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Dynamics of density cavities generated by frictional
heating: Formation, distortion, and instability

M. D. Zettergren', J. L. Semeter?, and H. Dahlgren3*

TDepartment of Physical Sciences and Center for Space an Atmospheric Research, Embry-Riddle Aeronautical University,
Daytona Beach, Florida, USA, 2Department of Electrical and Computer Engineering and Center for Space Physics, Boston
University, Boston, Massachusetts, USA, 3Space Plasma Physics, KTH Royal Institute of Technology, Stockholm, Sweden,
4Space Environment Physics, University of Southampton, Southampton, UK

Abstract A simulation study of the generation and evolution of mesoscale density cavities in the
polar ionosphere is conducted using a time-dependent, nonlinear, quasi-electrostatic model. The model
demonstrates that density cavities, generated by frictional heating, can form in as little as 90 s due to
strong electric fields of ~120 mV/m, which are sometimes observed near auroral zone and polar cap arcs.
Asymmetric density cavity features and strong plasma density gradients perpendicular to the geomagnetic
field are naturally generated as a consequence of the strong convection and finite extent of the auroral
feature. The walls of the auroral density cavities are shown to be susceptible to large-scale distortion and
gradient-drift instability, hence indicating that arc-related regions of frictional heating may be a source of
polar ionospheric density irregularities.

1. Introduction

A wide variety of high-latitude ionospheric processes contribute to E and F region density depletions, here
termed cavities. Strong E x B drifts (in excess of ~1 km/s) cause intense frictional heating through ion-neutral
collisions. Resulting high temperatures (~2000-5000 K) modify chemical reaction rates that convert F region
O* to molecular ions, which then recombine quickly [e.g., Schunk et al., 1975]. In auroral downward current
regions, divergent E region Pedersen drifts can create deep density depletions that may also extend into the
lower F region [Doe et al., 1995; Karlsson et al., 2005]. Recent modeling efforts have focused on the synergistic
effects of these two processes acting in concert with type-1ion up flows [Wahlund et al., 1992] and have shown
that these are all likely to be significant in auroral arc downward current regions [Zettergren and Semeter, 2012].

Observational efforts, particularly from incoherent scatter radar (ISR) measurements, have been used in the
past to demonstrate the occurrence of density cavities in close proximity to auroras [Doe et al., 1993; Aikio
et al.,, 2004]. More recent experiments have leveraged the electronic steering capabilities of the PFISR (Poker
Flat Incoherent Scatter Radar) system to image some features of mesoscale density cavities (roughly ~100 km
by 200-500 km size) and establish their relation to regions of downward current and strong ion heating [Zou
et al., 2013; Zettergren et al., 2014]. lonospheric observations in the polar cap have demonstrated existence
of moving polar cap arcs [Koustov et al., 2012], while studies using the Resolute Bay incoherent scatter radar
(RISR) have shown that moving density cavities can form alongside these types of arcs [Perry et al., 2015].

The evolution of plasma density structures subjected to ExB drifts has been studied in the context of polar cap
patches and smaller-scale barium release-generated plasma clouds. It is well known that both types of den-
sity enhancements can become unstable where there is an F region density gradient along the drift direction
[Tsunoda, 1988] (the gradient-drift instability (GDI)). This instability results in production of striations and
structures at smaller scales from seed perturbations within the density gradient. These structures are of
general interest as they can significantly impact radio communications (producing, e.g., HF backscatter and
scintillation). Modeling studies of GDI have shown that both the presence of large E region conductances
and polarization drifts can suppress the instability and affect the final state of the small-scale density struc-
tures [e.g., Mitchell et al., 1985a; Gondarenko and Guzdar, 1999]. Polarization drifts and attendant shear-related
instabilities have also been shown to impact the spectrum of density irregularities produced from a polar cap
patch structure [Gondarenko and Guzdar, 2006, and references therein]. Drifting, spatially finite plasma clouds
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may be susceptible to GDI and also have a tendency to elongate in the drift direction over time due to internal
polarization electric fields [e.g., Mitchell et al., 1985b, and references therein].

The present work examines the formation of high-latitude density cavities and their subsequent evolution
in the presence of magnetospherically applied electric fields. This situation appears consistent with many
recent imaging measurements of these structures and may be expected to occur in the vicinity of auroral
zone and polar cap arcs. Particular focus is given to the three-dimensional structure of density cavities during
formation, and the degree to which cavities become susceptible to subsequent structuring processes (GDI,
convective distortion, etc.) noted in prior studies of plasma density enhancements. It seems reasonable to
expect that aurorally formed density cavities may become unstable or exhibit larger-scale distortion. However,
this process has not been carefully explored even though it appears that it may be relevant to recent observa-
tions. This study leverages an ionospheric transport model to quantitatively evaluate: (1) three-dimensional
responses and structure of a forming density cavity, (2) the efficiency of auroral density cavitation at produc-
ing gradients susceptible to GDI, and (3) effects of cavity finiteness, including convective distortion similar to
that noted in plasma cloud studies.

2, Modeling Approach

The model used in this study is based on Zettergren and Semeter [2012] and solves dynamic conservation
of mass, parallel momentum, and energy equations for six ion species s (s = O*,NO*,NJ, 0}, N*, H*). Con-
tinuity equations include all chemical reactions relevant to the E, F, and topside regions, as well as impact
ionization sources based on calculations from Fang et al. [2008]. For electrons, the density is calculated using
quasi-neutrality and the parallel velocity is computed from the parallel current density. A full electron energy
equation, including the effects of heat fluxes from conduction and thermoelectric processes and inelastic
cooling processes [Schunk and Nagy, 1978], is solved alongside the ion systems. The model uses a Cartesian,
three-dimensional domain with a vertical magnetic field. The neutral atmosphere is taken from the MSIS-00
model [Picone et al., 2002].

Perpendicular components of the momentum equations are solved with a steady state force balance approx-
imation, as described in Zettergren and Semeter [2012]. Electric fields are found by enforcing a divergence-free
current density, where the current is assumed to consist of both conduction currents (directly dependent on
the electric field through the usual ionospheric Ohm’s law) and polarization currents (from a spatiotempo-
rally varying electric field) [cf. Mitchell et al., 1985a; Gondarenko and Guzdar, 1999, and references therein].
In essence, this approach assumes that the behavior of the ionospheric response currents is, to leading order,
electrostatic. These currents, however, are modified by a correction which accounts for polarization currents
from slowly varying field structures. Hence, the ionospheric electric field is approximated by E=—-VO.
Further assuming that the geomagnetic field lines are equipotentials and employing a field line integration
yields an equation that can be solved for the electric potential, hence field

9
V(2 V@) 4V, - [CM <E +v,-V,) (Vld:o)] =V, (2, Ey). )

In this equation @ is the electric potential generated by the ionospheric response to a magnetospherically
imposed electric field Ey, and v,=(E,, —V®)xB/B? X, is the field line-integrated conductance tensor, and
Cy is the inertial capacitance defined, e.g., in Mitchell et al. [1985a]. Note that equation (1) implicitly enforces
the condition that all current closes within the ionosphere through either conduction currents or polariza-
tion currents (viz,, no field-aligned current flow through the top boundary). Polarization currents generally
suppress GDI growth through nonlocal closure of currents, similar in effect to shorting out of GDI through a
strongly conducting E region.

For our field-integrated model, the top boundary FAC (Field-aligned current, assumed zero in equation (1))
must be specified. In a field-resolved model, one could alternatively specify potential at the top bound-
ary. The obvious choice for topside potential would then be zero, which would tend to allow most excess
charge to flow through the top boundary. This would have the effect of mostly preventing GDI growth
and is inconsistent with numerous observations of small-scale plasma density structures in regions of
density gradients. Moreover, this type of boundary condition presumes (incorrectly) that the overlying
ionosphere-magnetosphere can close any amount of field-aligned current generated in the ionosphere.
A zero FAC topside boundary condition, which is enforceable in either our field-integrated model or a
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field-resolved model, has the possibility of over-accentuating GDI growth by not allowing FACs to carry excess
charge through the top boundary (current still closes through the E region and polarization drifts). However,
it still appears to represent the best option for use with this type of model.

Equation (1) is solved by employing a direct LU factorization via the MUMPS software package [Amestoy
et al., 2001, 2006]. Some studies of gradient drift instability have suggested that a field-resolved poten-
tial solution suppresses the growth of longer wavelength modes, hence, resulting in a different spectrum
of density fluctuations [e.g. Guzdar et al.,, 1998]. Recent studies of other gradient-generated instabilities
(e.g., gravitational Rayleigh-Taylor (GRTI)) have employed three-dimensional potential solutions, with fewer
cells than used here and suggested differences from a field-integrated formulation [Keskinen et al., 2003;
Aveiro and Hysell, 2012; Hysell et al., 2014]. Other studies indicate that the GRTI growth rates may not be
greatly affected by a field-integrated formulation, but the details of the structures formed by the insta-
bilities differ somewhat [Aveiro and Huba, 2013]. High-resolution, three-dimensional, nonperiodic potential
solutions are not possible with our current computational resources. However, we have conducted compar-
isons of field-integrated and field-resolved potential solutions at low resolution. Results indicate only minor
differences in the GDI-generated density structures in scenarios similar to those studied in this paper.

Both the potential and electric field are assumed to go to zero at the x and y boundaries. This condition is
restrictive and necessitates that boundary surfaces be far from the modeled density cavities. An appropriate
boundary distance is found by running the model, at a reduced resolution, with the boundaries placed at
different distances.

3. Modeled lonospheric Density Cavity Dynamics

For the present simulations, a grid of size N,X N,X N, = 64 x 600 x 1000 cells is used to cover the region
80 <z<1000 km, —1000 < x< 1000 km, and —1000 < y < 1000 km. Initial conditions for the simulation are a
horizontally homogeneous ionosphere with N, F, ~5x10"" m=3. Background precipitation which is constant
in space and time is applied throughout the simulation. This precipitation has a total energy flux of
5% 107> mW/m?, which produces an E region with N,,E~3x108 m=3.

Each simulation results from a two-step driving process. First, a fixed potential pattern, shown in Figure 1a, is
applied to the ionosphere for 90 s to generate an auroral density cavity. lonospheric transport in the model
is evolved self-consistently during this part of the simulation so that the cavity has realistic densities and
spatial structure. The potential, which is seeded with small-scale variations (illustrated in Figure 1b, ~1% in
the y=0 plane), results in an electric field with maximum of ~120 mV/m (producing a maximum drift of
~2.25 km/s). The basic structure of the density cavity, along the y=0 line after 90 s, is also shown in
Figure 1b. In the second part of the simulation (90<t<990 s), a fixed, uniform background electric field
(Ey,=—25 &, mV/m) is applied for 900 s and self-consistent transport and electrodynamic responses
(equation (1)) are solved. This causes the density cavity, which is surrounded by a higher density, structureless
ionosphere, to drift and generate response electric fields. In order to isolate the ability of the cavity to produce
GDI, electron precipitation (aside from the very weak background flux) is not applied in this simulation.

Three-dimensional ionospheric convection greatly impacts the production and structure of the cavity.
Figure 2 shows ion temperature, NO* density, and plasma density in the y = 0 plane after the auroral electric
field has been applied for 90 s. The arrows in this plot indicate plasma flows in the x-z plane (corresponding to
the lengthwise and altitude dimensions of the cavity). High ion temperatures (Figure 2a), driven by fast drifts
through the neutral atmosphere (assumed stationary) and frictional heating, generate large concentrations
of molecular ions in the 200-300 km altitude range (Figure 2b). These molecular ions recombine over ~1 min
time scales , generating a density cavity (Figure 2¢). The cavity is displaced in the downstream direction from
the center of the heating region. lon upflows reaching vertical speeds of ~ 0.8 km/s are evident, and along
with the horizontal drifts, these form a local “fountain effect,” temporarily moving plasma from the upper
F region into the topside ionosphere and toward the +x direction.

The aurorally generated density cavity evolves significantly after formation, and the three-dimensional shape
of the newly formed cavity determines, to a degree, subsequent drift responses. Figure 3 shows plots of
electron density in the geomagnetic field-perpendicular (x-y) plane at an altitude of 300 km at times of 90 s
(Figure 3a), 600 s (Figure 3b), and 990 s (Figure 3c). Arrows in Figures 3b and 3c indicate flow directions and
magnitude relative to the Ey, X B drift. The black line in each plot indicates the cavity wall, defined as the
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Figure 1. Potential pattern, flows, and seed structures used to generate an auroral density cavity. (a) The potential is
shown by the background color map, and the arrows indicate the direction of the Ey; x B flow. The speed, which
maximizes at about 2.25 km/s is indicated by the length of each arrow. (b) A zoomed-in view of the potential aty = 0,
which illustrates seed structures. The density at y = 0,z = 300 km after 90 s is shown in Figure 1b to illustrate cavity
structure.

location where the density is halfway in between that of the cavity and that of the surrounding plasma, and
the y coordinate is centered on where the cavity would be if it undergoes purely E;, xB drift. The basic
structure of the density cavity after formation, discussed above, is apparent in Figure 3a. The density cavity is
wider and more pronounced on its downstream (roughly +x) side due to convection of the depleted plasma
as it forms. Strong gradients exist in density, and there are small-scale variations in position of the cavity wall
(which seed the instability). After 510 s of evolution in the uniform 25 mV/m electric field (Figure 3b), GDI has
initiated on the leading edge wall of the cavity. By 900 s (Figure 3c), some large-scale distortion has occurred,
and the leading edge gradients have steepened. GDI tends to break the cavity up into narrow features along
the direction of background flow. The GDI is most pronounced along the positive x side of the cavity, which
has a stronger gradient following formation.

In addition to GDI other larger-scale drift responses exist. The cavity drifts slightly faster than E,; x B speed,
and its trailing edge becomes more diffuse with time (see density gradients around the trailing edge black
line in Figures 3a and 3c). A large-scale distortion of lateral ends (at x = +225) of cavity has also occurred by
t=990s.

Figure 4 shows the response electric potential and charge density (a) and electric field (b) at 990 s. The total
potential difference across the mesoscale cavity structure (—200 < x < 300 km) is ~650 V, and smaller-scale,
intense potential structures associated with GDI are prevalent. Electric fields due to GDI reach ~10 mV/m
and are most pronounced on the +x direction side of the cavity. The part of the density cavity from
100 < x < 200 km, —300 < y < —500 km exhibits a mesoscale electric field feature with intensity ~5 mV/m.
This electric field feature contributes to overall distortion of the +x side of the cavity through enhanced

e = = =TT =TT TV,

700 B e SIS 700 i 700 BN . sz
= T T T T T 5 — =TT T ZTT
600 : - T T T T T T, 600 : 600 . :;W/’;"Z::‘::jj:
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Figure 2. Plot of at (a) ion temperature, (b) NO* density, and (c) plasma density versus x and z at 90 s. White arrows
indicate direction and magnitude of flows (length of arrow). The geomagnetic field-parallel component of these flows
maximizes at about 0.8 km/s.
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Figure 3. Electron density at 300 km altitude at three different times corresponding to (a) the end of the auroral
disturbance (90 s), (b) after drifting due to a 25 mV/m background electric field for 510 s, and (c) after drifting for 900 s.
Arrows in Figures 3b and 3c indicate the perpendicular velocity relative to the background Eq, x B drift (v, = =500 m/s).
This relative speed maximizes at ~200 m/s. The black contour in each plot represents the boundary of the density
cavity; quantitatively, the location at which the density is halfway between the lowest cavity density and the
background density. The y coordinate of each panel is shifted by the Ey, x B drift distance for each time frame to
facilitate comparison.

response flows. A cavity-scale dipolar, polarization potential pattern around the cavity (see contour lines
in Figure 4a) is responsible for the fact that the structure, as a whole, drifts slightly faster than the E,; xB
drift speed.

4. Concluding Remarks

Model results indicate that finite, electric field-generated density cavities can exhibit interesting drift
responses, including cavity-scale distortion and GDI. These processes are known to exist in artificially gen-
erated plasma clouds and polar cap patches, respectively, and here their plausible existence in mesoscale
density cavities is demonstrated for the first time. Structuring of density cavities is shown to be affected by
the cavity formation process; i.e., simulations show that convection of the cavity during formation critically
affects where it is most susceptible to GDI.

Density cavity formation and evolution illustrated herein could represent a significant mode by which
high-latitude plasma structures form. This process would be distinct from well-known patch and blob struc-
turing processes in that the cavities are generated by polar arc-related electric fields which are usually more
prevalent during northward interplanetary magnetic field conditions. Interaction and coupling between cav-
ity formation via frictional heating and subsequent drift distortion and instability may produce a rich variety of
plasma density structures. Further modeling to examine the parameter space of these different drivers would
be useful for characterizing cavity behavior as would adding in additional relevant physics, such as arc-related
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Figure 4. Electrodynamic parameters associated with cavity drift responses at 990 s. (a) Contours show equipotential
lines, and the background color map qualitatively illustrates charge density (blue is negatively charged, yellow is
positive, and green is neutral). (b) The direction of the electric field is shown as white arrows, and the magnitude of the
field is shown as the background color map.
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soft precipitation or a more sophisticated treatment of electrodynamics (fully 3-D potential solves and dif-
ferent specifications of boundary conditions). Moreover, case studies and systematic observations with the
PFISR/RISR radar systems will be capable of determining how often cavities form in the polar cap and their
potential to generate further structuring.
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