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Numerical simulation of nonlinear elastic wave

propagation in piecewise homogeneous media

Arkadi Berezovski ∗, Mihhail Berezovski, Jüri Engelbrecht

Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of
Technology, Akadeemia tee 21, 12618 Tallinn, Estonia

Abstract

Systematic experimental work [S. Zhuang, G.Ravichandran and D. Grady, J. Mech.
Phys. Solids 51 (2003) 245-265] on laminated composites subjected to high veloc-
ity impact loading exhibits the dispersed wave field and the oscillatory behavior
of waves with respect to a mean value. Such a behavior is absent in homogeneous
solids. An approximate solution to the plate impact in layered heterogeneous solids
has been developed in [X. Chen, N. Chandra and A.M. Rajendran, Int. J. Solids
Struct. 41 (2004) 4635-4659]. The influence of the particle velocity on many pro-
cess characteristics was demonstrated. Based on earlier results [A. Berezovski, J.
Engelbrecht and G. A. Maugin, Arch. Appl. Mech. 70 (2000) 694-706], numerical
simulations of one-dimensional wave propagation in layered nonlinear heterogeneous
materials have been performed. The formulated problem follows a conventional ex-
perimental configuration of a plate impact. An extension of the high-resolution finite
volume wave-propagation algorithm [R.J. LeVeque, Finite Volume Methods for Hy-
perbolic Problems, Cambridge University Press (2002)] is used. The speed of sound
depends nonlinearly on a current stress value in each layer but also on the mismatch
properties of layers. Results of numerical simulations capture the experimental data
rather well.

Key words: Nonlinear elastic waves, numerical simulation, finite-volume method,
heterogeneous solids

1 Introduction

Wave propagation in solids can also be characterized as the thermomechanical
response of the media. In this context scattering, dispersion and attenuation
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play an essential role. These phenomena are mostly attributed to material het-
erogeneity but also to a number of nonlinearities. The nonlinear effects in their
turn certainly depend on material properties. However, also impedance and
geometric mismatch at various length scales have an effect on nonlinearities
together with the initial energy of excitation. Although there is a progress in
the analysis of wave propagation in heterogeneous materials, the phenomenon
of material and geometric dispersion in such media is not fully understood.

The impulsive shock loading in homogeneous media may be divided into three
regimes: strong shocks or high pressure, weak shocks or intermediate pressure
and elastic or low pressure; the corresponding behavior of solids are respec-
tively hydrodynamic, finite-strain plastic and linear elastic [1]. Though the
stress response has been very well understood for homogeneous materials, the
same cannot be said for heterogeneous systems. In heterogeneous media, scat-
tering due to interfaces between dissimilar materials plays an important role
for shock wave dissipation and dispersion [2].

Diagnostic experiments for the dynamic behavior of heterogeneous materi-
als under impact loading are usually carried out using a plate impact test
configuration under a one-dimensional strain state. These experiments are re-
cently reviewed in [3, 4]. For almost all the experiments, stress response has
shown a sloped rising part followed by an oscillatory behavior with respect
to a mean value [3, 4]. Such a behavior in the periodically layered systems
is consistently exhibited in the systematic experimental work by Zhuang and
coworkers [5]. The specimens used in the shock compression experiments [5]
were periodically layered two-component composites prepared by repeating a
composite unit as many times as necessary to form a specimen with the desired
thickness. A buffer layer of the same material as the soft component of the
specimen was used at the other side of the specimen. A window in contact with
the buffer layer was used to prevent the free surface from serious damage due
to unloading from shock wave reflection at the free surface. Shock compres-
sion experiments were conducted by employing a powder gun loading system,
which could accelerate a flat plate flyer to a velocity in range of 400 m/s to
about 2000 m/s. In order to measure the particle velocity history at the spec-
imen window surface, a velocity interferometry system was constructed, and
to measure the shock stress history at selected internal interfaces, the man-
ganin stress technique was adopted. Four different materials, polycarbonate,
6061-T6 aluminum alloy, 304 stainless steel, and glass, were chosen as compo-
nents. The selection of these materials provided a wide range of combinations
of shock wave speeds, acoustic impedance and strength levels. The influence
of multiple reflections of internal interfaces on shock wave propagation in the
layered composites was clearly illustrated by the shock stress profiles measured
by manganin gages. The origin of the observed structure of the stress waves
was attributed to material heterogeneity at the interfaces. For high velocity
impact loading conditions, it was fully realized that material nonlinear effects
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may play a key role in altering the basic structure of the shock wave.

Among the modeling efforts, the mechanical behavior of composites has been
extensively investigated using the homogenization approach [6]. Since this ap-
proach does not directly consider the interfaces, it is limited in examining the
impact behavior, where the wave interactions can be very important.

An approximate solution for layered heterogeneous materials subjected to high
velocity plate impact has been developed in [3, 4]. For laminated systems under
shock loading, shock velocity, density and volume were related to the particle
velocity by means of equation of state. The elastic analysis was extended
to shock response by incorporating the nonlinear effects through computing
shock velocities of the wave trains and superimposing them.

As pointed out in [5], stress wave propagation through layered media made of
isotropic materials provides an ideal model to investigate the effect of hetero-
geneous materials under shock loading, because the length scales, e.g., thick-
ness of individual layers, and other measures of heterogeneity, e.g., impedance
mismatch, are well defined.

Since the impact velocity in shock experiments is sufficiently high, various
nonlinear effects may affect the observed behavior. That is why we apply nu-
merical simulations of finite-amplitude nonlinear wave propagation to study of
scattering, dispersion and attenuation of shock waves in layered heterogeneous
materials. The main goal of the paper is to investigate the applicability of the
nonlinear description to the shock response of heterogeneous materials.

2 Formulation of the problem

The geometry of the problem follows the experimental configuration [5] (Fig.1).
We consider the initial-boundary value problem of impact loading of a het-
erogeneous medium composed of alternating layers of two different materials.
The impact is provided by a planar flyer of the length f which has an initial
velocity v0. A buffer of the same material as the soft component of the speci-
men is used to eliminate the effect of wave reflection at the stress-free surface.
The densities of the two materials are different, and the materials response to
compression is characterized by the distinct stress-strain relations σ(ε). Com-
pressional waves propagating in the direction of layering are modeled by the
one-dimensional hyperbolic system of conservation laws

ρ
∂v

∂t
=

∂σ

∂x
,

∂ε

∂t
=

∂v

∂x
, (1)
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where ε(x, t) is the strain and v(x, t) the particle velocity.

Initially, stress and strain are zero inside the flyer, the specimen, and the
buffer, but the initial velocity of the flyer is nonzero:

v(x, 0) = v0, 0 < x < f, (2)

where f is the size of the flyer. Both left and right boundaries are stress-free.

Instead of the equation of state like used in [3, 4], we apply a more simple
nonlinear stress-strain relation σ(ε, x) for each material (cf. [7])

σ = ρc2 ε(1 + Aε), (3)

where ρ is the density, c is the conventional longitudinal wave speed, A is
a parameter of nonlinearity, values of which are supposed to be different for
hard and soft materials.

3 Numerical simulations

It is easy to see that the cross-differentiation of equations (1) leads to the
conventional wave equation, solution of which is well-known if correspond-
ing fields are smooth. Assumptions about the smoothness of solutions are
not valid near discontinuities in the material parameters. Therefore, standard
methods often fail completely if the parameters vary drastically on the grid
size. By contrast, the recently developed high-resolution wave-propagation al-
gorithm [8] has been found well suited for the modeling of wave propagation in
rapidly-varying heterogeneous media [9]. Within the wave propagation algo-
rithm, every discontinuity in parameters is taken into account by solving the
Riemann problem at each interface between discrete elements. The reflection
and transmission of waves at each interface are handled automatically for the
considered inhomogeneous media.

High-resolution finite-volume methods were originally developed for capturing
shock waves in solutions to nonlinear systems of conservation laws, such as
the Euler equations of gas dynamics [10]. However, they are also well suited
to solving nonlinear wave propagation problems in heterogeneous media con-
taining many sharp interfaces where coefficients in the equation have disconti-
nuities. Recently, the wave-propagation algorithm was successfully applied to
the one-dimensional nonlinear elastic waves in a heterogenous periodic medium
consisting of alternating thin layers of two different materials [11, 12].
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An improved composite wave propagation scheme where a Godunov step is
performed after several second-order Lax-Wendroff steps was successfully ap-
plied for the two-dimensional thermoelastic wave propagation in media with
rapidly-varying properties [13, 14, 15]. This scheme is also applied here for
the solution of the problem (1)-(3). The approximate Riemann solver for the
nonlinear elastic media (3) is similar to that used in [11, 12]. This means that
a modified sound velocity, ĉ, following the nonlinear stress-strain relation (3)
is applied at each time step

ĉ = c
√

1 + 2Aε (4)

instead of the constant value corresponding to the linear case. Calculations are
performed with the Courant number equal to one. Results of the numerical
simulations compared with experimental data [5] are presented in the next
section.

4 Comparison with experimental data

Figure 2 shows the measured and calculated stress time history in the com-
posite, which consists of 8 units of polycarbonate, each 0.74 mm thick, and
of 8 units of stainless steel, each 0.37 mm thick. The material properties of
components are extracted from [5]: the density ρ = 1190 kg/cm3, the sound
velocity c = 1957 m/s for the polycarbonate and ρ = 7890 kg/cm3, c = 5744
m/s for the stainless steel. The stress time histories correspond to the dis-
tance 0.76 mm from the impact face. Calculations are performed for the flyer
velocity 561 m/s and the flyer thickness 2.87 mm.

Results of numerical calculations depend crucially on the choice of the pa-
rameter of nonlinearity A. We choose this parameter from the conditions to
match the numerical simulations to experimental results (see Section 5 for the
discussion).

Time histories of particle velocity for the same experiment are shown in Figure
3. It should be noted that the particle velocity time histories correspond to
the boundary between the specimen and the buffer. As one can see both stress
and particle velocity time histories are well reproduced by the nonlinear model
with the same values of the nonlinear parameter A.

As it is pointed out in [5], the influence of multiple reflections of internal inter-
faces on shock wave propagation in the layered composites is clearly illustrated
by the shock stress time histories measured by manganin gages. Therefore, we
focus our attention on the comparison of the stress time histories.
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Figure 4 shows the stress time histories in the composite, which consists of 16
units of polycarbonate, each 0.37 mm thick, and of 16 units of stainless steel,
each 0.19 mm thick. The stress time histories correspond to the distance 3.44
mm from the impact face. Calculations are performed for the flyer velocity
1043 m/s and the flyer thickness 2.87 mm.

The nonlinear parameter A is chosen here to be equal 2.80 for polycarbonate
and zero for stainless steel. Additionally, the stress time history corresponding
to linear elastic solution (i.e., nonlinear parameter A is zero for both compo-
nents) is shown. It can be seen, that the stress time history computed by
means of the considered nonlinear model is very close to the experimental
one. It reproduces three main peaks and decreases with distortion, as it is
observed in the experiment [5].

In Figure 5 the same comparison is presented for the same composite as in
Figure 4, only the flyer thickness is different (5.63 mm). This means that the
shock energy is approximately twice higher than that in the previous case.
The nonlinear parameter A is also increased to 4.03 for polycarbonate and
remains zero for stainless steel. As a result all 6 experimentally observed peaks
are reproduced well.

In Figure 6 the comparison of stress time histories is presented for the com-
posite, which consists of 16 0.37 mm thick units of polycarbonate and 16 0.20
mm thick units of D-263 glass. The material properties of D-263 glass are [5]:
the density ρ = 2510 kg/cm3, the sound velocity c = 5703 m/s. The distance
between the measurement point and the impact face is 3.41 mm. Correspond-
ing flyer velocity is 1079 m/s and the flyer thickness is 2.87 mm. The nonlinear
parameter A is chosen to be equal 5.025 for polycarbonate and zero for D-263
glass. Again, the stress time history corresponding to linear elastic solution
(i.e., nonlinear parameter is zero for both components) is shown. As one can
see, the stress time history corresponding to the nonlinear model reproduces
all 5 peaks with the same amplitude as observed experimentally.

Figure 7 shows the comparison of stress time histories for composite, which
consists of 7 units of polycarbonate, each 0.74 mm thick, and 7 units of float
glass, each 0.55 mm thick. The material properties of float glass are slightly
different from those for D-263 glass [5]: the density ρ = 2500 kg/cm3, the
sound velocity c = 5742 m/s. The stress profiles correspond to the distance
3.37 mm from the impact face, to the flyer velocity 563 m/s, and to the flyer
thickness 2.87 mm. The nonlinear parameter A is equal 3.04 for polycarbonate
and zero for float glass. The result of numerical simulation coincides with
experiment both in amplitude and in shape.

In Figure 8 the same comparison is presented for the same composite, only
the flyer velocity is almost twice higher, namely, 1056 m/s. The value of the
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nonlinear parameter A is 5.53 for polycarbonate and zero for float glass. It
can be seen, that the result of numerical simulation is very close to experi-
mental data. The complicated shape of the experimental stress time history
is reproduced as well.

As it can be seen, the agreement between results of calculations and experi-
ments is achieved by the adjustment of the nonlinear parameter A.

5 Discussion

Though the parameter of nonlinearity A looks like a material constant in
the equations (3) and (4), numerical simulations show that this parameter
depends also on the structure of the specimen. The values of the nonlinear
parameter together with the used experimental conditions are given in Table
1. In the table, PC denotes polycarbonate, GS - glass, SS - 304 stainless steel;
the number following the abbreviation of the component material represents
the layer thickness in hundredths of a millimeter.

It appears that the application of the nonlinear model to only soft material
(polycarbonate) is sufficient to reproduce stress profiles at the gage position
about 3.4 mm; any hard material can be treated as linear elastic one.

The comparison of the conditions of experiments 110501 and 110502 as well
as 120201 and 120202 and the corresponding values of the parameter of non-
linearity A demonstrates the dependence of the parameter A on the impact
energy. The influence of the impedance mismatch is clearly follows from the
results of simulations corresponding to experiments 110501 and 112301. The
dependence on the number of layers is not clear: the difference between the
values of the nonlinear parameter in the simulations of experiments 112301
and 120202 can be attributed to the slightly different material properties of
float glass and D-263 glass. The effect of the thickness ratio of the layers men-
tioned in [3] cannot be investigated on the basis of the discussed experimental
data, since the thickness ratio was unchanged in the experiments [5].

It follows that the nonlinear behavior of the soft material is affected not only
by the energy of the impact but also by the scattering induced by internal
interfaces. It should be noted that the influence of the nonlinearity is not nec-
essarily small. In the numerical simulations, that match with the experiments,
the increase of the actual sound velocity of polycarbonate follows. It may be
up to two times in comparison with the linear case. This conclusion is really
surprising but supported by the stress time histories. Such an effect but at
smaller scale has also been shown by [11, 12].
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To be able to compare the results of experiments with different geometry
and loading conditions we need to have a similarity in the experimental set-
ting. However, experimental data in [5] correspond to various impact energies,
impedance mismatches, and number and thickness of units. Therefore, we need
to normalize the experimental conditions. First of all, we choose one of the
experiments as a representative one. For example, we can choose experiment
marked as 110501 as a representative one. Then we relate all other experimen-
tal conditions to the conditions of the representative experiment. This means
that the impact energy for each experiment should be normalized with re-
spect to the impact energy corresponding to the experiment 110501 resulting
in the normalized impact energy Ě. Similarly, the impedance ratio of hard and
soft materials should be normalized with respect to the corresponding ratio
for the experiment 110501 to obtain the normalized impedance ratio Ž. The
geometrical factor can be introduced as follows:

G =
mh2

h1 + h2

, (5)

where m is gage position, h1 and h2 are thicknesses of soft and hard layers,
respectively. Its normalized value Ǧ is obtained as described above.

Then we can compute a modified parameter of nonlinearity Ǎ

Ǎ = A

√
Ž

ĚǦ
. (6)

The results of calculations are given in Table 2. As one can see, the modified
values of the parameter of nonlinearity deviate from the mean value (equal to
2.806) less than by 3.5 %.

The possibility to calculate the single value of the parameter of nonlinearity
means that there exists a similarity in the process under different impact
energies, impedance mismatches and geometry. Therefore, the value of the
parameter of nonlinearity can be calculated following simple similarity relation
(6) from one set of experimental conditions with respect to another.

It should be also noted that the equation of state suggested for the simulation
of the plate impact test in [3, 4] is simply an approximation of the relation
(4) in the case of very small deformations. In fact,

ĉ = c
√

1 + 2Aε ∼ c(1 + Aε) for Aε ¿ 1. (7)

The nonlinear part Aε can be represented as Av/c at least under condition
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dx/dt = c, which leads to the equation of state

ĉ = c + Av, (8)

mentioned above. Such kind of equation of state is also condition-dependent
since the particle velocity v depends definitely on the structure of a specimen.

Thus, application of nonlinear stress-strain relation for materials in numerical
simulations of the plate impact problem of a layered heterogeneous medium
shows that a good agreement between computations and experiments can be
obtained by adjusting the values of the parameter of nonlinearity. In the nu-
merical simulations of the finite-amplitude shock wave propagation in hetero-
geneous composites, the flyer size and velocity, impedance mismatch of hard
and soft materials, as well as the number and size of layers in a specimen were
the same as in experiments [5]. Moreover, a nonlinear behavior of materials
was also taken into consideration. This means that combining of scattering
effects induced by internal interfaces and physical nonlinearity in materials
behavior into one nonlinear parameter provides the possibility to reproduce
the shock response in heterogeneous media observed experimentally. In this
context, parameter A is actually influenced by (i) the physical nonlinearity
of the soft material and (ii) the mismatch of elasticity properties of soft and
hard materials. The mismatch effect is similar to the type of nonlinearity
characteristic to materials with different moduli of elasticity for tension and
compression. The mismatch effect manifests itself due to wave scattering at
the internal interfaces, and therefore, depends on the structure of a specimen.
The variation of the parameter of nonlinearity confirms the statement that
the nonlinear wave propagation is highly affected by interaction of the wave
with the heterogeneous substructure of a solid [5].

The relation between different values of the parameter of nonlinearity is found
by means of the normalization of experimental conditions. The obtained sim-
ilarity means that the same physical mechanism can manifest itself differently
depending on the particular heterogeneous substructure.
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Table 1. Experimental conditions and values of the parameter of nonlinearity

Exp. Specimen Units Flyer Flyer Gage A A

soft/hard velocity thickness position (PC) other

(m/s) (mm) (mm)

110501 PC37/SS19 16 1043 2.87 (PC) 3.44 2.80 0

110502 PC37/SS19 16 1045 5.63 (PC) 3.44 4.03 0

112301 PC37/GS20 16 1079 2.87 (PC) 3.41 5.025 0

120201 PC74/GS55 7 563 2.87 (PC) 3.37 3.04 0

120202 PC74/GS55 7 1056 2.87 (PC) 3.35 5.53 0
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Table 2. Normalized experimental conditions and nonlinearity parameters

Exp. Specimen Normalized Relative Geometrical A A
√

Ž
ĚǦ

soft/hard flyer impedance factor (PC)

energy Ě mismatch Ž Ǧ

110501 PC37/SS19 1.00 1.00 1.00 2.80 2.80

110502 PC37/SS19 1.97 1.00 1.00 4.03 2.87

112301 PC37/GS20 1.07 0.316 1.02 5.025 2.71

120201 PC74/GS55 0.29 0.316 1.226 3.04 2.87

120202 PC74/GS55 1.025 0.316 1.226 5.53 2.78
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Figure captions

Fig. 1. Geometry of the problem.

Fig. 2. Comparison of shock stress time histories corresponding to the exper-
iment 112501 [5].

Fig. 3. Comparison of particle velocity time histories corresponding to the
experiment 112501 [5].

Fig. 4. Comparison of shock stress time histories corresponding to the exper-
iment 110501 [5].

Fig. 5. Comparison of shock stress time histories corresponding to the exper-
iment 110502 [5].

Fig. 6. Comparison of shock stress time histories corresponding to the exper-
iment 112301 [5].

Fig. 7. Comparison of shock stress time histories corresponding to the exper-
iment 120201 [5].

Fig. 8. Comparison of shock stress time histories corresponding to the exper-
iment 120202 [5].
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Fig. 1. Geometry of the problem.
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Fig. 2. Comparison of shock stress time histories corresponding to the experiment
112501 [5]. 15
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Fig. 3. Comparison of particle velocity time histories corresponding to the experi-
ment 112501 [5]. 16
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Fig. 4. Comparison of shock stress time histories corresponding to the experiment
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Fig. 5. Comparison of shock stress time histories corresponding to the experiment
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Fig. 6. Comparison of shock stress time histories corresponding to the experiment
112301 [5]. 19
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Fig. 7. Comparison of shock stress time histories corresponding to the experiment
120201 [5]. 20
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