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Thermoedlastic wavesin microstructured solids

Arkadi Berezovski, Mihhail Berezovski

Abstract Thermoelastic wave propagation suggests a coupling betelestic de-

formation and heat conduction in a body. Microstructurehs body influences
the both processes. Since energy is conserved in elastendation and heat con-
duction is always dissipative, the generalization of ¢tagselasticity theory and
classical heat conduction is performed differently. Ith®wn in the paper that a
hyperbolic evolution equation for microtemperature carobtined in the frame-
work of the dual internal variables approach keeping thalpalic equation for the
macrotemperature. The microtemperature is considerethas@temperature fluc-
tuation. Numerical simulations demonstrate the formagind propagation of ther-
moelastic waves in microstructured solids under thernadilog.

1 Introduction

Microstructure of a body influences both wave propagatiah lagat conduction.
Microstructure-oriented theories of generalized cordifi+4] are, as arule, isother-
mal, whereas the generalization of heat conduction to roriér laws [5-8] is
usually restricted by the consideration of homogeneouseard rigid conductors.
The main problem is, therefore, to elaborate a conjoint &aork for the descrip-
tion of coupled conservative and dissipative processeshas/n recently, such an
unification is possible on the basis of the dual internalalades approach [9, 10].

In the conventional thermoelasticity, the free energy deris a function of the
deformation gradient and temperature only and cannot deperihe temperature
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gradient. However, the temperature gradient influence ethtarmomechanical re-
sponse of a microstructured material is expected in theepaesof varying tem-
perature fields at the microstructure level [11]. This mahas a weakly non-local
description should be applied [12]. As a result of the agpidn of the dual internal
variables theory, it is possible to obtain a hyperbolic atioh equation for mi-
crotemperature keeping the parabolic equation for the ot@emperature [10]. The
microtemperature is considered as a macrotemperaturedhbim. Effects of mi-
crotemperature gradients exhibit themselves on the ma@btlue to the coupling
of equations of macromotion and evolution equations fornmagnd microtemper-
atures. The overall description of thermomechanical gee® in microstructured
solids includes both direct and indirect couplings of euret of motion and heat
conduction at the macrolevel. In addition to the convergliatirect coupling, there
exists the coupling between macromotion and microtempezatvolution. This
means that the macrodeformation induces microtemperfitigctaations due to the
heterogeneity in the presence of a microstructure. Thestufitions, propagating
with a finite speed, can induce, in turn, corresponding chaimgthe macrotempera-
ture. Then the appeared changes in the macrotemperatecemticrodeformations
again. Numerical simulations demonstrate the formatiah @opagation of ther-
moelastic waves in microstructured solids under therneadilog [13].

The purpose of the paper is twofold. First, the differencevieen the standard
single internal variable theory and the dual internal ‘@gaapproach is empha-
sized. Next, it is demonstrated how thermal gradients prediby an appropriate
microstructure are able to generate fluctuations propagatith a finite speed with-
out introducing a hyperbolic heat conduction equation fiermacrotemperature.

2 Internal variablesformalism

Before the application of the dual internal variable applo# the description of

dynamic response of solids with microstructure, it is wadtlexplain the difference

between the single internal variable theory and the duetmat variables approach.
We start with the remainder of the single internal variabtehhique.

2.1 Single internal variable in one dimension

We consider the simplest possible situation, i.e. a "bodyad 8system” in one di-
mension. Suppose that all thermodynamic quantities likeprature, energy, en-
tropy, etc. are defined. Then we assume that the free enengytylé/ is specified
as a function of temperatueand an internal variabl¢ and its space derivative

W =W(6,9, ¢x). (1)
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Constitutive assumption (1) allows us to write down soezhllequations of state”
(just definition of additional quantities)

ow ow oW
Si=—— =—— =—— 2
0 T 3’ 36, (2)
whereSis the entropy density per unit reference volume.
The balance of internal energy in this case can be reprasaste
Et + Qx = 0, (3)

whereE is the internal energy density ai@lis the heat flux, indices denote time
and space derivatives. Remembering the connection betimésnal energy and
free energy, i.eW = E — S8, we arrive at another form of the energy balance

(SO) +Qc=h",  hM:= W, (4)

where the right-hand side of Eq. (4% formally an internal heat source [14].
The energy balance should be accompanied by the second taerofodynam-
ics here written as

S+(Q/8+K)x=0, (5)

whereK is the "extra” entropy flux that vanishes in most cases, hati$mot a basic
requirement [14].
Multiplying the second law (5) by

6S +6(Q/0+K)x >0, (6)
and taking into account Eq. (4), we obtain
— (W +S8) + (6K)x— (Q/8) +K) 6= 0. (7)

The internal heat sourdé™ is calculated as follows:

_OW W, W, _pth pintr
aea a¢ ¢I 0¢X¢XI_SGI+T¢I+n¢xt—h +h . (8)

Accounting for Eq. (8), dissipation inequality (7) can berigten as

hint _ _\M _

@ =1¢+Nox — (Q/0+K)+ (6K)x > 0. 9)
To rearrange the dissipation inequality, we add and sutttnacsame terngy ¢

@ =Tt + N Px— Nxdt + NxPr — (Q/ 6+ K) B+ (6K)x > 0, (10)

which leads to

@ = (T-Nx)¢t — (Q/6+K)b+ (Nt + OK)x > 0. (11)
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Following [15], we select the "extra” entropy flux in such ayhat the divergence
term in Eq. (11) will be eliminated

K=-6"1ng. 12)
Then dissipation inequality (11) reduces to
@ = (T—Nx)p — (Q/6+K)6 > 0. (13)

It is remarkable that in the isothermal casg £ 0) the dissipation is determined by
the internal variable only.
The simplest choice to satisfy the dissipation inequalliy)(in theisothermal
case
P =(T-nNx )¢ =0, (14)

is the following one:
¢t = k(T - rlX)a k Z 07 (15)

since dissipation inequality (14) is satisfied automaliydalthis case
®=k¢Z>0, if k>0. (16)

It is easy to see that the dissipation is the product of thartbdynamic flux¢;
and the thermodynamic force — nx). The proportionality between the thermody-
namic flux and the conjugated force is the standard choicatisfg the dissipation
inequality.

To see how the obtained evolution equation looks like, weigfize free energy
dependence (1) in the isothermal case to a quadratic one

— 1 1
W = >B¢?+ SC¢7, (17)
2 2
whereB andC are material parameters. It follows from equations of sf2f¢hat
oW oW

T:=———=—-B¢, n::—ﬁzjz—Cqu, (18)

and evolution equation (15) is an equation of reactionadifin type
¢ = k(Coxx—Bo), k>0. (29)

The given standard formalism of internal variables of statsufficient for many
cases [16].
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2.2 Dual internal variables
The dual internal variables approach is the extension otehbnique described

above. We suppose that the free energy density dependsesnahvariableg,
and their space derivatives

W:V_V(ea¢7¢X7¢’7wX)' (20)
The equations of state in the case of two internal varialelad r
oW oW oW oW oW
S=——, Ti=——— = =——, =——
n ¢ 0 ¢ e

26’ a¢’ aoy’
We introduce the non-zero extra entropy flux following theecaf a single internal
variable and set

(21)

K=-06"1n¢— 6. (22)

It can be checked that the intrinsic heat source is detenim#he considered case
as follows

M= (1= g+ (€ — SO (23)
The latter means that the dissipation inequality in thehisohal case reduces to
P =(T—n)pe+ (&) = 0. (24)

The solution of the dissipation inequality can be represg:as [17]

D-(8) « (0)-() (D)

=L or = . 25
((.Ut (E—4))" Y Loa L2/ \ (& — ) (25)
The non-negativity of the entropy production (24) resuttshe positive semidefi-
niteness of the conductivity matrlx, which requires

2
(LiatLay)” (26)

L11>0, Lp>0, Liiloo— 7 >

To be more specific, we keep a quadratic free energy dendifyiisothermal case
w_lpo 1o 10 5 1 5
W_ZB¢ +2C¢X+2D1,U +2FwX. (27)

Calculating quantities defined by equations of state

. OW _ oW
r-——%——th L Y Cox, (28)
§=-N_ by, (=-N_ _py, (29)
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we can represent system of Egs. (25) in the form
¢t = Lll(_B¢ + C¢xx) + LlZ(_Dw + FLIJXX)7 (30)

Ut = Lo1(—B@ + Coyx) + Loo(—Dy + F ). (31)

Now we will derive a single equation for the internal varelpl. For this purpose,
Eq. (30) is differentiated with respect to time

¢t = L11(—Bét + Cxxt) + L12( =D + F Piuxt). (32)
Time derivatives of the internal variabie follow from Eq. (31)
U= L21(_B¢ + C¢xx) + L22(—D¢’ +F prx)a (33)

thx = L21(—B¢xx+ C¢xxxx) + LZZ(—DWXx+ F lpxxxx)- (34)
At last, the internal variablgy can be eliminated using again Eq. (30)

(—Dy+ Fif) = ¢t - L—i( B + Cob), (35)
(—Dx+ F Pyxxx) = i ¢txx - ::_l( Bxx + Chxxxx)- (36)

As a result, time derivatives of the mternal varialglecan be represented in terms
of the internal variable

Ut = Loa(~Bo +c¢xx>+Lzz< o (-9 +C¢XX>) _

L Lol L1iL (37)
_ £¢t M( B¢ +Cou),
L12 Li2
L
(ptxx = L21(—B¢xx+ C¢xxxx) + I—22 ( ¢txx 11( B¢xx+ C¢xxxx)> =
(38)
L Liolog —LgaL
22¢txx 2L T2 B+ Cobocd,

Li2
and the evolution equation for the internal variapleas the form

Ot = L11(—Bgt + Coxxt) + L12(—Dik + Fixxt) =
= L11(—B@t +Coyxt) — DLoo — D(L1oLo1 — L11L22)(—B¢ +Cohux)+ (39)
+ FLoo@ixx + F(L12lor — L11k22) (—Bxx + Cxxxx)-

After rearranging, we have finally

¢t = (CD+BF)(L11loo — L1olo1) @xx+ (L1okor — L11L22) (BD@ + CF Pyxxx) —

— (BL11+ DL22) ¢t + (CLaz+ FL22) fixx.
(40)
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The free energy density is non-negative by default, which results in non-negativit
of material parameter®,C,D, andF. This means that Eq. (40) is the hyperbolic
wave equation with dispersion and dissipation.

Thus, extending the state space of our thermodynamic sylsyeam additional
internal variable and keeping the quadratic form for thes femergy density, we
arrive at the hyperbolic evolution equation for the primautgrnal variable.

3 One-dimensional thermoelasticity in solidswith
microstructure

Now we are ready to apply the dual internal variables apgroathermoelasticity
in solids with microstructure. We will keep the one-dimemsil setting to be as
simple as possible. The 3D tensorial representation of pipdication of the dual
internal variables approach is given in [18, 19].

3.1 Reminder: Classical linear thermoelasticity

The one-dimensional motion of the thermoelastic condsaibheat is governed by
local balance laws for linear momentum and energy (no borheg)

PV — 0x =0, (41)
Ei—o&+Qx=0, (42)

and by the second law of thermodynamics
S+Xk>0. (43)

Hereo is the one-dimensional stresds the particle velocity] is the entropy flux,
subscripts denote derivatives.
The constitutive relations include the Hooke law

o=(A+2u)e, (44)

and the Fourier law
Q: _K29X7 (45)

whereA andu are Lamé coefficients? is the thermal conductivity. The entropy
flux is proportional to the heat flux

J= (46)

Slre
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The combined constitutive relation known as the Duhamelmi&nn equation has
the form

1 (o
Wi(e.0) = 5 (A -+ 21 - BF

(8 — 60)”+m(6 — o) ux, (47)
whereu is the displacement is the heat capacity, the thermoelastic coefficient
m is related to the dilatation coefficieatand the Lamé coefficients and u by
m= —a(3A +2u), 6 is the reference temperature.

Correspondingly, the time derivative of internal energy

Ei=0S+ &, (48)
and entropy definition
. OW_P% g gy
yield in the balance of energy
_ (PCp _
S6 — (kb)x = Eet—mlkt 0 — (kby)x =0, (50)
which can be reduced for small deviations from the referé@cgerature to
PCpB — (K?B4)x = MBoUyt. (51)

The latter equation together with the balance of linear ndome

Pt = (A +21) Uxx + MB, (52)

form the coupled system of equations for linear thermoieifst

3.2 Microstructure influence: dual internal variables

Now we suppose that the free energy density depends onahtemablesp, ¢y and
their space derivatives/ = W(uy, 0, ¢, ¢x, U, Ux). We use a quadratic free energy
function [9]

wz% A+ 2008 222 (0 )2 +-m(6 — o)+
) 901 (53)
+ Adxuy + §C¢3+ EDL,UZ.

Here A,C, andD are material parameters. This means that state variatiksle
strain, temperature, and two internal variables (and tpadients). For simplicity,
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only a contribution of the second internal variable itselflahe gradient of the
primary internal variable are included here. The corredpanequations of state
determine macrostress

oW

0= 5= = (A +2U) U+ (6 — bo) + Ady, (54)
X
microstress)
ow
= ——— = —Chy— A
n d¢x C¢X LIX) (55)
zero interactive internal force
) oW
T:= ~%0 0, (56)
and auxilary quantities related to the second internabiéei
oW ow
{=-535,=0 &=—G, =DV (57)

Accounting for the time derivative of internal energy
B =0S+0&—1¢ —Nox — S — (W, (58)
results in the energy balance in the form
0S — Tt — Nox — S — (Pt + Q= 0, (59)
which together with the second law of thermodynamics
6S + 63> 0, (60)
determines the dissipation inequality

(T—) ¢+ (€= G) + (8I+ N + Y — Q)x— J6 > 0. (61)

Including into consideration the non-zero extra entropy 8acording to Eq. (22)
K=-6"'n¢— 6"y (62)

we reduce the dissipation inequality to the sum of intrissid thermal parts
® = (1= 1P+ (€ — Lt - (W) 60 (63

Assuming that the intrinsic dissipation is independentef temperature gradient,
we are forced to modify the Fourier law as follows
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Q—nde— Y = —K76, (64)

to satisfy the thermal part of the dissipation inequality.

The remaining intrinsic part of dissipation inequality J@&3satisfied by a choice
of evolution equations for internal variables. As it is simaw [9], the thermal influ-
ence of a microstructure can be taken into account by thewiiallg choice

¢t =R(& —{x), ¢=-R(T—-nx)+Re(é—x), (65)

whereR andR; are certain appropriate constants. This choice meansthattrin-
sic dissipation is partly canceled and its remaining patttéssquare with a positive
coefficient.

It follows from Egs. (65) and (57) that

¢ = —RDy, (66)

i.e., the dual internal variablg is proportional to the time derivative of the primary
internal variablap;. Then the evolution equation for the internal variatple

U = —R(T —nNx) +Ra(& — {x), (67)

can be represented as
1 R
- R—D¢tt = —R(Cyx+ Aux) + ﬁquta (68)
or in the following form ( = 1/R’D)

R
191+ g 9t = Choct- Al (69)

which is a Cattaneo-Vernotte-type hyperbolic equatiorf@sjthe internal variable

¢

Correspondingly, energy balance (59) in this case has the fo

PoCp & — (K?6y), = MBoxt + %dﬁ (70)

Equation for macrotemperature (70) is influenced by a soterme which depends
on the internal variablg. This equation, as well as evolution equation for the inter-
nal variablegp (69) is coupled with the equation of motion [9]

Polt = (A + 21) Uxx + M6Bx + Adxx, (71)

which means that the internal varialfigpossesses a wave-like behavior induced by
the macrodeformation. Identifying the internal varialplevith the microtempera-
ture [9], we see that the microtemperature may induce a Wikegropagation also
for the macrotemperature due to the corresponding sounceiteheat conduction
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equation (70). Physically, the introduced microtempertiescribes fluctuations
about the mean temperature due to the presence of a miasgu

4 Numerical ssimulations

Now we will check the influence of microstructure on the theetastic wave prop-
agation numerically. The solution of equations (69) - (Tithe case of plane wave
motion in a thermoelastic half-space is obtained by meatiseofvave propagation
algorithm explained in detail in [13]. We consider the maimaterial as silicon
and the microstructure is represented by copper partictdsedded randomly in
the matrix. Material parameters for silicon are the follog{20]: the macroscopic
density,po, is equal to 2390 kg/f the Lamé coefficientd = 48.3 GPa, angl =
61.5 GPa, the heat capacityy = 800 J/(kg K), the reference temperatubg,=
300 K, the thermal conductivitk = 149 W/(m K), the thermal expansion coeffi-
cient,a = 2.610°° 1/K. Correspondingly, material parameters of copper até: [2
the macroscopic densityyg, is equal to 8960 kg/f the Lamé coefficientd =
101.5 GPa, angl = 47.75 GPa, the heat capacity,= 386 J/(kg K), the reference
temperaturefy = 300 K, the thermal conductivitk = 401 W/(m K), the thermal
expansion coefficienty = 16.510°° 1/K.

The problem under consideration is the thermoelastic waweggation induced
by a thermal excitation at the boundary of the half-spaces #ssumed that the
material is initially at rest. Two consecutive heat pulsesgenerated at the traction
free boundary plane for the first 120 time steps followingrile

6(0,t) = % (14—005(%)) . (72)

The scale of excitatiorJ)p, is chosen as 6% of the length of the computational
domain,L, so thatUp/L = 0.06. The scale of the microstructutes supposed to
be even les§/L = 0.002. Following [22] coupling parameters used in calculaio
are chosen as follows:

&

?2 - @, A=0.0200¢3, C = poc3. (73)
12

To exclude the direct influence of stress field on the macrpézgature, it was as-
sumed that the velocity gradient in Eq. (70) is negligible.

All calculations were performed by means of the finite-voédumumerical scheme
[13] using the value of the Courant number 0.98. This schenaemodification of
the previously reported conservative finite-volume aliponi [23, 24] adapted for
microstructure modeling. It belongs to a broad class ofdinttlume methods for
thermomechanical problems [25, 26].

Results of calculations are presented in Fig. 1. This Figlemonstrates ex-
plicitly how the coupling in mathematical model (69) - (71pmks. In the case
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T T
macrotemperature
stress
08 microtemperature -
temperature in pure silicon =

1 1 1 1 1
0 50 100 150 200

Space steps

Fig. 1 Normalized temperature, stress, and microtemperatunébdison at 350 time steps.

of pure silicon we see only thermal diffusion in the vicinid the boundary. The
double pulse thermal excitation generates the correspgrstliess pulses propagat-
ing through the material. If microstructure is taken inte@ant, this stress pulses
induce the microtemperature waves. The microtemperafteetsthe macrotem-
perature resulting in the oscillations of the macrotemipeeshump with a fading
thermal wake.

It should be noted that the scales for all quantities in Figwd different and
chosen atrtificially to show all quantities in a single pietuthe real effect of the
microstructure is sufficiently small and can be made vistoléy by means of a
corresponding zooming.

5 Conclusions

The dual internal variables approach leads naturally topetyolic evolution equa-
tion for the primary internal variable. In the case of theetagticity, this internal

variable can be interpreted as a microtemperature or, ieratiords, as a temper-
ature fluctuation due to the microstructure. Coupling of glo@erning equations
results in the wave-like temperature behavior.
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Although the observed effect of the microstructure is spiadixists in the case
of realistic values of material parameters. This effectlsarmmplified by a choice
of suitable materials or even by a design of corresponditificaal materials.

It is remarkable that the governing equation for the maconpierature remains
parabolic. The wave-like temperature behavior appeassduré to the influence of
microstructure.
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