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Introduction 

It is well known in aviation that both non-standard air temperatures as well 
as non-standard sea-level pressures have a direct impact on the accuracy of 
indicated altitude as reported by a pressure altimeter.  While correcting for non-
standard sea-level pressure is relatively simple because it only requires knowledge 
of the pressure at only a single level, correcting for non-standard temperature is 
much more complex.  This is because corrections for temperature require 
knowledge of the mean temperature of the atmospheric layer between the surface 
and the aircraft’s altitude, a problem that has been documented as far back as the 
1920s (Brombacher 1926; Keifer 1936; Meisinger 1920).  Since routine upper air 
atmospheric observations were not widely available at that time, temperature 
corrections for altitude were based on a variety of different methods to 
approximate the layer-mean temperature, such as climatological temperature 
tables (Brombacher, 1926), simple averages of the surface temperature and the 
temperature at altitude (Brombacher, 1934), and graphical computations using 
adiabatic diagrams (Keifer 1936).   

Currently, the accepted practices for correcting altimeter reading vary 
depending on the type and stage of flight.  For aircraft approach and landing 
operations, the accepted practice for extreme cold temperature altimeter 
corrections are determined using surface temperature measurements combined 
with an assumed linear temperature profile (International Civil Aviation 
Organization [ICAO], 2006).  This practice is used despite the wide availability of 
high-resolution temperature data both in the vertical and the horizontal that would 
allow for accurate computations of layer-mean temperatures and, therefore, 
accurate altimeter corrections.   For en route operations in Class A airspace, 
airline and military transport pilots often use D-values via computer flight plans to 
provide altitude corrections for temperature.  First defined by Bellamy (1945), the 
D-value provides the difference between the pressure altitude of the aircraft and 
the true altitude. Therefore, for flights within Class A airspace, the D-value can be 
added directly to the altimeter’s indicated altitude to determine the aircraft’s true 
altitude, which works only because pilots in Class A airspace are required to fly 
pressure altitudes.  Thus, the D-value provides a relatively easy means of 
obtaining true altitude from indicated for terrain avoidance and performance 
calculation purposes.  For flights below Class A airspace, however, the traditional 
D-value provides limited useful information because pilots at these altitudes are 
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required to set their altimeters to the current altimeter setting, thus adding the D-
value to the indicated altitude does not result in true altitude.  However, numerical 
model data can be used to create detailed images of current and forecasted 
altimeter correction data for flights below Class A airspace through use of 
“corrected” D-value charts.   

The primary goal of this paper is to demonstrate a method, using a 
numerical model output, for creating detailed maps of altimeter corrections for 
both non-standard temperatures and pressures. This will be accomplished through 
the development of “corrected” D-values.  Corrected D-values are traditional D-
values corrected for non-standard pressure; thus, they correct both for non-
standard temperatures as well as non-standard sea-level pressure.  In short, the 
corrected D-value provides the difference between the indicated altitude and the 
true altitude when the altimeter is correctly set to the actual altimeter setting.  As 
with the traditional D-value, the key to calculating corrected D-values is high-
resolution numerical model data readily available operationally.  The paper begins 
with a background discussion, which includes a brief mathematical review of the 
role temperature plays in pressure altimetry followed by a more detailed review of 
two current methods used to correct altitude for cold temperatures.  Lastly, we 
derive and discuss the concept of corrected D-value, including potential uses in 
operations and education, as well as some of the limitations of the concept.  

Background 

The Role of Temperature in Pressure Altimetry 

Understanding the role of temperature in pressure altimetry can best be 
examined through the hypsometric equation; the derivation of which is well 
published in numerous meteorology textbooks and presented in the Appendix for 
completeness.  If the secondary of effects of humidity on air density are 
momentarily neglected, the hypsometric equation (1) states the height difference 
between two pressure surfaces is dependent only on the mean temperature of the 
layer.  Therefore, a colder layer-mean temperature will result in a smaller height 
difference between the two pressure surfaces than will a warmer layer.   

ℎ2 − ℎ1 =
𝑅
𝑔
𝑇� ln �

𝑝1
𝑝2
� (1) 
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 The challenge lies in the determination of the mean temperature of the 
layer. For sufficiently small layers, the mean can be accurately represented with a 
simple arithmetic mean (2), i.e., 
 

𝑇� =
𝑇1 + 𝑇2

2
, (2) 

 
where 𝑇1 and 𝑇2 are the temperatures at two different pressure levels.  For 
relatively large layers, such as between the surface and aircraft altitude, the simple 
arithmetic mean will likely not be representative of the actual mean temperature 
of the layer and therefore lead to large errors. This is especially true when large 
temperature inversions exist between the surface and aircraft altitude.  To see this, 
examine Figure 1. Figure 1a shows the simple layer-mean temperature through a 
temperature inversion that would result if calculated at only two points, the 
surface and the aircrafts altitude.  In this case, the mean temperature would be 
identically equal to the surface temperature, completely disregarding the warmer 
temperatures in the above layer. The result would be a layer-mean temperature 
significantly colder than the true mean therefore the hypsometric equation would 
result in an altitude significantly lower than actual.  However, if the same 
inversion was divided into multiple contiguous layers as in Figure 1b, the simple 
average temperature of each layer would be significantly more representative of 
the true average.  The total altitude could then be calculated by summing the 
heights of each individual layer.   
 

Figure 1 also serves to dispel a common misconception with students and 
even professionals alike (e.g., Graham, 2009) that if the surface temperature and 
pressure are both standard, then the atmosphere is standard.  With regards to 
temperature, the standard atmosphere not only assumes a surface temperature of 
15°C but also that the temperature decreases linearly with height at a constant rate 
of 6.5°C/km (through 0-11 km).  Clearly with an inversion, even if the surface 
temperature is standard, the temperature lapse rate would be far from constant. 
Thus, accurate altitude calculations require detailed knowledge of the entire 
temperature profile between the aircraft altitude and the ground, such as provided 
by numerical model output. We will use this approach in the next section when 
we derive and discuss the corrected D-value.  Before proceeding, however, it is 
enlightening to see the role the hypsometric equation currently plays in 
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calculating cold weather altimeter correction tables, such as those available in the 
Aeronautical Information Manual (AIM) (FAA, 2015).  We include the derivation 
of these tables below to provide a basis for comparison.   

 
Figure 1.  Mean Temperature Determination.  This figure illustrates the 
calculation of a simple arithmetic mean temperature of a temperature profile 
containing a low-level inversion using a single layer, (a), and multiple layers, (b). 

 
Review of Current Cold Temperature Correction Methods 

 
The cold-weather altimeter correction can be derived by first defining the 

relative (i.e., fractional) error (𝐸) between the actual height of a pressure surface 
above mean sea level (ℎ) and the height of the same pressure surface in the 
International Standard Atmosphere (ISA) or ℎ𝐼𝐼𝐼.  This error is defined as:  

𝐸 ≡ �
ℎ𝐼𝐼𝐼 − ℎ

ℎ �. (3) 
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Since pressure altimeters are calibrated to ISA, ℎ𝐼𝐼𝐼, represents the indicated 
altitude (corrected for mean sea level pressure by setting the Kollsman window to 
the current altimeter setting) while ℎ represents the true altitude above mean sea 
level pressure.  
 

Our interest here is relating 𝐸 to the temperature difference between the 
ISA and the actual atmosphere.  This can be accomplished through the use of the 
hypsometric equation (1) discussed earlier. Using the hypsometric equation 
allows the error, 𝐸, to be expressed in terms of the layer-mean temperature of the 
atmospheric layer in question and the layer-mean temperature of the same 
atmospheric layer in the standard atmosphere.  Here the height, ℎ, is taken to be 
the height difference (𝑧2 − 𝑧1) between a reference pressure, e.g. mean sea level 
pressure, and the pressure at altitude.  Making use of this substitution gives:   

𝐸 = �
𝑇�𝐼𝐼𝐼 − 𝑇�

𝑇�
�, (4) 

 
where 𝑇�𝐼𝐼𝐼 is the mean temperature, in Kelvin, of the layer in the standard 
atmosphere while 𝑇� is the mean temperature, also in Kelvin, of the layer in the 
actual or observed atmosphere.  The constant terms from the hypsometric 
equation cancel, as do the terms involving pressure.    

As mentioned earlier, in the ISA, the temperature decreases linearly with 
height below 11 km (36,000 ft)  at a rate of −6.5°C/km (−1.98K/kft).   Given a 
base temperature of 15°C (288.15 K), 𝑇𝐼𝐼𝐼 can be expressed as 𝑇𝐼𝐼𝐼 = 288.15 +
𝐿𝑧.   Using this, the arithmetic mean temperature of a layer of depth ℎ can be 
expressed as:  

𝑇�𝐼𝐼𝐼 = 288.15 + 0.5𝐿ℎ, (5) 
 
where 𝑇�𝐼𝐼𝐼 is in Kelvin, and 𝐿 is the tropospheric standard temperature lapse rate 
of –1.98 K/kft.  Note the standard temperature at mean sea level is assumed to be 
288.15K (15°C) regardless of whether or not the sea-level pressure is standard.   
For a mean sea level pressure deviation from a standard of 1" Hg, this introduces 
an additional error of less than one percent (2 K), even for temperatures as cold as          
–50°C.  
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A key assumption of the cold weather altimeter correction tables is that the 
actual environmental lapse rate is also linear and equal to the ISA temperature 
lapse rate.  Using this assumption, the mean temperature of the layer in the actual 
atmosphere can be expressed as: 

𝑇� = 𝑇𝑜 + 0.5𝐿ℎ, (6) 
 
where 𝑇𝑜 is the environmental (i.e., the station) temperature at mean sea level in 
Kelvin.  It’s important to note the atmospheric temperature rarely decreases at a 
constant rate, so this method provides only a rough approximation of actual 
conditions.   
 
  Substituting equations (5-6) back into (4) gives an expression for the 
relative error, 𝐸, in terms of only the surface temperature (𝑇𝑜) and the height 
above mean sea level (ℎ) in kft.   
 

𝐸 ≡ �
ℎ𝐼𝐼𝐼 − ℎ

ℎ � = �
288.15 − 𝑇𝑜
𝑇𝑜 + 0.5𝐿ℎ �

. (7) 

 
Thus, the necessary amount of altitude correction (𝐶) required by the pilot is 
simply the altimeter indicated altitude, ℎ, times the relative error, 𝐸, or  
 

𝐶 = ℎ ∗ �
288.15 − 𝑇𝑜
𝑇𝑜 + 0.5𝐿ℎ �

. (8) 

  
Note the importance of the sign.  When surface temperature is colder than 

standard, the correction will be positive, meaning the pilot would need to add this 
height difference to any minimum published height values to ensure safe altitudes.  
It’s also important to note this equation assumes the station is located at mean sea 
level, which is also rarely the case.  However, we can incorporate the effects of 
station elevation by again assuming a constant temperature lapse rate and using 
the station elevation (ℎ𝑠𝑠𝑠).  If the temperature (Kelvin) at the station is given as 
𝑇𝑠𝑠𝑠, and the temperature is assumed to increase at a rate of +1.98 K/kft  (−𝐿) 
during descent, the approximate sea-level temperature ( 𝑇�𝑜 ) can be expressed as:   
 
𝑇�𝑜 ≈ 𝑇𝑠𝑠𝑠 − 𝐿ℎ𝑠𝑠𝑠. (9) 
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Table 1. 
Altimeter Cold-temperature Correction Values (feet).  
 
 Station 
Temperature 
(⁰C) 

Indicated altitude above station elevation (feet) 
(Station Elevation 0 feet  MSL) 

500 1000 1500 3000 5000 
0 30 60 90 170 280 

-10 50 100 150 290 490 

-20 70 140 210 420 710 

-30 100 190 280 570 950 

-40 120 240 360 720 1210 

-50 150 300 450 890 1500 

Station 
Temperature 
(°C) 

Indicated altitude above station elevation (feet) 
(Station Elevation 5,000 feet  MSL) 

500 1000 1500 3000 5000 
0 10 20 30 60 100 

-10 30 60 90 180 300 

-20 60 110 160 310 520 

-30 80 150 230 450 760 

-40 100 200 300 600 1010 

-50 130 260 390 770 1300 

Station 
Temperature 
(⁰C) 

Indicated altitude above station elevation (feet) 
(Station Elevation 10,000 feet  MSL) 

500 1000 1500 3000 5000 

0 0 -10 -20 -50 -90 

-10 10 20 30 60 110 

-20 40 70 100 190 320 

-30 60 110 170 330 550 

-40 80 160 240 480 810 

-50 110 220 320 650 1090 
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Substituting (8) into (9) while including the height of both the station elevation 
and the altitude in our computation of the mean temperature, gives an altitude 
temperature correction (𝐶𝑠𝑠𝑠) for an altitude, ℎ, above the station elevation ℎ𝑠𝑠𝑠 
of: 
 

𝐶𝑠𝑠𝑠 = ℎ �
288.15 − 𝑇�𝑜

𝑇�𝑜 + 0.5𝐿(ℎ + ℎ𝑠𝑠𝑠)
�. (10) 

 
This is the same equation as provided in ICAO (2006) regarding altimeter 
temperature corrections.  The key difference between equations (8) and (10) is 
𝐶𝑠𝑠𝑠 assumes the station is located above mean sea level; therefore, the two 
expressions become equivalent when ℎ𝑠𝑠𝑠 is zero.  It should be noted that the 
published correction table in the AIM (FAA, 2015). This table was also 
constructed using (8), thus assuming the station is located at mean sea level.  
Table 1 provides the altimeter temperature correction (𝐶𝑠𝑠𝑠) in feet to the 
indicated altitudes given a temperature and station elevation. The table includes 
results for three different station elevations, 0, 5,000, and 10,000 ft MSL, 
respectively.   

There are two important results from Table 1.  First, the error grows with 
altitude for all cases. Once again illustrating there is no single additive constant 
for a given station temperature that works for all altitudes.  Second, for a given 
station temperature, the error is greater for a given altitude above the station if the 
station elevation is at mean sea level compared to higher station elevations.  This 
is again related to the hypsometric equation and the assumption of a linear 
temperature profile.  Since the temperature is assumed to warm linearly with 
descent between the station elevation and mean sea level, the mean temperature of 
the layer will be slightly warmer for the same station temperature when the station 
is located above mean sea level than if the station were located at mean- sea level.   
The slightly warmer mean temperatures result in smaller cold-temperature altitude 
corrections.  Thus, the assumption of a station at mean sea level, as published in 
the AIM (FAA, 2015), provides the most conservative correction.   
 
 While this method provides appropriate guidance for obstacle avoidance 
during approach and landing, it provides little information for cold-temperature 
corrections for enroute flight operations at altitudes greater than 5,000 ft AGL.  
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For en route flights, recommended corrections for cold temperatures are even 
more simplified.  ICAO (2006) recommends prescribed minimum obstacle 
clearances (MOCs) that are independent of observed temperature.  For terrain 
variations between 3,000-5,000 ft, ICAO (2006) simply recommends a MOC of 
1,476 ft.  While for terrain variations greater than 5,000 ft, ICAO (2006) 
recommends a MOC of 1,969 ft.   

In the next section, we develop a new method for cold-temperature 
correction that can be applied to any altitude and that works as well for general 
aviation (GA) aircraft below Class A airspace. This method uses numerical-model 
predicted temperature values to calculate the difference between the true altitude 
and the indicated altitude and therefore makes no assumption of a constant 
temperature lapse rate for the observed atmosphere.  Therefore, this method 
provides accurate temperature corrections even when temperature lapse rates 
deviate significantly from ISA lapse rates.     

Derivation of Corrected D-Value 

 To derive an expression for the corrected D-value, we again assume the 
atmosphere to be an ideal gas in hydrostatic balance.   The first step is to derive a 
simple expression for the indicated altitude corrected for non-standard pressure.  
The derivation begins with the hydrostatic balance equation for an ideal gas, i.e. 

𝑑𝑝
𝑑𝑧

= −
𝑔𝑝
𝑅𝑇

 (11) 

 
Since the temperature lapse rate in the standard atmosphere is defined to be 
constant, substituting 𝑇 = 𝑇𝑜 + 𝐿𝑧 into (11) gives the following expression. 
 
𝑑𝑝
𝑝

= −
𝑔𝑜
𝑅

𝑑𝑧
(𝑇𝑜 + 𝐿𝑧) (12) 

 
As before, 𝐿, is the standard temperature lapse rate, now expressed in SI units, 
i.e., –6.5K/1000m.  Here 𝑅 is the gas constant for dry air, which is set to 
287.053 J/(kg∙K). Integrating with respect to height from zero to an arbitrary 
geopotential altitude, ℎ(𝑝), above standard mean sea level pressure, 𝑝𝑜, while 
assuming 𝑔 is constant in the troposphere at 𝑔𝑜 = 9.80665 ms-2 (National 
Oceanic and Atmospheric Administration [NOAA], 1976) gives:   
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𝑝
𝑝𝑜

= �1 +
𝐿ℎ
𝑇𝑜
�
−𝑔𝑜𝑅𝑅

.  (13) 

 
Solving directly for altitude yields: 

ℎ =
𝑇𝑜
𝐿 ��

𝑝
𝑝𝑜
�
−𝑅𝑅𝑔𝑜 − 1� . (14) 

 
Equation (14) provides an expression for the pressure altitude (PA), which is 
similar in form to the expression used by the National Weather Service (NOAA, 
2015).  To obtain the indicated altitude (IA), the PA must be corrected for non-
standard sea-level pressures.  The same hydrostatic equation (12) can again be 
integrated for the height difference between the actual mean sea level pressure 
(𝑝𝑀𝐼𝑀) and standard mean sea level pressure (𝑝𝑜).  In the case when mean sea 
level pressure is greater than standard, the height difference must be added.  
When the mean sea level pressure is less than standard, the height difference must 
be subtracted.  Combining these results with (14) gives a single expression for the 
aircraft indicated altitude (ℎ𝐼𝐼) at an arbitrary pressure level, 𝑝, i.e.   

ℎ𝐼𝐼 =
𝑇𝑜
𝐿 ��

𝑝
𝑝𝑜
�
−𝑅𝑅𝑔𝑜 − �

𝑝𝑀𝐼𝑀
𝑝𝑜

�
−𝑅𝑅𝑔𝑜�.  (15) 

 
The next step is to determine the true altitude (ℎ𝑇𝐼) for comparison with 

the IA given by (15).  For ℎ𝑇𝐼, we again use the hypsometric equation; however, 
we now apply it to the height between two pressure levels, using the simple 
arithmetic mean temperature of the layer rather than a height-dependent 
temperature profile.  This yields:  
 

∆ℎ =
𝑅
𝑔𝑜
𝑇� ln �

𝑝𝑏
𝑝𝑠
�, (16) 

 

where ∆ℎ is the height difference or thickness between the two pressure surfaces, 
𝑝𝑠 is the top pressure surface, 𝑝𝑏 is the bottom pressure surface, and 𝑇� is the 
arithmetic mean of the temperatures at the top and bottom of the layer.  To 
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calculate the true altitude, we divide the atmosphere into several small layers 
commensurate with the resolution of the numerical model, and we determine the 
thickness of each layer using (16).  We then obtain the total height by summing 
the thicknesses of the individual layers.  This results in an expression for the true 
altitude (ℎ𝑇𝐼) of the atmospheric layer between mean sea level pressure and the 
pressure sensed at aircraft altitude by the altimeter: 
 

ℎ𝑇𝐼 = −
𝑅

2𝑔𝑜
� �(𝑇𝑠+1 + 𝑇𝑠) ln �

𝑝𝑠+1
𝑝𝑠

��
𝑁−1

𝑠=1

, (17) 

 
where 𝑝𝑁 and 𝑇𝑁 are the pressure and temperature, respectively, at altitude ℎ𝑇𝐼, 
while 𝑝1 and 𝑇1 are the pressure and temperature, respectively, at mean sea level.   
 

Since both (15) and (17) assume gravity to be constant, they technically 
result in geopotential altitudes (see Appendix) rather than the desired geometric 
altitudes.  Although the difference is small in the troposphere, additional accuracy 
can be obtained by converting geopotential height to geometric height using the 
following conversion from NOAA (1976),  
 

𝑍 = ℎ
𝑅𝑒

(𝑅𝑒 − ℎ), (18) 

 
where 𝑍 is the geometric height, ℎ is geopotential height, and 𝑅𝑒 = 6,356,766 m 
is the mean radius of the Earth (assumed constant with latitude here).  By 
applying (18) to both (15) and (17), we can now define the corrected D-value, 𝐷𝑐, 
as the difference between the geometric true altitude and the geometric IA: 
 
𝐷𝑐 = 𝑍𝑇𝐼 − 𝑍𝐼𝐼. (19) 
 

Atmospheric humidity also has an effect on altitude calculations because it 
affects the overall density of the air.  Though secondary to temperature effects, we 
can readily incorporate humidity by replacing the actual temperature in equation 
(18) with the virtual temperature, 𝑇𝑣 .  The virtual temperature is the temperature 
required for dry air to have the same density as air at the same temperature but 
with nonzero humidity.  Since humid air is less dense (lower average molecular 
weight) than dry air, the virtual temperature is always slightly warmer than the 
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actual temperature and therefore causes the layer heights to be slightly larger.  For 
most practical applications, the virtual temperature correction can be 
approximated by 𝑇𝑣 ≈ 𝑇(1 + 0.61𝑤), where 𝑇 is the air temperature in Kelvin 
and 𝑤 is the mixing ratio, i.e., the grams of water vapor per gram of dry air 
(Wallace and Hobbs, 2006).  Since the mixing ratio is readily available in 
numerical model output, the inclusion of humidity effects becomes trivial.  
Neglecting virtual temperature only results in temperature differences of typically 
less than 3K (1%) even in warm tropical atmospheres and less than 0.5K (0.2%) 
in cold arctic atmospheres.   

 
Corrected D-Value: Products and Application 

 
Product Generation 

We now apply equations (15-19) to the numerical model derived 
temperature, pressure and moisture output from the North American Mesoscale 
(NAM) model to create graphical displays of corrected D-value, 𝐷𝑐.  The NAM 
model produces gridded temperature and moisture fields over the U.S. with a 
horizontal resolution of 12 km using 60 vertical levels (National Centers for 
Environmental Prediction [NCEP], 2013).  The data is then interpolated to 
evenly-spaced vertical pressure levels in 25 mb increments, plus mean sea level 
pressure.   The model is run every six hours starting at 00Z and produces an 84-
hour forecast in three-hour increments (NCEP, 2013).  Results from the model for 
the 875mb, 750mb, and 650mb pressure levels (corresponding to pressure 
altitudes of 3,999 ft., 8091 ft., and 11,792 ft., respectively) are shown in Figures 
2-4.  These pressure levels were chosen to be representative of flight altitudes 
near 4,000 ft., 8,000 ft., and 12,000 ft, respectively.  For maximum detail, the 
products are displayed as images rather than traditional graphics, which use line 
contours.  This enables the user to see a wider range of structure in the data 
(Mosher, 2015).   The yellow, orange, red, and purple colors indicate the air is 
colder than standard, so the aircraft would be lower than indicated. The black line 
shows where the indicated altitude equals the true altitude.  The green and blue 
colors show where the air is warmer than the standard atmosphere, so the aircraft 
would be higher than indicated. 
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Potential Operational Applications 

The primary operational use for such products is to provide increased 
situational awareness and educational training for GA pilots. The graphical 
displays give pilots an immediate visual indication of the variation in altimeter 
error with respect to altitude, position, and time.  This is also useful for education.  
While most aviation weather textbooks and materials quantify the error associated 
with failing to adjust the altimeter for non-standard pressures, their discussions of 
the effects of non-standard temperature are typically more descriptive rather than 
quantitative in nature.  The errors are usually expressed as a percentage of the 
increase in the average temperature of layer (Lester, 2001) or estimated in terms 
of the temperature deviation from standard at a single flight level (FAA, 1975).   
Graphical images of corrected D-value provide students a more detailed 
quantification of the direct impacts of temperature on altimeter readings so they 
can better understand the variation and magnitude of potential errors.  Plus, since 
the model data includes forecasts, the images can also be looped or animated to 
demonstrate how the temperature error varies with time.  Lastly, graphical images 
of long-term averages could be compiled and animated to demonstrate how the 
error varies seasonally or monthly.   

A potential secondary use for corrected D-value charts could be to provide 
a measure of the necessary altitude correction to provide safe aircraft separation 
between aircraft using GPS altimetry and aircraft using pressure altimetry.  
Currently, altimeter errors due to temperature differences do not create problems 
for aircraft separation because the FAA requires all aircraft to use pressure 
altimeters.  Therefore, despite all altitudes being in error, they all have nearly 
identical errors so vertical separation is maintained.  However, since the accuracy 
of GPS altimeters is not sensitive to temperature, separation errors will exist 
between aircraft using GPS altimeters and those using pressure altimeters.  To 
mitigate this problem, tables of corrected D-values could be created similar to FB 
Wind bulletins and incorporated into flight planning.  This could potentially help 
ensure all aircraft maintain proper separation.  It should be emphasized that at 
present, this is not an issue because FAA regulations require all aircraft to use 
pressure altimeters.     
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Figure 2. Corrected D-Value forecast for an altitude of approximately 4,000 ft 
MSL valid on Friday, March 27, 2015 at 00Z.  The yellow, orange, red, and 
purple colors indicate the air is colder than standard, so the aircraft would be 
lower than indicated. The black line shows where the indicated altitude equals the 
true altitude.  The green and blue colors show where the air is warmer than the 
standard atmosphere, so the aircraft would be higher than indicated. 
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Figure 3. Corrected D-Value forecast for an altitude of approximately 8,000 ft 
MSL valid on Friday, March 27, 2015 at 00Z.  While the colors are the same as 
Fig. 2, the values of the colors are twice the values of Fig. 2. For example, the red 
areas in Fig. 2 represent values in the range -200 to -300 ft, while the red colors 
for Fig. 3 represent values in the range -400 to -600 ft.   
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Figure 4.  Corrected D-Value forecast for an altitude of approximately 12,000 ft 
MSL valid on Friday, March 27, 2015 at 00Z.  Again the color scheme is the 
same as in Figs. 2-3, but the values are different.  Here the reds represent values 
in the range -600 to -900 ft, i.e. the aircraft is actually 600 to 900 ft lower than 
indicated.  

Limitations 

One current limitation of using corrected D-value images for operations is 
the correction is only valid for individual pressure surfaces, not specific height 
surfaces.  For example, the corrected D-value can be applied to the 650 mb 
pressure surface, which is typically located near an altitude of 12,000 ft above 
mean sea level.  Since the actual 650 mb pressure surface may be higher or lower 
than 12,000 ft at a location on any given day, the correction represents only an 
approximation of that required for flights near an indicated altitude of 12,000 ft.  
Therefore, the pilot must choose the most appropriate pressure level (or pressure 
altitude) applicable for the flight.  To mitigate this problem, charts can be 
provided at multiple pressure altitudes to give a more detailed depiction of how 
the correction varies with pressure level.  By producing charts or tables in 50 mb 
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increments (approximately 1,500 ft intervals) below 18,000 ft, they should have 
sufficient resolution for providing accurate terrain avoidance guidelines.   

Summary and Conclusions 
 

Non-standard temperatures have a direct effect on the accuracy of 
altimeter readings, and quantifying the magnitude of the error cannot be 
accomplished using simple rules of thumb.  This is because the error depends on 
the vertical temperature structure of the atmospheric layer between the surface 
and the aircraft rather than the temperature at any single level.  However, by using 
a numerical model data output, combined with basic altitude equations, the effects 
of non-standard temperature on altimeter readings can readily be quantified and 
visualized.  Because the data stems from the numerical model output, not only can 
current analysis charts be provided, but forecasts of cold-weather impacts can be 
provided as well.  This would provide increased situational awareness for GA 
pilots, especially during their pre-flight planning stages.  Equally important, 
instructors at aviation schools can now demonstrate the effect of cold 
temperatures on altimeter corrections with visualizations.  These graphics would, 
therefore, provide both operational and educational benefits.   

 The corrected D-value forecast products shown here are currently 
available real-time via the internet at http://fltwx.db.erau.edu/aviationfcst.php.  
For future work, we plan to create similar graphics using additional pressure 
levels.  In addition, we are investigating the use of archived numerical model data 
to create seasonal and monthly averages of altimeter corrections to provide 
educational tools for use by both aviation and meteorology professors.   
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Appendix 
 

The derivation of the hypsometric equation relies on the assumption of 
hydrostatic equilibrium for an ideal gas, which stated simply, implies the vertical 
pressure gradient force is exactly balanced by the gravitational force.  To 
visualize this, imagine a small rectangular slab of atmosphere of area, 𝐴, 
thickness, ∆𝑧, and density, 𝜌, as shown in Fig. 1.  Now consider the three 
fundamental vertical forces acting on the slab.  On the top of the slab there is a 
pressure force exerted by the atmosphere above.  This negatively directed 
(downward) force is simply the atmospheric pressure at the top of the slab times 
the area of the slab, or stated mathematically, 𝐹𝑝𝑠 = −𝑝𝑠 ∙ 𝐴.  Likewise, the 
atmosphere below the slab is exerting a positively directed (upward) force, which 
is simply the atmospheric pressure at the bottom of the slab times the area, or 
𝐹𝑝𝑏 = +𝑝𝑏 ∙ 𝐴.  Lastly, the force of gravity is the mass of the slab multiplied by 
gravity.  Since mass is the density times volume, the negatively directed force of 
gravity can be expressed as 𝐹𝑔 = −𝜌𝐴∆𝑧 ∙ 𝑔.   For hydrostatic equilibrium balance 
to exist, these forces must sum to zero, i.e.,  

�𝐹 = 𝐹𝑝𝑠 + 𝐹𝑝𝑏 + 𝐹𝑔 = 0. 

Substituting our expressions from above gives:  

−𝑝𝑠 ∙ 𝐴 + 𝑝𝑏 ∙ 𝐴 − 𝜌𝐴∆𝑧 ∙ 𝑔 = 0 

Dividing through by mass (i.e., volume multiplied by density) and rearranging 
terms provides an expression for hydrostatic balance in terms of force per unit 
mass.   

𝑝𝑠 − 𝑝𝑏
𝜌∆𝑧

= −𝑔 

In the limit as ∆𝑧 → 0, the expression reduces to the classic hydrostatic equation,  

1
𝜌
𝑑𝑝
𝑑𝑧

= −𝑔. 
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Figure A1.  Balance of forces on an idealized slab of air.   

While the hydrostatic equation provides a relatively simple relationship 
between pressure and height, it is difficult to use in practice because it requires 
knowledge of density.  However, because air is an ideal gas, density can be 
related directly to temperature and pressure, i.e.,   

𝑝 = 𝜌𝑅𝑇, 

where 𝑅 is the gas constant for dry air.  Substituting into the hydrostatic equation 
gives 

𝑑𝑝
𝑝

= −
𝑔
𝑅
𝑑𝑧
𝑇

 

This equation can easily be integrated between the heights at two pressure levels, 
𝑝1 and  𝑝2, i.e.,    

� 𝑑ln𝑝
𝑝2

𝑝1
= −

𝑔𝑜
𝑅
�

𝑑𝑧
𝑇

ℎ(𝑝2)

ℎ(𝑝1)
.  

Here we have assumed gravity to be a constant with height, in which case the 
resulting height is the geopotential height.  For most aviation applications, and 
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especially GA applications, the difference between geopotential altitude and 
geometric altitude is negligible, less than 20 m (0.2%) even at the top of the 
troposphere (11 km).  Using geopotential height leaves temperature as the only 
remaining variable dependent on height (or pressure).  To complete the 
integration, knowledge of how temperature varies with height (or pressure) is 
required.  Typically, temperature is either assumed to be a linear function of 
height or a constant, e.g., the mean value for the layer.  When working with 
observed temperature profiles, the layer-mean temperature is most commonly 
used, which is defined as:   

𝑇� =
∫ 𝑇𝑑𝑝𝑝2
𝑝1

∫ 𝑑𝑝𝑝2
𝑝1

. 

Making this substitution gives the desired relationship between height change 
(thickness) and pressure change, which is known as the hypsometric equation.      

ℎ2 − ℎ1 =
𝑅
𝑔𝑜
𝑇� ln �

𝑝1
𝑝2
� 

 

 

22

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 2 [2015], Iss. 2, Art. 4

https://commons.erau.edu/ijaaa/vol2/iss2/4
DOI: https://doi.org/10.15394/ijaaa.2015.1060


	Numerical Model Derived Altimeter Correction Maps for Non-Standard Atmospheric Temperature and Pressure
	Scholarly Commons Citation

	Numerical Model Derived Altimeter Correction Maps for Non-Standard Atmospheric Temperature and Pressure
	Cover Page Footnote

	Numerical Model Derived Altimeter Correction Maps for Non-Standard Atmospheric Temperature and Pressure

