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DIFFERENTIAL GEOMETRY OF MOVING SURFACES AND ITS
RELATION TO SOLITONS

ANDREI LUDU

Communicated by Boris Konopeltchenko
Abstract. In this article we present an introduction in the geometrical theory of

motion of curves and surfaces in R
3, and its relations with the nonlinear integrable

systems. The working frame is the Cartan’s theory of moving frames together with

Cartan connection. The formalism for the motion of curves is constructed in the

Serret-Frenet frames as elements of the bundle of adapted frames. The motion of

surfaces is investigated in the Gauss-Weingarten frame. We present the relations

between types of motions and nonlinear equations and their soliton solutions.

1. Introduction

Realistic models for many-body or collective interactions involve nonlinear dy-

namics therefore a large part of interesting and intriguing phenomena cannot be

explained or predicted by the corresponding linear approximations. Nonlinearity

of the dynamics involves, among other things, a weaker type of uniqueness of solu-

tions especially when the solitary waves have compact support (e.g. compactons)

or when the configuration space is a compact manifold (e.g. circle, sphere). The

most useful nonlinear systems are of course the integrable ones, i.e., those solv-

able by inverse scattering theory. These particular systems have soliton solu-

tions and infinite number of conservation laws. The traditional nonlinear systems:

Korteweg-de Vries, modified Korteweg-de Vries, sine-Gordon, Schrödinger non-

linear equation and Kadomtsev-Petviashvili were investigated in numerous works

and books (see for example the following books and the references listed herein

[1, 6, 10–12, 17, 22, 41]).

Many of the integrable nonlinear systems have equivalent representations in terms

of differential geometry of curves and surfaces in Riemannian spaces. Such geo-

metric realizations provide a deeper insight into the structure of integrable equa-

tions, as well as new physical interpretations [19]. That is why the theory of mo-

tions of curves and surfaces, which includes vortices, filaments, and interface dy-

namics, represents an important emerging field for mathematics, engineering and
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2 Andrei Ludu

physics. Other examples of applications include liquid droplets, quantum Hall

electron droplets in high magnetic field, nonlinear nuclear surfaces, growth of den-

dritic crystals, dynamics of polymers, vortex structures in geophysical fluid dy-

namics and plasma, and motile cells [24].

The occurrence of nonlinearities in the contour dynamics problems involves the

connection between this dynamics and the integrable evolution equations. This

leads to the existence of soliton-like solutions in the motion of curves, as well as

the existence of infinite number of conservation laws that can be put into relation

with global geometric quantities.

The problem of the dynamics of moving curves and surfaces is not completely

solved. There are systems, especially in the world of microorganisms with compli-

cated moving shapes, where the interaction between the two-dimensional contours

(like the cell membrane) and one-dimensional attachments (like flagella, cilia, etc.)

cannot be neglected in order to understand the physics of their exquisite motil-

ity. A general model for such type of interaction should lie somewhere between

the geometry of curves and surfaces, like for example the geometry of a (1 + ε)-
dimensional manifold.

The structure of the paper is the following. After few Lie groups and geometry

prerequisites presented in Section 2 we introduce in Section 3 the Cartan theory of

frames in relation to the theory of connection. In Section 4 we derive the theory of

motion of curves based on differentiable forms and Cartan connection theory with

applications to three-dimensional curves, and relations to soliton theory. Based

on these results, we discuss in Section 5 the theory of motion of surfaces, and we

relate it to integrable systems. In Section 6 we present applications of the theory

of motion of surfaces.

2. Prerequisites

We assume the reader familiar with elements of topology and differential geom-

etry, for example in the spirit of the monographs [7, 34, 35, 43] or even [31] for

direct physics applications. We denote the set of all homeomorphisms between

two topological spaces X, Y by Hom(X, Y). In some cases we may want to loosen

up the property of homeomorphism by

Definition 1. A local homeomorphism is a function defined on a topological space
such that any point from its domain of definition has an open neighborhood on
which the function is a homeomorphism.
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Obviously, homeomorphism implies local homeomorphism. As a direct applica-

tion we mention that any local homeomorphism from a compact space to a con-

nected space is a covering. The proof is based on the fact that the local homeo-

morphism still preserves the property of being open, and the compactness property

insures that we can always choose a finite sub-cover from any open cover of it.

Being finite, we can always choose its neighborhoods small enough to be pairwise

disjoint, so all the conditions of being a covering map can be accomplished.

An open map is a function between two topological spaces which maps open sets

to open sets. Likewise, a closed map is a function which maps closed sets to

closed sets. The open or closed maps are not necessarily continuous. A continuous

function between topological spaces is called proper if inverse images of compact

subsets are compact. An embedding between two topological spaces is a homeo-

morphism onto its image.

If a topological group G acts on a topological space X (from the left) with the

continuous map m : G × X → X we denote the triple (X, G, m) and call it G-

space. For a quick introduction in the theory of group actions from the differential

geometry point of view we recommend the text [13], while for more technical

details and applications we recommend [32]. We have the following definitions

Definition 2. The set Gx = {g ∈ G ; m(g, x) = x} is called isotropy group of
x (or stabilizer subgroup of x). The set Ox = {m(g, x) ; g ∈ G} is called the
orbit of x. The set of all orbits is denoted X/G and it is called orbit space and
it is a topological space through the quotient induced topology with respect to the
canonic projection x → Ox.

The group actions on topological spaces can be classified as follows

Definition 3. The action of G on X is free if the isotropy group is trivial for all
x ∈ X. The action of G on X is proper if the map θ : G × X → X × X given
by (g, x) → (x, m(g, x)) is a proper function. The action of G on X is transitive
if it possesses only a single group orbit, i.e., if all elements are equivalent. The
G-space (X, G, m) is a homogeneous space if G acts in a transitive way.

The principal homogeneous space (or torsor) of G is a homogeneous space X such

that the isotropy group of any point is trivial. Equivalently, a principal homoge-

neous space for a group G is a topological space X on which G acts freely and tran-

sitively, so that for any x, y ∈ X there exists a unique g ∈ G such that m(g, x) = y.

If X is a G-space with proper action the quotient space X/G is Hausdorff.
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All these properties and definitions can be extended if the space X is a differ-

entiable manifold, and G is a Lie group acting on X, case in which the struc-

ture (X, G, m) is called a G-manifold. Moreover, if the action of G is proper

and free X/G has a differentiable manifold structure and the canonical projection

X → X/G is a submersion.

A submersion is a differentiable map f : M → N between differentiable mani-

folds whose differential is everywhere surjective. An immersion is a differentiable

map between differentiable manifolds whose derivative is everywhere injective (an

immersion does not need to be injective itself). The concepts of submersion and

immersion are dual to each other. That is they are maximal rank maps such that if

dim(M) < dim(N) we have an immersion, while if dim(M) > dim(N) we have

a submersion. A smooth embedding is an injective immersion and a topological

embedding (i.e., homeomorphism onto its image) at the same time. An immer-

sion (submersion) maps the coordinates in a faithful way, while an embedding is

in addition topological or geometrical structure preserving [5, 18, 20, 40].

For a given differential manifold X we denote by TxX, and T ∗
x X the tangent and

co-tangent spaces of X at x ∈ X, respectively, and in general we denote k-forms

by θ, ω ∈ ΩkT ∗
x X, where Ωk is the space of skew-symmetric linear forms [2, 32].

If {vi}i=1,2,...,n ∈ TX are vector fields, then the action of an n−form ω on them

is denoted ω(v1,v2, . . . ,vn). By d, D, ı,∧ we denote the exterior differentiation,

covariant exterior derivative, contraction and exterior product with vector fields,

respectively, of differential forms. We denote the Lie derivative of a differential

form ω at x ∈ X, with respect to v ∈ TxX by v(ω), and we will use the relation

dω (v1, . . . ,vk+1) =
1

k + 1

k+1∑

i=1

(−1)i−1
vi(ω(v1, . . . , v̂i, . . . ,vk+1))

(1)

+
1

k + 1

j=k+1∑

i=1,i<j

(−1)i+jω([vi,vj ],v1, . . . , v̂i, . . . , v̂j , . . . ,vk+1).

The hat placed on a vector means that vector should be omitted from the counting.

This expression is important in two cases. First, when a one-form is valued in a

Lie algebra of a Lie group, and the two vector fields are invariant to this group. In

this case the first term in the RHS is zero, and we have the Maurer-Cartan equation

dω +
1

2
[ω, ω] = 0. (2)

In the second case the form dω + ω ∧ ω represents the curvature two-form of a

linear connection, also called the first Cartan structure equation.
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We denote a fiber bundle by the quadruple E(X, F, π, G), where X is the base

space, F is the standard fiber, π is the canonic projection, and G is the structure Lie

group [18, 40]. The inverse image π−1(x) = Ex is called the fiber at x. A cross-

section in a bundle is a differentiable injective map φ : X → E so that πφ = Id X.

Any local fiber Ex is isomorphic to the standard fiber vector space F = Vn(R),
and the corresponding isomorphisms depend smoothly on x in the base space. A

typical example of vector bundle is the tangent bundle TΣ of a parameterized

differentiable surface Σ in R
3. The base space is the surface itself, and the tangent

bundle is the set of all tangent vectors at all points of the surface. The projection is

the assignment for each vector of its initial point. The fiber at x is the tangent plane

at x and is a topological vector space. Choosing a unique representative F = R
2,

linear correspondences Ex → F can be constructed, but not uniquely. In this case

the structure group G is the full linear group operating on F. A cross-section here

is just a differentiable vector field over the surface.

3. Cartan Theory of Frames and Connection

Many differential geometry objects originate directly from the theory of Lie groups

and algebras. In the following g will represent an n-dimensional Lie algebra asso-

ciated to the Lie group G, and A,B, · · · ∈ g. A function is called left invariant if it

commutes with the left group translations, or with their adjoint representation. In a

Lie algebra we can define two important objects which later on will become handy

in the definitions of vector bundles and connections [18]. A canonical one-form

θ defined on G is a left invariant g-valued one-form uniquely determined by the

invariance relation θ(A) = A. A left invariant one-form ω defined on g fulfils the

equation of Maurer-Cartan

dω(A,B) = −
1

2
ω([A,B])

for any A,B ∈ g, see also equation (2). As a consequence, if {e1, . . . , en} is a

basis for g we can write

θ = θi
ei, dθi = −

1

2
Ci

jkθ
j ∧ θk (3)

where [ei, ej ] = Ck
ijek, k = 1, . . . , n define the structure relations (constants).

When a Lie group G acts on differential manifolds it induces orbits, see Section 1.

However, its Lie algebra g is local, and in that it cannot act at different points on

a manifold, like G does, except on G itself. In order to generalize this action we

enrich the manifold with a fiber bundle structure. In a fiber bundle we have vertical
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and horizontal displacements by use of the covariant derivative and the connection

form, respectively [8, 9].

Definition 4. A principal bundle over the base space X with structure group G is
a fiber bundle P(X, G) on which G acts freely (on the right) and X = P/G.

Every fiber π−1(x) of a principal bundle is diffeomorphic to G, and actually the

base space is just the space of all orbits of the action of G on P. For any element

A ∈ g we can construct a fundamental vector field A
∗ : X → TX defined by

some x0 ∈ X,A∗ = d[exp(tA)x0]/dt ∈ Tx0
X, that is the vector field tangent to

the one-parameter Lie subgroups generated by A. The fundamental vector field is

tangent to each fiber at each point of P. The best example of principal bundle is

the bundle of linear frames (or simply frames) over an n-dimensional manifold X.

It is the principal bundle FX = P(X, GL(n, R)) which consists of ordered bases

in TxX defined at each x, namely linear frames.

Theorem 5. If dim X = n a linear frame v ∈ F(X) can be also understood
as a linear mapping of some canonical basis of a vector space R

3 in TX, i.e.,
u(ei) = Xi, i = 1, . . . , n.

Moreover, by using the natural inner product of vectors in R
n, we define the bundle

OF(X) = P(X, O(n, R)) called bundle of orthonormal frames over X.

The bundle of frames explains how the frames at a given point of X change under

the action of a group, but does not relate this to the possible change of the point

x itself under the action of the group. In order to combine these two actions, if

the manifold X is n-dimensional we need the concept of associated vector bundle

to the principal bundle P To construct it we begin with P(X, G) and use a finite

dimensional vector space called standard fiber F (F in isomorphisms with some

R
n). The new vector bundle is denoted E(X, Rn, πE, G; P), its canonical projection

is πE, and its space is nothing but the quotient space E = (P × F)/G. The tangent

bundle TX =
⋃

x∈X
TxX is the associated vector bundle to the principal bundle

F(X) of frames. Basically, the space of frames over X, F(X) = P(X, GL(n, R))
with canonical projection π is mapped into the space of directions in X, TX =
E(X, Rn, GL(n, R), πE; F(X)) with canonical projection πE.

Now Theorem 5 can be better understood; the bundle P = F(X) consists in frames,

the bundle E = TX consists in vectors placed in frames modulo action of G.

The local character of each such element is given by the canonical projections.

However, the manifold generated by a fixed frame (at a point) and al possible

vectors (at the same point) is a fiber in TX and it is isomorphic to the generic

fiber F. So, any frame u ∈ F(X) generates an isomorphisms π−1(x) � u :
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F → π−1
E

(x), that is, u gives to any abstract vector from FX a set of components

and places it in a frame. The frame u maps this abstract vector into the tangent

space TX and gives it geometrical meaning. This construction can be seen in parts

of Fig. 1. If instead of tangent spaces we use affine spaces constructed upon the

tangent spaces, the vector bundle of linear frames becomes the bundle of affine

frames.

The quintessence of the vector/frame duality can be presented in a nut-shell by

introducing the one-form called the canonical form θ ∈ Ω1(F(X)) on the principal

bundle of frames F(X) with values in the standard fibre F, see equation (3). The

action of the canonical form on a vector X ∈ TF(X) is θ(X) = u−1◦dπ(X) ∈ F.

If X is a n-dimensional affine space, then a point x ∈ X is represented by a position

vector r = xi
ei whose components are given in a certain frame {ei}i=1,...,n = u ∈

π−1(x) ∈ F(X). The question is: how does this position vector changes with dr
by infinitesimally moving the frame. The answer is given by the canonical form,

that is by

dr = θ(X) = θi(X)ei

where X ∈ TuF(X) describes this infinitesimal motion of the frame in the tangent

space to the bundle of frames.

The bundle of frames does not provide a recipe of how frames transform when

the base point moves through the base space. In order to provide such a law we

need an extra construction which is the Cartan connection on X. It will provide

the infinitesimal transformation of a point in the vector bundle when we perform

an infinitesimal move in the base. Since the infinitesimal transformations are de-

scribed by vectors in the tangent space, the Cartan connection will map a point (to

be moved) in the vector bundle to a vector in the tangent bundle to the vector bun-

dle (how this point transforms), map depending on a vector in the tangent space of

the base (the direction of moving).

Let M be a differential manifold and P(M, G) its principal bundle.

Definition 6. A connection Γ in P(M, G) is the assignment of an G-invariant sub-
space Hp ⊂ TpP, for any p ∈ P and depending differentiable on p, called horizon-
tal subspace.

The orthogonal complement of Hp is called vertical subspace, it is denoted by Vp,

and we have TpP = Vp ⊕ Hp. Any vector X ∈ TpP can be uniquely decomposed

in two orthogonal components X = vX + hX each in the corresponding sub

space vX ∈ Vp, hX ∈ Hp. A horizontal lift of a vector field on is the unique

horizontal vector field on P such that the differential of the canonical projection

on dπ : TP → TM maps it to the initial vector field. Any parameterized curve
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in M, and any point p ∈ P provide a lift of this curve to a unique horizontal (with

horizontal tangent vectors) curve in P, to which it canonically projects. As an

example, imagine P as the orthonormal frame bundle over R
3, and a curve in this

space. At any point in the base space we can choose a variety of frames, any frame

from the local fiber. But there only one which may be a Serret-Frenet frame to that

curve, let it be p0. When we move along the curve that Serret-Frenet frame from

the initial point moves from fiber to fiber in a “parallel” way following the curve

through its lifted image.

The existence of the Cartan connection on the principal bundle P allows us to “flag”

elements of P and watch their evolution according to a certain law imposed by this

connection, when we move in the base space along some curve. This is the parallel

displacement along a certain curve in the base space. We consider x0 the starting

point of a parameterized curve γ ⊂ X, and its local fiber π−1(x0) ⊂ P. Through

any point p0 in this fiber we can built a unique horizontal lift of γ which canonically

maps back on γ. When we move to a different point on γ the intersection between

the fiber over this new point and the horizontal lift of γ through p0 is a unique point

of this new fiber. Doing this transport now for various p0 ∈ π−1(x0) it is like we

map all points p0 of a fiber into all points of another fiber following the curve. This

mapping is actually a fiber isomorphisms, and it is call the parallel displacement

of the fibers along the curve.

One of the most important results of differential geometry is that to each connection

we can associate a g-valued one-form on P

Definition 7. A connection form ω of a given connection Γ is a differentiable one-
form on P with values in g such that for each X ∈ TpP we have ω(X) = {A ∈
g;A∗ = vX}.

In other words, a connection form maps a vector field V on P to a Lie algebra

vector whose fundamental vector field is exactly the vertical component of V. In a

physicist language a connection form is a vector field defined on a bundle of frames

such that its directional derivatives in any directions provide one-dimensional Lie

algebras of symmetry (flows) in the vertical component of those directions.

The exterior covariant derivative of the connection form is the curvature form

Dω = Ω, and we have the structure equation

dω = −
1

2
[ω, ω] + Ω (4)

acting on any pair of vector fields on P. The proof is immediate and it is based

on equation (1), and on the vertical/horizontal direct sum properties. A connection
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Figure 1. Pictorial interpretation of the covariant derivative. We have the

principal bundle of frames F(X) and its projection π on top of the manifold

X, and the tangent bundles to each of these: TX, and TF(X), respectively,

with their projections πE , π′. We also represented the local fibres. At TXx =
π−1

E
(x) ∈ TX we have two vectors: the arbitrary direction X, and the vector

cross section ϕ. The first one is horizontally lifted in TF(X) as X
∗ and then

acts upon ϕ generating its covariant derivative ∇Xφ, as a new cross section

(dashed line) in TX.

is flat if and only if its curvature form is null. In a similar manner we define the

torsion form Θ = D θ and we have another structure equation [18, 40]

dθ = −
1

2
[ω, θ] + Θ. (5)

A connection defined in the bundle of linear frames is a linear connection, and if it

is defined in a bundle of affine frames it is an affine connection. On any manifold

of positive dimension there are infinitely many affine connections. The choice of

an affine connection is equivalent to prescribing a way of differentiating vector

fields which satisfies several reasonable properties (linearity and the Leibniz rule).

This yields a possible definition of an affine connection as a covariant derivative

or (linear) connection on the tangent bundle. A choice of affine connection is also

equivalent to a notion of parallel transport, which is a method for transporting

tangent vectors along curves. This also defines a parallel transport on the frame

bundle. In the bundle of orthonormal frames we have a metric induced by the

action of the orthogonal group. So, we define a Riemannian connection (or Levi-

Civita connection) a linear connection with zero torsion.
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In order to build the covariant derivative of a cross section ϕ : X → TX in the

X ∈ TX direction we have to lift this last vector to its horizontal component X∗ ∈
H ⊂ TF(X). Following the projections we have F(X) � u → x = π(u) → ϕ(x)
which actually defines a cross section in F(X). So, we can apply the directional

derivative X
∗(ϕ(x(u))) = ∇Xϕ, and this is the requested covariant derivative, see

Fig. 1. Basically, it is the horizontal component of the directional derivative.

In order to express the connection form ω and consequently its covariant derivative

in components us first need to define a canonical basis {ei}i=1,...,n in the standard

fiber F ∼ R
n, and a canonical basis {Eij}i,j=1,...,n for the Lie algebra g(n, R).

Since the canonical form θ is R
n-valued, and the connection form ω is g(n, R)-

valued we have

θ = θi
ei, ω = ωij

Eij (6)

while the two structure equations (4-5), can be written now

dθi = −ωij ∧ θj + Θi

dωij = −ωik ∧ ωkj + Ωij . (7)

Obviously, for Riemannian connections on manifolds imbedded in flat spaces the

structure equations reduce to

dθ = −ω ∧ θ, dω = −ω ∧ ω (8)

with the simple interpretation, [39], that the canonical form, equation (6) accounts

for the position changes at a change of frame, and the connection form accounts

for the twisting of the frames when we move the point

dr = θi
ei change of position

(9)

dei = ωij
ej change of frame.

Let us assign local coordinates in the n-dimensional space X in the form x ↔ (xi).
The coordinates in the tangent bundle are covariant vectors ∂/∂xi, a frame in F(X)
is described by the vector fields X = X i

j(x)∂/∂xi, and the local coordinates in

the bundle of frames are (xi, Xi
j), namely a point and a basis of n-vector fields.

Consequently, a frame u ∈ F(X) is represented by the components of the basis

fields u ↔ X i
j which is exactly the n × n linear isomorphism u from F onto TxX.

The canonical one-form and the connection one-form can be written

θ = (X−1)i
jdxj

ei

ω = ((X−1)i
kdXk

j + (X−1)i
kΓ

k
mlX

l
jdxm)Ej

i
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where the connection coefficients Γ are the Christoffel’s symbols. The basis vec-

tors ∂/∂xj in TX can be horizontally lifted to

(
∂

∂xj

)∗

=
∂

∂xj
− Γi

jkX
k
l

∂

∂Xi
l

that is we subtract from the tangent vector its vertical component, which is repre-

sented by its connection part (ω or Γ). The covariant derivative acts on the basis

(covariant) vectors as follows

∇∂/∂xj

∂

∂xi
= Γk

ji

∂

∂xk
· (10)

Equation (10) and the linearity of the covariant derivative direct us to the coordinate

expression of the covariant derivative of a vector field V = Vi∂/∂xi defined on X

with respect to the directions of the local frame

∇jVi =
∂Vi

∂xj
− Γk

ijVk.

We illustrate these constructions with an example. Let us have a unit radius spher-

ical surface X = S
2 embedded in R

3 with coordinates x1 = θ ∈ [0, π], x2 = φ ∈
[0, 2π). The tangent space is TS

2 generated by the basis vectors {eθ, eφ}. The

bundle of the orthonormal frames O(S2) has coordinates (θ, φ, R̂(α)) where the

last one represents an element of the Lie structure group O(2, R), i.e., a rotation

of angle α of the tangent frame around the normal to the sphere. The covariant

derivatives have the form

∇e
θ
eθ = 0, ∇e

φ
eθ = eφ cot θ, ∇e

φ
eφ = eθ sin θ cos θ

and the horizontal lift of the basis vectors is

e
∗
θ = eθ − n cos θ, e

∗
φ = eφ − n sin θ cos θ.

We can check this by noticing that at θ = π/2 the covariant derivatives cancel,

as well as the vertical projections, which is correct since this equatorial circle is

actually a geodesic and performs a parallel transport for the tangent vectors. If we

want to find, for example (see [39] pp. 66), how is parallel-transported a tangent

vector field we can choose a vector which is eφ at an initial point, and we transport

it along a parallel to the sphere at θ = θ0, parameterized by t ∈ [0, 2π). The

resulting parallel-translating vector is

V(t) = sin(θ0) sin(t cos θ0)eθ + cos(t cos θ0)eφ, ∇e
φ
V = 0.
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Corollary 8. In a Riemannian manifold, that is on a manifold (X, gjk) endowed
with a (0, 2) type of symmetric nonsingular tensor field gij(x) of class at least
C1(X), is to obtain the Christoffel’s symbols of the first kind from the metric

Γ
(g)
ijk =

1

2

(
∂gkj

∂xi
+

∂gji

∂xk
−

∂gik

∂xj

)

and
Γ

(g)i
jk = gliΓ

(g)
jlk.

4. The Theory of Motion of Curves

In the following we use the traditional definition of a parameterized curve from

[5, 20, 39].

Definition 9. A parametrized curve is a differentiable (class Ck) map r(u) from
the open real interval u ∈ I = (a, b) ⊂ R into R

3. If k = ∞ the parameterized
curve is smooth.

The metric of a parametrized curve is

g(u) =
∂xi

∂u

∂xi

∂u
= ru · ru.

The corresponding Serret-Frenet formulas are

⎛

⎝
ts

ns

bs

⎞

⎠ =

⎛

⎝
0 κ 0
−κ 0 τ
0 −τ 0

⎞

⎠

⎛

⎝
t

n

b

⎞

⎠ . (11)

Here κ, τ are the curvature and torsion and the arc-length and unit tangent are given

by

s(u) =

∫ u

0

√
g(ũ)dũ, t =

∂r

∂s
·

A moving parameterized curve γ(t) ⊂ R
3, which can be described at any moment

of time by the Serret-Frenet frames, generates a set of points Σγ . Any parame-

terized surface Σ ⊂ R
3 can be described by its tangent bundle TΣ, but we need

a more sophisticated vector bundle to describe the hypothetical surface obtained

through the curve motion than the available tangent bundle TΣγ . Moreover, in

order to approach a moving curve as a regular surface some restrictions should ap-

ply to this motion. The curve should not self-intersect during the motion in order
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to have fulfilled the immersion condition for a regular surface. The time depen-

dence of the position of any point on the curve should be a differentiable function,

which requests some extra structure relations (or compatibility equations) between

the mixed time and arc-length second order derivatives. In conclusion, the surface

obtained by the motion of the curve has to fulfil some extra constraints.

In order to define the differentiable motion of a curve in arbitrary direction, like for

example along {t(t),n(t),b(t)}, we have to define vector fields along the curve

that do not belong only to the tangent space of the curve Tγ. However, it would be

simpler if we could describe such vector fields in the moving Serret-Frenet frames.

For that we have to immerse the local Serret-Frenet frames in the frame bundle for

the affine space R
3.

The immersion can be obtained by mapping different vector bundles over orthog-

onal groups O(n, R) into vector sub-bundles over orthogonal subgroups, corre-

spondingly. Then, the homomorphisms between different orthogonal groups pro-

vide the requested mappings between the frame bundles. If such mappings are

constructed, by using their pull-backs, the covariant derivative in R
3 induces a co-

variant derivative in the curve. This allows us to define vertical and horizontal

vector spaces for the vector bundle of the frames along the curve. Consequently

we can identify “orthogonal” spaces to the curve, and the vectors in these spaces

will provide the local directions of motion of the curve.

The imbedded parameterized curve γ is a Riemannian sub-manifold of R
3, and it

has a natural Riemannian connection defined on it. Let x ∈ γ and we have the

vector subspace relation Txγ � TxR
3. We denote by (TxR

3)ı the orthogonal com-

plement of Txγ in TxR
3 which is called the normal space to the immersion γ at

x. We can build the following two orthogonal frame bundles, and when we de-

note them we skip from the notation the structure groups, which obviously are the

corresponding orthogonal groups. We have OF(γ) over γ with canonical projec-

tion π′, and OF(R3) over R
3 with canonical projection π. Also, we can factorize

OF(R3)/γ = {v ∈ OF(R3); π(v) ∈ γ} which is a principal bundle of orthonor-

mal frames over γ with symmetry group the orthogonal real Lie group O(3, R).

Definition 10. We define the bundle of adapted frames OF(R3, γ) over γ with
symmetry group O(2, R) × O(1, R).

This is actually a sub-bundle of OF(R3)/γ obtained through the map i (see the

diagram in equation (11) in a natural way: it contains the frames over R
3 which

are also frames over the curve, and have one axis along the tangent to the curve.

The O(2, R) part in the symmetry group takes care of the possible rotations of

this frames around the curve tangent, while the O(1, R) = {1,−1} part describes
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the two possible chiralities along the curve. Mapping of the three-dimensional

vectors along the curve, and in the normal plane induces two orthogonal Lie groups

natural homomorphisms h′ : O(2, R) × O(1, R) → O(1, R) and h′′ : O(1, R) ×
O(2, R) → O(2, R), which induce on their own two corresponding fiber bundles

homomorphisms which we denoted with same letters, see Theorem 11.

Theorem 11. The bundle of adapted frames in Definition 10 can be constructed
with the homomorphisms h′, h′′, i, π according to the following diagram

OF(R3)
π

−−−−→
O(3,R)

R
3

�⏐⏐j

OF(R3)/γ
π

−−−−→
O(3,R)

γ

�⏐⏐i

OF(γ) = OF(R3, γ)/O(2, R) ←−−−−
h′

OF(R3, γ) −−−−→
h′′

OF(R3, γ)/O(1, R)

O(1,R)

⏐⏐�π′ O(1,R)×O(2,R)

⏐⏐�π O(2,R)

⏐⏐�π′′

γ γ γ

Now we can construct the vector normal bundle of γ as T (γ)ı =
⋃

x∈γ(Txγ)ı asso-

ciated to the bundle of normal frames, with standard fibre R
2 and group O(2, R).

If we denote by Γ3 the Riemannian connection form on OF(R3) then the com-

posite pull-back i∗j∗Γ3 is the connection form in OF(R3, γ). Geometrically this

connection form defines parallel displacement of the normal space Txγı onto the

normal space Tyγ
ı along the curve γ.

In the following we express the covariant derivative for the curve. We denote the

directional and covariant derivatives in R
3 along v ∈ TR

3 by Dv = ∇v, and we

assign a basis {ei} in TR
3. We need the expression of the covariant derivative

∇i = ∇ei
from equation (10). For imbedded manifolds the connection Γ sim-

ply becomes the second fundamental form defined on the submanifold (see [18],

Chapter VII, [39] pp. 64, or [5] Section 4-4) and the result is called Gauss’ for-

mula, or Weingarten’s formula, function if V belongs to the tangent or normal

space, respectively

∇ei
v = Dei

v − Π(ei,v). (12)

The vector Π is the vertical component of the directional derivative, usually called

the second fundamental form defined on X with values in the vertical space (we

remember that if X is a surface with unit normal n we have Π = Πn. For any
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two vector fields v,w ∈ Tγ we define the covariant derivative associated to the

(natural) Riemannian connection of γ at a point x ∈ γ, equation (10)

(∇vw)x = (Dv w)x − Πx(v,w) ∈ Txγ. (13)

Here Πx(v,w) ∈ Txγı is the second fundamental form of γ at x, i.e., a symmetric

bilinear differential form with values in the normal space to γ. The vector second

fundamental form Π allows us to define directional derivatives along the normal

space to γ at points on γ.

In the following we give an example in coordinates. We know we can always

choose two differential orthonormal fields of vectors ξ1, ξ2 (i.e., two sections)

of the normal bundle Tγı. Let us also choose x0 ∈ γ and note that it is al-

ways possible to choose an adapted orthogonal frame with a system of normal

coordinates {y1, y2, y3} with origin in x0 such that (∂/∂y1)x0
spans Tx0

γ and

{ξ1 = (∂/∂y2)x0
, ξ2 = (∂/∂y3)x0

} spans Tx0
γı. Let s be the arc-length in

a neighborhood U(x0) ⊂ γ and let yi = yi(s) be the equations describing the

imbedding of U into R
3. We have the action of the second fundamental form Π on

tangent vectors of γ given by

Π

(
∂

∂s

∣∣∣∣
x0

,
∂

∂s

∣∣∣∣
x0

)
=

(
∂2y1

∂s2

)

x0

∂

∂y1
+

(
∂2y2

∂s2

)

x0

∂

∂y2
· (14)

The proof is simple and it is based on direct calculation of the Hessian of trans-

formation from x to y coordinates, and on the fact that the Christoffel symbols for

the Riemannian connection in R
3 are zero (see e.g. the second volume of [18],

Chapter VII). It is easy to check that equation (14) includes the Serret-Frenet

relations (11), namely equation (14) represents Π(t, t) = κn. Let us choose

y1 = s, y2 = −r(s0) · n(s0), and y3 = r(s0) · b(s0). We have

∂2y2

∂s2

∣∣∣∣
s0

= −
∂

∂s
(rs · n + r · ns)s0

= (τsy
3 + τ2y2 − κsy

1 + κ + κ2y2)s0
= κ.

In the same way we obtain ∂2y3/∂s2 = 0 at s0, which proves the affirmation.

In the following we relate the general frame bundle formalism developed in Sec-

tion 3 to three-dimensional curve motions in space. On each point of arc-length

coordinate s along the parameterized curve γ we define the adapted (orthonor-

mal) Serret-Frenet frame {ei}i=1,2,3 = {t,n,b} of vectors in the principal bundle

OF(R3, γ) over γ, equation (11). Let be (s, n, b) the local coordinates in this

frames, and (s, n, b, α1, α2, α3) local coordinates in the principal bundle, where αi

represent the three angles of frame rotations in O(3, R). The canonical one-form

has the generic expression

θ = θ1ds + θ2dn + θ3db +
3∑

i=1

θidαi.
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Figure 2. A curve on a surface generates a Darboux frame formed by the vec-

tor fields {t,N, tı, }, the unit tangent, the principal normal, and their cross

product, respectively.

Its action on tangent vectors from the principal bundle is given by equations (10)

in the form

dr = θi(X)ei = W t + Un + Bb (15)

with W, U, B arbitrary one-form coefficients. When we consider the time motion

of the curve these coefficients become the pull-back one-forms of a cross-section

in the principal bundle determined by γ. Namely, they are the coefficients of the

velocity of the curve in the local Serret-Frenet frames

dr = V(s, t)dt =
∂r

∂t
dt = (Wdt)t + (Udt)n + (Bdt)b

according to the definition of curve velocity introduced, for example, in [14,21,23,

29, 36]. We mention that there should be no notation confusion between t as time

parameter and t as tangent unit vector. Let us denote by Γk
ij the Christoffel symbols

associated with the connection defined on this principal bundle. We determine

them by using equation (13)

Dt t = κn → ∇1e1 = D1 e1 − Π(e1, e1) = 0, so Γ1
11 = 0

Dt n = −κt + τb → ∇1e2 = D1 e2 − Π(e1, e2) = −κe1, so Γ1
12 = −κ

· · ·

Db b = −b ·
∂t

∂b
t − b ·

∂n

∂b
n → ∇3e3 = D3 e3 − Π(e3, e3)

= −b ·
∂t

∂b
e1, so Γ1

33 = −b ·
∂t

∂b
·

In order to obtain the connection form, in addition to the Christoffel symbols, we

need the transformations of the orthonormal adapted frames in the bundle of frames
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in the form of three 2 × 2 rotation matrices R̂ as one-parameter Lie subgroups of

O(2, R)
∂ei

∂xq
= R̂ij

q ej

with i = 2, 3, q = 1, 2, 3 and x1 = s, x2 = n, x3 = b. For q = 1 we have

obviously

R̂1 =

(
0 τ
−τ 0

)
.

By applying the structure conditions equations (7) in the form of equations (8) we

obtain the relations describing the change of frames along the local frame direc-

tions, that is the Gauss-Weingarten equations (10), in the form

dei = ωij
q dxq

ej .

There is a simple curvilinear coordinates-like language in which the connection

form coefficients have an intuitive form [36]

∂

∂n

⎛

⎝
t

n

b

⎞

⎠ =

⎛

⎝
0 −Γ1

22 −Γ1
23

Γ1
22 0 b · ∂n

∂n

Γ1
23 −b · ∂n

∂n
0

⎞

⎠

⎛

⎝
t

n

b

⎞

⎠ (16)

∂

∂b

⎛

⎝
t

n

b

⎞

⎠ =

⎛

⎝
0 −Γ2

32 −Γ1
33

Γ2
32 0 b · ∂n

∂b

Γ1
33 −b · ∂n

∂b
0

⎞

⎠

⎛

⎝
t

n

b

⎞

⎠ . (17)

Of course the derivatives with respect of s are the Serret-Frenet relations equation.

Moreover, by defining the vector field

X = t
∂

∂s
+ n

∂

∂n
+ b

∂

∂b
∈ TOF(R3, γ)

we can construct the other curvilinear differential operators like the curvilinear

divergence of the tangent

div t = n ·
∂t

∂n
+ b ·

∂t

∂b
·

where we used t · ∂t/∂s = 0

div n = −κ + b ·
∂n

∂b
, div b = −b ·

∂n

∂n
·

The curvilinear curl has the form

rot t = t ×
∂t

∂s
+ n ×

∂t

∂n
+ b ×

∂t

∂b

= κb + n ×

(
∂t

∂n
· b

)
b + b ×

(
∂t

∂b
· n

)
n = κb + Ωst
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where Ωs = t · (rot t) is called the total moment of the t field or abnormality.

Similarly we have

rotn = −(div b)t + Ωnn − Γ1
22b, rotb = (κ + div n)t + Γ1

33n + Ωbb

with Ωn = Γ2
32 − τ, Ωb = −Γ1

23 − τ being the other two abnormalities.

It is interesting to mention a relation between the three rotational abnormalities

Ωs − τ =
1

2
(Ωs + Ωn + Ωb).

According to [36] this relation is a consequence of the Dupin’s theorem (i.e., the

intersections of surfaces of orthogonal curvilinear coordinates are lines of curva-

ture). Expressing the motion of three-dimensional curves through the abnormali-

ties forms has the advantage of classification of motions in three categories, func-

tion of which abnormality we choose to keep zero. For example, the well known

binormal motion happens when the normal abnormality vanishes, Ωn = 0 which

is typical vortex filament motion. In the binormal motion the s−lines and b−lines

are contained in a one-parameter surface U = constant, perpendicular on n =
gradU/| gradU |. Consequently, the normal field is quasi-potential (is derived as

the product between a scalar function and a gradient). All equations and forms of

the surface generated by a binormal motion can be easy calculated. For example,

following the Weatherburn theorem ( [42] XII, 121) K = N · rotU t× rotU b, we

have the Gaussian and mean curvature in the form

K = −κ(κ + div n) − τ 2, H = div n

respectively, while the Gauss-Codazzi equations and Gauss’ Theorema Egregium

are encapsulated in a very simple expression

K =
∂Γ1

33

∂s
+ (Γ1

33)
2.

In the case when the b parameter can be considered time (the so-called pure binor-

mal motions) it results that rb = rt = g1/2
b and, most importantly, st = 0 which

draws the conclusion

Corollary 12. Pure binormal motions are possible only for inextensible curves.

This could be the geometrical insight of the strong stability of vortex filaments

having this type of motion.

From the structure equations for the connection form dω = −ω∧ω +Ω we obtain

the expression of the curve motion in time, as function of the velocity. It is easy to
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note that ∂b/∂t = B, ∂n/∂t = U and we have

∂

∂s

⎛

⎝
W
U
B

⎞

⎠ =

⎛

⎝
0 κ 0
−κ −Γ1

22 −Γ2
32 + τ

0 −Γ1
23 − τ −Γ1

33

⎞

⎠

⎛

⎝
W
U
B

⎞

⎠+

⎛

⎝
ġ
2g

0
0

⎞

⎠ .

Here we note that the change in time of the arc-length accounts for a non-zero cur-

vature of the connection. We can re-write Serret-Frenet equations by using equa-

tions (15-17), and we obtain the evolution of the frame in terms of the components

of the velocity of the curve

dt

dt
=

(
∂U

∂s
− τB + κW

)
n +

(
∂B

∂s
+ τU

)
b

dn

dt
= −

(
∂U

∂s
− τB + κW

)
t +

[
1

κ

∂

∂s

(
∂B

∂s
+ τU

)
+

τ

κ

(
∂U

∂s
− τB + κW

)]
b

db

dt
= −

(
∂B

∂s
+ τU

)
t −

[
1

κ

∂

∂s

(
∂B

∂s
+ τU

)
+

τ

κ

(
∂U

∂s
− τB + κW

)]
n.

(18)

The kinematics of the metric is described by

dg

dt
= 2g

(
∂W

∂s
− κU

)
. (19)

The total (material) time derivative can be broken into the partial derivative and an

extra term
d

dt
=

∂

∂t
+

(
W −

∫ s

κUds̃

)
∂

∂s
·

From the above relations we can derive the dynamical connections between the

velocity components and curvature and torsion of γ

∂κ

∂t
=

∂2U

∂s2
+ (κ2 − τ2)U +

∂κ

∂s

∫ s

κUds̃ − 2τ
∂B

∂s
− B

∂τ

∂s

∂τ

∂t
=

∂

∂s

[
1

κ

∂

∂s

(
∂B

∂s
+ τU

)
(20)

+
τ

κ

(
∂U

∂s
− τB

)
+ τ

∫ s

κUds′
]

+ κτU + κ
∂B

∂s
·

On behalf of the fundamental theorem of curves once we integrate equations (18)

and (19) and find κ, τ the curve is uniquely determined in the arc-length parame-

trization, up to rigid motions in space. Obviously, as a check, if we cancel the

torsion we obtain the equations of motion for the two-dimensional curves. In con-

clusion we can formulate the following affirmation
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Corollary 13. The motion of a parametrized real curve γ can be described in two
similar formalisms. One possibility is to integrate the nonlinear partial differential
system of equations (16-17) and to obtain as solutions the parametric evolution of
the Serret-Frenet frame in the principal bundle OF(R3, γ) as

(t(s, n, b), n(s, n, b), b(s, n, b)).

Another possibility is to consider the motion given by the time dependent functions
(W, U, B) in equation (15), and to integrate the time-dependent nonlinear differ-
ential equations (20) for curvature and torsion, equation (19) for the metric, and
finally equations (18) for the Serret-Frenet unit vectors

(κ(s, t), τ(s, t), g(s, t), t(s, t),n(s, t),b(s, t).

In order to map the three-dimensional curve motion into a nonlinear integrable

system we follow [15, 21], as well as an older suggestion of Darboux, and we

introduce the complex curvature–torsion function by the Hasimoto transformation

Φ(s, t) = κ(s, t) exp

(
i

∫ s

τ(s′, t)ds̃

)
. (21)

By coupling equations (18-19) with equation (21) we obtain a complex equation in

the form

∂Φ

∂t
=

[
∂2

∂s2
+ |Φ|2 + i Φ

∫ s

τΦ∗ds̃ +
∂Φ

∂s

∫ s

Φ∗ds̃

]
U exp

(
i

∫ s

τ(s̃, t)ds̃

)

+

[
i
∂2

∂s2
+ i|Φ|2 + Φ

∫ s

τΦ∗ds̃ − iΦ

∫ s ∂Φ∗

∂s̃
ds̃

]
B exp

(
i

∫ s

τ(s̃, t)ds̃

)
(22)

where ∗ is complex conjugation, and the square parentheses are operators acting

to the right. A simple example is immediate: if we choose a binormal type of

motion with B = κ, and zero normal velocity U = 0, equation (22) reduces to the

(focusing) version of the nonlinear Schrödinger equation

i
∂Φ

∂t
+

∂2Φ

∂s2
+

3

2
|Φ|2

∂Φ

∂s
= 0. (23)

If we consider a more complex type of motion with U = −κs, and B = −κτ we

obtain instead the equation

∂Φ

∂t
+

∂3Φ

∂s3
+

3

2
|Φ|2

∂Φ

∂s
= 0 (24)

which is an MKdV equation for a complex function. Of course equations (23)–(24)

reduce to the previously studied two-dimensional case if τ = 0, i.e., the imaginary

part of all equations vanishes.
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Another example of mapping is provided by the binormal motion of curves with

constant curvature, i.e., Ωn = 0 (or ∂r/∂b = g1/2
b) and κ =const. The resulting

equation for torsion can be mapped, after a scaling, into either the Dym nonlinear

equation, or the Camassa-Holm equation from hydrodynamics. If the initial curve

is a helix, a binormal motion with constant curvature generates the so-called soliton

surfaces, [36], which are periodic surfaces of revolution representing the motion of

a soliton along a circular helix.

Several examples of curve motions associated to integrable nonlinear systems are

described and illustrated in [24]. There are many physical systems that can be

described using the theory of curve motion. The most important, and directly re-

lated to the integrable nonlinear equations are the application related to filaments,

vortex filaments, and vortices either in fluid dynamics or in mesoscopic supercon-

ductivity [25]. More modern applications are related to curve diffusion, image and

pattern processing and recognition.

5. Theory of Motion of Surfaces

In the following we consider a time parameterized family of regular surfaces de-

fined by the immersions r(t, uα) : [0,∞]×U ⊂ R×R
2 → Σ(t) ⊂ R

3. We assume

it is possible to define at any moment of time t an orthonormal basis {eα,N}α=1,2

in R
3 where

eα =
∂r

∂uα
·

∣∣∣∣
∂r

∂uα

∣∣∣∣
−1

.

In the following we denote by gμν = ru · rv the first fundamental form. We

apply the Cartan frame formalism described in Section 3 for the principal bundle

of adapted frames OF(R3, Σ(t)) over Σ(t) which are actually the Darboux frames,

Fig. 2., and from equations (6,10) we can write the canonical form

θ(X) = dr = rμduμ + W μ
eμdt + UNdt

(25)

=
2∑

α=1

(
√

gααduα + Wαdt︸ ︷︷ ︸
θα

)eα + UNdt︸ ︷︷ ︸
θ3

.

We denote by W α, U the tangent and normal components of surface velocity, re-

spectively, see equation (15). By using the Gauss and Weingarten equations (12)

and (13) we have

rμν = Γλ
μνrλ + Πμν , Π = ΠN.

We use the definition of the principal normal to the surface in the form

Nμ = −gλν
rλΠνμ.



22 Andrei Ludu

We also use the fact that the Christoffel symbols are derived from the Riemannian

metric on Σ(t), and we write the connection form, equation (7)

ω(X)|TΣ = drμ = Γλ
μνrλduν + NΠμνduν + Υμνrνdt + ΞμNdt

(26)

dN|TΣı = −gλμΠμνrλduν + Υμrμdt + ΞNdt.

where the one-forms Udt, W μdt, Υμνdt, Υμdt, Ξμdt, Ξdt are responsible for the

motion (tangent and normal) of the surface. By applying the structure conditions

in equations (7-8) we obtain a partial differential system with eight equations for

these nine unknown functions [26, 30]. The indeterminacy is related to the fact

that there is no natural parametrization on the surface. Also, from the structure

equation (i.e., d2
r = 0) we obtain six equations for the time dependence of the

surface metric and of the second fundamental form

gμν,t = gμαWα
ν + gνβW β

μ − 2Γλ
μνW

αgαλ − 2ΠμνU

Πμν,t = U,μν + ΠμλW λ
,ν + ΠνλW λ

,μ + (ΠμλΓλ
ρν + ΠνλΓλ

ρμ)W ρ

+ Γλ
μνU,λ − gρλΠρνΠμλU.

(27)

The coma subscript represents differentiation with respect to the variables writ-

ten after this coma. Equations (27) represent the intrinsic formulation of surface

motion, which (as opposed to the local formulation r(u1, u2, t)) is not redundant

and does not have the “z-axis” type of singularities. If we are given the surface

velocity components, by integration of equations above we obtain the evolution

of the surface at any moment of time, through the knowledge of its fundamental

forms. Similar to the curve motion case, the W α tangent velocity components are

not essential: they just re-parameterize the surface, or “pushing” particles along

the surface. We can note this by asking U = 0 for example and noticing that the

resulting equations are linear in W components.

In order to verify if equations (27) describe the motion of the surface for real, we

perform a limiting procedure reducing the surface to one of its curves of coor-

dinates, and expecting to re-obtain the equations of motions for curves. However,

like in any limiting process, we first have to write these equations in covariant form

gμν,t = ∇μWν + ∇νWμ − 2ΠμνU

Πμν,t = ∇μ(∇νU) + (Πμλ∇ν + Πνλ∇μ)W λ − gρλΠρμΠλνU.
(28)

Taken together equations (28) and the ten Gauss-Codazzi conditions (d2
eμ =

d2
N = 0) provide sixteen equations for nine functions describing the surface and

its motion: E, F, G, e, f, g, W 1, W 2, U .

We apply the following limiting verification procedure: if we make ∂r/∂u2 = 0,

and consequently the surface shrinks to some moving plane curve Σ(t) → γ(t),
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N → n we expect gμν(u
1, u2, t) → g(s, t), W → W , while U keeps having the

same interpretation. Also, since the principal curvatures will approach κ1 → κ,
κ2 → 0 we have

H =
κ1 + κ2

2
=

eG − 2fF + gE

2(EG − F 2)
→

e

2E

that is Πμν → gκ. In this limit the first of the equations in (28) reduces to the

regular time variation of the curve metric gt = 2g(Ws − κU), namely equation

(20). In the same plane curve limit we have the second relation in equations (28)

approaching equation κt = Uss + κ2U +
∫ s

κUds̃, which is the first relation in

equations (19). These two approaches, obtain by writing the covariant form for

the motion of surfaces represent a good check of correctness. We can make the

statement

Corollary 14. For a given velocity (W1, W2, U) as a function of (u, v) the so-
lutions of the nonlinear differential system in equations (28), i.e., (gμν , Πμ,ν) as
functions of (u, v), μ, ν = 1, 2 represent the first (metric) and the second funda-
mental forms of a surface with this velocity, modulo rigid motions, and according
to Gauss’ Theorema Egregium the surface is uniquely determined.

6. Application to Motion of Surfaces

In literature there are basically three simplification approaches of the surface mo-

tion equation [26, 30]. The first one uses a sort of “diagonal philosophy” by using

orthogonal particle-frozen coordinates in the surface that push back the particles

in their original position when the surfaces changes. The other two approaches

investigate particular cases of surfaces like developable surfaces (K = 0) or K-

surfaces (K < 0 and constant). The physical applications range from diffusion

processes, interface dynamics, motion of fluid sheets and vortices to swimming of

motile cells and membrane theters [3, 16, 27, 28, 33, 37, 38]. In the first approach

we use surface coordinates along the principal directions (the surface should have

no umbilical points, though!) in Σ(t) such that

gμν =

(
ea1 0
0 ea2

)
, Πμν =

(
κ1e

a1 0
0 κ2e

a2

)
(29)

with aμ, κμ ∈ C2(R
2). The “frozen particles” rigidity constraints g12,t = Π12,t = 0

reduce the equation of motion equation (28) to a system of total differentials with
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Figure 3. Moving developable surface as MKdV soliton solution of the

Gauss-Weingarten equations (32).

respect to time for the unknown functions aμ, κμ

(
∂

∂t
− W μ ∂

∂uμ

)
aν = 2W ν

,ν − 2κνU

(
∂

∂t
− W μ ∂

∂uμ

)
κν = κ2

νU + U,σνσν
+

1

2
e−a

ν
′aν,σ

ν
′
U,σ

ν
′
.

(30)

We take in equations (30) ν = 1, ν ′ = 2 or viceversa, without summations and we

need to introduce the following coordinate transformation [26]

σ1 =

∫ u1

exp

(
1

2
a1(ũ

1, u2)

)
dũ1.

There is a similar expression for σ2. The moving surface is then described by the

following Gauss-Weingarten relations

∂

∂σ1

⎛

⎝
rσ1

rσ2

N

⎞

⎠ =
1

2

⎛

⎝
a1,1 −a1,2 ea1−a2 2κ1e

a1

a1,2 a2,1 0
−2κ1 0 0

⎞

⎠

⎛

⎝
rσ1

rσ2

N

⎞

⎠

∂

∂σ2

⎛

⎝
rσ1

rσ2

N

⎞

⎠ =
1

2

⎛

⎝
a1,2 a2,1 0

−a2,1 ea2−a1 a2,2 2κ2e
a2

0 −2κ2 0

⎞

⎠

⎛

⎝
rσ1

rσ2

N

⎞

⎠ .

(31)
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When we confine to developable surfaces, the kinematic equations for the surface
simplify considerable because the Gauss-Weingarten equations reduce to a vector
form from a two-tensor form. It is interesting that the motion of surfaces with
constant non-positive Gauss curvature can be mapped into either the mKdV or
sine-Gordon integrable systems [4].

In the following we present an example for a moving developable surface, parame-
trized by (u1, u2), that is a surface whose Gauss curvature is identical zero [30].
Among other solutions, the Gauss-Weingarten equations (28) provide a simple an-
alytic solution in the form

r(u, s, t) = u f(s, t) +

∫
Φ(s̃, t)

∂f

∂s̃
ds̃ (32)

where we define a mKdV soliton type of solution by choosing

Φ(u2, t) =
1

2(1− c4)3/2
tan−1

(√
1 + c2

1− c2
sinh[c(u2 − (1 + c2)t)]

)

and the Euclidean components of the vector function f are

f1(u
2, t) =

1− c2

1 + c2
cos[c(u2 − (1 + c2)t)]

− 2c

1 + c2
tanh[c(u2 − (1 + c2)t)] sin[u2 − (1 + c2)t]

f2(u
2, t) =

1− c2

1 + c2
sin[u2 − (1 + c2)t]

− 2c

1 + c2
tanh[c(u2 − (1 + c2)t)] cos[u2 − (1 + c2)t]

f3(u
2, t) =

2c

1 + c2
sech[c(u2 − (1 + c2)t)].

Here |c| < 1 is an arbitrary real parameter. Examples of time evolution of surface
for c = 0.12 and t = 1, 2, 3, 4 and 5 are given in Fig. 3.
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