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Pattern formation of elastic waves and energy

localization due to elastic gratings
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Abstract

Elastic wave propagation through diffraction gratings is studied numerically in

the plane strain setting. The interaction of the waves with periodically ordered

elastic inclusions leads to a self-imaging Talbot effect for the wavelength equal

or close to the grating size. The energy localization is observed at the vicinity

of inclusions in the case of elastic gratings. Such a localization is absent in the

case of rigid gratings.

Keywords: elastic wave, diffraction grating, pattern formation, energy

localization
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1. Introduction

Wave motion in solids is an extremely important physical phenomenon due

to wide range of applications. The propagation of mechanical waves can be

controlled via scattering induced by a material’s structure. Given the high fre-

quencies and high values of excitations used in contemporary technology, the

material properties must be very clearly determined up to smaller scales and an

internal structure of materials. The need to tailor materials able to meet various

conditions is obvious. That is why during the last two decades, the attention
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to man-made metamaterials has been tremendously increased (Torquato, 2000;

Guenneau et al., 2007; Lee et al., 2012; Zheng et al., 2014). This is understand-

able because metamaterials are characterized by their properties beyond those

of conventional engineering materials and therefore their practical applications

display new qualities for technology. The reader is referred to more detailed

overviews on this topic (Pennec et al., 2010; Radousky & Liang, 2012; Hussein

et al., 2014).

It is not surprising that the wave propagation in metamaterials cannot rely

on classical continuum mechanics based on the homogeneity of materials. In-

deed, the wave propagation in solids with inhomogeneities (inclusions) or mi-

crostructured solids at various scales has also been studied intensively based

on various assumptions about the internal structure of the material (Mindlin,

1964; Capriz, 1989; Eringen, 1999) and various mathematical models were de-

rived (see, Engelbrecht & Berezovski (2015), e.g.). From the physical viewpoint,

the most important feature of waves in microstructured materials is the inter-

action of waves with inhomogeneities which is the source of wave dispersion,

diffraction and interference. However, as in optics, one of the basic problems to

be solved is the diffraction of waves on inhomogeneities. In light and atom op-

tics, the diffraction of waves is a well-known and well-studied phenomenon, both

for near-field (Fresnel diffraction) and far-field (Fraunhofer diffraction) zones.

In solid mechanics the interest to the diffraction started due to the practical im-

portance of the dynamic stress concentration on obstacles (Mow & Pao, 1971)

and nondestructive testing (Hellier & Hellier, 2001). The earlier theoretical

studies related to the elastic wave diffraction on inclusions were shadowed by

analytical difficulties (Graff, 1975; Achenbach, 1984). It is remarkable, however,

that the elastic counterpart of the well-known Talbot effect in optics (Talbot,

1836) is not so largely studied. Discovered by Henry Fox Talbot (1836), the

phenomenon involves the diffraction of a plane wave through a grating. As a

result of such a process, a regular diffraction structure, called the Talbot carpet,

appears which reproduces the structure of the grating at multiples of a certain

distance. This distance is now called the Talbot length. Lord Rayleigh (1881)
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proved that the appearance of the Talbot structure was a consequence of the

Fresnel diffraction. He also determined the Talbot length zT = 2a2/λ, where

a is the period of the grating and λ is the wavelength of the incident periodic

wave.

The interest to the Talbot effect, i.e. to the diffraction through a grating

is recently increased due to novel possible applications of the physical phenom-

ena related to the diffraction: for example, atom lithography (Lee et al., 2012),

quantum and optical carpets (Berry et al., 2001), electron spin effect (Tang et al.

(2012)), effects of metallic gratings (Sanchez-Brea et al., 2007), phononic crys-

tals (Hou & Assouar, 2010; Every & Maznev, 2010), behavior of metamaterials

(Zhao et al., 2011), etc. Clearly the Talbot effect in solids needs more detailed

analysis because this is a basic case of the diffraction phenomenon. The demon-

stration of the elastic Talbot effect (Berezovski et al., 2014) was performed in

full analogy with optical case (Knopoff, 1956)), i.e., under the Kirchhoff as-

sumption that distances from the aperture is larger than wavelengths and the

grating is rigid. However, it is practically impossible to implement a perfectly

rigid grating into an elastic material. It is worth, therefore, to investigate wave

patterns appearing in a more suitable elastic grating case. It is clear that fol-

lowing the theory of elasticity both the longitudinal and transverse waves must

be taken into account in the diffraction pattern.

In spite of the linearity of governing equations of classical elasticity, it was

possible to construct solutions to diffraction problems only for rather simple

problems like, for example, the diffraction from a single rigid barrier in an

elastic medium by using the Wiener-Hopf method (Graff, 1975), the interaction

of an impact wave with a rigid circular disc (Hirose & Achenbach, 1988) and the

interaction of an impact wave with a rigid plane inclusion (Mykhaskiv, 2005).

The situation is changed with the growth of computational power and the

progress in numerical techniques. The development of finite difference (Appelö

& Petersson, 2009), finite element (Ham & Bathe, 2012), and finite volume (LeV-

eque, 1997) algorithms for wave propagation in solids resulted in the numerous

applications to nondestructive testing (Wu, 1999; Ginzel, 2007; Aggelis, 2013).
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An example of an effective numerical analysis is a study of the guided waves at a

periodic array of coplanar slits using Bloch harmonics (Every & Maznev, 2010).

Design of new materials like phononic crystals (Pennec et al., 2010) demands

even more accurate prediction of the wave propagation in structured solids.

The advantage of numerical simulation is its generality, capable of predicting

accurate wave fields for any composite with arbitrarily distributed scatterers.

In the case of elastic wave propagation, the wave field can be simulated accu-

rately by solving the elastodynamic equations for the matrix and the scatterers

respectively. In what follows we present the results of numerical simulations of

elastic wave propagation for simple geometry of substructure with different ma-

terial properties. We limit ourselves by the plane strain case since it is sufficient

to demonstrate basic effects. We do not apply any kind of homogenization; all

computations are performed directly for given materials.

In Section 2 the numerical procedure is described briefly. The reference wave

pattern due to the rigid grating is reviewed in Section 3. Section 4 is devoted to

the results of numerical simulations of wave patterns due to the elastic grating.

Transmittance and the influence of wavelength are analyzed in Sections 5 and

6, respectively. An unexpected result for the energy localization is reported in

Section 7. Finally, in Section 8, conclusions are given stressing the emergence

of wave patterns and the localization of energy. The governing equations and

its dimensionless form are presented in Appendix 1. The important problem of

boundary conditions is explained in Appendix 2.

2. Numerical procedure

The governing system of equations (see Appendix 1) is solved numerically

by means of the conservative finite-volume wave-propagation algorithm, which

was proposed by LeVeque (1997, 2002) and modified for the application to front

propagation by Berezovski et al. (2000); Berezovski & Maugin (2001, 2002).

The algorithm was successfully applied for the wave propagation simulation in

inhomogeneous solids (Berezovski et al., 2008).
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The modification of the wave-propagation algorithm (Berezovski & Maugin,

2002) is based on the non-equilibrium jump relations at the boundaries between

computational cells. The main idea in the construction of the numerical al-

gorithm is the consideration of every computational cell as a thermodynamic

system (Muschik & Berezovski, 2004). Since we cannot expect that this ther-

modynamic system is in equilibrium, its local equilibrium state is described

by averaged values of field quantities. The use of cell averages is a standard

procedure in the finite-volume methods. What is non-standard that is the in-

troduction into consideration so-called ”excess quantities” in the spirit of the

thermodynamics of discrete systems (Muschik & Berezovski, 2004).

Excess quantities represent the difference between values of true and aver-

aged quantities (Berezovski et al., 2008):

vi = v̄i + Vi, σij = σ̄ij +Σij . (1)

Here vi are components of the velocity vector, σij are components of the stress

tensor, overbars denote averaged quantities, and capital letters correspond to

excess quantities.

Though excess quantities are determined formally everywhere inside com-

putational cells, we need to know only their values at the boundaries of the

cells, where they play the role of numerical fluxes that describe the interactions

between neighboring cells (Berezovski, 2011). These excess quantities are cal-

culated by means of jump relations at the boundaries between cells (Berezovski

et al., 2008). It should be emphasized that jump relations used here provide

the continuity of unknown fields at the boundaries between computational cells.

The advantage of the algorithm is that every discontinuity in parameters is

taken into account by the exact solution of the Riemann problem at each in-

terface between discrete elements. The reflection and transmission of waves at

each interface are handled automatically for any inhomogeneous media. The

applied algorithm is conservative, stable up to the Courant number equal to 1,

high-order accurate, and thermodynamically consistent (Berezovski et al., 2008;

Berezovski & Maugin, 2001).
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3. Wave pattern due to rigid grating

As it was shown recently (Berezovski et al., 2014), the well-known Talbot

effect in optics can be observed also in the case of elastic waves. The corre-

sponding simulations, however, were performed for the case of perfectly rigid

gratings. Here we demonstrate first a case where the size of rigid inclusions are

equal to each other and to the distance between them. This scenario allows us

to consider the problem independently from the length scales (see Appendix 1).

The geometry of the problem is shown in Fig. 1a. The grating is placed at 100

space steps from the left boundary.

The monochromatic plane wave is excited at the left boundary of the com-

putational domain. The wavelength of the incident wave is equal to the size of

the grating (20 space steps in the discretized computational domain). Bound-

ary conditions at lateral boundaries are periodic (like Eqs. (47) -(48)). At the

right boundary, the non-reflective boundary conditions (like Eqs. (45) -(46)) are

applied. Note that in order to model rigid inclusions, all velocities and stresses

are prescribed to be zero inside the inclusions. Additionally, boundary condi-

tions for fixed boundary (similar to Eq. (40)) are prescribed at each side of the

inclusion. Calculations performed up to 1400 time steps to avoid the influence

of any reflection from the left boundary which is placed virtually at 500 space

steps upstream the grating. It must be stressed that in this 2D elastic case both

longitudinal and transverse wave exist.

The contour plots for the normal stress field along the longitudinal axis are

shown in Fig. 1. The self-imaging Talbot carpet in the case of rigid grating is

clearly seen in the contour plot (Fig. 1b). The emergent pattern is similar to

this presented in (Berezovski et al., 2014). The calculated pattern corresponds

to the stress distribution at 1400 time steps. This case of rigid inclusions serves

as the reference example for the comparison with the gratings composed by

elastic scatterers.
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Figure 1: Contour plots (Talbot carpets) of the normal stress field. a) Geometry of the

problem. b) Talbot carpet for rigid inclusions at 1400 time steps. c) Elastic case with low

contrast materials. d) Elastic case with high contrast materials.
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4. Wave patterns due to elastic grating

The perfectly rigid grating is an idealization suited well for optics but hardly

realized in solids. That is why we consider a more practical case with an elastic

grating within an elastic matrix. To extend the results onto fully elastic case,

we have chosen first the case when properties for the matrix material and the

grating material differ considerably. Later this case is referred as high contrast

materials.

4.1. High contrast materials

Namely, the properties of the carrier material ρ=8900 kg/m3, cp=6040 m/s,

cs=3000 m/s correspond to a metal like Nickel, and grating properties corre-

spond to those for Lucite: ρ=1100 kg/m3, cp=2610 m/s, cs=1140 m/s. The

geometry of the problem remains the same as above, as well as loading and

boundary conditions. As it was noted above (Section 2), the reflection and

transmission of waves at each interface of an inclusion is handled automatically.

As we can see in Fig. 1d, the appeared self-imaging wave pattern is very similar

to that in the case of the rigid grating (Fig. 1b) because in both cases there is

a big difference in the material properties.

4.2. Low contrast materials

To continue the investigation of the influence of the variation of material

properties, we turn to the case where the properties for the matrix material and

the material of the grating do not differ considerably. This case is later referred

as low contrast materials. Remaining the properties of the matrix material as in

a metal like Nickel with ρ=8900 kg/m3, cp=6040 m/s, cs=3000 m/s, we choose

the properties of grating material like those for Zinc: ρ=7100 kg/m3, cp=4210

m/s, cs=2440 m/s. We still keep the geometry of the problem as above, as well

as loading and boundary conditions. As a result, we obtain again a self-imaging

wave pattern but with the different shape of formed wave packets (Fig. 1c).

The difference in the distribution between normal stresses in longitudinal and

transverse directions (and also shear stresses) is shown in Fig. 2. The normal
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Figure 2: Contour plots of the stress field. a) Longitudinal normal stress. b) Transverse

normal stress. c) Shear stress.

stress in the transverse direction has maximum amplitudes immediately after

the grating and further on a smaller, rather uniformly distributed pattern is

generated. Shear stresses demonstrate uniform pattern everywhere downstream

the grating.

4.3. Overall remarks

In general, self-imaging wave patterns appear in all cases but certain dif-

ferences can be noticed. First, the main difference is seen in the near vicinity

downstream the grating because the interference pattern is significantly influ-

enced by the elasticity of inclusions. Later the patterns are slightly different

but the cases with rigid and soft (high contrast) inclusions are more similar to
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Figure 3: Normal stress distribution along centerline due to diffraction grating.

each other than the case with low contrast materials.

The similarity in elastic wave propagation in the cases of rigid and very soft

gratings is confirmed by the comparison of the normal stress distribution along

the centerline shown in Fig. 3. Downstream the grating, the corresponding wave

profiles are close to each other. At the same time, these profiles are essentially

different from the wave profile for the low contrast in material properties of

matrix and inclusions. It should be noted that the stress values are normalized

by the initial normal stress amplitude. The grating is placed between 100 and

120 space steps.

5. Transmittance

The regular wave pattern emerges in the case of permanent (or long enough)

monochromatic plane wave loading. This is again an idealized situation, which

does not allow to assess the transmittance properties of gratings. The transmit-

tance can be observed for the finite pulse loading. For this purpose the finite
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Figure 4: Normal stress distribution along centerline for pulse loading. The box shows the

shape of initial pulse.

pulse composed by two sinusoidal signals was generated at the left boundary.

The attenuation of this signal determines the transmittance of a grating. The

results of calculation of the normal stress distribution along the centerline in

the case of the pulse loading (Fig. 4) show that the transmittance in the case

of high difference in material properties (both for rigid and soft inclusions) is

about 0.3, whereas for the low difference in the properties it is much higher (0.7

for the considered case of Ni as matrix and Zn for inclusions). It is clear that

the transmittance should be equal to one if the grating is made from the same

material as the matrix. It should be noted that the transmittance cannot be

reduced to the simple reflection and transmission coefficients due to the elastic

interaction between scatterers and matrix.
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6. Wavelength influence

Up to now the calculations were performed for the induced wavelength equal

to the grating size. To demonstrate how the wavelength influences the wave

pattern formation, results of calculations for four different wavelength are shown

in Fig. 5. The geometry of the problem as well as boundary conditions are the

same as above for low contrast materials.

As it is observed, the self-imaging wave pattern is almost lost for the wave-

lengths which are twice shorter (Fig. 5a) or twice longer (Fig. 5d) than the

grating size. Nevertheless, the interference patterns demonstrate certain regu-

larity. For wavelengths more closer to the grating size we see the emergence of

the more clear patterns (Fig. 5b,c). However, these patterns differ significantly

from the cases shown in Fig. 1 with the wavelength equal to grating size.

7. Energy localization

Besides the stress field, it is useful to know the distribution of the energy

density. The strain energy density of an elastic isotropic material depends on

the strain tensor as follows (Sadd, 2009):

W =
1

2
(σijεij). (2)

In the considered plane strain case ε13 = ε23 = ε33 = 0, and the expression for

the strain energy density is reduced to

W =
1

2
(σ11ε11 + σ22ε22 + 2σ12ε12). (3)

The kinetic energy density is determined by velocities

K =
1

2
ρ(v21 + v22). (4)

The comparison of energy distribution (W +K) along centerline for rigid, soft,

and hard materials of inclusions is presented in Fig. 6. The distribution of

energy downstream the grating for rigid and soft inclusions are very similar.

However, there is a big difference between them in the neighborhood of the
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Figure 5: Contour plots of the normal stress field for low contrast in material properties. a)

Wavelength is equal to 10 space steps. b) Wavelength is equal to 15 space steps. c) Wavelength

is equal to 30 space steps. d) Wavelength is equal to 40 space steps.
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Figure 6: Energy distribution along centerline.

grating. The energy localization in the case of soft inclusions is induced by

a big difference in the properties of the matrix material and the material of

the grating and appears due to the elastic interaction between the matrix and

scatterers. The overall energy distribution is shown in Fig. 7.

To analyze the energy localization in more details, we calculated the kinetic

and elastic energy separately in the case of high contrast materials (soft inclu-

sions). The results of their distribution along centerline are presented in the

Fig. 8. It is clear that the kinetic energy is responsible for the energy localiza-

tion due to high values of the particle velocity occurring immediately after the

grating. One can observe that kinetic and elastic energies have an anti-phase

synchronization upstream the grating, while downstream the grating they are

synchronized in phase. The grating looks like an alternator of the synchroniza-

tion for energy in elastic waves. The similar distribution of elastic and kinetic

energy in the case of rigid inclusions is shown in Fig. 9. The comparison with

the case of soft inclusions demonstrate that the change of the synchronization
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15



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  100  200  300  400  500  600

D
im

e
n

s
io

n
le

s
s
 e

n
e

rg
y
 a

m
p

lit
u

d
e

Space steps

kinetic energy
elastic energy

Figure 9: Kinetic and elastic energy distribution along centerline for rigid inclusions. (Note

the different scale from Fig. 8)

takes place in both cases, but there is no energy localization in the case of rigid

inclusions.

8. Conclusions

There are considerable mathematical difficulties in finding analytical solu-

tions for elastic wave propagation in inhomogeneous elastic solids. An excellent

overview on earlier results is given by Mow & Pao (1971) which actually sum-

marizes the efforts of analysis. Since then the possibilities of computational

mechanics have been enormously increased. It is worth, therefore, to have effi-

cient computational tools for the prediction of wave interactions with inhomo-

geneities. The applied version of the wave propagation algorithm is a robust,

flexible, and efficient method for numerical experiments with the elastic wave

propagation in inhomogeneous solids (Berezovski et al., 2008). By means of this

numerical method we are able to demonstrate the elastic Talbot effect which is
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characteristic for wave diffraction in optics (Talbot, 1836).

Numerical simulations of the elastic wave diffraction on elastic gratings show

both similarities and differences with the case of a rigid grating where waves are

not transmitted through inclusions. The similarity is in the emergence of the

self-imaging wave pattern for a narrow region of wavelengths close to the size

of the grating. The variation of wave length (i.e. frequency) of the initial wave

influences significantly the emerged pattern. For long waves the characteristic

interference pattern is seen only at the close vicinity of the grating, while for

the short waves the pattern is not formed at all. Variation of elastic properties

of inclusions does not alter much the wave pattern but modifies the distribution

of energy behind the grating.

The main difference from the case of the rigid grating is the energy localiza-

tion in the middle of slits at the vicinity of inclusions in the case of high contrast

materials (soft inclusions). This unexpected result is due to a complicated in-

terference and the influence of elasticity of the grating. At the same time, the

overall self-imaging pattern in this case is very similar to the case of the rigid

grating, whereas the low contrast materials exhibit significantly distinct wave

patterns.

To demonstrate the influence of elastic properties of scatterers and matrix on

the wave diffraction, we constrained ourselves by the simplest geometry with the

normal loading direction. We did not impose any special boundary conditions

at boundaries of inclusions. Surprisingly, even in this uncomplicated case the

accounting of elasticity results in an unexpected energy localization. Certainly

there are many more sophisticated cases where the variation in geometry and

properties of scatterers and matrix, as well as in loading directions, may lead to

an unusual behavior of waves (see, e.g., Every (2008); Colquitt et al. (2015)).

Our goal was to attract the attention to inherent elastic effects.
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9. Appendix 1: Plane strain elasticity

Numerical simulation of elastic wave propagation is based on the solution of

equations of elasticity. Neglecting both geometrical and physical nonlinearities,

we can write the bulk equations of homogeneous linear isotropic elasticity in the

absence of body force as follows (Barber, 2009):

ρ0
∂vi
∂t

=
∂σij

∂xj

, (5)

∂σij

∂t
= λ

∂vk
∂xk

δij + µ

(

∂vi
∂xj

+
∂vj
∂xi

)

, (6)

where t is time, xj are spatial coordinates, vi are components of the velocity

vector, σij is the Cauchy stress tensor, ρ0 is the density, λ and µ are the Lamé

coefficients.

Consider a sample that is relatively thick along x3, and where all applied

forces are uniform in the x3 direction. Since all derivatives with respect to x3

vanish, all fields can be viewed as functions of x1 and x2 only. This situa-

tion is called plane strain. The corresponding displacement component (e.g.,

the component u3 in the direction of x3) vanishes and the others (u1, u2) are

independent of that coordinate x3; that is,

u3 = 0, ui = ui(x1, x2), i = 1, 2. (7)

It follows that the strain tensor components, εij are

εi3 = 0, εij =
1

2
(ui,j + uj,i), i, j = 1, 2. (8)

The stress components follow then

σ3i = 0, σ33 =
E

1− 2ν

(

ν

1 + ν
εii

)

, i = 1, 2. (9)

σij =
E

1 + ν

(

εij +
ν

1− 2ν
εkkδij

)

, i, j, k = 1, 2, (10)

where E is the Young’s modulus, ν is the Poisson’s ratio, δij is the unit tensor.

Inversion of Eq. (10) yields an expression for the strains in terms of stresses:

εij =
1 + ν

E
(σij − νσkkδij) , i, j, k = 1, 2. (11)
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System of Eqs. (5)-(6), specialized to plane strain conditions by Eqs. (7)-(11)

has the form

ρ
∂v1
∂t

=
∂σ11

∂x
+

∂σ12

∂y
, (12)

ρ
∂v2
∂t

=
∂σ21

∂x
+

∂σ22

∂y
. (13)

Accordingly, compatibility conditions are represented as

∂ε11
∂t

=
∂v1
∂x

, (14)

∂ε12
∂t

=
1

2

(

∂v1
∂y

+
∂v2
∂x

)

, (15)

∂ε22
∂t

=
∂v2
∂y

. (16)

Stress-strain relations (the Hooke’s law) close the system of governing equations

σ11 = (λ+ 2µ)ε11 + λε22, (17)

σ12 = σ21 = 2µε12, (18)

σ22 = (λ+ 2µ)ε22 + λε11. (19)

Time derivatives of stress-strain relations together with compatibility conditions

determine
∂σ11

∂t
= (λ+ 2µ)

∂v1
∂x

+ λ
∂v2
∂y

, (20)

∂σ22

∂t
= λ

∂v1
∂x

+ (λ+ 2µ)
∂v2
∂y

, (21)

∂σ12

∂t
=

∂σ21

∂t
= µ

(

∂v1
∂y

+
∂v2
∂x

)

. (22)

These equations together with the balance of linear momentum (12)–(13) form

the system of equations, which is convenient for a numerical solution.

9.1. Dimensionless variables

In the grating problem we have three independent space scales:

• the individual slit size a,
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• the width of the plate (slit thickness) w ,

• the wavelength L.

The time scale of the problem is determined by means of the longitudinal wave

speed cp and the reference wavelength L as follows:

t0 =
L

cp
. (23)

Introducing dimensionless variables

X =
x

a
, Y =

y

w
, T =

t

t0
=

tcp
L

, (24)

and dimensionless unknowns

Vi =
vi
cp

, Σij =
σij

σ0

, (25)

we can re-write the governing equations in the form

ρc2p
L

∂V1

∂T
=

σ0

a

∂Σ11

∂X
+

σ0

w

∂Σ12

∂Y
, (26)

ρc2p
L

∂V2

∂T
=

σ0

a

∂Σ21

∂X
+

σ0

w

∂Σ22

∂Y
. (27)

σ0cp
L

∂Σ11

∂T
=

(λ+ 2µ)cp
a

∂V1

∂X
+

λcp
w

∂V2

∂Y
, (28)

σ0cp
L

∂Σ22

∂T
=

λcp
a

∂V1

∂X
+

(λ+ 2µ)cp
w

∂V2

∂Y
, (29)

σ0cp
L

∂Σ12

∂T
=

σ0cp
L

∂Σ21

∂T
=

µcp
w

∂V1

∂Y
+

µcp
a

∂V2

∂X
. (30)

The natural choice of the scale for stresses follows from Eqs. (26) and (27)

σ0 = ρc2p = λ+ 2µ. (31)

Such a choice of the characteristic stress σ0 reduces the governing equations to

1

L

∂V1

∂T
=

1

a

∂Σ11

∂X
+

1

w

∂Σ12

∂Y
, (32)

1

L

∂V2

∂T
=

1

a

∂Σ21

∂X
+

1

w

∂Σ22

∂Y
. (33)

1

L

∂Σ11

∂T
=

1

a

∂V1

∂X
+

λ

w(λ + 2µ)

∂V2

∂Y
, (34)
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1

L

∂Σ22

∂T
=

λ

a(λ+ 2µ)

∂V1

∂X
+

1

w

∂V2

∂Y
, (35)

1

L

∂Σ12

∂T
=

1

L

∂Σ21

∂T
=

µ

w(λ+ 2µ)

∂V1

∂Y
+

µ

a(λ+ 2µ)

∂V2

∂X
. (36)

As one can see, there exists the specific case characterizing by the equality of all

scales (L = a = w), where the wavefields depend on material properties only.

This distinguished case is used as the main example in numerical simulations of

the interaction of elastic waves with an elastic grating.

10. Appendix 2: Boundary conditions

Boundaries in solid mechanics can be classified as (without external loading)

1. fixed boundary, i.e. velocities at the boundary are zero;

2. free boundary, i.e. no stresses acting at the boundary;

3. non-reflective boundary, which means the absence of any reflection.

Additionally, periodic boundary conditions may be also imposed.

10.1. Left boundary

Considering the left boundary as an example, we expect that the state of

cells adjacent to the left boundary is known (at least partly). For the proper

computations, we need to know as many values of averaged quantities in advance

as possible.

It should be noted that Riemann invariants along left-moving characteristic

line should be conserved here independently of the kind of the boundary, so that

(σ̄11)0m + (ρcp)0m
(v̄1)0m = (σ̄11)1m + (ρcp)1m

(v̄1)1m , (37)

(σ̄21)0m + (ρcs)0m (v̄2)0m = (σ̄21)1m + (ρcs)1m (v̄2)1m . (38)

The conservation of Riemann invariants allows to determine additionally the

values of average stresses explicitly.
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10.1.1. Left boundary - fixed

In the case of the fixed left boundary, averaged velocities should be zero

(v̄1)0m = 0, (v̄2)0m = 0. (39)

It follows from Eqs. (37) and (38) that

(σ̄11)0m = (σ̄11)1m + (ρcp)1m
(v̄1)1m , (σ̄21)0m = (σ̄21)1m + (ρcs)1m (v̄2)1m .

(40)

10.1.2. Left boundary - free

The absence of stresses at the free boundary means

(σ̄11)0m = 0, (σ̄21)0m = 0, (σ̄22)0m = 0. (41)

Accordingly, average velocities are computed by means of Eqs. (37) and (38)

(σ̄11)1m + (ρcp)1m
(v̄1)1m = (ρcp)0m

(v̄1)0m , (42)

(σ̄21)1m + (ρcs)1m (v̄2)1m = (ρcs)0m (v̄2)0m . (43)

10.1.3. Left boundary - non-reflective

In the non-reflective case, we expect that the Riemann invariants along char-

acteristic lines incoming from boundary cells should be zero:

(σ̄11)0m − (ρcp)0m
(v̄1)0m = 0, (σ̄21)0m − (ρcs)0m (v̄2)0m = 0. (44)

Together with the conservation of Riemann invariants (37) and (38) they form

the system of equations for the determination of values of averaged velocities

and stresses. The solution is the following:

2 (σ̄11)0m = 2 (ρcp)0m
(v̄1)0m = (σ̄11)1m + (ρcp)1m

(v̄1)1m , (45)

2 (σ̄21)0m = 2 (ρcs)0m (v̄2)0m = (σ̄21)1m + (ρcs)1m (v̄2)1m . (46)
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10.1.4. Left boundary - periodic

Considering periodic boundary conditions we suggest that the state of cells

at the left boundary is the same as the state of cells adjacent to the right

boundary

(v̄1)0m = (v̄1)nn−2m , (v̄2)0m = (v̄2)nn−2m , (47)

(σ̄11)0m = (σ̄11)nn−2m , (σ̄21)0m = (σ̄21)nn−2m . (48)

10.1.5. Left boundary - loading

External loading can be represented as a time-dependent state of bound-

ary cells. The general form of loading condition for horizontal components of

velocity and stress tensor

A (σ̄11)0m +B (v̄1)0m = f(t), (49)

together with the conservation of the corresponding Riemann invariant

(σ̄11)1m + (ρcp)1m
(v̄1)0m = (σ̄11)0m + (ρcp)0m

(v̄1)0m , (50)

forms the linear system of equations for the determination of values (σ̄11)0m

and (v̄1)0m. For example, if only stress is prescribed

(σ̄11)0m = f(t), (51)

then the corresponding velocity satisfies

(σ̄11)1m + (ρcp)1m
(v̄1)1m = f(t) + (ρcp)0m

(v̄1)0m . (52)

For shear components we have, similarly, the system of equations

C (σ̄21)0m +D (v̄2)0m = g(t), (53)

(σ̄21)1m + (ρcs)1m (v̄2)1m = (σ̄21)0m + (ρcs)0m (v̄2)0m , (54)

which determine the values of (σ̄21)0m and (v̄2)0m.

For other boundaries the boundary conditions are determined similarly.

These boundary conditions are used at every corresponding boundary by the

performing of calculations.
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