
Student Works

Spring 2017

Survey of Branch Prediction, Pipelining, Memory Systems as Survey of Branch Prediction, Pipelining, Memory Systems as

Related to Computer Architecture Related to Computer Architecture

Kristina Landen
Embry-Riddle Aeronautical University

Follow this and additional works at: https://commons.erau.edu/student-works

 Part of the Computer and Systems Architecture Commons

Scholarly Commons Citation Scholarly Commons Citation
Landen, K. (2017). Survey of Branch Prediction, Pipelining, Memory Systems as Related to Computer
Architecture. , (). Retrieved from https://commons.erau.edu/student-works/57

This Undergraduate Research is brought to you for free and open access by Scholarly Commons. It has been
accepted for inclusion in Student Works by an authorized administrator of Scholarly Commons. For more
information, please contact commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217172776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/student-works
https://commons.erau.edu/student-works?utm_source=commons.erau.edu%2Fstudent-works%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=commons.erau.edu%2Fstudent-works%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/student-works/57?utm_source=commons.erau.edu%2Fstudent-works%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

1

Survey of Branch Prediction, Pipelining, Memory Systems as Related to

Computer Architecture

Honors Directed Study Research Project

Kristina Landen

EE/CE/SE Department

College of Engineering

landenk@my.erau.edu

 Dr. Brian Davis

EE/CE/SE Department

College of Engineering

davisb22@erau.edu

Abstract

This paper is a survey of topics introduced in Computer Engineering Course CEC470:

Computer Architecture (CEC470). The topics covered in this paper provide much more

depth than what was provided in CEC470, in addition to exploring new concepts not

touched on in the course. Topics presented include branch prediction, pipelining, registers,

memory, and the operating system, as well as some general design considerations for

computer architecture as a whole.

The design considerations explored include a discussion on different types of instruction

types specific to the ARM Instruction Set Architecture, known as ARM and Thumb, as well

as an exploration of the differences between heterogeneous and homogeneous multi-

processors.

Further sections explain the interoperability of various portions of the computer architecture

with a focus on performance optimizations. Branch prediction is introduced, and the quality

improvement which branch prediction provides is detailed. An explanation of pipelining is

given followed by how pipelining on different types of processors may be difficult.

Registers, one of the fundamental parts of a computer, are explained in detail, as well as

their importance to computer systems as a whole.

The memory and operating systems sections tie this paper together by delving deeper into

the architecture of computers, then resurfacing with how the software and hardware interact

through the operating system.

This paper concludes by tying each section discussed together and presenting the importance

of computer architecture.

1 Introduction

The purpose of this paper is to present the research conducted in parallel with the Computer

Engineering course CEC470: Computer Architecture (CEC470) in order to fulfill the

requirements of an Honors Directed Study. This Honors Directed Study acts as a survey of

the topics introduced in CEC470, and then goes beyond the content which was presented in

2

the lecture of this course. If more information is desired on any of the topics covered in this

survey, see Section 9: References or Computer Architecture: A Quantitative Approach 5th

Ed. by David Patterson and John L. Hennessy1, the textbook for CEC470.

This paper will present the information from this survey in the most effective way possible.

Topical coverage starts at a high level to provide general information regarding processor

design, then moves into the specifics of processor implementation, and finally moves away

from the physical aspects of processors to explore the interaction of software with

processors.

2 Design Considerations

When any new system is being designed, there are a number of engineering decisions that

must be made. However, before these decisions can be made, possible outcomes to each

decision must be evaluated to ensure the decision is as accurate as possible. This section

provides some analysis of design considerations that may be made in the design of computer

systems.

Section 2.1: ARM vs. Thumb provides analysis on when each instruction type is used.

ARM and Thumb are different kinds of instructions used in the ARM Instruction Set

Architecture (ISA)1. Section 2.2: Heterogeneous vs. Homogeneous discusses the difference

between heterogeneous processors and homogenous processors as well as which type may

provide a performance increase in given situations.

2.1 ARM vs. Thumb

This section will discuss the performance potential of ARM and Thumb

instructions, and determine whether or not there is ever a situation where both

ARM and Thumb instructions may be used in conjunction. First, background

information regarding ARM and Thumb will be provided in order to effectively

convey the differences between ARM and Thumb. Next, the differences between

ARM and Thumb which result in a change in performance between the two will be

highlighted. Finally, this section will discuss whether or not the use of both ARM

and Thumb instructions is desired in any situation.

ARM and Thumb are both types of instruction that are used in the ARM Instruction

Set Architecture (ISA)1. The primary difference between the two instruction types

is size; ARM instructions are 32 bits versus Thumb instructions are half the size of

ARM instructions at 16 bits. In some cases, ARM instructions are composed of

Thumb instructions. This will decrease the number of total instructions in a

program because the Thumb instructions will be executed as if they were one ARM

instruction. However, this translation is not always possible because there is not a

direct conversion between all ARM and Thumb instructions.

3

Cost, performance and power are just a few parameters that designers focus on.

Being able to use a combination of ARM and Thumb code within an application

enables designers to balance the cost, performance and power characteristics of the

overall system. Where performance is the primary concern, generally the fewer

instructions required the better, therefore, using ARM instructions alone will

usually give the best results2. Writing applications using Thumb instructions will

enable more of the most frequently used instructions to be stored in on-chip

memory. This translates to a higher level of code density and results in a lower

level of power use because fewer memory accesses are made.

In order to achieve the desired balance of power, performance and code density to

produce an optimized design, designers tend to use a mixture of both ARM and

Thumb instructions2. One way designers may do this is by identifying performance

critical code and using ARM instructions for this portion of the code. Where

possible, Thumb instructions are used for the remainder of the code to minimize

memory footprint.

2.2 Heterogeneous vs. Homogeneous

This section will discuss the differences between heterogeneous multiprocessors

and homogeneous multiprocessors, then provide analysis on the amount of

generalized performance improvement is required for a heterogeneous

multiprocessor system to be used over a homogeneous multiprocessor system.

First, an explanation of the differences between a heterogeneous multiprocessor

and a homogeneous multiprocessor will be presented. Through this explanation,

facets of each design will show how the performance of each system differs.

Finally, this section will discuss how much performance improvement a

heterogeneous multiprocessor system must provide the system overall in order

justify the additional cost of implementation.

A homogeneous multiprocessor is a processor which has multiple processor cores

on the same chip where each core is of the same type1. A heterogeneous

multiprocessor is a processor which has multiple cores on the same chip where at

least one of the processors on the chip is of a different type than the rest1. An

application which may use a homogeneous multiprocessor is one which does not

have much variety in its computations, such as a desktop computer. In contrast,

heterogeneous multiprocessors may be used in applications where many different

kinds of computations are being performed, or where the different computations

each have a specialized processor for that task which is optimized for performance,

power consumption, or both.

When looking to decide whether to use a heterogeneous or homogeneous

multiprocessor system, much analysis for the specific application is required in

order to make this decision. Heterogeneous multiprocessor systems require vastly

more simulation than homogeneous multiprocessor systems because of the varied

4

levels of heat dissipation, heat generation, and power consumption3. Further

considerations include the physical layout of the processors on the board. In a

homogeneous multiprocessor system, each processor is the same, so placement is

not as large of an issue. However, in a heterogeneous multiprocessor system, the

different processors may need access to different memory banks and require

different configurations than what may have been designed for a homogeneous

multiprocessor system.

To determine the performance increase, analysis should be performed to determine

if the projected profits from the performance boost will cover the extra cost of

implementing a heterogeneous system. The issue of support for the product once

released arises in these considerations as well since heterogeneous systems are

more difficult to work with.

3 Branch Prediction

Regardless of whether a heterogeneous or homogeneous processor is used, all modern, high

performance processors use branch prediction to improve performance1. Branch prediction

is the process of predicting the outcome of a branch. A branch is a type of control logic

which allows code to move from one block to another. The decoding and interpretation of a

branch instruction by the processor takes a long time. Branch prediction allows the

processor to predict what the outcome of the branch will be based on some prediction

strategy which is set by the ISA. In the case which the prediction is correct, computation

time is utilized effectively with the potential for minimal wasted computation cycles. In the

case where the prediction is incorrect, performance is not improved by the branch

prediction. However, depending on the prediction strategy in place, the branch predictor

may learn from this misprediction in order to be more accurate in the future.

Section 3.1: Overall Quality Improvement provides further information regarding branch

prediction and its effectiveness over code which does not implement branch prediction.

Section 3.2: Algorithms Used discusses a number of different branch prediction strategies

and whether or not they are used in practice. Section 3.3: Branch Prediction on

Heterogeneous Multi-Core Systems ties in some operating systems concepts and explores

the effect of a context switch on branch prediction when using a heterogeneous multi-core

processor.

3.1 Overall Quality Improvement

This section will provide a definition of branch prediction and detail the

performance improvement which it provides. First, branch prediction will be

explained. Following this definition, some analysis of why branch prediction

provides a performance increase over code which does not use branch prediction

will be explored.

5

The purpose of branch prediction is to reduce the total number of stalls that are

caused by branch statements. When a branch is encountered in code, it must be

executed before the code knows what instructions to run next as there are multiple

options. Branch prediction tells the code to assume the outcome of the branch is

taken or not taken and to continue executing instructions based on that assumption.

When the branch finishes executing, the final state of the branch is communicated

to the rest of the code. If the prediction was correct, the code continues executing

as it was. However, if the prediction was incorrect, the code must squash the

instructions that were executed from the wrong branch target, then fetch all new

instructions from the correct target. Without branch prediction, the code would not

be able to fetch instructions while the branch finishes executing, wasting these

computation cycles.

Branch prediction is the process of making an educated guess as to whether a

branch will be taken or not taken based on a preset algorithm1. A branch is a

category of instruction which causes the code to move to another block to continue

execution. Branch prediction has the ability to be static or dynamic4. Static branch

prediction means that a given branch will always be predicted as taken or not taken

without possibility of change throughout the duration of the program. Dynamic

branch prediction means that the predicted outcome of a branch is dependent on an

algorithm, and the prediction may change throughout the course of the program.

Code is able to use a combination of both static and dynamic branch predictors

based on the type of branch.

The improvement branch prediction provides is dependent on the number of

branches in the code, as well as the type of prediction being used as different

prediction methods have varied rates of success. Overall, branch prediction

provides an increase in performance for code containing branches. This

improvement is based on the number of computational cycles which are able to be

used for computation rather than wasted on a system which does not use branch

prediction.

3.2 Algorithms Used

This section will explore various techniques for branch prediction, to identify

which strategies are quality, and finally to state which are used in practice. First,

each of the different branch prediction strategies that were identified in the research

for this document will be presented. Of note, due to the limited nature of this

paper, the algorithms presented here are by no means a complete listing of all

branch prediction algorithms. Next, of the strategies listed here, the quality of each

will be assessed with both positive and negative aspects of each discussed. Finally,

whether or not a given algorithm is used in practice or not will be disclosed.

In order to fully explain the different branch prediction strategies, some more

background information must be given. There are three different kinds of

6

branches: forward conditional, backward conditional, and unconditional branches5.

Forward conditional branches are when a branch evaluates to a target that is

somewhere forward in the instruction stream. Backward conditional branches are

when a branch evaluates to a target that is somewhere backwards in the instruction

stream. Common instances of backward conditional branches are loops.

Unconditional branches are branches which will always occur.

A static or dynamic prediction strategy will determine which different algorithms

or methods are available for use. For static branch prediction, the strategy may

either be predict taken, predict not taken, or some combination that specifies the

branch type such as backward branch predict taken, forward branch predict not

taken5. The third strategy is advantageous for programs with loops because it will

have a higher percentage of correctly predicted branches for backward branches.

Dynamic branch prediction is able to use one-level prediction, two-level adaptive

prediction, or a tournament predictor. One-level prediction uses a counter based on

a specific branch to use said branch’s history to predict its future outcomes5. The

address of the branch is used as an index into a table where these counters are

stored. When a branch is correctly predicted taken, a counter is incremented.

When a branch is correctly predicted not taken, the same counter is decremented.

In the case where the prediction was incorrect, the opposite occurs. For instance, if

a branch was incorrectly predicted taken, the counter would be decremented, or if a

branch was incorrectly predicted not taken, the counter would be incremented. The

status of this counter is used to make the prediction for the branch’s next iteration.

If the counter holds a value of zero or one the prediction is not taken, and if the

value of the counter is two or three the prediction is taken.

The two-level adaptive branch prediction is very similar to the one-level branch

prediction strategy. The two-level strategy uses the same counter concept as the

one-level, except the two-level implements this counter while taking input from

other branches. This strategy may also be used to predict the direction of the

branch based on the direction and outcomes of other branches in the program. This

strategy is also called a global history counter5.

Hybrid or tournament prediction strategies use a combination of two or more other

prediction strategies5. For example, any static prediction used in conjunction with

a dynamic prediction strategy would be considered a hybrid strategy.

All of the strategies listed here are used in practice. The two-bit counter presented

in the one-level branch prediction strategy is used in a number of other branch

prediction strategies, including a predictor for choosing which predictor to use.

One disadvantage to each of these strategies is that their level of improvement for a

given code will vary depending on what is written into the code.

7

3.3 Branch Prediction on Heterogeneous Multi-Core Systems

This section will explain how branch prediction methods function on a

heterogeneous multi-core system when a context switch occurs. First, a brief

definition of context switch will be provided along with its relevance in this

discussion, and why this topic was addressed in the first place. Following this brief

background will be the discussion of how the branch prediction algorithms and the

associated hardware are affected by context switches.

For the purposes of this section, a context switch occurs when multiple threads or

processes are running on a system and they must share computation time. The

context switch is the process of saving one thread or process’ context so it may

resume execution when the computer is returned to it. A context consists of the

code and registers and anything else the process or thread requires for execution.

The relevance of a context switch in this discussion is that the assumption is made

that the code in question is running on a heterogeneous multicore system. This

means that a process may be assigned to either of the core types. If another process

is admitted, the current process running on a given core may be forced to save its

context and stop running. This section discusses what happens to the branch

predictors associated with a given process upon the occurrence of a context switch.

When analyzing a big.LITTLE system, a heterogeneous multi-core system with a

common ISA of ARM, the system utilizes global task scheduling6. This scheduling

mechanism allows the operating system to be able to accurately assess which core

type and specifically which core a new process or thread should be placed on based

on expected performance. This also means that the operating system may

specifically target either big or LITTLE cores on the system, and potentially move

a thread or process from a big core to a LITTLE core, or vise versa. However, the

context of a thread or process running on a big.LITTLE system is able to be

transferred between the two different kinds of processor6. This means that all

memory within the thread or process is saved, including the branch prediction data.

4 Pipelining

Any modern processor will be using pipelining in order to optimize performance. Without

pipelining in a processor, each instruction must wait until the previous instruction has

completed before the next may begin in a true sequential manner. On a pipelined system,

each clock cycle an instruction may begin regardless of whether or not the previous

instruction has completed or not1.

Section 4.1: Hazards provides a number of problems that are introduced when pipelining is

implemented in a processor. Section 4.2: Schedule to Avoid Hazards and Dependencies

discusses how a pipeline may be scheduled to avoid the hazards discussed in Section 4.1:

Hazards. Section 4.3: Stages Related to Performance provides an analysis of how many

8

stages a pipeline may have and how the number of stages is directly related to the

performance of the pipeline. Section 4.4: Dynamic Frequency Scaling and Performance

explains the effect of dynamic frequency scaling on pipelining and the resulting effect on

performance overall. Section 4.5: Pipelining on a Heterogeneous System discusses how

pipelining functions on a heterogeneous multi-core system. Section 4.6: Pipelining on a

Common ISA Heterogeneous System continues the analysis begun in Section 4.5: Pipelining

on a Heterogeneous System but focuses on the situation of a common ISA.

4.1 Hazards

This section will provide an explanation as to what hazards are and why they

matter. This section will also further introduce pipelining and how hazards affect

pipelining. First, definitions of hazards, including the different types, will be

provided. Next, an explanation of pipelining will be provided. Finally, this section

will tie hazards and pipelining together to explain the impact that hazards have on

pipelining.

Pipelining is the process of executing more than one instruction in a given

computational cycle. Consider a single instruction. For the purposes of academia,

there are five main stages to completely execute an instruction: instruction fetch,

decode, execute, memory, and write back7. At any given time in the overall

execution the instruction will only be in one of these five stages at a time.

Pipelining takes advantage of this and begins executing other instructions once the

initial instruction finishes a given stage. In order to ensure that data from different

instructions do not become intermingled, based on the length of the longest stage,

each instruction is not allowed to move to the next stage of execution until a set

amount of time has passed. This set amount of time is the inverse of the clock

frequency.

By changing the way that instructions are executed, a number of issues are

introduced. These issues are called hazards, and are the purpose of this section.

There are three types of hazards: structural, data, and control7. Structural hazards

occur when an instruction requires some functional unit in order to complete its

execution but a functional unit of that type is unavailable due to pipelining. Data

hazards occur when the output for one instruction is an input for a subsequent

instruction, and the data is not available when the second instruction goes to

execute because the first instruction has not yet produced the data. Control hazards

occur when branches enter the pipeline and change the order of instructions to be

executed.

Each of these hazards have the potential to cause serious delays in the pipeline. In

most situations, when one or more of these hazards occur, a bubble, or stall, must

be inserted into the pipeline in order to preserve instruction order. Because of this,

the benefits of the addition of pipelining must be contrasted with their potential

9

cost. Section 4.2: Schedule to Avoid Hazards and Dependencies discusses how the

costs associated with pipelining may be minimized.

4.2 Schedule to Avoid Hazards and Dependencies

This section will further discuss pipelining and hazards with an emphasis on how

the pipeline may be scheduled to avoid data dependencies by both the compiler, the

hardware, or some combination thereof. First this section will explain data

dependencies. Next, this section will detail how the pipeline is capable of being

scheduled from perspectives of both the hardware and the compiler. Finally, an

explanation of how the pipeline may be scheduled by the hardware, compiler, or

some combination in order to avoid data dependencies and hazards will be

provided.

Name dependencies occur when multiple instructions refer to the same variable.

These dependencies do not always cause issues, but they can. If two sequential

instructions exist such that the destination of the first instruction is an operand for

the second instruction, this is a data dependency which will cause a delay in the

pipeline.

In order to reduce the amount of stall time caused by data dependencies, both the

compiler and the hardware are able to assist in the scheduling of instructions1. The

compiler is able to view all of the instructions in a given program and insert

appropriate “no-op” instructions into the instruction stream to sufficiently spread

out dependent instructions. A “no-op” instruction is an instruction where nothing

happens. However, in order to do this successfully, the compiler must have

sufficient knowledge about the hardware which it is running on to know the amount

of time in cycles that an instruction will take to produce a value. From the

hardware side of things, additional hardware called bypass paths are able to be

added to try and avoid no-ops. These bypass paths move data from the end of the

execute stage to the beginning of the execute phase so that subsequent instructions

may have access to the needed data as soon as possible rather than having to fetch

the recently produced data from memory or architected registers. In the case that

the data is still not available, the hardware is able to insert stalls into the instruction

stream similar to how the compiler may insert no-ops.

It is easier for the compiler to perform the scheduling because the compiler has

access to all of the code in the overall program as well as essentially infinite time in

terms of computation. Conversely, the hardware only has access to the set of

instructions that are inflight. Because of this, the compiler is better at scheduling

instructions. A caveat to this is that the compiler must have information about the

hardware which it is running on in order to effectively schedule the instructions.

The compiler could schedule instructions any way that it sees fit based on the data

from the ISA, however this may not be the most effective. The compiler is able to

10

analyze the content of each instruction and create a directed graph of all of the

instructions with the instructions as the nodes, and connect the nodes based on the

dependencies between each instruction8. The ideal usage of this directed graph is to

select the path which has the least amount of stall cycles. However, the issue with

this is the analysis and final selection of the path with the least stall cycles is a

problem which is NP-Complete. The combination of static methods with the

dynamic path traversal is one way to reduce the amount of time required to find a

potentially optimal path8.

Even though the compiler will perform its own optimizations, these optimizations,

as previously stated may not be entirely optimal, so the hardware may add its own

optimizations in order to further better the execution of the instructions. It is

beneficial for both the hardware and compiler to provide optimizations for the

scheduling of the instructions because of the limitations of the compiler and the

hardware on their own.

4.3 Stages related to performance

This section explains how the number of stages within a pipeline impact the

performance of the pipeline. This section will also explain how the type of

instructions being executed on a pipeline will also impact the overall performance

of the pipeline.

As stated in Section 4.1: Hazards, academia teaches a five-stage pipeline. This

five-stage pipeline can be expanded or compressed to have more or less pipeline

stages. Both of these implementations have advantages and disadvantages related

to a variety of performance metrics. By increasing the number of stages, the

pipeline is forcing the instructions to take more time overall to complete their

execution. This allows the system to execute larger instructions with increased

efficiency. However, smaller instructions may finish their execution early and

waste computation cycles. The amount of performance improvement will also be

variable based on the types of instructions and programs that are being run on the

system because different instructions will have different lengths, and different

programs will have different quantities of different kinds of instructions.

4.4 Dynamic frequency scaling and performance

This section will further discuss the performance of pipelining with relation to

dynamic frequency scaling. First, this section will provide an explanation as to

what dynamic frequency scaling is. Once dynamic frequency scaling is explained,

this section will relate dynamic frequency scaling to the performance of a pipeline.

Dynamic frequency scaling is the process which a processor goes through to

change its operating frequency in order to increase performance, or reduce power

consumption. In general, this adaptation of the system would just cause rate at

11

which instructions move through the pipeline to vary. However, if the system

supports a variable-length pipeline9, then other changes may take place.

A variable-length pipeline is a pipeline which is capable of changing the number of

stages it contains based on the operating frequency9. Variable-length pipelines are

atypical in industry, and mentioned here for theoretical completeness. In

Koppanalil’s article9, it is stated that in the two operating modes, deep and shallow

mode, the number of pipeline cycles in deep mode is double that of the cycles in

shallow mode. The paper states that deep mode is to be executed when the

processor is operating at high frequencies, and shallow mode when the processor is

operating at low frequencies. The transition between deep and shallow mode is

done by enabling and disabling the circuitry required for the separation of the

pipeline stages as needed for each specific mode.

The combination of dynamic frequency scaling with variable-length pipeline stages

allows for performance increase in processors which support both. This

performance increase is based in the amount of power saved as well as the speed of

processing when in deep and shallow modes respectively9. On systems which do

not support variable-length pipeline stages, dynamic frequency scaling increases

performance through reduced power consumption and increased instruction

throughput when the frequency is reduced and increased respectively.

4.5 Pipelining on a heterogeneous system

The purpose of this section is to explain how pipelining works on a heterogeneous

multi-core system, specifically when a process is moved from one core to another,

either of a different core type or of the same core type. First, potential differences

between different core types which are relevant to the pipelining process will be

discussed. This section will then explain what happens to the contents of the

pipeline when a process is swapped from one core to another.

Generally, when a heterogeneous multi-core processor is implemented, the design

goal is to improve performance related to the application of the system. This

performance improvement focus could be heat conservation, power consumption,

or overall instruction throughput. In order to do this, the different processors

selected to be included in the processor are vastly different, but the overall purpose

of each will be application dependent. Because of this, the number of pipeline

stages will likely be different across the different core types, but does not mean

they must be. The same logic applies to the order of the pipeline stages: they may

be in the same order, but may not be.

Since the primary goal of a heterogeneous multi-core processor is to improve

performance, if moving a process from one core type to another core type provides

a performance increase, that is what the processor will do. When this occurs,

because the pipeline is not part of the context of the process, the instructions

12

inflight will either finish and commit or be flushed from the pipeline in order to

allow the rest of the context to save and the process to be moved.

4.6 Pipelining on a common ISA heterogeneous system

This section will explore the differences in the pipelines of the different cores

involved in a common ISA heterogeneous multiprocessor, such as big.LITTLE, and

how these differences impact the performance of the system overall. This section

will first explain the possible differences between processors on a big.LITTLE

system and why these differences matter. This section will then address these

differences and provide an explanation as to why the differences provide an overall

improvement with regards to the pipeline of the system.

On a big.LITTLE system, the differences between the two core types include

number of pipeline stages, instruction types, order of instruction, and cache

interfaces10. Each of these differences contribute to improved performance for each

of the two core types. The big core is meant to be a high-performance core with a

larger number of pipeline stages to handle more power intensive operations. The

LITTLE core is meant to be a power saving core with a lower number of pipeline

stages to handle smaller operations that would potentially be a waste of

computation cycles on the big core.

By incorporating multiple big and multiple LITTLE cores on a single chip

performance is improved. At any given time, the chip may shut off any core which

is not being used in order to save power10. The chip is also able to choose which

core to give any given process, potentially running multiple processes on a single

core because that alternative was seen as more efficient than powering up another

core and running the additional processes on it.

Specifically, looking at the number of pipeline stages on the big and LITTLE cores,

based on the kind of processes that each core type is meant to run, the varied

number of stages provide a performance increase in each core. The big core has a

larger number of stages which allow more complicated instructions to be broken

into smaller, more manageable pieces of executable code which will be executed

with a fewer number of delay slots than if the same process had been executed on a

LITTLE core. The LITTLE core has a smaller number of pipeline stages to allow

the less computationally intensive processes to execute quicker than they would on

a big core.

5 Registers

Moving even deeper into the architecture of processors, the next topic to be covered are

registers. When data is being used by the program, it would be impossible to accomplish

anything in a timely manner if each instruction had to go all the way to main memory

implemented with DRAM on each reference. To avoid this, registers were created in the

13

instruction set architecures as a temporary storage for data1. This section discusses different

types of registers and how each are used.

Section 5.1: Conventional Register File vs. Rename Register File explains the differences

between a conventional register file and a rename register file, then goes into detail about

how each is used. Section 5.2: Register File Relevance to Bits per Register and Ports

describes the impact of the layout of the register file on registers and ports. Section 5.3:

Architected Registers vs. Rename Registers vs. Inflight Instructions Across Different

Processors explains what architected registers, rename registers, and inflight instructions are,

then highlights the differences between each.

5.1 Conventional register file vs. rename register file

This section presents the differences between a conventional register file and a

rename register file. This section will provide definitions of both types of register

files. Followed by these definitions will be an emphasis on the differences between

conventional and rename register files. Finally, uses of both kinds of register files

will be explored in addition to how each are constructed.

A conventional register file is a series of registers laid out in a grid. These registers

are accessed through bit and word lines which access the columns and rows of the

grid of registers respectively11. Each register stores either a committed value or an

intermediate value of a calculation. A rename register file is similar to a

conventional register file, except a rename register file stores a mapping of physical

registers to architected registers12.

Conventional register files are used in every processor which contains registers.

The format of the register file plays a key role in how each register is accessed. To

access any register, both the corresponding bit and word lines must be activated11.

This allows registers which have different bit and word lines to be accessed for

reading and writing potentially simultaneously. This relationship will be expanded

upon in the next section.

Rename register files are only located on systems which implement register

renaming to help prevent hazards as a result of execution being performed out of

order12. Rather than working directly with the architected registers, physical

registers are mapped to the architected registers and used in the instruction

sequence. When multiple instructions are expected to write to the same architected

register, a different physical register is assigned to each instruction for the

designated architected register. This process is what allows hazards to be avoided.

14

5.2 Register file relevance to bits per register and ports

This section will explain the relationship between the layout area of a CPU register

file, the number of bits per register contained, and the number of ports in and out of

the register file, as introduced in the previous section.

The number of read and write ports on a register file is directly related to the

number of bit and word lines, along with the overall area of the register file11. For

each port, there is one word line running horizontally across the register file. For

each port which is designated for writing, there are two bit lines running vertically

across the register file. For each port which is designated for reading, there is one

bit line running vertically across the register file.

This number of bit and word lines impacts the overall size of the register file due to

the size of the wire used for these lines11. This wire size will increase, allowing

more data to be transmitted, as the number of ports into the register file increases.

More specifically, the wire size will always be the square of the number of ports

into the register file.

As the number of ports into the register file increases, so does the wire size into the

register file. The register file is generally pitch-matched to the size of the datapath

associated with the register file11. As the size of the register file wire increases, it

forces the data path wire size to increase. The data path wire travels throughout the

circuit, and if its size continuously increases, design issues regarding heat and size

will be caused as the register file grows in size. To keep these issues at a

minimum, circuit designers will use multiple register files on a single system.

5.3 Architected registers vs rename vs inflight instructions across different

processors

This section will provide the similarities between architectural registers, rename

registers, and inflight instructions over different processors. First the differences

between architectural registers, rename registers, and inflight instructions will be

explained. The similarities between each of these will be provided following their

definitions.

Of the three, inflight instructions are the most different concerning physical

characteristics. Inflight instructions are the total number of instructions which are

currently being executed, which is an indicator of how deep the system pipeline is1.

Architected registers are the registers which are designated by the instruction set

architecture (ISA)1. Some architected registers may have specific purposes varying

from ISA to ISA. Rename registers are implemented in systems which use register

renaming techniques11. These registers are physical registers which are mapped to

the architected registers in the system.

15

Inflight instructions carry no real similarities to architected or rename registers,

aside from the total number of inflight instructions will vary with the ISA due to

the varied depth of the pipeline on different machines. Architected and rename

registers are fundamentally the same functional unit, just used differently by the

ISA. Their uses will vary dependent on the ISA which is implemented.

Architected registers are the only independent functional unit on this list which will

change based off of the ISA rather than a specific processor implementation. Here

two ISAs, MIPS and ARM, will be analyzed for their implementations of

architected registers. The MIPS ISA contains 32 architected registers13. Of these,

registers 29, 30, and 31 are the stack pointer, frame pointer, and the return address

of a function call respectively. Of note are registers 0 and 1 which are the constant

0 and reserved for the assembler respectively. These registers are unique to the

MIPS ISA. The ARM ISA contains 16 architected registers1. Similar to the MIPS

ISA, register 13 is the stack pointer. Different from the MIPS ISA, registers 14 and

15 are the link register and program counter respectively. The ARM ISA also has a

current program status register which contains 32 bits which communicate various

conditions of the system including whether Thumb mode is enabled or if an

interrupt has occurred1.

6 Memory

Section 5: Registers explained the use of registers, a simple, but high speed form of

memory. Section 6: Memory will go into much more detail on the implementation of

memory hierarchy, and how memory can be protected.

Section 6.1: Implementation of Data Structures discusses how both the stack and heap are

implemented in memory as well as what kind of information is stored in each, and why it

matters what information is stored where. Section 6.2: Protection from Single Event Upsets

explores a variety of techniques used to protect memory from errors. Section 6.3:

Processing In Memory explains what processing in memory is and why processing in

memory is useful. Section 6.4: Reduction of Average Memory Access Time provides a

number of methods which are used to reduce the amount of time that it takes to access main

memory. Section 6.5: Prefetching explains what prefetching is with regards to hardware and

software, then gives examples of each. Section 6.6: Effects of Prefetching provides insight

on the improvements which prefetching provides systems.

6.1 Implementation of Data Structures

This section provides an explanation of how different data structures are

implemented in memory. First, the concept of a stack and a heap will be explained,

and what information is stored in each data structure will be defined based on

common practice. Next, the implementation of each of these data structures in

memory will be detailed. Finally, an explanation of why it matters what kind of

information is stored in each the stack and the heap will be provided.

16

In order for this section to be understood, background on the definitions of a stack

and a heap must be provided. A stack is a data structure that follows “first in, last

out” or FILO. This means that the first item that is placed onto the stack, or pushed

onto the stack, will be the last item removed, or popped, from the stack. A heap is

implemented as a tree in memory with either the highest or lowest priority item

stored in the root of the tree. As items are removed from the tree, it is reordered in

order to keep the highest or lowest priority item at the root of the tree14.

Both the stack and the heap are stored in the random access memory (RAM) of the

computer15. Within the code, variables which are written in to each block of code

are stored on the stack because the stack has a limited amount of storage space

which is determined at compile time. Space on the stack is allocated upon code

block entry, and deallocated on code block exit. If there are dynamically allocated

variables within the code, these variables are stored in the heap. These variables

are only deallocated when the program calls a memory deallocation function.

Within memory, the stack and heap are stored in different ways, providing each

with a different access speed. The stack is stored in sequential memory allowing

for faster access times15. The heap is stored randomly throughout the available

RAM in the system15. Because of this, the access time for any variable stored in

the heap is lower since it takes longer to locate than it would if the variable were on

the stack.

The location of the stack and the heap in memory is important due to its impact on

memory access speeds. Memory access speeds impact the entire system due to

their inherently high latencies. Anything that can be done to decrease the latency

of a memory access should be done in order to increase the efficiency of the system

overall.

6.2 Protection from Single Event Upsets

This section will explain how memory is able to be protected from errors such as

single event upsets (SEUs). First, an overview of the various sources of error in

memory will be provided. Next, the various techniques used to detect, and in some

cases correct, data errors will be discussed. Of note, the methods discussed in this

section are not a complete listing of all possible methods to correct and detect

errors in code. This is just a subset of possible methods which were covered in the

research conducted for this paper. Finally, a discussion of where each of these

methods is used will be provided.

Errors in memory can be caused by a number of things, but are most commonly

caused by forms of radiation or SEUs. SEUs occur when a single energetic particle

passes through a chip, altering a small number of bits while leaving no permanent

damage to the chip itself16.

17

Common techniques used to detect, and in some cases correct, SEUs include parity,

cyclic redundancy check (CRC), hamming code, Reed-Solomon error correction,

and chipkill. Parity detects an odd number of errors in the code by summing all the

bits in the code in question, then appends an additional bit based on whether the

total number of one’s counted was odd or even1. If an even number of bits are

altered, the count of one’s will remain the same and the error will go undetected.

CRC acts as a non-secure hash function by appending a check value based on

polynomial division17. The calculation is repeated after the data is transmitted and

if the check values do not match, corrective action is taken. Hamming code is an

expanded version of parity which breaks large pieces of data into chunks and

calculates the parity of those chunks18. A parity is also taken of the parity bits.

This allows hamming codes to detect multiple errors, and correct a single error.

The Reed-Solomon error correction code is one of the more complicated error

checking codes. By adding some number of check symbols to a set of data, a

Reed-Solomon code may detect any number up to the total number of check

symbols added worth of errors in the code17. Reed-Solomon is also able to correct

up to half of the total number of check symbols worth of bit errors. This method is

also able to detect erasures, or some combination of errors and erasures. Finally,

chipkill is able to protect the integrated circuit as a whole rather than the specific

data stored on it by using a hamming code and spreading the data across multiple

chips1.

In general, most of these methods are used before data is stored, when data is

transmitted, or when data is received. CRC is generally good at detecting noise in

transmitted data17. Parity works best when it is used in conjunction with other

techniques, such as its use in hamming codes. Chipkill is effective on its own since

it works on the integrated circuit level rather than the data level.

6.3 Processing In Memory

This section will define processing-in-memory (PIM) and to discuss some of the

many advantages and disadvantages of PIM.

Processing in Memory (PIM) is when a processor is placed within the random

access memory (RAM) on a chip19. The purpose of PIM is to reduce the latency by

increasing the transfer rate between the processor and the memory system. PIM

helps reduce the transfer rate because the performance of the processor is directly

related to the stack performance since the majority of the active data and memory

being accessed is within the stack. The issue of waiting for data to be fetched from

memory is known as the Von Neumann bottleneck20. PIM is also able to decrease

power consumption since the processor and memory are physically closer.

The advantages of PIM are the reduction in power and memory access latency

which it provides19. The disadvantages of PIM are limitations of the amount of

18

memory which is available, which also causes chips with PIM implemented to be

less customizable19. PIM requires a larger chip size than standard chips which

causes it to have less modularity19. The heat emitted from chips which use PIM is

an issue as well because of the layout of the chip with the processor and memory so

close together19.

6.4 Reduction of Average Memory Access Time

This section will discuss a number of ways in which the main memory access time

may be reduced. This section will also detail which processes are used in practice,

not just discussed in theory.

Memory interleaving is one method used by computer architects in order to reduce

average memory access time (AMAT)21. Memory interleaving distributes

sequential data across multiple chips rather than in order all on one chip allowing

multiple sections of the sequential data to be accessed simultaneously through the

same index21. This decreases AMAT by reducing the number of memory accesses

and index calculations required for a memory access.

Cache memory is another method of reducing AMAT. Cache is a small amount of

fast memory which stores data that is frequently accessed1. Multiple levels of

cache may exist in order to provide more potential reduction. The access reduction

is not achieved on the first access, rather on any later accesses once the data is in

the cache. Higher levels of cache, those which are accessed more frequently, are

smaller to allow higher speeds. Cache decreases AMAT by storing data closer to

the processor allowing fewer memory accessed to propagate to main memory.

6.5 Prefetching

This section explains what prefetching is, then to provide a number of prefetching

methods. This section will provide examples of both software and hardware

prefetching algorithms.

Prefetching is used to reduce the average memory access time by fetching memory

from main memory before it is needed22. Different prefetching schemes use

different methods, but overall, prefetching occurs as a result of a cache miss.

Instead of only fetching the requested memory, prefetching allows the system to

fetch additional memory in an attempt to save time later.

In order for prefetching to be implemented in software, the programmer must have

extensive knowledge of the hardware, and insert fetch instructions into the machine

language manually, or through an educated compiler22. Due to this, software

prefetching is more complicated than hardware prefetching, and is used less

frequently since the compiler generally does not have the necessary information

19

about the hardware to make prefetching decisions, and manually adding fetch

instructions to the machine language code is tedious.

Hardware prefetching is widely used as it is simpler than software prefetching as

the hardware has all the information needed to appropriately fetch additional

instructions. Five different hardware prefetching methods to be addressed in this

section can be split into two categories: sequential prefetching and data structure

prefetching.

The three sequential prefetching methods include prefetch on miss, tagged prefetch,

and adaptive prefetch. The prefetch on miss strategy fetches the next sequential

block of memory in addition to the requested block of memory as a result of a

cache miss22. This strategy has approximately a 50% effectiveness rate. The

tagged prefetch method assigns a tag bit to every block of memory. This bit is used

to detect when a block is demand-fetched, or a prefetched block is referenced for

the first time22. In both cases, when a block is fetched, the next sequential block in

memory is also fetched. This strategy is slightly more effective than the prefetch

on miss strategy due to the principles of spatial locality. The adaptive sequential

prefetch method modifies the prefetch on miss strategy to not only fetch the next

sequential block, but to also fetch as many sequential blocks as deemed appropriate

by the degree of spatial locality of the system22.

The two data structure prefetch methods are dependence based, and hardware based

pointer data prefetch. The dependence based prefetch method identifies pointers in

memory, then looks at the address of the pointer, as well as the address which it

points to in memory. Based on this, when the pointer is loaded, the place in

memory which it points to is prefetched. This method is not always effective

because not all pointer loads are address loads22. The hardware based pointer data

prefetch method identifies load instructions which are responsible for advancing a

pointer through a linked list. This method prefetches all possible addresses for this

operation and stores the data into a prefetch buffer which has a one computational

cycle latency, similar to that of a first level cache22.

6.6 Effects of Prefetching

This section will compare the performance of computers which use prefetching to

the performance of computers which do not use prefetching. The primary metric to

be the focus of this section is overall number of misses. This section will also

discuss the circumstances in which both software and hardware prefetching are

used.

20

In a study23 conducted by Wei-Chung Hsu and James E. Smith it was shown that

systems which use hardware prefetching out-perform systems without hardware

prefetching. Systems without prefetching relied on line size to improve miss rate.

The optimal line size varied from 64 word lines to 128 word lines depending on the

overall size of the cache23. For the smaller caches, 64 word lines was more

effective, and for larger caches, 128 word lines was more effective due to cache

pollution. The concept of cache pollution is the ejection of potentially useful lines

in the cache in order to insert a line which has fewer useful instructions23.

In the same study23, the benefits of implementing hardware prefetching were based

on which prefetching strategy was used. This study observed fall-through and

target prefetching. Fall-through prefetching most closely matches the adaptive

sequential method previously discussed. Target prefetching most closely matches

dependence based prefetch combined with prefetch on miss. The fall-through

prefetch method provided a reduction in misses by one third as compared to the

system with no prefetching. The longer line size does not provide an advantage

with this method of prefetching. This is because longer lines simulate the same

spatial locality which the fall-through prefetcher implements on its own23.

Similarly, the target prefetching method provided approximately the same results as

the fall-through prefetch method. Of note, the target prefetching method performed

better with larger line sizes because it does not have as much built in spatial locality

as the fall-through prefetching method23.

7 Operating System

The operating system is an important part of a system which includes processors, especially

with regards to performance metrics such as execution time. The operating system is

responsible for the scheduling of processes on processors.

Section 7.1: Heterogeneous System Process Selection With Affinity discusses how the

operating system uses affinity to select which processor a process may run on when there are

multiple different processors that the process may run on. Section 7.2: Heterogeneous

System Process Selection Without Affinity continues the discussion begun in Section 7.1:

Heterogeneous System Process Selection With Affinity except ignoring process affinity to

present other ways the operating system determines on which processor to let a process run.

7.1 Heterogeneous system process selection w/affinity

This section will explain how the operating system (OS) selects a specific core for

a process to run on when there are multiple cores capable of running that process.

This discussion will discuss the aforementioned process with regards to a

heterogeneous system.

21

The OS uses processor affinity to determine which processor core a process should

run on. Processor affinity is a term used to describe the association between

processes and processor cores24. One instance of processor affinity is preferred

processor24. A preferred processor for a process is determined based on whether

the process has executed on a processor before. The purpose of a preferred

processor is to attempt to maximize the probability that data from a process may

remain in the cache memory from a previous execution. Preferred processors may

also relate to the performance capabilities of a particular processor. If all of the

processors are the same regarding performance, and the process in question has

never executed, the processor affinity for the process is the same for all available

processors. The OS will try to schedule a process to run on the processor for which

it has the highest affinity. However, the OS will not necessarily stop another

process from executing to allow a different process to execute on the processor for

which its affinity is highest, especially if other processors are available. Processor

affinity acts as a guideline for the OS rather than a mandate.

7.2 Heterogeneous system process selection w/o affinity

This section expands on the previous section, Section 7.1, except to ignore the

concept of affinity within the operating system (OS).

OSs are able to use heuristic models in order to determine the power consumption

of a particular process when it is executed on a particular processor. Using this

data, the OS is able to make a decision as to which process should run on which

processor25. This heuristic model not only is able to account for power

consumption, but for overall throughput as well. Once data is gathered on the

currently running processes, calculations are performed to determine whether the

current processes are running on processors which provide the system overall with

the lowest power consumption with the highest throughput25. Since a heuristic is

being used, it is impossible to achieve a perfect balance between throughput and

power, but an optimized balance based on predetermined system preferences will

be achieved.

Specifically, when operating on a big.LITTLE processor system with four different

core types, this heuristic to dynamically map processes will continuously swap the

executing processes in order to achieve optimal throughput to power balance, first

focusing on throughput, then optimizing for power25.

8 Conclusion

This paper presented information discovered through research on a number of topics which

were introduced in CEC470. Starting at a high level, this paper gave information regarding

high level design decisions which must be made before designing or selecting a processor.

Next, this paper discussed branch prediction and pipelining, moving the content to a deeper

level, with a focus on processor optimizations. Continuing to move deeper into processor

22

design, this paper discussed registers and their role in data storage. Related, this paper then

explored memory and its role in a processor. Finally, moving away from the physical

aspects of the processor, this paper discussed how operating systems interact with

processors.

No new or unique information was presented in this paper, as it is a survey of computer

architecture overall and meant as a learning tool in the context of an Honors Directed Study.

9 References

1Hennessy, John L, David A Patterson, and Andrea Arpaci-Dusseau. Computer Architecture.

Waltham: Morgan Kaufmann, 2012. Print.

2Phelan, Richard. Improving ARM Code Density And Performance New Thumb Extensions

To The ARM Architecture. 1st ed. ARM Limited, 2003. Web. 1 Feb. 2017.

3Hyari, Abeer. A Comparative Study On Heterogeneous And Homogeneous

Multiprocessors. 1st ed. University of Jordan, Computer Engineering Department, 2009.

Web. 1 Feb. 2017.

4Branch Prediction. 1st ed. 2006. Web. 1 Mar. 2017.

5Branch Prediction. 1st ed. New Jersey Institute of Technology. Web. 1 Mar. 2017.

6Big.LITTLE Technology: The Future Of Mobile Making Very High Performance Available

In A Mobile Envelope Without Sacrificing Energy Efficiency. 1st ed. ARM Limited, 2013.

Web. 22 Mar. 2017.

7Prabhu, Gurpur M. "Pipeline Hazards". Web.cs.iastate.edu. Web. 15 Feb. 2017.

8Instruction Scheduling. 1st ed. Web. 5 Apr. 2017.

9Koppanalil, Jinson, et all. A Case For Dynamic Pipeline Scaling. 1st ed. North Carolina

State University, 2002. Web. 5 Apr. 2017.

10Big.LITTLE Technology: The Future Of Mobile. 1st ed. ARM Limited, 2013. Web. 25

Apr. 2017.

11"Register File". En.wikipedia.org. 2017. Web. 15 Feb. 2017.

12"Register Renaming". En.wikipedia.org. N.p., 2017. Web. 15 Feb. 2017.

13"CPU Registers". Doc.ic.ac.uk. Web. 1 Mar. 2017.

14"Heap (Data Structure)". En.wikipedia.org. 2017. Web. 3 May 2017.

23

15"Difference Between Stack And Heap - Programmer And Software Interview Questions

And Answers". Programmer and Software Interview Questions and Answers. 2017. Web. 22

Mar. 2017.

16Mittal, Sparsh, and Jeffrey S. Vetter. "A Survey Of Techniques For Modeling And

Improving Reliability Of Computing Systems". IEEE Transactions on Parallel and

Distributed Systems 27.4 (2016): 1226-1238. Web. 3 May 2017.

17"Error Detection And Correction". En.wikipedia.org. 2017. Web. 22 Mar. 2017.

18"Hamming Code". En.wikipedia.org. 2017. Web. 22 Mar. 2017.

19Rouse, Margaret. "What Is Processing In Memory (PIM)? - Definition From Whatis.Com".

SearchBusinessAnalytics. Web. 22 Mar. 2017.

20Rouse, Margaret. "What Is Von Neumann Bottleneck? - Definition From Whatis.Com".

WhatIs.com. Web. 22 Mar. 2017.

21"Interleaved Memory". Cs.umd.edu. Web. 5 Apr. 2017.

22Pourdowlat, Pirouz et al. Hardware Prefetching Schemes. 1st ed. 2005. Web. 19 Apr.

2017.

23Hsu, W.-C., and J.E. Smith. "A Performance Study Of Instruction Cache Prefetching

Methods". IEEE Transactions on Computers 47.5 (1998): 497-508. Web. 19 Apr. 2017.

24White Paper Processor Affinity Multiple CPU Scheduling. 1st ed. TMurgent Technologies,

2003. Web. 1 Mar. 2017.

25Dynamic Thread Mapping For High-Performance, Power-Efficient Heterogeneous Many-

Core Systems. 1st ed. IEEE, 2013. Web. 22 Mar. 2017.

	Survey of Branch Prediction, Pipelining, Memory Systems as Related to Computer Architecture
	Scholarly Commons Citation

	tmp.1528241320.pdf.0KXRU

