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Thermoelastic waves in microstructured solids

Arkadi Berezovski, Mihhail Berezovski

Abstract Thermoelastic wave propagation suggests a coupling between elastic de-
formation and heat conduction in a body. Microstructure of the body influences
the both processes. Since energy is conserved in elastic deformation and heat con-
duction is always dissipative, the generalization of classical elasticity theory and
classical heat conduction is performed differently. It is shown in the paper that a
hyperbolic evolution equation for microtemperature can beobtained in the frame-
work of the dual internal variables approach keeping the parabolic equation for the
macrotemperature. The microtemperature is considered as amacrotemperature fluc-
tuation. Numerical simulations demonstrate the formationand propagation of ther-
moelastic waves in microstructured solids under thermal loading.

1 Introduction

Microstructure of a body influences both wave propagation and heat conduction.
Microstructure-oriented theories of generalized continua [1–4] are, as a rule, isother-
mal, whereas the generalization of heat conduction to non-Fourier laws [5–8] is
usually restricted by the consideration of homogeneous andeven rigid conductors.
The main problem is, therefore, to elaborate a conjoint framework for the descrip-
tion of coupled conservative and dissipative processes. Asshown recently, such an
unification is possible on the basis of the dual internal variables approach [9, 10].

In the conventional thermoelasticity, the free energy density is a function of the
deformation gradient and temperature only and cannot depend on the temperature
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gradient. However, the temperature gradient influence on the thermomechanical re-
sponse of a microstructured material is expected in the presence of varying tem-
perature fields at the microstructure level [11]. This meansthat a weakly non-local
description should be applied [12]. As a result of the application of the dual internal
variables theory, it is possible to obtain a hyperbolic evolution equation for mi-
crotemperature keeping the parabolic equation for the macrotemperature [10]. The
microtemperature is considered as a macrotemperature fluctuation. Effects of mi-
crotemperature gradients exhibit themselves on the macrolevel due to the coupling
of equations of macromotion and evolution equations for macro- and microtemper-
atures. The overall description of thermomechanical processes in microstructured
solids includes both direct and indirect couplings of equations of motion and heat
conduction at the macrolevel. In addition to the conventional direct coupling, there
exists the coupling between macromotion and microtemperature evolution. This
means that the macrodeformation induces microtemperaturefluctuations due to the
heterogeneity in the presence of a microstructure. These fluctuations, propagating
with a finite speed, can induce, in turn, corresponding changes in the macrotempera-
ture. Then the appeared changes in the macrotemperature affect macrodeformations
again. Numerical simulations demonstrate the formation and propagation of ther-
moelastic waves in microstructured solids under thermal loading [13].

The purpose of the paper is twofold. First, the difference between the standard
single internal variable theory and the dual internal variable approach is empha-
sized. Next, it is demonstrated how thermal gradients produced by an appropriate
microstructure are able to generate fluctuations propagating with a finite speed with-
out introducing a hyperbolic heat conduction equation for the macrotemperature.

2 Internal variables formalism

Before the application of the dual internal variable approach to the description of
dynamic response of solids with microstructure, it is worthto explain the difference
between the single internal variable theory and the dual internal variables approach.
We start with the remainder of the single internal variable technique.

2.1 Single internal variable in one dimension

We consider the simplest possible situation, i.e. a ”body” or a ”system” in one di-
mension. Suppose that all thermodynamic quantities like temperature, energy, en-
tropy, etc. are defined. Then we assume that the free energy densityW is specified
as a function of temperatureθ and an internal variableϕ and its space derivative

W =W(θ ,ϕ ,ϕx). (1)
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Constitutive assumption (1) allows us to write down so-called ”equations of state”
(just definition of additional quantities)

S:=−
∂W
∂θ

, τ :=−
∂W
∂ϕ

, η :=−
∂W
∂ϕx

, (2)

whereS is the entropy density per unit reference volume.
The balance of internal energy in this case can be represented as

Et +Qx = 0, (3)

whereE is the internal energy density andQ is the heat flux, indices denote time
and space derivatives. Remembering the connection betweeninternal energy and
free energy, i.e.,W = E−Sθ , we arrive at another form of the energy balance

(Sθ )t +Qx = hint , hint :=−Wt , (4)

where the right-hand side of Eq. (4)1 is formally an internal heat source [14].
The energy balance should be accompanied by the second law ofthermodynam-

ics here written as
St +(Q/θ +K)x ≥ 0, (5)

whereK is the ”extra” entropy flux that vanishes in most cases, but this is not a basic
requirement [14].

Multiplying the second law (5) byθ

θSt +θ (Q/θ +K)x ≥ 0, (6)

and taking into account Eq. (4), we obtain

−(Wt +Sθt)+ (θK)x− (Q/θ )+K)θx ≥ 0. (7)

The internal heat sourcehint is calculated as follows:

hint =−Wt =−
∂W
∂θ

θt −
∂W
∂ϕ

ϕt −
∂W
∂ϕx

ϕxt = Sθt + τϕt +ηϕxt = hth+hintr . (8)

Accounting for Eq. (8), dissipation inequality (7) can be rewritten as

Φ = τϕt +ηϕxt − (Q/θ +K)θx+(θK)x ≥ 0. (9)

To rearrange the dissipation inequality, we add and subtract the same termηxϕt

Φ = τϕt +ηϕ̇x−ηxϕt +ηxϕt − (Q/θ +K)θx+(θK)x ≥ 0, (10)

which leads to

Φ = (τ −ηx)ϕt − (Q/θ +K)θx+(ηϕt +θK)x ≥ 0. (11)
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Following [15], we select the ”extra” entropy flux in such a way that the divergence
term in Eq. (11) will be eliminated

K =−θ−1ηϕt . (12)

Then dissipation inequality (11) reduces to

Φ = (τ −ηx)ϕt − (Q/θ +K)θx ≥ 0. (13)

It is remarkable that in the isothermal case (θx = 0) the dissipation is determined by
the internal variable only.

The simplest choice to satisfy the dissipation inequality (13) in theisothermal
case

Φ = (τ −ηx)ϕt ≥ 0, (14)

is the following one:
ϕt = k(τ −ηx), k≥ 0, (15)

since dissipation inequality (14) is satisfied automatically in this case

Φ = kϕ2
t ≥ 0, if k≥ 0. (16)

It is easy to see that the dissipation is the product of the thermodynamic fluxϕt

and the thermodynamic force(τ −ηx). The proportionality between the thermody-
namic flux and the conjugated force is the standard choice to satisfy the dissipation
inequality.

To see how the obtained evolution equation looks like, we specialize free energy
dependence (1) in the isothermal case to a quadratic one

W =
1
2

Bϕ2+
1
2

Cϕ2
x , (17)

whereB andC are material parameters. It follows from equations of state(2) that

τ :=−
∂W
∂ϕ

=−Bϕ , η :=−
∂W
∂ϕx

=−Cϕx, (18)

and evolution equation (15) is an equation of reaction-diffusion type

ϕt = k(Cϕxx−Bϕ), k≥ 0. (19)

The given standard formalism of internal variables of stateis sufficient for many
cases [16].



Thermoelastic waves in microstructured solids 5

2.2 Dual internal variables

The dual internal variables approach is the extension of thetechnique described
above. We suppose that the free energy density depends on internal variablesϕ ,ψ
and their space derivatives

W =W(θ ,ϕ ,ϕx,ψ ,ψx). (20)

The equations of state in the case of two internal variables read

S=−
∂W
∂θ

, τ :=−
∂W
∂ϕ

, η :=−
∂W
∂ϕx

, ξ :=−
∂W
∂ψ

, ζ :=−
∂W
∂ψx

. (21)

We introduce the non-zero extra entropy flux following the case of a single internal
variable and set

K =−θ−1ηϕt −θ−1ζψt . (22)

It can be checked that the intrinsic heat source is determined in the considered case
as follows

h̃intr := (τ −ηx)ϕt +(ξ − ζx)ψt . (23)

The latter means that the dissipation inequality in the isothermal case reduces to

Φ = (τ −ηx)ϕt +(ξ − ζx)ψt ≥ 0. (24)

The solution of the dissipation inequality can be represented as [17]
(

ϕt

ψt

)
= L

(
(τ −ηx)
(ξ − ζx)

)
, or

(
ϕt

ψt

)
=

(
L11 L12

L21 L22

)(
(τ −ηx)
(ξ − ζx)

)
. (25)

The non-negativity of the entropy production (24) results in the positive semidefi-
niteness of the conductivity matrixL, which requires

L11 ≥ 0, L22 ≥ 0, L11L22−
(L12+L21)

2

4
≥ 0. (26)

To be more specific, we keep a quadratic free energy density inthe isothermal case

W =
1
2

Bϕ2+
1
2

Cϕ2
x +

1
2

Dψ2+
1
2

Fψ2
x . (27)

Calculating quantities defined by equations of state

τ :=−
∂W
∂ϕ

=−Bϕ , η :=−
∂W
∂ϕx

=−Cϕx, (28)

ξ :=−
∂W
∂ψ

=−Dψ , ζ :=−
∂W
∂ψx

=−Fψx, (29)
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we can represent system of Eqs. (25) in the form

ϕt = L11(−Bϕ +Cϕxx)+L12(−Dψ +Fψxx), (30)

ψt = L21(−Bϕ +Cϕxx)+L22(−Dψ +Fψxx). (31)

Now we will derive a single equation for the internal variable ϕ . For this purpose,
Eq. (30) is differentiated with respect to time

ϕtt = L11(−Bϕt +Cϕxxt)+L12(−Dψt +Fψxxt). (32)

Time derivatives of the internal variableψ follow from Eq. (31)

ψt = L21(−Bϕ +Cϕxx)+L22(−Dψ +Fψxx), (33)

ψtxx = L21(−Bϕxx+Cϕxxxx)+L22(−Dψxx+Fψxxxx). (34)

At last, the internal variableψ can be eliminated using again Eq. (30)

(−Dψ +Fψxx) =
1

L12
ϕt −

L11

L12
(−Bϕ +Cϕxx), (35)

(−Dψxx+Fψxxxx) =
1

L12
ϕtxx−

L11

L12
(−Bϕxx+Cϕxxxx). (36)

As a result, time derivatives of the internal variableψ can be represented in terms
of the internal variableϕ

ψt = L21(−Bϕ +Cϕxx)+L22

(
1

L12
ϕt −

L11

L12
(−Bϕ +Cϕxx)

)
=

=
L22

L12
ϕt +

L12L21−L11L22

L12
(−Bϕ +Cϕxx),

(37)

ψtxx = L21(−Bϕxx+Cϕxxxx)+L22

(
1

L12
ϕtxx−

L11

L12
(−Bϕxx+Cϕxxxx)

)
=

=
L22

L12
ϕtxx+

L12L21−L11L22

L12
(−Bϕxx+Cϕxxxx),

(38)

and the evolution equation for the internal variableϕ has the form

ϕtt = L11(−Bϕt +Cϕxxt)+L12(−Dψt +Fψxxt) =

= L11(−Bϕt +Cϕxxt)−DL22ϕt −D(L12L21−L11L22)(−Bϕ +Cϕxx)+

+FL22ϕtxx+F(L12L21−L11L22)(−Bϕxx+Cϕxxxx).

(39)

After rearranging, we have finally

ϕtt = (CD+BF)(L11L22−L12L21)ϕxx+(L12L21−L11L22)(BDϕ +CFϕxxxx)−

− (BL11+DL22)ϕt +(CL11+FL22)ϕtxx.

(40)
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The free energy densityW is non-negativeby default, which results in non-negativity
of material parametersB,C,D, andF . This means that Eq. (40) is the hyperbolic
wave equation with dispersion and dissipation.

Thus, extending the state space of our thermodynamic systemby an additional
internal variable and keeping the quadratic form for the free energy density, we
arrive at the hyperbolic evolution equation for the primaryinternal variable.

3 One-dimensional thermoelasticity in solids with
microstructure

Now we are ready to apply the dual internal variables approach to thermoelasticity
in solids with microstructure. We will keep the one-dimensional setting to be as
simple as possible. The 3D tensorial representation of the application of the dual
internal variables approach is given in [18, 19].

3.1 Reminder: Classical linear thermoelasticity

The one-dimensional motion of the thermoelastic conductors of heat is governed by
local balance laws for linear momentum and energy (no body forces)

ρvt −σx = 0, (41)

Et −σεt +Qx = 0, (42)

and by the second law of thermodynamics

St + Jx ≥ 0. (43)

Hereσ is the one-dimensional stress,v is the particle velocity,J is the entropy flux,
subscripts denote derivatives.

The constitutive relations include the Hooke law

σ = (λ +2µ)ε, (44)

and the Fourier law
Q=−κ2θx, (45)

whereλ andµ are Lamé coefficients,κ2 is the thermal conductivity. The entropy
flux is proportional to the heat flux

J =
Q
θ
. (46)
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The combined constitutive relation known as the Duhamel-Neumann equation has
the form

W(ε,θ ) =
1
2
(λ +2µ)u2

x −
ρcp

2θ0
(θ −θ0)

2+m(θ −θ0)ux, (47)

whereu is the displacement,cp is the heat capacity, the thermoelastic coefficient
m is related to the dilatation coefficienta and the Lamé coefficientsλ and µ by
m=−a(3λ +2µ), θ0 is the reference temperature.

Correspondingly, the time derivative of internal energy

Et = θSt +σεt , (48)

and entropy definition

S=: −
∂W
∂θ

=
ρcp

θ0
(θ −θ0)−mux, (49)

yield in the balance of energy

Stθ − (kθx)x =

(
ρcp

θ0
θt −muxt

)
θ − (kθx)x = 0, (50)

which can be reduced for small deviations from the referencetemperature to

ρcpθt − (κ2θx)x = mθ0uxt. (51)

The latter equation together with the balance of linear momentum

ρutt = (λ +2µ)uxx+mθx, (52)

form the coupled system of equations for linear thermoelasticity.

3.2 Microstructure influence: dual internal variables

Now we suppose that the free energy density depends on internal variablesϕ ,ψ and
their space derivativesW = W(ux,θ ,ϕ ,ϕx,ψ ,ψx). We use a quadratic free energy
function [9]

W =
1
2
(λ +2µ)u2

x −
ρ0cp

2θ0
(θ −θ0)

2+m(θ −θ0)ux+

+Aϕxux+
1
2

Cϕ2
x +

1
2

Dψ2.

(53)

HereA,C, andD are material parameters. This means that state variables include
strain, temperature, and two internal variables (and theirgradients). For simplicity,
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only a contribution of the second internal variable itself and the gradient of the
primary internal variable are included here. The corresponding equations of state
determine macrostressσ

σ :=
∂W
∂ux

= (λ +2µ)ux+m(θ −θ0)+Aϕx, (54)

microstressη

η :=−
∂W
∂ϕx

=−Cϕx−Aux, (55)

zero interactive internal forceτ

τ :=−
∂W
∂ϕ

= 0, (56)

and auxilary quantities related to the second internal variable

ζ =−
∂W
∂ψx

= 0, ξ =−
∂W
∂ψ

=−Dψ . (57)

Accounting for the time derivative of internal energy

Et = θSt +σεt − τϕt −ηϕxt − ξ ψt − ζψxt, (58)

results in the energy balance in the form

θSt − τϕt −ηϕxt − ξ ψt − ζψxt +Qx = 0, (59)

which together with the second law of thermodynamics

θSt +θJx ≥ 0, (60)

determines the dissipation inequality

(τ −ηx)ϕt +(ξ − ζx)ψt +(θJ+ηϕt + ζψt −Q)x− Jθx ≥ 0. (61)

Including into consideration the non-zero extra entropy flux according to Eq. (22)

K =−θ−1ηϕt −θ−1ζψt . (62)

we reduce the dissipation inequality to the sum of intrinsicand thermal parts

Φ = (τ −ηx)ϕt +(ξ − ζx)ψt −

(
Q−ηϕt − ζψt

θ

)
θx ≥ 0. (63)

Assuming that the intrinsic dissipation is independent of the temperature gradient,
we are forced to modify the Fourier law as follows
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Q−ηϕt − ζψt =−κ2θx, (64)

to satisfy the thermal part of the dissipation inequality.
The remaining intrinsic part of dissipation inequality (63) is satisfied by a choice

of evolution equations for internal variables. As it is shown in [9], the thermal influ-
ence of a microstructure can be taken into account by the following choice

ϕt = R(ξ − ζx), ψt =−R(τ −ηx)+R2(ξ − ζx), (65)

whereRandR2 are certain appropriate constants. This choice means that the intrin-
sic dissipation is partly canceled and its remaining part isthe square with a positive
coefficient.

It follows from Eqs. (65) and (57) that

ϕt =−RDψ , (66)

i.e., the dual internal variableψ is proportional to the time derivative of the primary
internal variableϕt . Then the evolution equation for the internal variableψ

ψt =−R(τ −ηx)+R2(ξ − ζx), (67)

can be represented as

−
1

RD
ϕtt =−R(Cϕxx+Auxx)+

R2

R
ϕt , (68)

or in the following form (I = 1/R2D)

Iϕtt +
R2

R2 ϕt =Cϕxx+Auxx, (69)

which is a Cattaneo-Vernotte-type hyperbolic equation [5]for the internal variable
ϕ .

Correspondingly, energy balance (59) in this case has the form

ρ0cp θt −
(
κ2θx

)
x = mθ0uxt +

R2

R2 ϕ2
t . (70)

Equation for macrotemperature (70) is influenced by a sourceterm which depends
on the internal variableϕ . This equation, as well as evolution equation for the inter-
nal variableϕ (69) is coupled with the equation of motion [9]

ρ0utt = (λ +2µ)uxx+mθx+Aϕxx, (71)

which means that the internal variableϕ possesses a wave-like behavior induced by
the macrodeformation. Identifying the internal variableϕ with the microtempera-
ture [9], we see that the microtemperature may induce a wave-like propagation also
for the macrotemperature due to the corresponding source term in heat conduction
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equation (70). Physically, the introduced microtemperature describes fluctuations
about the mean temperature due to the presence of a microstructure.

4 Numerical simulations

Now we will check the influence of microstructure on the thermoelastic wave prop-
agation numerically. The solution of equations (69) - (71) in the case of plane wave
motion in a thermoelastic half-space is obtained by means ofthe wave propagation
algorithm explained in detail in [13]. We consider the matrix material as silicon
and the microstructure is represented by copper particles embedded randomly in
the matrix. Material parameters for silicon are the following [20]: the macroscopic
density,ρ0, is equal to 2390 kg/m3, the Lamé coefficientsλ = 48.3 GPa, andµ =
61.5 GPa, the heat capacity,cp = 800 J/(kg K), the reference temperature,θ0 =
300 K, the thermal conductivity,k = 149 W/(m K), the thermal expansion coeffi-
cient,α = 2.610−6 1/K. Correspondingly, material parameters of copper are [21]:
the macroscopic density,ρ0, is equal to 8960 kg/m3, the Lamé coefficientsλ =
101.5 GPa, andµ = 47.75 GPa, the heat capacity,cp = 386 J/(kg K), the reference
temperature,θ0 = 300 K, the thermal conductivity,k = 401 W/(m K), the thermal
expansion coefficient,α = 16.510−6 1/K.

The problem under consideration is the thermoelastic wave propagation induced
by a thermal excitation at the boundary of the half-space. Itis assumed that the
material is initially at rest. Two consecutive heat pulses are generated at the traction
free boundary plane for the first 120 time steps following therule

θ (0, t) =
1
2

(
1+ cos

(
π(t−30∆ t)

30

))
. (72)

The scale of excitation,U0, is chosen as 6% of the length of the computational
domain,L, so thatU0/L = 0.06. The scale of the microstructure,l , is supposed to
be even lessl/L = 0.002. Following [22] coupling parameters used in calculations
are chosen as follows:

R22

R2
12

=
ρ0c0

l
, A= 0.02ρ0c

2
0, C= ρ0c2

0. (73)

To exclude the direct influence of stress field on the macrotemperature, it was as-
sumed that the velocity gradient in Eq. (70) is negligible.

All calculations were performed by means of the finite-volume numerical scheme
[13] using the value of the Courant number 0.98. This scheme is a modification of
the previously reported conservative finite-volume algorithm [23, 24] adapted for
microstructure modeling. It belongs to a broad class of finite-volume methods for
thermomechanical problems [25, 26].

Results of calculations are presented in Fig. 1. This Figuredemonstrates ex-
plicitly how the coupling in mathematical model (69) - (71) works. In the case
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Fig. 1 Normalized temperature, stress, and microtemperature distribution at 350 time steps.

of pure silicon we see only thermal diffusion in the vicinityof the boundary. The
double pulse thermal excitation generates the corresponding stress pulses propagat-
ing through the material. If microstructure is taken into account, this stress pulses
induce the microtemperature waves. The microtemperature affects the macrotem-
perature resulting in the oscillations of the macrotemperature hump with a fading
thermal wake.

It should be noted that the scales for all quantities in Fig. 1are different and
chosen artificially to show all quantities in a single picture. The real effect of the
microstructure is sufficiently small and can be made visibleonly by means of a
corresponding zooming.

5 Conclusions

The dual internal variables approach leads naturally to a hyperbolic evolution equa-
tion for the primary internal variable. In the case of thermoelasticity, this internal
variable can be interpreted as a microtemperature or, in other words, as a temper-
ature fluctuation due to the microstructure. Coupling of thegoverning equations
results in the wave-like temperature behavior.
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Although the observed effect of the microstructure is small, it exists in the case
of realistic values of material parameters. This effect canbe amplified by a choice
of suitable materials or even by a design of corresponding artificial materials.

It is remarkable that the governing equation for the macrotemperature remains
parabolic. The wave-like temperature behavior appears only due to the influence of
microstructure.
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