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INVERTING COLOR-MAGNITUDE DIAGRAMS TO ACCESS PRECISE STAR CLUSTER PARAMETERS:
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ABSTRACT

We demonstrate a new Bayesian technique to invert color-magnitude diagrams of main-sequence and white
dwarf stars to reveal the underlying cluster properties of age, distance, metallicity, and line-of-sight absorption, as
well as individual stellar masses. The advantages our technique has over traditional analyses of color-magnitude
diagrams are objectivity, precision, and explicit dependence on prior knowledge of cluster parameters. Within the
confines of a given set of often-used models of stellar evolution, a single mapping of initial to final masses, and
white dwarf cooling, and assuming photometric errors that one could reasonably achieve with the Hubble Space
Telescope, our technique yields exceptional precision for even modest numbers of cluster stars. For clusters with
50–400 members and one to a few dozen white dwarfs, we find typical internal errors of �(½Fe/H �) � 0:03 dex,
�(m�MV ) � 0:02 mag, and �(AV ) � 0:01 mag. We derive cluster white dwarf ages with internal errors of typically
only 10% for clusters with only three white dwarfs and almost always�5%with 10 white dwarfs. These exceptional
precisions will allow us to test white dwarf cooling models and standard stellar evolution models through obser-
vations of white dwarfs in open and globular clusters.

Subject headinggs: open clusters and associations: general — stars: evolution — white dwarfs

1. INTRODUCTION

White dwarf cooling theory currently provides themost reliable
age for the Galactic disk (Winget et al. 1987; Oswalt et al. 1996;
Leggett et al. 1998; Knox et al. 1999), whereas main-sequence
stellar evolution provides the most reliable age for the Galactic
halo (e.g., Salaris & Weiss 2002; Krauss & Chaboyer 2003). In
order to understand the detailed formation sequence of the Ga-
lactic components, as well as the local satellite galaxies, these two
timescales need to be placed on the same absolute age system. The
only current empirical approach available to intercalibrate these
two age systems is to derive white dwarf (WD) cooling ages and
main-sequence turnoff (MSTO) ages for a number of Galactic star
clusters over a wide range of ages and metallicities. Much of the
WD age dating work has been necessarily limited to nearby open
clusters (Claver 1995; von Hippel et al. 1995; Richer et al. 1998;
von Hippel &Gilmore 2000; Claver et al. 2001; von Hippel 2005,
hereafter Paper I) that are young or of intermediate age, since old
WDs are faint. Hansen et al. (2002) extendedWD age studies to
one globular cluster (NGC6121=M4). They derived a preciseWD
age, but with large systematic uncertainties due to as yet uncali-
brated physical effects in the coolest WDs (Fontaine et al. 2001).

Even though the Hubble Space Telescope (HST ) may be near-
ing the end of its lifetime, it has made collecting these deep ob-
servations ofWDs in open and globular clusters possible. At least
two more open clusters ( NGC 2360 and NGC 2660) and one
more globular cluster ( NGC 6397) have been observed withHST
to sufficient depth for the WD technique, and those results will be
forthcoming. The large number of 8–10 m telescopes now avail-

able will make it possible to observe a few more open clusters to
sufficient depth for theWD technique, and the next decade should
see 20–30 m telescopes, which will make these studies substan-
tially easier.
While the instrumentation has been improving and there has

been steadywork on improvingWDcooling and traditional main-
sequence stellar evolutionary models, there have not been suffi-
cient advances in the statistical machinery available to compare
star cluster observations with those models, particularly for WDs.
In this paper we present the first phase of our effort to develop this
statistical machinery. Specifically, we present a new Bayesian tech-
nique that has the ability to objectively incorporate all our prior
knowledge, including stellar evolution, star cluster properties,
and data quality estimates, while comparing data for each cluster to
any available theoreticalmodel.We chose to employ aBayesian ap-
proach precisely because so much is known about stellar evolution
and star clusters, and because this approach allows us to test how
cluster properties depend on the input models or model ingredients.
The power of the Bayesian approach is impressive, andwe show

below both the excellent precision that one can obtain in the pri-
mary cluster parameters (age, metallicity, distance, and reddening)
and the range of related star cluster and stellar evolution problems
that can be addressed. The goal of this paper is to present the
Bayesian technique and demonstrate its internal precision. In
subsequent paperswewill derived improvedWDandMSTOages
for clusters, with the long-term goal of intercalibrating WD and
MSTO ages up to the ages of the oldest globular clusters.

2. BASELINE STELLAR CLUSTER MODEL

We chose a single set of stellar evolution ingredients to build
and test the Bayesian approach. We use this model set to test the
sensitivity of the derived WD and MSTO ages to the cluster
parameters of [Fe/H], AV, distance, age, number of cluster stars,
and assumed photometric error.
For our baseline stellar cluster model we chose aMiller& Scalo

(1979) initial mass function (IMF), the main-sequence and giant
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branch stellar evolution timescales of Girardi et al. (2000), the
initial (main sequence) to final (white dwarf ) mass relation of
Weidemann (2000), the WD cooling timescales of Wood (1992),
and the WD atmosphere colors of Bergeron et al. (1995). Using
these ingredients, we simulate star cluster color-magnitude di-
agrams (CMDs), and, using the Bayesian techniques discussed
below, we invert cluster CMDs to recover the probability distri-
bution of the cluster parameters.

When simulating a cluster, each star is randomly drawn from
the IMF and, on the basis of a user-specified binary star fraction,
is randomly assigned to be a single star or a binary with a com-
panion also randomly drawn from the IMF. Note that although
an IMF is required to simulate a cluster, the implied age from
either the MSTO technique or the WD technique is insensitive
to the IMF. The IMF serves only to increase or decrease the pop-
ulation of stars of interest; for example, MSTO stars or WDs. If
there are insufficient stars, particularly if the cluster is young,
then the few cluster stars coupled with the IMF can create a sta-
tistical uncertainty in locating the MSTO or perhaps even finding
WDs. Binaries of nearly any mass ratio have a similar effect.
WDs in binaries are generally not recognized, and MSTO stars
in such systems are found to be brighter and generally redder
than the MSTO and therefore do not help to define the MSTO.
For these reasons and for simplicity in this study, we set the binary
fraction to 0%, which is substantially lower than the typical value
of �30% for open clusters. For simplicity, we also use only H
atmosphere (DA) WDs in our present simulations. While He at-
mosphere (DB) WDs make up �10% of field star WD samples
(7% in Kleinman et al. 2004), to date no DBs have been found in
open clusters (Kalirai et al. 2005). A limitation of our cluster
simulations is that stars with masses �0.25M� are not included,
thus producing an unrealistic lower limit to the main sequence.

Since the focus of this study is on stars that can becomeWDs, this
simplification is merely one of presentation.

Other stellar evolution (e.g., Yi et al. 2001; Baraffe et al. 1998;
Siess et al. 2000) and WD cooling (e.g., Benvenuto & Althaus
1999; Hansen 1999) models could have been used, and will be
added to our code later. For the present purposes, the above-
mentioned, often-used models adequately cover parameter space
and allow us to build and test the Bayesian machinery.

After producing simulated CMDs, we incorporate realistic
photometric errors, assuming reasonable cluster parameters; for
example, m�MV ¼ 12:5 and AV ¼ 0–1, and assuming that ob-
servations are obtained with the HST or a similar imaging in-
strument able to observe to V ¼ 27 with a signal-to-noise ratio
of S/N ¼ 15.5 We use a conservative upper limit to the pho-
tometric precision of S/N ¼ 200, although we do not incor-
porate systematic calibration errors. Our stellar cluster model
limits are currently set by the Girardi et al. (2000) andWood (1992)
models, and these limits are 100 Myr–4.5 Gyr and Z ¼ 0:0004–
0.030 (½Fe/H � � �1:676 to 0.198). This is adequate parameter
space for significant age andmetallicity exploration and to dem-
onstrate the technique, although we clearly need to push the tech-
nique to greater ages.

Our cluster simulations do not include mass segregation or
other dynamical processes that are potentially important in open
clusters, especially for the lowest mass stars; these typically have
little effect on the measuredWDmass fraction (von Hippel 1998;
see also Hurley & Shara 2003, who find that the WD luminosity
function and mass function are insensitive to dynamical effects

5 From experience, a value of S/N ¼ 15 is required to obtain good mor-
phological rejection of background galaxies at HST resolution (von Hippel &
Gilmore 2000).

Fig. 1.—(a) BV and (b) VI CMDs in the dereddened, absolute magnitude plane for a representative log (age) ¼ 9:0 cluster with ½Fe/H � ¼ 0:0, N ¼ 100 main-
sequence andWD stars, and photometric errors appropriate form�MV ¼ 12:5 and AV ¼ 0. Photometric errors in theWD region are similar in the BVand VICMDs for
these simulations, although there is an x-axis scale change. Representative zero-age main sequence (ZAMS) masses for the WDs are given in solar units.
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at 0.5–1 half-mass radii). Simulated clusters specifically tuned to
match real clusters using our stellar cluster model have been
presented in Paper I (see its Figs. 4–10). Here we do not attempt
to match actual clusters; that is, we do not tune distance, red-
dening,metallicity, cluster richness, and age, but ratherwe explore
hypothetical clusters that cover the parameter space available to
us. The CMDs for two such clusters are presented in Figures 1 and
2 for values of log (age) ¼ 9:0 and 9.5, respectively. The masses
of a few WDs from across the cooling sequence are indicated
in the right panels of both figures. Between 1 Gyr (Fig. 1) and
3.2 Gyr (Fig. 2), the WD terminus has evolved from MV � 13
to MV � 14:5, and the simulated photometric errors have in-
creased for the faintest WDs.

In the next section, we outline the Bayesian technique that we
will use in forthcoming studies to invert actual CMDs. In verifying
the technique, rather than applying our Bayesian code to actual
clusters with necessarily unknown parameters, we instead apply
our code to simulated clusters. The analyses of simulated data sets
test the degree to which an entirely consistent set of stellar models,
along with realistic photometric errors, yield the original input
parameters. Our Bayesian analyses thus test the internal precision
of our technique and its sensitivity to photometric errors, given the
many nonlinear aspects of stellar evolution. Since all stellar evo-
lution models are imperfect, this approach provides a measure of
internal precision only, not external accuracy. Our goal here is to
build amodeling procedurewith an internal uncertainty of�5% in
age, which will allow us, when we subsequently analyze real
clusters with high-quality data, to test for systematic problems in
stellar models and ages of not much more than 5%.

3. BAYESIAN TECHNIQUE

The goal of our Bayesian technique is to use information from
the data and from our prior knowledge to obtain posterior distri-

butions on the parameters of our model. Our prior knowledge is
encoded in prior distributions on the model parameters. The
model parameters include cluster parameters such as age and
metallicity and an initial mass for each cluster star. These pa-
rameters are the inputs to our stellar cluster model, which we
use to derive predicted photometric magnitudes. The likelihood
function then compares the predicted magnitudes with the ob-
served (or simulated) data.
Bayes’s theorem relates the posterior distribution to the prior

distribution and the likelihood function. If M ¼ (M1;M2; : : :;MN )
is a vector of initial masses of all stars in the cluster and 0 ¼
T ; ½Fe/H �;AV ;m�MVð Þ is a vector of cluster parameters, then
we can treat our stellar cluster model as a functionG(M;0) that
maps every reasonable choice of (M;0) to a resultant set of
photometric magnitudes. To obtain the likelihood, we assume
that the errors in our measurements are independently distrib-
uted and Gaussian with known variance. Suppose that there are
N stars in the cluster and we have observed them through n
different filters. Then the observed data form an n ;N matrix X
with typical element xij representing the magnitude in the ith
filter of the jth star. By assumption, each magnitude is normally
distributed:

xij � N (�ij; �
2
ij ); ð1Þ

where �ij and �
2
ij are the mean and variance, respectively, of the

modeled photometry through filter i of star j. The means and
variances also form n ; N matrices, which we callm and2. The
full likelihood is then

p(Xjm;2)¼
YN
j¼1

Yn
i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2��2

ij

q exp
�(xij � �ij)

2

2�2
ij

" #8><
>:

9>=
>;

0
B@

1
CA: ð2Þ

Fig. 2.—Same as Fig. 1, except for log (age) ¼ 9:5. The oldest WDs are now fainter and have larger simulated photometric errors.
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The variances 2 come from our knowledge of the precision of
our observations. The means m are the predicted photometric
magnitudes that we obtain from the stellar cluster model:

m ¼ G(M;0): ð3Þ

Thus, the likelihood can be expressed in terms of the variables
of our problem and the underlying stellar cluster model:

p(Xjm;2) ¼ p(XjG;M;0;2): ð4Þ

Computationally, equation (2) is the most useful form of the like-
lihood because changing the underlying stellar cluster model
leaves equation (2) unchanged. A different stellar cluster model
is just a different function, say, H, such that

m ¼ H(M;0); ð5Þ

or even

m ¼ H(M;0 0 ) ð6Þ

for a different set of cluster parameters 00.
In Bayesian analysis, all model parameters require prior dis-

tributions. We have tried to select priors that are consistent with
astronomers’ knowledge of likely values for the various pa-
rameters. To reflect the fact that low-mass stars are much more
numerous than high-mass stars, and to be consistent with our
stellar cluster model, where we used the Miller & Scalo (1979)
IMF, we set the prior distribution on the logarithm of a star’s
mass to be proportional to the Gaussian distribution:

p( log Mð Þ) / exp
� log (M )þ1:02½ �2

0:917

( )
; ð7Þ

where the constants are from the fit derived by Miller & Scalo
and the IMF is bounded at 0.15 and 100 M�. For metallicity,
absorption, and distance modulus, we use Gaussian priors in the
common logarithmic versions of these quantities ([Fe/H], AV,
and m�MV ). We assume that we have reasonable knowledge
of the values and uncertainties of these parameters for a given
cluster. This knowledge should come from outside information,
not from the color-magnitude data that we intend to analyze.
Our prior on T, the base 10 logarithm of the cluster’s age, is
uniform between T ¼ 8:0 and T ¼ 9:7 and zero elsewhere. This
is a power-law prior on the age with exponent �1, which ad-
equately reflects the observation that younger clusters are more
common than older clusters. Note that priors from reliable,
previously derived cluster parameters are not required for our
Bayesian approach, although they may help. The point is that
priors encode any previously determined parameters, where they
are available. In some cases, constraining priors [e.g., small
�([Fe/H])] may turn out to be required for precise results; in
other cases, such as the ones studied here, constraining priors
are unnecessary for precise results.

Given the prior distributions and the likelihood, we obtain
the posterior distributions of the parameters from Bayes’s the-
orem, which states that the posterior density p(�|y) on model
parameters � given data y is

p(�jy)¼ p( yj�)p(�)
p( y)

; ð8Þ

where p(y|�) is the likelihood and p(�) is the prior density on
the model parameter �. The denominator, p( y), is obtained by

integrating the numerator over all possible values of �, such
that

p(�jy)¼ p( yj�)p(�)R
p( yj�)p(�) d� : ð9Þ

In our problem, it is impossible to compute the integralR
p( yj�)p(�) d� analytically. Instead, we use the Markov chain

Monte Carlo (MCMC) algorithm to approximate the posterior
distribution (Casella & George 1992; Chib & Greenberg 1995).
The MCMC algorithm allows us to generate a sample from the
posterior distribution. We construct a Markov chain such that
once it has converged, results of each iteration of the algorithm
are distributed approximately according to the posterior distribu-
tion, and we regard the history of the chain as a random sample
from the posterior. We can thus obtain quantities of interest, such
as sample means, without having to analytically compute the nor-
malized posterior distribution.

Our analysis relies on theMetropolis-Hastings algorithm (Chib
& Greenberg 1995), which proceeds as follows: Suppose that
the current state at iteration t is �t ¼ �. Propose to move to some
new state �?. This proposal is generated with density q(�?|�).
Compute the Metropolis-Hastings factor

� ¼ min
p(�?jy)q(�j� ?)

p(�jy)q(�?j�) ; 1

� �
ð10Þ

and set � tþ1 ¼ � ? with probability�. Otherwise, set � tþ1 ¼ �. Our
sample is the parameter sequence (� n; � nþ1; : : :; �N ), where N is
the total number of iterations and n is the number of iterations
before the chain converges. We discard the first n� 1 iterations,
which are referred to as the burn-in. Note the advantage of this
method: since

R
p( yj�)p(�) d�¼

R
p( yj� ?)p(� ?) d�?,

� ¼ min
p( yj� ?)p(� ?)q(�j� ?)

p( yj�)p(�)q(�?j�) ; 1

� �
: ð11Þ

We can compute everything in equation (11) without calculat-
ing any intractable integrals.

The efficiency of the Metropolis-Hastings algorithm depends
heavily on the choice of proposal distribution q. A common
choice is a symmetric distribution centered at the current value.
This is the ‘‘random walk’’ Metropolis-Hastings sampler. This
method has the advantages of simplicity and ease of implemen-
tation. However, the sampler can be inefficient if the distribution’s
width is inappropriate: the sampler might propose excessively
small steps and take too long to traverse the parameter space, or
it might propose unreasonably large jumps and frequently reject
steps. Another option is to choose a proposal distribution that
approximates the posterior distribution. This kind of sampler is
known as an ‘‘independence’’ sampler, since q(�?j�) ¼ q(�?),
so each proposed value is independent of the current state. The
more closely the proposal distribution approximates the target
distribution, the higher the acceptance rate and (generally speaking)
the more efficient the sampler.

3.1. MCMC Sampling

One of the chief problems in designing the MCMC sampler
was overcoming the strong correlations between many of the
variables. For instance, for a given position on the CMD, an in-
crease in the age of the cluster will require a decrease in the mass
of a WD, and vice versa. Since each parameter is sampled in-
dividually in sequence, without removing the correlations, the
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sampler can only take small steps in age ormass; if too large a step
is taken, the proposed star’s photometry will be too far from the
observed position and the step will be rejected. In a similar way,
metallicity and distance modulus are correlated with each main-
sequence star’s mass, with each other, and with reddening.While,
from a theoretical standpoint, removing these correlations is not
required to obtain valid results, the number of iterations needed to
be certain that the entire posterior distribution was well sampled
would necessitate far more computation time than is practical.

Fortunately, over the ranges that our MCMC algorithm typi-
cally samples, these correlations are all nearly linear. To remove
the WD age-mass correlation, we introduce a new parameter, U,
and a constant, �, defined by

Mk ¼ �(Tk � T )þ Uk ; ð12Þ

whereMk,Uk, and Tk are the mass, decorrelated mass parameter,
and logarithm of the cluster age at the kth iteration, respectively,
and T is the mean logarithmic cluster age. Then, rather than
sampling on mass, we sample on U for each star. The MCMC
algorithm then computes the mass at each iteration from the
above equation. Figures 3 and 4 present the log (age) sampling
history before and after the correlation is removed, within the
same MCMC run. In Figure 3, age values spanning �100 iter-
ations are correlated, indicating that little new is learned about the
posterior distribution within that correlation length. In Figure 4,
the log (age) history is well sampled and each iteration usefully
samples the posterior distribution. The new parameter, U, is then
decorrelated from distance modulus and metallicity in a similar
manner. Finally, the distance modulus and metallicity are de-
correlated from one another and then from reddening.

In order to improve the efficiency of our MCMC algorithm, we
still need to address several sampling issues. For someparameters,
the correlations become nonlinear, often at their extreme values.
For other parameters, the correlations consists of two or more
separate, nearly linear, pieces with different slopes. For the
brightest (youngest) WDs, the correlations between mass and
age can be incredibly tight, and further work needs to be done
for these objects to more precisely trace these correlations.

The burn-in for our MCMC runs began with a brief (5000
samples) period to approximate the correct values and adjust
step sizes. Thiswas followed by two periods of 5000 samples each
to calculate the correlation between mass and age for WDs, two
more to calculate the correlations between modulus and mass for
main-sequence stars and between modulus and absorption, and

two more to calculate the metallicity–main-sequence mass
and metallicity-absorption correlations. Finally, there is another
5000 sample period to adjust step sizes again. The whole burn-in,
except for the initial settling-in period and the first age-mass de-
correlation, is then repeated to more precisely determine the cor-
relation factors, for a total burn-in period of 70,000 samples.

4. DEMONSTRATION AND DISCUSSION

For the tests presented here, we placed priors on cluster
distance moduli, metallicities, and absorption values. The pri-
ors were normal distributions centered on the simulated stellar
cluster model parameters for m�MV , [Fe/H], and AV, with the
further requirement that AV � 0. The AV ¼ 0 runs are limiting
cases, and for these we assumed �(AV ) ¼ 0; that is, there was no
sampling on AV. For the AV ¼ 0:1 and 0.3 cases, we assumed
�(AV )¼ 0:1, and for the AV ¼ 1 case, we assumed �(AV ) ¼ 0:3.
For the other cluster parameters, we assumed �(½Fe/H �) ¼ 0:3 dex
and �(m�MV )¼ 0:2. All of these priors represent conservative
uncertainties for well-observed, low-reddening clusters. We also
placed a prior on the mass distribution for any given star with a
form, (see eq. [7]) based on the low-mass IMF.
We simulated B, V, and I photometry for clusters for the range

of parameters log (age) ¼ 8:3, 8.7, 9.0, 9.3, and 9.5; ½Fe/H � ¼
�1:0, �0.15, 0.0, and 0.15; N (number of cluster stars fainter
than theMSTO, includingWDs) equal to 50, 100, 200, and 400;
m�MV ¼ 12:5; and AV ¼ 0, 0.1, 0.3, and 1. Since our goal is to
test the age sensitivity of the WDs, we removed all MSTO,
subgiant, and giant branch stars from each simulation, so thatwhat
remains are WDs and essentially unevolved main-sequence stars.
While we astronomers are most comfortable studying star

clusters in the CMD, our Bayesian technique does not use the
CMD, with its correlated errors between the x-axis and y-axis,
but rather uses an n-dimensional space, where n is the number
of filters available and the units are magnitudes. In the numer-
ical experiments we present here, n ¼ 3, as we use B, V, and
I photometry. The MCMC routine sees the CMD of Figure 1,
for example, in a form more akin to that shown in Figure 5, al-
though offset by the simulated distance modulus. For presen-
tation purposes, we reduced three dimensions to two by plotting
either the B or I absolute magnitudes on the horizontal axis. One
disadvantage of this plot is the large dynamic range in both axes.
Still, the main CMD features can be discerned; for example,WDs
are clearly visible in the faintest corner of the plot in Figure 5.
Reddening vectors for AV ¼ 1:0 are also shown, as is the effect
of increasing distance modulus by 1.0 mag. Both distance and

Fig. 3.—Correlated age vs. ZAMS mass sampling for a WD during burn-in. Fig. 4.—Same as Fig. 3, but for the WD after age-mass decorrelation.
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the reddening vectors are nearly parallel to the main sequence,
especially the BV main sequence. Decreasing metallicity from
½Fe/H � ¼ 0:0 to �0.1 moves the main sequences in almost the
opposite directions as the reddening vector.While there are some
morphological features in this diagram, andwhile the various dis-
tance, reddening, andmetallicity vectors are not absolutely paral-
lel and therefore not entirely degenerate, this diagram suppresses
subtleties that primarily affect stellar color.

Although we can simulate clusters younger than log (age) ¼
8:3, the MCMC technique requires sampling an age range, and
for younger clusters this would often hit our (current) lower age
limit of log (age) ¼ 8:0. For the AV cases, three simulated clusters
were run for each unique set of cluster parameters. Any two
clusters with identical parameters will yield different CMDs as
both the IMF and the simulated photometric error distribution
are sampled anew. After creating a cluster, we pass it to theMCMC
routine with estimates of the mass of each star and estimates of

the cluster parameters as starting points. (Our experiments show
that as long as the MCMC algorithm converges, the results do
not depend on the starting points. Starting points within a factor
of �2 in age or metallicity, for instance, are adequate for con-
vergence.) Because the MCMC sampling is still often corre-
lated, we sample for 106 iterations, reading out every 10th value
for each stellar mass and for the cluster parameters. Many of our
MCMC runs have a correlation length of �10, and this produces
uncorrelated parameter values. For those cases that still remain
correlated, and guided by the rule of thumb that one typically
wants 104 uncorrelated iterations in order to adequately sample
the posterior distribution, we find that 106 iterations works well
for most of our simulated clusters.

Figure 6 presents a well-sampled, typical history plot of
cluster age for the cluster of Figure 1. Figures 7 and 8 present the
companion history plots for cluster [Fe/H] and m�MV . There is
a small amount of sticking in the sampling of these two varia-
bles at the beginning of the sequence, just after burn-in, and
again near iteration 1:47 ; 105, but otherwise these history plots
are well sampled. Since there is no AV sampling in the AV ¼ 0
case of Figure 1, Figure 9 presents the AV history plot for a
cluster with the same parameters, except with an input value of
AV ¼ 1. Histograms of these four types of history plots (Fig. 10)
are the estimates of the posterior probability distributions. In Fig-
ure 10 we present also the AV ¼ 0:3 and 1 cases. Figure 10 shows
that the posterior distributions of log (age) and the other cluster

Fig. 5.—Bayesian code version of the CMDs in Fig. 1. Filled squares rep-
resent the BV plane and open triangles represent the VI plane for solar metallicity
stars. Cluster WDs are in the upper right, with the VI sequence slightly above the
BV sequence. The effects of metallicity are shown by the open circles, which are
the BV and VI main sequences for ½Fe/H � ¼ �1. The offsets of distance and
reddening are removed from this plot for presentation purposes. Reddening
vectors for AV ¼ 1 for both planes are given in the upper left, as is a vector
showing the effect of increasing the cluster’s distance modulus by 1 mag. The
reddening vectors and distance offset vector are replotted near the main se-
quences to facilitate comparison.

Fig. 6.—Typical history plot of cluster log (age), shown here for the 1 Gyr
cluster of Fig. 1. In this case, the sampling was excellent. For clarity, only every
100th point is plotted, and only after the initial 70,000 iteration burn-in period.

Fig. 7.—Similar to Fig. 6, but for cluster [Fe/H]. This particular MCMC run
had a very mild correlation in [Fe/H].

Fig. 8.—Similar to Fig. 6, but for m�MV .
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parameters are close to normal, and furthermore that changing
the absorption causes no strong bias in the results (more on ab-
sorption and bias below). From these posterior probabilities we
can calculate statistics of interest (e.g., mean, median, �, per-
centiles), and these are presented below. Figure 11 presents the
posterior probabilities of mass for four stars from the cluster
simulation of Figure 1. The top left panel shows themass posterior
for a high-mass WD, the top right panel shows that for a lower
massWD, the bottom left panel shows that for a main-sequence
star not far below the turnoff, and the bottom right panel presents
that for a low-mass main-sequence star. In all cases the mass
distribution is nearly centered on the input mass, the mass value

before its photometry was subject to random error, except in the
case of the lowest mass star, where it differs by only 0.002M�.
For the main-sequence stars, the mass distribution is particu-
larly narrow, showing that within the assumption of a specific
model, precise photometry yields precise masses. The WD mass
distributions are slightly broader becausewe plot the zero-agemain
sequence (ZAMS) masses for these stars and a wider range of
initial main-sequence masses is converted into a narrow range
of WD masses via the initial-final mass relation (Weidemann
2000).
In Figure 12, we check the differences between the mean

log (age) values of the distributions and the input log (age) val-
ues compared to the standard deviations of the posterior
log (age) distributions (�). We are essentially asking what the
deviation of each result is in units of its standard deviation. For
the AV ¼ 0 case, the distribution of errors is very similar to the
overplotted normal distribution. Formally, the error distribution
is also close to normal, with an average of 0.037, a median of
0.055, a standard deviation of 0.985, and a skew of �0.191.
This comparison is a sanity check on the self-consistency of our
implementation of the Bayesian technique and whether the
standard deviation statistic adequately captures the shapes of
the posterior distributions. For the AV ¼ 0:1, 0.3, and 1 cases,
our MCMC approach tends to be biased high in age by 0.56 �,
0.26 �, and 0.12 �, respectively, and the higher absorption cases
tend to have a pronounced nonnormal distribution. These dis-
tributions are virtually identical if we plot median values in-
stead of the means of the posterior distributions. While we are
still trying to understand some of the subtleties of the higher AV

cases, these offsets, which correspond to 2.6%, 1.2%, and 0.6%
systematic errors in age, are small enough that we set aside their

Fig. 9.—Similar to Fig. 6, but for AV in a cluster with AV ¼ 1.

Fig. 10.—Histograms of theMCMChistory plots, for (a) the log (age) values of Fig. 6, (b) the [Fe/H] values of Fig. 7, (c) them�MV values of Fig. 8, and (d ) theAV

values of Fig. 9. For the first three panels, the posterior distributions for AV ¼ 0, 0.3, and 1 are plotted, and for the final panel the latter two distributions are plotted, since
there was no sampling on AV for the AV ¼ 0 case. Every 10th iteration, which is the frequency with which these MCMC runs were read out, is incorporated into the
histograms.
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Fig. 11.—Posterior probabilities of ZAMS masses for four stars from the cluster presented in Fig. 1. Panel (a) shows the mass posterior for a high-mass WD, panel
(b) shows that for a lower massWD, panel (c) shows that for a main-sequence star not far below theMSTO, and panel (d ) shows that for a low-mass main-sequence star.
In all cases, the means of the mass distributions are similar to the input masses, labeled with small vertical marks at the bottom of each panel.

Fig. 12.—Differences between the mean ages of the posterior distributions and the input ages, normalized by the standard deviations (�) of each posterior age
distribution, for the (a) AV ¼ 0, (b) AV ¼ 0:1, (c) AV ¼ 0:3, and (d ) AV ¼ 1 cases. The distribution of errors is very similar to the overplotted normal distribution for the
AV ¼ 0 case and becomes subtly biased to 0.12–0.56 � for higher values of AV.



resolution for now. Figure 12 demonstrates, particularly for low
absorption values, that the standard deviations in the posterior
distributions are accurate assessments of the uncertainties due to
photometric errors or any effects due to small number statistics,
such as having very few WDs in young or sparse clusters.

In Figure 13, we present the standard deviation log (age) un-
certainty for each model with one or moreWDs versus the input
log (age) value of the cluster. The standard deviations are al-
ways small, typically �0.04 dex, corresponding to relative er-
rors typically �10%, for all ages tested. These errors do not
depend significantly on the cluster age. In fact, the apparent
slight dependence on age seen in Figure 13 is a combination of
two other effects: there are fewer WDs in the youngest clusters,
and the coolest WDs in the oldest clusters are fainter and there-
fore have higher photometric errors. Figure 14, which plots the
same standard deviation uncertainties, now versus log (NWD),
shows the most important factor in this technique: the number
ofWDs per cluster. Although everyWDcontains age information,
the quality of that information is not the same for all WDs.
Photometry for the coolest WDs in any cluster provides the
most information (see below), yet photometric precision drops

with decreasing WD luminosity. Therefore the age precision
does not improve as the square root of the number of WDs, but
somewhat more slowly. Nonetheless, even with 10 WDs the sta-
tistical (internal) error is almost always �0.02 dex, or �5%. Even
with three WDs, 10% precision is usually achieved.
Since the precision is so high via this technique, it is worth

taking a small detour into the details of the age information locked
up in each WD. Figure 15 presents the relationship between pos-
sible masses and possible ages for six of the nineWDs of Figure 1
[log (age) ¼ 9:0]. Two WDs are not presented because they are
so close in mass to otherWDs that they crowd the figure without
presenting any new information. The faintest WD of Figure 1
has been dropped also, since its ZAMSmass (7.6M�) is beyond
the 7.0 M� limit of the Weidemann (2000) initial-final mass re-
lation and its WD mass (1.131M�) is beyond the Wood (1992)
1.0 M� cooling WD model limit. Although this extrapolated
WD has properties that are internally consistent enough for the
MCMC runs, they are not pedagogically helpful in understanding
the precision in the WD technique. Figure 15 shows that the age-
mass relationship for the hotter, brighterWDs is highly correlated,
which is the cause of the numerical difficulties with the correlated
sampling mentioned above. Is there useful age information in
these hot, rapidly cooling WDs, information that is unexploited
in the traditional approach,which uses the coolestWDs to derive a
cluster’s age?
Figure 16 presents the age sensitivity of this technique6 by

presenting the allowed age-mass relationship for each of the
WDs of Figure 15, if each were the only WD in the otherwise
identical cluster. Running the same cluster with only one WD
yields the age constraints from an individual WD, while still
relying on the cluster main sequence to constrain the combi-
nation of metallicity, distance, and reddening. Now it is clear
that the higher mass WDs provide the tightest age constraints,
eliminating a significant age range allowed by the lowest mass,
hottest WD, for example. Yet, in this case even the second
hottest WD contains significant age information. Our technique
can be pushed to the point at which ages can be derived for

Fig. 13.—Derived standard deviations for each model with one or more WDs
vs. the actual (input) ages of the clusters. The standard deviations are always small,
typically �0.04, corresponding to relative errors of typically �10% for all ages
tested. One result (among 319 runs) with �(log ageð Þ) ¼ 0:105 at log (age) ¼ 8:7
and NWD ¼ 1 is not plotted for presentation purposes.

Fig. 14.—Standard deviation uncertainties vs. log (NWD) for the data pre-
sented in Fig. 13. The precision of the age fit improves approximately as the
logarithm of the number of WDs, which is an important factor under the ob-
server’s control.

Fig. 15.—WD ZAMS masses vs. cluster age for six of the nine WDs for the
cluster in Fig. 1. The other three WDs are not plotted for clarity.

6 Note that the slight changes of slope in the mass-age relationship for the
lowest mass WD is a numerical artifact caused by our use of linear interpolation
among the Girardi et al. (2000) models. Besides being a small effect and outside
of the actual fit presented in Fig. 15, choppiness due to linear interpolation
serves to occasionally slightly decrease the precision of our technique. Higher
order interpolations have not yet been necessary and would nearly double the
run time of our MCMC code.
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clusters without observing the coolest WDs, and a companion
paper will explore the sensitivity of that approach (Jeffery et al.
2006). The higher mass WDs have a much flatter slope in the
mass-age diagram, since large changes in ZAMS mass do not
appreciably change the contribution of precursor timescales,

nor do they evolve at a much different rate than lowermassWDs,
at least not in this age range.

Figure 16 still begs the question: Why is there any age sen-
sitivity when there is only one cluster WD? The short answer to
this is that the WD region of the CMD is not highly degenerate.
Although it may be possible to make a highly degenerate CMD
with a combination of few cluster stars, high and uncertain red-
dening, uncertain metallicity, etc., generally this is not the case.
There are also other constraints on the WD properties. A WD
cannot have a mass higher than the upper limit for creatingWDs
(8 M� in all our simulations, most likely 7–9 M�), and a WD
cannot have a mass so low that stars with lower initial masses
are still present on the main sequence. Changes in mass move a
WD in the CMD along essentially the same vector as changes
in age for hot WDs, where precursor ages are important, and in
a perpendicular direction to age for cooler WDs, where precur-
sor ages are unimportant. Figure 17 attempts to make this clear
by plotting a small portion of the CMD of Figure 1 around the
simulatedWDs. The simulatedWDs are presented as error bars,
whereas the input values, before photometric scatter was added,
are presented as filled circles. Here all cluster WDs, except the
highest mass (7.6 M�) simulated WD, are plotted. The small
plus signs connected by lines show the effect of holding mass
constant while changing log (age) by�0.01 dex, or, in the case of
the two highest mass WDs, by changing log (age) by�0.02 dex.
Open squares show the effect of keeping log (age) ¼ 9:0 while
adjusting the ZAMS masses by �2%, or, for the two highest
mass WDs, by�5%. WD isochrones for log (age) ¼ 8:9, 8.95,
9.0, 9.05, and 9.1 are overplotted. Ultimately, the Bayesian
technique is so sensitive because minor changes in WDmass or
cluster age of just a few percent move the expected location of

Fig. 16.—WD ZAMS masses vs. cluster age for six modified versions of the
cluster presented in Fig. 1. In order to explore the mass-age correlations and see
which WDs provide the greatest age constraints, nine clusters, each with only
one WD from the original nine cluster WDs, were created. Again, only six of
these mass-age relations are plotted for clarity. The lowest mass WDs have the
tightest mass-age correlations, which creates greater MCMC sampling chal-
lenges. The higher mass WDs provide tighter age constraints. The kinks in the
lowest mass relationship occur at boundaries of the main-sequence (Girardi
et al. 2000) tracks and are numerical artifacts.

Fig. 17.—WD regions of the CMDs in Fig. 1. The input WDs are plotted as filled circles, and the scattered photometry data are plotted as 1 � error bars. The highest
massWD is not plotted (see text). The plus signs connected by lines show the effect of changing log (age) by�0.01 dex, or, in the case of the two highest massWDs, by
�0.02 dex. Open squares show the effect of changing ZAMSmasses by�2%, or, for the two highest massWDs, by�5%.WD isochrones for log (age) ¼ 8:9, 8.95, 9.0,
9.05, and 9.1 are overplotted. The reddening vectors for AV ¼ 0:1 are also shown.
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any WD significantly in the CMD. Also, some types of photo-
metric error, such as the �2� color error in B� V of one of the
WDs in themiddle of the cooling sequence, cannot bematched by
any realistic adjustment of cluster or stellar parameters, and thus
this photometric error does not drive the fit for this WD. In Fig-
ures 15 and 16, for example, thisWD is the object plotted third from
the right. Its ZAMSmass (3.285M�) and age [log (age) ¼ 9:0] sit
right in the center of the sampled values, so this color error had
no meaningful effect. Errors in color could cause one to mistake
a WD for a field star, however. The solution to this problem in
real clusters with possibly contaminating field stars is better
photometry or classification-level spectroscopy to confirm the
WD.

Besides deriving precise ages, the Bayesian technique also
can derive precise values for the cluster parameters of metal-
licity,m�MV , and AV. In all these cases the standard deviations
in the posterior distributions are small, typically �0.03 dex,
�0.02 mag, and�0.01 mag, respectively. All of these posterior
uncertainties are an order of magnitude smaller than the width
of the prior distributions (0.3 dex, 0.2 mag, and 0.1–0.3 mag,
respectively), demonstrating that high-quality priors in these pa-
rameters are not generally needed, at least for low to moderate,
single-valued absorption, and that the results are insensitive to the
exact assumed starting values for these parameters. The cluster
photometry contains a wealth of information, and the Bayesian
technique, along with an assumed model set, brings this out to
high precision. For clusters with 10 WDs, the age precision is
typically better than 5%, easily meeting our needs for a precise
statistical tool.

5. BAYES MEETS STAR CLUSTERS: OTHER USES

In our work to date, we have focused on cluster ages, particularly
via the WD technique. Age via the MSTO technique will be next.
Our MCMC code also derives values for the other major cluster
parameters: metallicity, distance modulus, and line-of-sight ab-
sorption, along with the individual stellar property of mass. For
our own purposes, we intend to upgrade our MCMC code to
include binaries drawn from realistic mass ratio distributions,
field stars, DB (He atmosphere) WDs, and a wider range of stan-
dard stellar andWD evolution models, including ages up to glob-
ular cluster values.

Here are a few further example uses for our Bayesian technique:

1. In our effort to improveWD andMSTO ages, we will sys-
tematically study main-sequence and WD model parameters that
affect ages, such as core convection prescriptions, nonstandard
elemental abundances, and diffusion in main-sequence stars, as
well as surface convection prescriptions and C/O phase separation
in cool WDs.

2. We intend to study the sensitivity in the implied under-
lying parameters of simulated and actual clusters to the initial-
final mass relation, as well as the upper mass limit for creating
WDs.

3. Our code derives mass posterior distributions for every
object in the cluster. These mass estimates would be a good
starting point for IMF studies, particularly since one can adjust
the priors onmass to reflect different assumed IMFs and one can
incorporate as input any stellar evolution model. By adjusting

the prior on the IMF, one could see how many cluster stars are
required before the resulting IMF is no longer sensitive to the
prior.
4. Once we add binaries to the MCMC code, we intend to

study cluster binaries, their masses, and mass ratios. This would
be a step forward from the typical approach of estimating cluster
binary contributions by visually studying the distribution of stars
above the single-starmain sequence.Additional information, such
as the probability of cluster membership from proper motion or
radial velocity studies, could also be incorporated in the binary
studies.

We expect to make our code publicly available within a year,
after it passes out of its development stage.

6. CONCLUSIONS

We have demonstrated a new Bayesian technique to invert
color-magnitude diagrams to reveal the underlying cluster prop-
erties of age, distance, metallicity, and line-of-sight absorption,
as well as individual stellar masses.We do not fit cluster fiducial
sequences, nor do we create plots with many combinations of
cluster parameters and then try to derive the best parameters via
chi-by-eye. The Bayesian technique delivers not just parameters
and error estimates, but entire posterior distributions. Posterior
distributions for the parameters of interest are particularly valu-
able when they may be nonnormal, as may occur with all the
coupled, nonlinear aspects of stellar evolution. Despite the po-
tential for complex error distributions, we find posterior age
distributions that are close to normal in log (age). Some other
distributions, for example, some mass distributions, are clearly
nonnormal.
Within the confines of a given set of often-used models of

stellar evolution, the initial-final mass relation, and WD cool-
ing, and assuming photometric errors that one could reasonably
achieve withHST, we find that our technique yields exceptional
precision for even modest numbers of cluster stars. For clusters
with 50–400 members and one to a few dozen WDs, we find
typical internal errors of �(½Fe/H �) � 0:03 dex, �(m�MV ) �
0:02 mag, and �(AV ) � 0:01 mag. The parameter we are most
concerned with, cluster WD age, has an internal error of typi-
cally only 0.04 dex (10%) for clusters with only three WDs and
almost always �0.02 dex (�5%) with 10 WDs. All of these
results have posterior distributions that are an order of magni-
tude narrower than the priors we applied and therefore represent
the actual information in cluster CMDs. Cluster photometry clearly
contains a wealth of information, much of it coupled in a nonlinear
fashion, and the Bayesian technique, along with an assumedmodel
set, brings this out to high precision.
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