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Abstract Numerical simulations of the thermoelastic response of a microstruc-
tured material on a thermal loading are performed in the one-dimensional setting
to examine the influence of temperature gradient effects at the microstructure level
predicted by the thermoelastic description of microstructured solids [14]. The
system of equations consisting of a hyperbolic equation of motion, a parabolic
macroscopic heat conduction equation, and a hyperbolic evolution equation for
the microtemperature, is solved by a finite-volume numerical scheme. Effects of
microtemperature gradients exhibit themselves on the macrolevel due to the cou-
pling of equations of the macromotion and evolution equations for macro- and
microtemperatures.

Keywords Microstructured solids · Thermoelastic waves · Internal variables ·
Numerical simulation

1 Introduction

The thermoelastic wave propagation suggests a coupling between elastic defor-
mation and heat conduction [1]. However, the description of thermoelastic waves
is usually restricted by the consideration of homogeneous solids [2] even for non-
Fourier heat conduction laws [3–5]. At the same time, microstructure-oriented
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theories of generalized continua [6–9] are, as a rule, isothermal. Attempts to in-
clude into consideration microstructural thermal effects [10,11] did not provide
impressive results [12].

As it was noted by Tamma and Zhou [13], ”experiments suggest that the wave
type of temperature propagation is important for materials with nonhomogeneous
inner structure”. This means that temperature gradient effects at the microstructure
level are expected to influence the thermomechanical response of a material. The
corresponding theory has been proposed recently using the dual internal variables
approach [14,15].

In the framework of this theory, the overall description of thermomechanical
processes in microstructured solids includes both direct and indirect couplings
of equations of motion and heat conduction at the macrolevel. In addition to the
conventional direct coupling, there exists a coupling between the macromotion
and the microtemperature evolution. This means that the macrodeformation can
induce microtemperature perturbations due to the heterogeneity in the presence of
a microstructure. These perturbations, propagating with a finite speed, can induce,
in turn, corresponding changes in the macrotemperature. The appearing changes
in the macrotemperature affect macrodeformations once more.

In what follows, predictions of the abovementioned theory are tested by nu-
merical simulations of the thermoelastic response of a microstructured material
on a thermal loading in the one-dimensional setting. For this purpose, the one-
dimensional version of the theory is formulated first. Next, numerical scheme ap-
plied for the computations is described. Numerical results of a test problem are
presented in the last part of the paper.

2 One-dimensional thermoelastic wave propagation in solids with

microstructure

The behavior of materials depends on constitutive relations between state vari-
ables. The standard way to describe them is to specify explicitly the dependence
of the free energy on state variables. In the framework of the dual internal variables
approach [16], we suppose that the free energy depends on internal variables ϕ,ψ
and their space derivatives W = W (ux,θ ,ϕ,ϕx,ψ,ψx). We use a quadratic free
energy function [14]

W =
1

2
(λ +2µ)u2

x −
ρ0cp

2θ0

(θ −θ0)
2 +m(θ −θ0)ux+

+Aϕux +A′ϕxux +
1

2
Bϕ2 +

1

2
Cϕ2

x +
1

2
Dψ2.

(1)

Here ux = ε is the one-dimensional strain measure, ρ0 is the density, cp is the heat
capacity, the thermoelastic coefficient m is related to the dilatation coefficient α
and the Lamé coefficients λ and µ by m =−α(3λ +2µ), θ0 is the reference tem-
perature, A,A′,B,C, and D are material parameters, subscripts denote derivatives.

This means that state variables include strain, temperature, and two internal
variables (and their gradients). For simplicity, only a contribution of the second
internal variable itself is included here. The corresponding constitutive relations
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determine macrostress σ

σ :=
∂W

∂ ux

= (λ +2µ)ux +m(θ −θ0)+Aϕ +A′ϕx, (2)

microstress η

η :=−
∂W

∂ ϕx

=−Cϕx −A′ux, (3)

the interactive internal force τ

τ :=−
∂W

∂ ϕ
=−Aux −Bϕ, (4)

and auxilary quantities related to the second internal variable

ζ =−
∂W

∂ ψx

= 0, ξ =−
∂W

∂ ψ
=−Dψ. (5)

The one-dimensional motion of the thermoelastic conductors of heat is governed
by local balance laws for linear momentum and energy (no body forces)

(ρ0v)t −σx = 0, (6)

(

1

2
ρ0v2 +E

)

t

− (σv−Q)x = 0, (7)

and by the second law of thermodynamics

St +

(

Q

θ
+ J

)

x

≥ 0. (8)

Here v is the particle velocity, Q is the heat flux, E is the internal energy, S is the
entropy, θ is temperature, J is the extra entropy flux.

In terms of the free energy per unit volume W := E − Sθ , the second law of
thermodynamics results in the dissipation inequality

−(Wt +Sθt)+σεt +(θJ)x−

(

Q

θ
+ J

)

θx ≥ 0, (9)

Introducing the non-zero extra entropy flux according to the procedure proposed
by Maugin [17]

J =−θ−1ηϕt −θ−1ζ ψt , (10)

we reduce the dissipation inequality to the sum of intrinsic and thermal parts

Φ = (τ −ηx)ϕt +(ξ −ζx)ψt −

(

Q−ηϕt −ζ ψt

θ

)

θx ≥ 0. (11)

Assuming that the intrinsic dissipation is independent of the temperature gradient,
we are forced to modify the Fourier law as follows

Q−ηϕt −ζ ψt =−kθx, (12)
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to satisfy the thermal part of the dissipation inequality.
The remaining intrinsic part of dissipation inequality (11) is satisfied by a

choice of evolution equations for internal variables. As it is shown in [14], the
thermal influence of a microstructure can be taken into account by the following
choice

ϕt = R(ξ −ζx), ψt =−R(τ −ηx)+R2(ξ −ζx). (13)

where R and R2 are certain appropriate constants. This choice leads to that the
intrinsic dissipation is partly canceled and its remaining part is the square with a
positive coefficient.

It follows from Eqs. (13) and (5) that

ϕt =−RDψ, (14)

i.e., the dual internal variable ψ is proportional to the time derivative of the pri-
mary internal variable ϕt . Then the evolution equation for the secondary internal
variable

ψt =−R(τ −ηx)+R2(ξ −ζx), (15)

can be represented as

−
1

RD
ϕtt =−R(Cϕxx +A′uxx −Aux −Bϕ)+

R2

R
ϕt , (16)

or in the following form (I = 1/R2D)

Iϕtt +
R2

R2
ϕt =Cϕxx +A′uxx −Aux −Bϕ, (17)

which is a Cattaneo-Vernotte-type hyperbolic equation [18] for the primary inter-
nal variable ϕ .

Correspondingly, energy conservation equation (7) in this case has the form

ρ0cp θt −
(

κ2θx

)

x
= mθ0uxt +

R2

R2
ϕ2

t , (18)

where κ2 is the thermal conductivity. Equation for macrotemperature (18) is in-
fluenced by a source term which depends on the internal variable ϕ .

Let us consider the case when the free energy depends only on the gradient of
the primary internal variable, but not on the variable itself. This case corresponds
to the choice of coefficients A = 0,B = 0 in Eq. (1). The corresponding equations
of motion are coupled [14]

ρ0utt = (λ +2µ)uxx +mθx +A′ϕxx, (19)

Iϕtt +
R2

R2
ϕt = (Cϕxx +A′uxx), (20)

which means that the primary internal variable possesses a wave-like behavior
induced by the macrodeformation. Identifying the primary internal variable with
the microtemperature [14], we see that the microtemperature may induce a wave-
like propagation also for the macrotemperature due to the corresponding source
term in heat conduction equation (18). Physically, the introduced microtempera-
ture describes fluctuations about the mean temperature due to the presence of a
microstructure.
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3 Numerical scheme

In order to construct a numerical scheme for the solution of system of equations
(18)-(20), it is convenient to represent governing equations in the form of a sys-
tem of first-order partial differential equations. System of equations of motion for
solids with microstructure (19), (20) can be rewritten using the notation

ϕt = w, ϕx = γ , (21)

as the system of first-order partial differential equations

ρ0vt = ρ0c2
0εx +A′γx +mθx, (22)

εt = vx, (23)

Iwt =Cγx +A′εx −R2R−2w, (24)

γt = wx, (25)

and complemented by energy conservation equation (18)

ρ0cp θt +qx = mθ0vx +R2R−2w2, (26)

where q is the Fourier heat flux, which is proportional to the temperature gradient

q(x, t) =−κ2θx, (27)

and c0 =
√

(λ +2µ)/ρ0 is the velocity of elastic wave.
We will solve system of Eqs. (21) - (27) numerically.

3.1 Local equilibrium approximation

Let us introduce a one-dimensional computational grid of cells Cn = [xn,xn+1]
with interfaces xn = n∆x and time levels tk = k∆ t . For simplicity, the grid size
∆x and the time step ∆ t are assumed to be constant. Each cell is considered as a
thermodynamic system. Following the local equilibrium approximation [19], we
introduce averaged and excess quantities in the computational cell both for macro-
and microfields

ρ0c2
0ε = σ̄ +Σ , v = v̄+V, γ = γ̄ +Γ ,

w = w̄+Ω , θ = θ̄ +Θ , q = q̄+Q.
(28)

Here overbars denote averaged quantities and capital letters correspond to excess
quantities. Integrating Eqs. (22) - (26) over a computational cell, we have then,
respectively,

ρ0
∂

∂ t

∫ xn+1

xn

vdx = σ̄n +Σ+
n − σ̄n −Σ−

n +A′γ̄n +A′Γ +
n −A′γ̄n −A′Γ−

n +

+mθ̄n +mΘ+
n −mθ̄n −mΘ−

n = Σ+
n −Σ−

n +A′Γ +
n −A′Γ−

n +mΘ+
n −mΘ−

n ,
(29)
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∂

∂ t

∫ xn+1

xn

εdx =v+n − v−n = v̄n +V+
n − v̄n −V−

n =V+
n −V−

n , (30)

I
∂

∂ t

∫ xn+1

xn

wdx =C(γ̄n +Γ+
n )+

A′

ρ0c2
0

(σ̄n +Σ+
n )−

−C(γ̄n +Γ −
n )−

A′

ρ0c2
0

(σ̄n +Σ−
n )−R2R−2w̄n∆x =

=C(Γ +
n −Γ−

n )+
A′

ρ0c2
0

(Σ+
n −Σ−

n )−R2R−2w̄n∆x,

(31)

∂

∂ t

∫ xn+1

xn

γdx =w+
n −w−

n = w̄n +Ω+
n − w̄n −Ω−

n = Ω+
n −Ω−

n , (32)

ρ0cp

∂

∂ t

∫ xn+1

xn

θdx =−q̄n −Q+
n + q̄n +Q−

n +mθ0v̄n +mθ0V+
n −mθ0v̄n −mθ0V−

n

+R2R−2w̄2
n∆x =−Q+

n +Q−
n +mθ0V+

n −mθ0V−
n +R2R−2w̄2

n∆x.
(33)

Here upper indices ”+” and ”-” of excess quantities denote their values at right
and left ends of the cell, respectively.

The standard approximation of time derivatives in left hand sides of Eqs. (29)
- (33) leads to the numerical scheme in terms of excess quantities

ρ0v̄k+1
n −ρ0v̄k

n =
∆ t

∆x

(

Σ+
n −Σ−

n

)

+A′ ∆ t

∆x

(

Γ +
n −Γ−

n

)

+m
∆ t

∆x

(

Θ+
n −Θ−

n

)

(34)

ε̄k+1
n − ε̄k

n =
∆ t

∆x

(

V+
n −V−

n

)

. (35)

Iw̄k+1
n − Iw̄k

n =
C∆ t

∆x

(

Γ +
n −Γ−

n

)

+
A′

ρ0c2
0

∆ t

∆x
(Σ+

n −Σ−
n )−R2R−2w̄n∆ t (36)

γ̄k+1
n − γ̄k

n =
∆ t

∆x

(

Ω+
n −Ω−

n

)

, (37)

ρ0cpθ̄ k+1
n −ρ0cpθ̄ k

n =−
∆ t

∆x

(

Q+
n −Q−

n

)

+
mθ0∆ t

∆x

(

V+
n −V−

n

)

+R2R−2w̄2
n∆ t

(38)

because the averaged quantities are defined by

v̄ =
1

∆x

∫ xn+1

xn

vdx, ε̄ =
1

∆x

∫ xn+1

xn

εdx, θ̄ =
1

∆x

∫ xn+1

xn

θdx,

w̄ =
1

∆x

∫ xn+1

xn

wdx, γ̄ =
1

∆x

∫ xn+1

xn

γdx.

(39)

The next step is the calculation of excess quantities.
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3.2 Excess quantities

The values of excess quantities at the boundaries between cells are determined
from jump relations

[[

ρ0c2
0ε +A′γ +mθ

]]

= 0,

[[v]] = 0,
[[

Cγ +A′ε
]]

= 0,

[[w]] = 0,

[[θ ]] = 0,

(40)

which express the continuity of full stresses, temperatures, and velocities across
stationary discontinuities at the micro- and macroscale.

First four jump relations (40) can be represented at each boundary between
neighboring cells as

Σ−
n+1 −Σ+

n +A′Γ−
n+1 −A′Γ +

n =−(ρn+1c2
n+1ε̄n+1 −ρnc2

nε̄n)−A′(γ̄n+1 − γ̄n),
(41)

V−
n+1 −V+

n =−(v̄n+1 − v̄n), (42)

CΓ −
n+1 −CΓ +

n +
A′

ρn+1c2
n+1

Σ−
n+1 −

A′

ρnc2
n

Σ+
n =−(Cγ̄n+1 −Cγ̄n)− (ε̄n+1 − ε̄n) ,

(43)

Ω−
n+1 −Ω+

n =−(w̄n+1 − w̄n). (44)

However, the jump relations provide only four relations between eight introduced
dynamic excess quantities. Remaining dependencies follow from the Riemann in-
variants conservation [22]

ρ0c0V−
n +Σ−

n

√

1+
A′

ρ0c2
0

= 0, (45)

ρ0c0V+
n−1 −Σ+

n−1

√

1−
A′

ρ0c2
0

= 0, (46)

Ω−
n + c1Γ−

n

√

1+
A′

Ic2
1

= 0, (47)

Ω+
n−1 − c1Γ +

n−1

√

1−
A′

Ic2
1

= 0, (48)

where a characteristic velocity for the microstructure, c1, is introduced as C = Ic2
1.

It is also instructive to represent the continuity of temperature in a numerical
form. For example, at the left boundary of the computational cell we have

θ̄n−1 +
(

Θ+
)

n−1
= θ̄n +

(

Θ−
)

n
. (49)
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Assuming the symmetry of heat conduction in the homogenized body
(

Θ+
)

n−1
=−

(

Θ−
)

n
, (50)

we can calculate temperature excesses as follows:

(

Θ+
)

n−1
=

1

2

(

θ̄n − θ̄n−1

)

, (51)

(

Θ−
)

n
=−

1

2

(

θ̄n − θ̄n−1

)

, (52)

and the difference between excess temperatures at the right and left sides of a
computational cell is

(

Θ+
)

n
−
(

Θ−
)

n
=

1

2

(

θ̄n+1 − θ̄n−1

)

. (53)

Now we turn to the Fourier heat flux

q(x, t) =−κ2 ∂ θ

∂ x
. (54)

Integration Eq. (54) over the computational cell leads to
∫ xn+1

xn

qdx =−κ2θ+
n +κ2θ−

n =−κ2(θ̄n +Θ+
n − θ̄n −Θ−

n ) =−κ2(Θ+
n −Θ−

n ).

(55)

The latter means that the average value of the Fourier heat flux is determined by the
difference of the temperature excess at the boundaries of the same computational
cell

q̄n =
1

∆x

∫ xn+1

xn

qdx =−
κ2

∆x
(Θ+

n −Θ−
n ). (56)

The heat flux excess is assumed to be continuous

[[Q]] = 0, (57)

and is determined by the difference of the temperature excess at the boundary of
neighboring computational cells

Q+
n−1 = Q−

n =
κ2

∆x
(Θ−

n −Θ+
n−1). (58)

The latter relation allows us to calculate the heat flux excess difference

Q+
n −Q−

n =
κ2

∆x
(Θ−

n+1 −Θ+
n −Θ−

n +Θ+
n−1). (59)

Due to the continuity of temperature we can represent the difference in terms of
averaged temperatures

Q+
n −Q−

n =
κ2

∆x
(θ̄n − θ̄n+1 − θ̄n−1 + θ̄n) =−

κ2

∆x
(θ̄n+1 + θ̄n−1 −2θ̄n). (60)

Equations (41) - (48), (51), (52), and (58) allow to calculate all excess quantities
algebraically. The constructed numerical scheme is a necessary extension of the
thermoelastic wave propagation algorithm, that was successfully applied for the
two-dimensional thermoelastic wave propagation in media with rapidly-varying
properties [20–22].
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4 Numerical simulations

The main purpose of numerical simulations is the comparison of the response of
materials with and without microstructure on a thermal loading.

4.1 Initial and boundary conditions

We consider a thermoelastic half-space occupying the region x ≥ 0. It is assumed
that the half-space is initially at rest. This means that values of all the fields are
equal to zero at the initial time instant. Boundary conditions prescribe values of
macroscopic fields (like strain, stress, velocity, temperature) at the boundary plane.
Especially, we are interested in a thermal loading (non-zero temperature). There-
fore, we assume that the traction free boundary plane is heated for the first 100
time steps following the rule

θ̄ (0, t) =
1

2

(

1+ cos

(

π(t −50∆ t)

50

))

, (61)

which forms a heat pulse at the boundary plane.

4.2 Computed fields and parameters identification

The averaged fields
v̄, ε̄, w̄, γ̄ , θ̄ , (62)

are computed by means of Eqs. (34) - (38). The corresponding excess quantities

V±, Σ±, Ω±, Γ ±, Θ±, (63)

are calculated by means of Eqs. (41) - (48), (51), (52), and (58), respectively.
To perform the computations, we need to prescribe the values of material and

geometry parameters of the problem. It is clear that parameters of the macromo-
tion ρ0,c0,θ0,m,cp,k follow the choice of material, L is the macroscopic charac-
teristic length (a size of the computational domain), U0 is the size of excitation, I
is the mass fraction of the material which constitutes the microstructure, and c1 is
the corresponding elastic wave velocity. Only three parameters, namely, a′,c′ and
R2/R2 are model parameters and may be adjusted.

The macroscopic properties of the material are chosen similar to that for tita-
nium: ρ0 = 4510 kg/m3, c0 = 5240 m/s, whereas properties of the microstructure
material is similar to that for aluminium: I = 2703 kg/m3, c1 = 5020 m/s. The scale
of excitation, U0, is chosen as 100 times less than the macroscopic length, L, so
that U0/L = 0.01. The scale of the microstructure, l, is comparable with the scale
of excitation l/L = 0.0128. The reference temperature is chosen as θ0 = 3000 C,
and the thermoelastic coefficient, m, corresponds to the choice mθ0 = −0.1ρ0c2

0.

The heat capacity, cp, is chosen in such a way that cpθ0 = c1c010−9. It is assumed

that the thermal conductivity is rather small (κ2 = 0.0001Lc0ρ0cp). The model
parameters used in calculations had the following values:

R2l

R2ρ0c0

= 0.02, A′ = 0.03ρ0c2
0, C = 0.1ρ0c2

0. (64)
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Fig. 1 Distribution of temperature, stress, and microtemperature in a homogeneous half-space
at 100 time steps.

Fig. 2 Distribution of temperature, stress, and microtemperature in a homogeneous half-space
at 250 time steps.

The choice of model parameters completes the description of the problem.

4.3 Results and discussion

Computations were performed separately for the homogeneous thermoelastic half-
space (without microstructure) and for the half-space with a microstructure. Re-
sults of calculations of temperature and stress distribution along the x-axis in a
homogeneous half-space at different instants of time are presented in Figs. 1–3. In
this classical thermal stress problem, the temperature pulse is diffused slowly near
the heat source at the left boundary, whereas an induced stress wave is formed and
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Fig. 3 Distribution of temperature, stress, and microtemperature in a homogeneous half-space
at 350 time steps.

Fig. 4 Distribution of temperature, stress, and microtemperature in a microstructured half-space
at 100 time steps.

propagated along the x-axis without dispersion. The microtemperature is equal to
zero. It should be noted that the amplitudes of temperature and stress are normal-
ized in such a way that they can be presented in the same figure. Therefore, there
is no legend along the axes.

Calculations of the same problem with the microstructure modeling are pre-
sented in Figs. 4–6. Again, the pulse of macrotemperature is slowly diffused and
the induced stress wave is propagated along the x-axis. Additionally, a microtem-
perature pulse is induced by the stress wave, which, in its turn, produces a wave-
like behavior of the macrotemperature. The stress wave is slightly distorted by the
microstructure influence.
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Fig. 5 Distribution of temperature, stress, and microtemperature in a microstructured half-space
at 250 time steps.

Fig. 6 Distribution of temperature, stress, and microtemperature in a microstructured half-space
at 350 time steps.

Combined pictures of temperature and stress fields (Figs. 4–6) demonstrate
that besides a parabolic type of the macroscopic heat conduction, the wave-like
propagation of thermal fluctuations can be provided by the influence of microtem-
perature gradients. This influence, which is described by means of internal vari-
ables, manifests itself due to the coupling of equations governing the thermoelastic
wave propagation. Thus, numerical simulations of thermoelastic wave propagation
in solids with microstructure show that it is not necessary to introduce a hyperbolic
heat conduction equation for the macrotemperature to observe its wave-like behav-
ior. As one can see, thermal gradients produced by an appropriate microstructure
are able to generate these fluctuations propagating with a finite speed.
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