order space derivative is determined again from Eq. (19)

A′ϕxxxx = (ρ0utt − ρ0c
2uxx)xx −Aϕxxx. (24)

Collecting all the results (21)–(24) and substituting them into Eq. (19) we arrive
at the dispersive wave equation

utt = c2uxx +
C

B
(utt − c2uxx)xx − I

B
(utt − c2uxx)tt

+
A′2

ρ0B
uxxxx − A2

ρ0B
uxx , (25)

which is nothing else but the general model of the dispersive wave propagation (9)
as is easy to see, identifying A2 = c2ABρ0, A

′2 = c2l2RBρ0, C = l2PB , Ic2 = l2QB .
The formulated model provides the description of wave propagation in materials

with microstructure characterized by the single internal length l.9,10,28,29 The next
step is to extend the model to the case of microstructures which are characterized
by more than one length scale.
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4. Double Microstructure

The generalization of the microstructure model (19)–(20) to the case with two
microstructures can be achieved in different ways. The first one is the “hierarchy of
microstructures”.30 In this case, the coupling of the corresponding microstructure
hierarchy may be represented schematically as follows:

Macrosystem Microstructure1 Microstructure2

This means that only the motion of the first microstructure is coupled with the
macromotion, and the motion of the second microstructure is coupled with that of
the first one. The very same model is presented by Pastrone31 including nonlinear
terms at the macroscopic level.

Another example of possible coupling of macromotion and microstructures can
be constructed by means of the representation of the free energy dependence as the
sum of two similar contributions (cf. Ref. 32)

W =
ρ0c

2

2
u2

x +A1ϕ1ux +A′
1(ϕ1)xux +

1
2
B1ϕ

2
1 +

1
2
C1(ϕ1)2x +

1
2
D1ψ

2
1

+A2ϕ2ux +A′
2(ϕ2)xux +

1
2
B2ϕ

2
2 +

1
2
C2(ϕ2)2x +

1
2
D2ψ

2
2 . (26)

The corresponding stresses are determined as follows:

σ =
∂W

∂ux
= ρ0c

2ux + A1ϕ1 +A2ϕ2 +A′
1(ϕ1)x +A′

2(ϕ2)x , (27)

η1 = − ∂W

∂(ϕ1)x
= −A′

1ux − C(ϕ1)x , ζ1 = − ∂W

∂(ψ1)x
= 0 , (28)

η2 = − ∂W

∂(ϕ2)x
= −A′

2ux − C(ϕ2)x , ζ2 = − ∂W

∂(ψ2)x
= 0 , (29)

as well as the interactive internal forces:

τ1 = −∂W
∂ϕ1

= −A1ux −B1ϕ1 , τ2 = −∂W
∂ϕ2

= −A2ux −B2ϕ2 . (30)

Accordingly, the equations of motion take the form

ρ0utt = ρ0c
2uxx +A1(ϕ1)x +A2(ϕ2)x +A′

1(ϕ1)xx +A′
2(ϕ2)xx , (31)

I1(ϕ1)tt = C1(ϕ1)xx +A′
1uxx −A1ux − B1ϕ1 , (32)

I2(ϕ2)tt = C2(ϕ2)xx +A′
2uxx −A2ux − B2ϕ2 . (33)

In the considered case, both equations of motion for microstructures are coupled
with the balance of linear momentum for the macromotion, but not coupled with
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each other. This is illustrated as follows:

Microstructure1

Macrosystem

Microstructure2

The doubling of the amount of coefficients in the double microstructure model
in comparison to the single microstructure complicates the quantitative analysis of
the model. Nevertheless, qualitatively it can be analyzed by dispersion curves.

5. Dispersion Analysis

Dispersion relations are derived by assuming the solutions of Eqs. (31)–(33) in the
form of harmonic waves

u(x, t) = ûei(kx−ωt) , ϕ1(x, t) = ϕ̂1e
i(kx−ωt) , ϕ2(x, t) = ϕ̂2e

i(kx−ωt) , (34)

where k is the wavenumber, ω is the frequency, and i2 = −1. Substituting relations
(34) into Eqs. (31)–(33) we get



ρ0c

2k2 − ρ0ω
2 −iA1k +A′

1k
2 −iA2k +A′

2k
2

iA1k +A′
1k

2 C1k
2 − I1ω

2 +B1 0

iA2k +A′
2k

2 0 C2k
2 − I2ω

2 +B2






û

ϕ̂1

ϕ̂2


 = 0 . (35)

Nontrivial solutions of the system of Eq. (35) correspond to the vanished determi-
nant of this system. This leads to the dispersion relation

(c2k2 − ω2)(c21k
2 − ω2 + ω2

1)(c
2
2k

2 − ω2 + ω2
2)

− (c′4A2k
4 + c2A2ω

2
2k

2)(c21k
2 − ω2 + ω2

1)

− (c′4A1k
4 + c2A1ω

2
1k

2)(c22k
2 − ω2 + ω2

2) = 0 , (36)

where parameters

c21 =
C1

I1
, c22 =

C2

I2
, c2A1 =

A2
1

ρ0B1
, c2A2 =

A2
2

ρ0B2
, (37)

c′4A1 =
A′2

1

ρ0I1
, c′4A2 =

A′2
2

ρ0I2
, ω2

1 =
B1

I1
, ω2

2 =
B2

I2
, (38)

have been introduced. The parameters ci and cAi represent characteristic velocities
in microstructures, and ωi are characteristic frequencies. Dispersion relation (36)
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can be compared with those derived in Ref. 32 for a slightly different structure of
free energy. To reduce the number of coefficients, we use the dimensionless quantities

ξ =
ck

ω1
, η =

ω

ω1
. (39)

Introducing them into Eq. (36) yields the dispersion relations in dimensionless form

(ξ2 − η2)(γ2
1ξ

2 − η2 + η2
1)(γ

2
2ξ

2 − η2 + η2
2)

− (γ′4A2ξ
4 + γ2

A2η
2
2ξ

2)(γ2
1ξ

2 − η2 + η2
1)

− (γ′4A1ξ
4 + γ2

A1ξ
2)(γ2

2ξ
2 − η2 + η2

2) = 0 , (40)

where velocity ratios and dimensionless frequencies have been introduced as follows:

γ1 =
c1
c
, γ2 =

c2
c
, γA1 =

cA1

c
, γA2 =

cA2

c
, (41)

γ′A1 =
c′A1

c
, γ′A2 =

c′A2

c
, η1 = 1 , η2 =

ω2

ω1
. (42)

The dispersion curves are shown in Fig. 3. The dispersion relation (40) represents
three distinct branches (see Fig. 3). The lower dispersion curve is called acoustical,
while the two higher frequency curves are called optical and they reflect internal
modes of oscillation.26 The acoustical curve starts at the origin with a slope η =
(1 − γ2

A1 − γ2
A2)

1/2ξ, then it approaches η = γ2ξ in the short wave limit. The
middle optical curve starts at η = η1 with a slope η = (1 − γ2

A2)
1/2ξ and then

approaches η = γ1ξ in the short wave limit. The second optical curve starts at
η = η2 and approaches η = ξ. The asymptotical lines η = ξ, η = γ1ξ and η = γ2ξ

are represented by dashed lines in Fig. 3.
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Fig. 3. Dispersion curves of Eq. (40) for γA1 = γA2 = 0.4, γ1 = 0.5, γ2 = 0.3, η2 = 2: solid lines —
concurrent microstructure model, dashed lines — asymptotes to dispersion curves.
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Fig. 4. Dispersion curves for γA1 = 0.4, γ1 = 0.5: solid lines — microstructure model, dashed
lines — asymptotes to dispersion curves.

In the case of single microstructure the picture is more simple. There are two
dispersion curves as it is shown in Fig. 4 (see also Ref. 27). As we can see, the
presence of the second microstructure changes the behavior of dispersion curves
significantly.

6. Scale Separation

To demonstrate the scale separation explicitly, the dimensionless variables should
be introduced as follows32:

U =
u

U0
, X =

x

L
, T =

ct

L
, (43)

where U0 and L are certain constants (intensity and wavelength of the initial
excitation).

To characterize microstructures we also need to introduce scaled microstrains

Φ1 ≡ l1
L
ϕ1 , Φ2 ≡ l2

L
ϕ2 . (44)

In terms of dimensionless variables, the equation of motion at the macroscale (31)
reads

UTT = UXX +
A1

ρ0c2
l1
U0

(Φ1)X +
A2

ρ0c2
l2
U0

(Φ2)X

+
A′

1

ρ0c2L

l1
U0

(Φ1)XX +
A′

2

ρ0c2L

l2
U0

(Φ2)XX , (45)
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and the corresponding micromotions are governed by

I1
L2ρ0

l1
L

(Φ1)TT =
C1

L2ρ0c2
l1
L

(Φ1)XX +
A′

1

ρ0c2L

U0

L
UXX

− A1

ρ0c2
U0

L
UX − B1

ρ0c2
l1
L

Φ1 , (46)

and
I2
L2ρ0

l2
L

(Φ2)TT =
C2

L2ρ0c2
l2
L

(Φ2)XX +
A′

2

ρ0c2L

U0

L
UXX

− A2

ρ0c2
U0

L
UX − B2

ρ0c2
l2
L

Φ2 , (47)

respectively.
As it can be seen, contributions of microstructures and their motion can be

separated clearly if the difference of their characteristic scales, l1 and l2, is large
enough.

7. Conclusions

The dual internal variable concept applied to the analysis of the influence of a double
microstructure on wave propagation in solids shows that the evolution equations for
each microstrain are hyperbolic in the reversible nondissipative case. The solution
of the evolution equations is non-trivial even for zero initial and boundary con-
ditions for internal variables due to the coupling with the macromotion equation.
The influence of a microstructure depends on the values of material parameters
characterizing the microstructure.

It is clear that different kinds of microstructure models can be constructed
by means of the combination of simple microstructure models considered above.
Nonlinear terms may be introduced at any level of description as well as at the
coupling.

Acknowledgments

The research was supported by the EU through the European Regional Develop-
ment Fund and by the Estonian Science Foundation (Grant No. 8702).

References

1. P. W. Bridgman, The Nature of Thermodynamics (Harvard University Press,
Cambridge, MA, 1943).

2. B. D. Coleman and M. E. Gurtin, J. Chem. Phys. 47 (1967) 597.
3. J. R. Rice, J. Mech. Phys. Solids 19 (1971) 433.
4. G. A. Maugin and W. Muschik, J. Non-Equilib. Thermodyn. 19 (1994) 217.
5. G. Capriz, Continua with Microstructures (Springer, New York, 1989).
6. G. A. Maugin, Arch. Appl. Mech. 75 (2006) 723.



2nd Reading

February 22, 2012 16:40 WSPC/245-JMM 00047

12 A. Berezovski, M. Berezovski & J. Engelbrecht

7. G. A. Maugin, Mech. Res. Comm. 33 (2006) 705.
8. P. Ván, A. Berezovski and J. Engelbrecht, J. Non-Equilib. Thermodyn. 33 (2008) 235.
9. A. Berezovski, J. Engelbrecht and G. A. Maugin, IUTAM Symposium on Progress in

the Theory and Numerics of Configurational Mechanics, ed. P. Steinmann (Springer,
IUTAM Bookseries, Vol. 17, 2009), p. 149.

10. A. Berezovski, J. Engelbrecht and G. A. Maugin, Mechanics of Microstructured Solids:
Cellular Materials, Fibre Reinforced Solids and Soft Tissues, eds. J.-F. Ganghoffer and
F. Pastrone (Springer, Berlin, 2009), p. 21.

11. A. Berezovski, J. Engelbrecht and G. A. Maugin, Arch. Appl. Mech. 81 (2011) 229.
12. M. Berezovski, A. Berezovski, T. Soomere and B. Viikmäe, Estonian J. Engng. 16
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