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Wave propagation and dispersion in microstructured solids
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Summary. A series of numerical simulations is carried on in order to understand the accuracy of
dispersive wave models for microstructured solids. The computations are performed by means of the
finite-volume numerical scheme, which belongs to the class of wave-propagation algorithms. The dis-
persion effects are analyzed in materials with different internal structures: microstructure described by
micromorphic theory, regular laminates, laminates with substructures, etc., for a large range of material
parameters and wavelengths.
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Introduction

Microstructural effects are observed in wave propagation in solids when the wavelength of a
travelling signal becomes comparable with the scale of material heterogeneities. A vivid example
of the influence of microstructure on wave propagation is the wave dispersion that profoundly
alters both the shape and the velocity of propagating waves. The most recognizable signature
of the wave dispersion is that the phase and group velocities of propagating waves differ from
each other. The dispersive effects of wave propagation in microstructured solids become non-
negligible for sufficiently high frequencies.

Wave propagation in heterogeneous solids has been a subject of considerable research for
many years. However, micro-structural details are rarely taken into account in large-scale struc-
tural dynamics or dynamic impact simulations. The reason is the enormous complexity of wave
phenomena in highly heterogeneous media. There exist two alternative approaches to the de-
scription of microstructural effects on wave propagation in solids. The first one is focused on
the determining so-called effective properties of a material. It is expected that these averaged
or smoothened properties reflect in some global sense the response of specimens of the material
to external loads. Another approach to involve microstructural effects into the description of
wave propagation is provided by higher order or generalized theories of elastic continua. These
theories have been proposed in 1960s [1, 2], and later clarified, classified, and extended [3]. The
well-established framework for higher grade and higher order theories is, however, accompanied
by too many usually undetermined phenomenological coefficients. Nevertheless, dispersive wave
equations in solid mechanics are based either on a homogenization procedure or on a generalized
continuum theory.

Dispersive wave models

Wave propagation in a homogeneous medium is a well known phenomenon in mechanics. The
corresponding one-dimensional wave equation is a classical example of hyperbolic partial differ-



ential equations in textbooks
utt = c2uxx, (1)

where u is the displacement, c is the elastic wave speed and subscripts denote derivatives. The
wave equation (1) possesses no dispersion. Considering a harmonic wave

u(x, t) = û exp [i(kx− ωt)] (2)

with wave number k and frequency ω, we obtain the dispersion relation

ω2 = c2k2. (3)

It is easy to see that here the group velocity ∂ω/∂k is equal to the phase velocity c, which means
that no dispersion is present.

To describe wave propagation in heterogeneous materials reflecting dispersion effects, sev-
eral modifications of the wave equation are proposed. The simplest generalization of the wave
equation is the linear version of the Boussinesq equation for elastic crystals (cf. [4])

utt = c2uxx + c2l2A11uxxxx, (4)

where l is an internal length parameter and A11 is a dimensionless coefficient. The dispersion
relation is obtained by using again the harmonic wave solution (2)

ω2 = c2k2 − c2l2A11k
4. (5)

This dispersion relation is nonlinear, which means that phase and group velocities are different.
Another generalization of the wave equation is the Love-Rayleigh equation for rods accounting
for lateral inertia (cf. [5], p.428)

utt = c2uxx + l2A12uxxtt, (6)

where A12 is again a dimensionless constant. The corresponding nonlinear dispersion equation
has the form

ω2 = c2k2 − l2A12ω
2k2. (7)

A more general equation combining the two dispersion models gives

utt = c2uxx + c2l2A11uxxxx + l2A12uxxtt. (8)

Similar model proposed by Engelbrecht and Pastrone [6] introduces additionally a contribution
of microstructure on slowing down of the propagation velocity c2A

utt =
(
c2 − c2A

)
uxx + c2l2A11uxxxx + l2A12uxxtt. (9)

Accordingly, it has the dispersion relation in the form

ω2 = (c2 − c2A)k
2 − c2l2A11k

4 − l2A12ω
2k2. (10)

Due to three additional terms combined, the last model has larger dispersion properties.
In its turn, the Maxwell-Rayleigh model of anomalous dispersion [4] introduces in consider-

ation the four-order time derivative

utt = c2uxx +
l2A22

c2
(
utt − c2uxx

)
tt
. (11)

Four-order time derivatives are included also in the ”causal” model for the dispersive wave
propagation proposed by Metrikine [7]

utt = c2uxx − c2l2A11uxxxx + l2A12uxxtt −
l2

c2
A22utttt, (12)



and in the model based on the Mindlin theory of microstructure [8], which can be represented
in the form

utt =
(
c2 − c2A

)
uxx + l2P

(
utt − c2 uxx

)
xx

+
l2

c2
Q
(
utt − c2 uxx

)
tt
. (13)

Here P and Q are dimensionless constants. It is clear hat corresponding dispersive relations are
nonlinear.

As it is shown recently [9], the last two models for dispersive wave propagation can be unified
as follows

utt =
(
c2 − c2A

)
uxx + l2P

(
utt − c2 uxx

)
xx

+
l2

c2
Q
(
utt − c2 uxx

)
tt
+ c2l2Ruxxxx. (14)

It is clear that the unified model (14) generalizes both approaches (12) and (13).

Numerical simulations

In order to understand the accuracy of the dispersive models, a series of numerical simulations
is carried on. The computations are performed by means of the finite-volume numerical scheme,
which belongs to the class of wave-propagation algorithms [10]. Details of the numerical scheme
can be found in [11]. The dispersion effects of 1D waves are demonstrated in materials with dif-
ferent internal structures: microstructure described by micromorphic theory, regular laminates,
laminates with substructures, etc.
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Figure 1. Deformed shape of an initially Gaussian stress pulse in periodic and microstructured solids.

One of the important problems is to compare the results obtained by means of various models.
As an example, the comparison of a direct numerical simulation of a Gaussian stress pulse
propagation along the elastic bar containing an inhomogeneous part constructed by periodically
alternating layers and a computation based on the Mindlin-type microstructure model (14) is
shown in Fig.1.

As one can see, the effect of microstructure in the model manifests itself only locally, whereas
the dispersion in the periodic laminate is non-local due to consecutive reflections. In principle,
the localization of the microstructure influence is expected, since the presence of the microstruc-
ture is invisible in the absence of loading.



In order to get matching results, one should critically revise the free energy function in
the micromorphic theory for adequate modelling of interaction forces between macro– and mi-
crostructures. In the considered case, the pulse length is 5 times longer than the inhomogeneity
size. This particular case was chosen because it clearly shows the synergy of the two microstruc-
ture models unified in [9]. The matching results are obtained by modifying the coupling between
macro- and microstructures including also the dependence on gradients of the internal variables.
The correlation between models is analyzed in detail for a large range of material parameters
and wavelengths.

The research was supported by the EU through the European Regional Development Fund
and by the Estonian Science Foundation (grant No. 8702).
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