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Abstract 
 

This paper is a survey of topics introduced in Computer Engineering Course CEC470: 

Computer Architecture (CEC470).  The topics covered in this paper provide much more 

depth than what was provided in CEC470, in addition to exploring new concepts not 

touched on in the course.  Topics presented include branch prediction, pipelining, registers, 

memory, and the operating system, as well as some general design considerations for 

computer architecture as a whole. 

 

The design considerations explored include a discussion on different types of instruction 

types specific to the ARM Instruction Set Architecture, known as ARM and Thumb, as well 

as an exploration of the differences between heterogeneous and homogeneous multi-

processors. 

 

Further sections explain the interoperability of various portions of the computer architecture 

with a focus on performance optimizations.  Branch prediction is introduced, and the quality 

improvement which branch prediction provides is detailed.  An explanation of pipelining is 

given followed by how pipelining on different types of processors may be difficult.  

Registers, one of the fundamental parts of a computer, are explained in detail, as well as 

their importance to computer systems as a whole. 

 

The memory and operating systems sections tie this paper together by delving deeper into 

the architecture of computers, then resurfacing with how the software and hardware interact 

through the operating system. 

 

This paper concludes by tying each section discussed together and presenting the importance 

of computer architecture. 

 

1 Introduction 
 

The purpose of this paper is to present the research conducted in parallel with the Computer 

Engineering course CEC470: Computer Architecture (CEC470) in order to fulfill the 

requirements of an Honors Directed Study.  This Honors Directed Study acts as a survey of 

the topics introduced in CEC470, and then goes beyond the content which was presented in 
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the lecture of this course.  If more information is desired on any of the topics covered in this 

survey, see Section 9: References or Computer Architecture: A Quantitative Approach 5th 

Ed. by David Patterson and John L. Hennessy1, the textbook for CEC470. 

 

This paper will present the information from this survey in the most effective way possible.  

Topical coverage starts at a high level to provide general information regarding processor 

design, then moves into the specifics of processor implementation, and finally moves away 

from the physical aspects of processors to explore the interaction of software with 

processors.   

 

2 Design Considerations 
 

When any new system is being designed, there are a number of engineering decisions that 

must be made.  However, before these decisions can be made, possible outcomes to each 

decision must be evaluated to ensure the decision is as accurate as possible.  This section 

provides some analysis of design considerations that may be made in the design of computer 

systems. 

 

Section 2.1: ARM vs. Thumb provides analysis on when each instruction type is used.  

ARM and Thumb are different kinds of instructions used in the ARM Instruction Set 

Architecture (ISA)1.  Section 2.2: Heterogeneous vs. Homogeneous discusses the difference 

between heterogeneous processors and homogenous processors as well as which type may 

provide a performance increase in given situations. 

 

2.1 ARM vs. Thumb 
 

This section will discuss the performance potential of ARM and Thumb 

instructions, and determine whether or not there is ever a situation where both 

ARM and Thumb instructions may be used in conjunction.  First, background 

information regarding ARM and Thumb will be provided in order to effectively 

convey the differences between ARM and Thumb.  Next, the differences between 

ARM and Thumb which result in a change in performance between the two will be 

highlighted.  Finally, this section will discuss whether or not the use of both ARM 

and Thumb instructions is desired in any situation.  

 

ARM and Thumb are both types of instruction that are used in the ARM Instruction 

Set Architecture (ISA)1.  The primary difference between the two instruction types 

is size; ARM instructions are 32 bits versus Thumb instructions are half the size of 

ARM instructions at 16 bits.  In some cases, ARM instructions are composed of 

Thumb instructions.  This will decrease the number of total instructions in a 

program because the Thumb instructions will be executed as if they were one ARM 

instruction.  However, this translation is not always possible because there is not a 

direct conversion between all ARM and Thumb instructions. 
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Cost, performance and power are just a few parameters that designers focus on. 

Being able to use a combination of ARM and Thumb code within an application 

enables designers to balance the cost, performance and power characteristics of the 

overall system.  Where performance is the primary concern, generally the fewer 

instructions required the better, therefore, using ARM instructions alone will 

usually give the best results2.  Writing applications using Thumb instructions will 

enable more of the most frequently used instructions to be stored in on-chip 

memory. This translates to a higher level of code density and results in a lower 

level of power use because fewer memory accesses are made.   

 

In order to achieve the desired balance of power, performance and code density to 

produce an optimized design, designers tend to use a mixture of both ARM and 

Thumb instructions2.  One way designers may do this is by identifying performance 

critical code and using ARM instructions for this portion of the code.  Where 

possible, Thumb instructions are used for the remainder of the code to minimize 

memory footprint. 

 

2.2 Heterogeneous vs. Homogeneous 
 

This section will discuss the differences between heterogeneous multiprocessors 

and homogeneous multiprocessors, then provide analysis on the amount of 

generalized performance improvement is required for a heterogeneous 

multiprocessor system to be used over a homogeneous multiprocessor system.  

First, an explanation of the differences between a heterogeneous multiprocessor 

and a homogeneous multiprocessor will be presented.  Through this explanation, 

facets of each design will show how the performance of each system differs.  

Finally, this section will discuss how much performance improvement a 

heterogeneous multiprocessor system must provide the system overall in order 

justify the additional cost of implementation. 

 

A homogeneous multiprocessor is a processor which has multiple processor cores 

on the same chip where each core is of the same type1.  A heterogeneous 

multiprocessor is a processor which has multiple cores on the same chip where at 

least one of the processors on the chip is of a different type than the rest1.  An 

application which may use a homogeneous multiprocessor is one which does not 

have much variety in its computations, such as a desktop computer.  In contrast, 

heterogeneous multiprocessors may be used in applications where many different 

kinds of computations are being performed, or where the different computations 

each have a specialized processor for that task which is optimized for performance, 

power consumption, or both. 

 

When looking to decide whether to use a heterogeneous or homogeneous 

multiprocessor system, much analysis for the specific application is required in 

order to make this decision.  Heterogeneous multiprocessor systems require vastly 

more simulation than homogeneous multiprocessor systems because of the varied 
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levels of heat dissipation, heat generation, and power consumption3.  Further 

considerations include the physical layout of the processors on the board.  In a 

homogeneous multiprocessor system, each processor is the same, so placement is 

not as large of an issue.  However, in a heterogeneous multiprocessor system, the 

different processors may need access to different memory banks and require 

different configurations than what may have been designed for a homogeneous 

multiprocessor system. 

 

To determine the performance increase, analysis should be performed to determine 

if the projected profits from the performance boost will cover the extra cost of 

implementing a heterogeneous system.  The issue of support for the product once 

released arises in these considerations as well since heterogeneous systems are 

more difficult to work with. 

 

3 Branch Prediction 
 

Regardless of whether a heterogeneous or homogeneous processor is used, all modern, high 

performance processors use branch prediction to improve performance1.  Branch prediction 

is the process of predicting the outcome of a branch.  A branch is a type of control logic 

which allows code to move from one block to another.  The decoding and interpretation of a 

branch instruction by the processor takes a long time.  Branch prediction allows the 

processor to predict what the outcome of the branch will be based on some prediction 

strategy which is set by the ISA.  In the case which the prediction is correct, computation 

time is utilized effectively with the potential for minimal wasted computation cycles.  In the 

case where the prediction is incorrect, performance is not improved by the branch 

prediction.  However, depending on the prediction strategy in place, the branch predictor 

may learn from this misprediction in order to be more accurate in the future. 

 

Section 3.1: Overall Quality Improvement provides further information regarding branch 

prediction and its effectiveness over code which does not implement branch prediction.  

Section 3.2: Algorithms Used discusses a number of different branch prediction strategies 

and whether or not they are used in practice.  Section 3.3: Branch Prediction on 

Heterogeneous Multi-Core Systems ties in some operating systems concepts and explores 

the effect of a context switch on branch prediction when using a heterogeneous multi-core 

processor. 

 

3.1 Overall Quality Improvement 
 

This section will provide a definition of branch prediction and detail the 

performance improvement which it provides.  First, branch prediction will be 

explained. Following this definition, some analysis of why branch prediction 

provides a performance increase over code which does not use branch prediction 

will be explored. 
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The purpose of branch prediction is to reduce the total number of stalls that are 

caused by branch statements.  When a branch is encountered in code, it must be 

executed before the code knows what instructions to run next as there are multiple 

options.  Branch prediction tells the code to assume the outcome of the branch is 

taken or not taken and to continue executing instructions based on that assumption.  

When the branch finishes executing, the final state of the branch is communicated 

to the rest of the code.  If the prediction was correct, the code continues executing 

as it was.  However, if the prediction was incorrect, the code must squash the 

instructions that were executed from the wrong branch target, then fetch all new 

instructions from the correct target.  Without branch prediction, the code would not 

be able to fetch instructions while the branch finishes executing, wasting these 

computation cycles.   

 

Branch prediction is the process of making an educated guess as to whether a 

branch will be taken or not taken based on a preset algorithm1.  A branch is a 

category of instruction which causes the code to move to another block to continue 

execution.  Branch prediction has the ability to be static or dynamic4.  Static branch 

prediction means that a given branch will always be predicted as taken or not taken 

without possibility of change throughout the duration of the program.  Dynamic 

branch prediction means that the predicted outcome of a branch is dependent on an 

algorithm, and the prediction may change throughout the course of the program.  

Code is able to use a combination of both static and dynamic branch predictors 

based on the type of branch. 

 

The improvement branch prediction provides is dependent on the number of 

branches in the code, as well as the type of prediction being used as different 

prediction methods have varied rates of success.  Overall, branch prediction 

provides an increase in performance for code containing branches.  This 

improvement is based on the number of computational cycles which are able to be 

used for computation rather than wasted on a system which does not use branch 

prediction. 

 

3.2 Algorithms Used 
 

This section will explore various techniques for branch prediction, to identify 

which strategies are quality, and finally to state which are used in practice.  First, 

each of the different branch prediction strategies that were identified in the research 

for this document will be presented.  Of note, due to the limited nature of this 

paper, the algorithms presented here are by no means a complete listing of all 

branch prediction algorithms.  Next, of the strategies listed here, the quality of each 

will be assessed with both positive and negative aspects of each discussed.  Finally, 

whether or not a given algorithm is used in practice or not will be disclosed. 

 

In order to fully explain the different branch prediction strategies, some more 

background information must be given.  There are three different kinds of 
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branches: forward conditional, backward conditional, and unconditional branches5.  

Forward conditional branches are when a branch evaluates to a target that is 

somewhere forward in the instruction stream.  Backward conditional branches are 

when a branch evaluates to a target that is somewhere backwards in the instruction 

stream.  Common instances of backward conditional branches are loops.  

Unconditional branches are branches which will always occur.  

 

A static or dynamic prediction strategy will determine which different algorithms 

or methods are available for use.  For static branch prediction, the strategy may 

either be predict taken, predict not taken, or some combination that specifies the 

branch type such as backward branch predict taken, forward branch predict not 

taken5.  The third strategy is advantageous for programs with loops because it will 

have a higher percentage of correctly predicted branches for backward branches. 

 

Dynamic branch prediction is able to use one-level prediction, two-level adaptive 

prediction, or a tournament predictor.  One-level prediction uses a counter based on 

a specific branch to use said branch’s history to predict its future outcomes5.  The 

address of the branch is used as an index into a table where these counters are 

stored.  When a branch is correctly predicted taken, a counter is incremented.  

When a branch is correctly predicted not taken, the same counter is decremented.  

In the case where the prediction was incorrect, the opposite occurs.  For instance, if 

a branch was incorrectly predicted taken, the counter would be decremented, or if a 

branch was incorrectly predicted not taken, the counter would be incremented.  The 

status of this counter is used to make the prediction for the branch’s next iteration.  

If the counter holds a value of zero or one the prediction is not taken, and if the 

value of the counter is two or three the prediction is taken. 

 

The two-level adaptive branch prediction is very similar to the one-level branch 

prediction strategy.  The two-level strategy uses the same counter concept as the 

one-level, except the two-level implements this counter while taking input from 

other branches.  This strategy may also be used to predict the direction of the 

branch based on the direction and outcomes of other branches in the program.  This 

strategy is also called a global history counter5. 

 

Hybrid or tournament prediction strategies use a combination of two or more other 

prediction strategies5.  For example, any static prediction used in conjunction with 

a dynamic prediction strategy would be considered a hybrid strategy. 

 

All of the strategies listed here are used in practice.  The two-bit counter presented 

in the one-level branch prediction strategy is used in a number of other branch 

prediction strategies, including a predictor for choosing which predictor to use.  

One disadvantage to each of these strategies is that their level of improvement for a 

given code will vary depending on what is written into the code. 
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3.3 Branch Prediction on Heterogeneous Multi-Core Systems 
 

This section will explain how branch prediction methods function on a 

heterogeneous multi-core system when a context switch occurs.  First, a brief 

definition of context switch will be provided along with its relevance in this 

discussion, and why this topic was addressed in the first place.  Following this brief 

background will be the discussion of how the branch prediction algorithms and the 

associated hardware are affected by context switches.   

 

For the purposes of this section, a context switch occurs when multiple threads or 

processes are running on a system and they must share computation time.  The 

context switch is the process of saving one thread or process’ context so it may 

resume execution when the computer is returned to it.  A context consists of the 

code and registers and anything else the process or thread requires for execution.   

 

The relevance of a context switch in this discussion is that the assumption is made 

that the code in question is running on a heterogeneous multicore system.  This 

means that a process may be assigned to either of the core types.  If another process 

is admitted, the current process running on a given core may be forced to save its 

context and stop running.  This section discusses what happens to the branch 

predictors associated with a given process upon the occurrence of a context switch. 

 

When analyzing a big.LITTLE system, a heterogeneous multi-core system with a 

common ISA of ARM, the system utilizes global task scheduling6.  This scheduling 

mechanism allows the operating system to be able to accurately assess which core 

type and specifically which core a new process or thread should be placed on based 

on expected performance.  This also means that the operating system may 

specifically target either big or LITTLE cores on the system, and potentially move 

a thread or process from a big core to a LITTLE core, or vise versa.  However, the 

context of a thread or process running on a big.LITTLE system is able to be 

transferred between the two different kinds of processor6.  This means that all 

memory within the thread or process is saved, including the branch prediction data. 

 

4 Pipelining 
 

Any modern processor will be using pipelining in order to optimize performance.  Without 

pipelining in a processor, each instruction must wait until the previous instruction has 

completed before the next may begin in a true sequential manner.  On a pipelined system, 

each clock cycle an instruction may begin regardless of whether or not the previous 

instruction has completed or not1. 

 

Section 4.1: Hazards provides a number of problems that are introduced when pipelining is 

implemented in a processor.  Section 4.2: Schedule to Avoid Hazards and Dependencies 

discusses how a pipeline may be scheduled to avoid the hazards discussed in Section 4.1: 

Hazards.  Section 4.3: Stages Related to Performance provides an analysis of how many 
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stages a pipeline may have and how the number of stages is directly related to the 

performance of the pipeline.  Section 4.4: Dynamic Frequency Scaling and Performance 

explains the effect of dynamic frequency scaling on pipelining and the resulting effect on 

performance overall.  Section 4.5: Pipelining on a Heterogeneous System discusses how 

pipelining functions on a heterogeneous multi-core system.  Section 4.6: Pipelining on a 

Common ISA Heterogeneous System continues the analysis begun in Section 4.5: Pipelining 

on a Heterogeneous System but focuses on the situation of a common ISA. 

 

 

4.1 Hazards 
 

This section will provide an explanation as to what hazards are and why they 

matter.  This section will also further introduce pipelining and how hazards affect 

pipelining.  First, definitions of hazards, including the different types, will be 

provided.  Next, an explanation of pipelining will be provided.  Finally, this section 

will tie hazards and pipelining together to explain the impact that hazards have on 

pipelining.   

 

Pipelining is the process of executing more than one instruction in a given 

computational cycle.  Consider a single instruction.  For the purposes of academia, 

there are five main stages to completely execute an instruction: instruction fetch, 

decode, execute, memory, and write back7.  At any given time in the overall 

execution the instruction will only be in one of these five stages at a time.  

Pipelining takes advantage of this and begins executing other instructions once the 

initial instruction finishes a given stage.  In order to ensure that data from different 

instructions do not become intermingled, based on the length of the longest stage, 

each instruction is not allowed to move to the next stage of execution until a set 

amount of time has passed.  This set amount of time is the inverse of the clock 

frequency. 

 

By changing the way that instructions are executed, a number of issues are 

introduced.  These issues are called hazards, and are the purpose of this section.  

There are three types of hazards: structural, data, and control7.  Structural hazards 

occur when an instruction requires some functional unit in order to complete its 

execution but a functional unit of that type is unavailable due to pipelining.  Data 

hazards occur when the output for one instruction is an input for a subsequent 

instruction, and the data is not available when the second instruction goes to 

execute because the first instruction has not yet produced the data.  Control hazards 

occur when branches enter the pipeline and change the order of instructions to be 

executed. 

 

Each of these hazards have the potential to cause serious delays in the pipeline.  In 

most situations, when one or more of these hazards occur, a bubble, or stall, must 

be inserted into the pipeline in order to preserve instruction order.  Because of this, 

the benefits of the addition of pipelining must be contrasted with their potential 
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cost.  Section 4.2: Schedule to Avoid Hazards and Dependencies discusses how the 

costs associated with pipelining may be minimized. 

 

4.2 Schedule to Avoid Hazards and Dependencies 
 

This section will further discuss pipelining and hazards with an emphasis on how 

the pipeline may be scheduled to avoid data dependencies by both the compiler, the 

hardware, or some combination thereof. First this section will explain data 

dependencies.  Next, this section will detail how the pipeline is capable of being 

scheduled from perspectives of both the hardware and the compiler.  Finally, an 

explanation of how the pipeline may be scheduled by the hardware, compiler, or 

some combination in order to avoid data dependencies and hazards will be 

provided. 

 

Name dependencies occur when multiple instructions refer to the same variable.  

These dependencies do not always cause issues, but they can.  If two sequential 

instructions exist such that the destination of the first instruction is an operand for 

the second instruction, this is a data dependency which will cause a delay in the 

pipeline.   

 

In order to reduce the amount of stall time caused by data dependencies, both the 

compiler and the hardware are able to assist in the scheduling of instructions1.  The 

compiler is able to view all of the instructions in a given program and insert 

appropriate “no-op” instructions into the instruction stream to sufficiently spread 

out dependent instructions.  A “no-op” instruction is an instruction where nothing 

happens.  However, in order to do this successfully, the compiler must have 

sufficient knowledge about the hardware which it is running on to know the amount 

of time in cycles that an instruction will take to produce a value.  From the 

hardware side of things, additional hardware called bypass paths are able to be 

added to try and avoid no-ops.  These bypass paths move data from the end of the 

execute stage to the beginning of the execute phase so that subsequent instructions 

may have access to the needed data as soon as possible rather than having to fetch 

the recently produced data from memory or architected registers.  In the case that 

the data is still not available, the hardware is able to insert stalls into the instruction 

stream similar to how the compiler may insert no-ops. 

 

It is easier for the compiler to perform the scheduling because the compiler has 

access to all of the code in the overall program as well as essentially infinite time in 

terms of computation.  Conversely, the hardware only has access to the set of 

instructions that are inflight.  Because of this, the compiler is better at scheduling 

instructions.  A caveat to this is that the compiler must have information about the 

hardware which it is running on in order to effectively schedule the instructions. 

 

The compiler could schedule instructions any way that it sees fit based on the data 

from the ISA, however this may not be the most effective.  The compiler is able to 
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analyze the content of each instruction and create a directed graph of all of the 

instructions with the instructions as the nodes, and connect the nodes based on the 

dependencies between each instruction8. The ideal usage of this directed graph is to 

select the path which has the least amount of stall cycles.  However, the issue with 

this is the analysis and final selection of the path with the least stall cycles is a 

problem which is NP-Complete.  The combination of static methods with the 

dynamic path traversal is one way to reduce the amount of time required to find a 

potentially optimal path8. 

 

Even though the compiler will perform its own optimizations, these optimizations, 

as previously stated may not be entirely optimal, so the hardware may add its own 

optimizations in order to further better the execution of the instructions.  It is 

beneficial for both the hardware and compiler to provide optimizations for the 

scheduling of the instructions because of the limitations of the compiler and the 

hardware on their own. 

 

4.3 Stages related to performance 
 

This section explains how the number of stages within a pipeline impact the 

performance of the pipeline.  This section will also explain how the type of 

instructions being executed on a pipeline will also impact the overall performance 

of the pipeline. 

 

As stated in Section 4.1: Hazards, academia teaches a five-stage pipeline.  This 

five-stage pipeline can be expanded or compressed to have more or less pipeline 

stages.  Both of these implementations have advantages and disadvantages related 

to a variety of performance metrics.  By increasing the number of stages, the 

pipeline is forcing the instructions to take more time overall to complete their 

execution.  This allows the system to execute larger instructions with increased 

efficiency.  However, smaller instructions may finish their execution early and 

waste computation cycles.  The amount of performance improvement will also be 

variable based on the types of instructions and programs that are being run on the 

system because different instructions will have different lengths, and different 

programs will have different quantities of different kinds of instructions. 

 

4.4 Dynamic frequency scaling and performance 
 

This section will further discuss the performance of pipelining with relation to 

dynamic frequency scaling.  First, this section will provide an explanation as to 

what dynamic frequency scaling is.  Once dynamic frequency scaling is explained, 

this section will relate dynamic frequency scaling to the performance of a pipeline. 

 

Dynamic frequency scaling is the process which a processor goes through to 

change its operating frequency in order to increase performance, or reduce power 

consumption.  In general, this adaptation of the system would just cause rate at 
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which instructions move through the pipeline to vary.  However, if the system 

supports a variable-length pipeline9, then other changes may take place. 

 

A variable-length pipeline is a pipeline which is capable of changing the number of 

stages it contains based on the operating frequency9.  Variable-length pipelines are 

atypical in industry, and mentioned here for theoretical completeness.  In 

Koppanalil’s article9, it is stated that in the two operating modes, deep and shallow 

mode, the number of pipeline cycles in deep mode is double that of the cycles in 

shallow mode.  The paper states that deep mode is to be executed when the 

processor is operating at high frequencies, and shallow mode when the processor is 

operating at low frequencies.  The transition between deep and shallow mode is 

done by enabling and disabling the circuitry required for the separation of the 

pipeline stages as needed for each specific mode. 

 

The combination of dynamic frequency scaling with variable-length pipeline stages 

allows for performance increase in processors which support both.  This 

performance increase is based in the amount of power saved as well as the speed of 

processing when in deep and shallow modes respectively9.  On systems which do 

not support variable-length pipeline stages, dynamic frequency scaling increases 

performance through reduced power consumption and increased instruction 

throughput when the frequency is reduced and increased respectively. 

 

4.5 Pipelining on a heterogeneous system 
 

The purpose of this section is to explain how pipelining works on a heterogeneous 

multi-core system, specifically when a process is moved from one core to another, 

either of a different core type or of the same core type.  First, potential differences 

between different core types which are relevant to the pipelining process will be 

discussed.  This section will then explain what happens to the contents of the 

pipeline when a process is swapped from one core to another. 

 

Generally, when a heterogeneous multi-core processor is implemented, the design 

goal is to improve performance related to the application of the system.  This 

performance improvement focus could be heat conservation, power consumption, 

or overall instruction throughput.  In order to do this, the different processors 

selected to be included in the processor are vastly different, but the overall purpose 

of each will be application dependent. Because of this, the number of pipeline 

stages will likely be different across the different core types, but does not mean 

they must be.  The same logic applies to the order of the pipeline stages: they may 

be in the same order, but may not be. 

 

Since the primary goal of a heterogeneous multi-core processor is to improve 

performance, if moving a process from one core type to another core type provides 

a performance increase, that is what the processor will do.  When this occurs, 

because the pipeline is not part of the context of the process, the instructions 
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inflight will either finish and commit or be flushed from the pipeline in order to 

allow the rest of the context to save and the process to be moved. 

 

4.6 Pipelining on a common ISA heterogeneous system 
 

This section will explore the differences in the pipelines of the different cores 

involved in a common ISA heterogeneous multiprocessor, such as big.LITTLE, and 

how these differences impact the performance of the system overall.  This section 

will first explain the possible differences between processors on a big.LITTLE 

system and why these differences matter.  This section will then address these 

differences and provide an explanation as to why the differences provide an overall 

improvement with regards to the pipeline of the system. 

 

On a big.LITTLE system, the differences between the two core types include 

number of pipeline stages, instruction types, order of instruction, and cache 

interfaces10.  Each of these differences contribute to improved performance for each 

of the two core types.  The big core is meant to be a high-performance core with a 

larger number of pipeline stages to handle more power intensive operations.  The 

LITTLE core is meant to be a power saving core with a lower number of pipeline 

stages to handle smaller operations that would potentially be a waste of 

computation cycles on the big core. 

 

By incorporating multiple big and multiple LITTLE cores on a single chip 

performance is improved.  At any given time, the chip may shut off any core which 

is not being used in order to save power10.  The chip is also able to choose which 

core to give any given process, potentially running multiple processes on a single 

core because that alternative was seen as more efficient than powering up another 

core and running the additional processes on it. 

 

Specifically, looking at the number of pipeline stages on the big and LITTLE cores, 

based on the kind of processes that each core type is meant to run, the varied 

number of stages provide a performance increase in each core.  The big core has a 

larger number of stages which allow more complicated instructions to be broken 

into smaller, more manageable pieces of executable code which will be executed 

with a fewer number of delay slots than if the same process had been executed on a 

LITTLE core.  The LITTLE core has a smaller number of pipeline stages to allow 

the less computationally intensive processes to execute quicker than they would on 

a big core. 

 

5 Registers 
 

Moving even deeper into the architecture of processors, the next topic to be covered are 

registers.  When data is being used by the program, it would be impossible to accomplish 

anything in a timely manner if each instruction had to go all the way to main memory 

implemented with DRAM on each reference. To avoid this, registers were created in the 
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instruction set architecures as a temporary storage for data1. This section discusses different 

types of registers and how each are used. 

 

Section 5.1: Conventional Register File vs. Rename Register File explains the differences 

between a conventional register file and a rename register file, then goes into detail about 

how each is used.  Section 5.2: Register File Relevance to Bits per Register and Ports 

describes the impact of the layout of the register file on registers and ports.  Section 5.3: 

Architected Registers vs. Rename Registers vs. Inflight Instructions Across Different 

Processors explains what architected registers, rename registers, and inflight instructions are, 

then highlights the differences between each. 

 

5.1 Conventional register file vs. rename register file 
 

This section presents the differences between a conventional register file and a 

rename register file.  This section will provide definitions of both types of register 

files.  Followed by these definitions will be an emphasis on the differences between 

conventional and rename register files.  Finally, uses of both kinds of register files 

will be explored in addition to how each are constructed. 

 

A conventional register file is a series of registers laid out in a grid.  These registers 

are accessed through bit and word lines which access the columns and rows of the 

grid of registers respectively11.  Each register stores either a committed value or an 

intermediate value of a calculation.  A rename register file is similar to a 

conventional register file, except a rename register file stores a mapping of physical 

registers to architected registers12. 

 

Conventional register files are used in every processor which contains registers.  

The format of the register file plays a key role in how each register is accessed.  To 

access any register, both the corresponding bit and word lines must be activated11.  

This allows registers which have different bit and word lines to be accessed for 

reading and writing potentially simultaneously.  This relationship will be expanded 

upon in the next section. 

 

Rename register files are only located on systems which implement register 

renaming to help prevent hazards as a result of execution being performed out of 

order12.  Rather than working directly with the architected registers, physical 

registers are mapped to the architected registers and used in the instruction 

sequence.  When multiple instructions are expected to write to the same architected 

register, a different physical register is assigned to each instruction for the 

designated architected register.  This process is what allows hazards to be avoided. 
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5.2 Register file relevance to bits per register and ports 
 

This section will explain the relationship between the layout area of a CPU register 

file, the number of bits per register contained, and the number of ports in and out of 

the register file, as introduced in the previous section. 

 

The number of read and write ports on a register file is directly related to the 

number of bit and word lines, along with the overall area of the register file11.  For 

each port, there is one word line running horizontally across the register file.  For 

each port which is designated for writing, there are two bit lines running vertically 

across the register file.  For each port which is designated for reading, there is one 

bit line running vertically across the register file. 

 

This number of bit and word lines impacts the overall size of the register file due to 

the size of the wire used for these lines11.  This wire size will increase, allowing 

more data to be transmitted, as the number of ports into the register file increases.  

More specifically, the wire size will always be the square of the number of ports 

into the register file. 

 

As the number of ports into the register file increases, so does the wire size into the 

register file.  The register file is generally pitch-matched to the size of the datapath 

associated with the register file11.  As the size of the register file wire increases, it 

forces the data path wire size to increase.  The data path wire travels throughout the 

circuit, and if its size continuously increases, design issues regarding heat and size 

will be caused as the register file grows in size.  To keep these issues at a 

minimum, circuit designers will use multiple register files on a single system. 

 

5.3 Architected registers vs rename vs inflight instructions across different 

processors 
 

This section will provide the similarities between architectural registers, rename 

registers, and inflight instructions over different processors.  First the differences 

between architectural registers, rename registers, and inflight instructions will be 

explained.  The similarities between each of these will be provided following their 

definitions. 

 

Of the three, inflight instructions are the most different concerning physical 

characteristics.  Inflight instructions are the total number of instructions which are 

currently being executed, which is an indicator of how deep the system pipeline is1.  

Architected registers are the registers which are designated by the instruction set 

architecture (ISA)1.  Some architected registers may have specific purposes varying 

from ISA to ISA.  Rename registers are implemented in systems which use register 

renaming techniques11.  These registers are physical registers which are mapped to 

the architected registers in the system. 
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Inflight instructions carry no real similarities to architected or rename registers, 

aside from the total number of inflight instructions will vary with the ISA due to 

the varied depth of the pipeline on different machines.  Architected and rename 

registers are fundamentally the same functional unit, just used differently by the 

ISA.  Their uses will vary dependent on the ISA which is implemented. 

 

Architected registers are the only independent functional unit on this list which will 

change based off of the ISA rather than a specific processor implementation.  Here 

two ISAs, MIPS and ARM, will be analyzed for their implementations of 

architected registers.  The MIPS ISA contains 32 architected registers13.  Of these, 

registers 29, 30, and 31 are the stack pointer, frame pointer, and the return address 

of a function call respectively.  Of note are registers 0 and 1 which are the constant 

0 and reserved for the assembler respectively.  These registers are unique to the 

MIPS ISA.  The ARM ISA contains 16 architected registers1.  Similar to the MIPS 

ISA, register 13 is the stack pointer.  Different from the MIPS ISA, registers 14 and 

15 are the link register and program counter respectively.  The ARM ISA also has a 

current program status register which contains 32 bits which communicate various 

conditions of the system including whether Thumb mode is enabled or if an 

interrupt has occurred1. 

 

6 Memory 
 

Section 5: Registers explained the use of registers, a simple, but high speed form of 

memory.  Section 6: Memory will go into much more detail on the implementation of 

memory hierarchy, and how memory can be protected. 

 

Section 6.1: Implementation of Data Structures discusses how both the stack and heap are 

implemented in memory as well as what kind of information is stored in each, and why it 

matters what information is stored where.  Section 6.2: Protection from Single Event Upsets 

explores a variety of techniques used to protect memory from errors.  Section 6.3: 

Processing In Memory explains what processing in memory is and why processing in 

memory is useful.  Section 6.4: Reduction of Average Memory Access Time provides a 

number of methods which are used to reduce the amount of time that it takes to access main 

memory. Section 6.5: Prefetching explains what prefetching is with regards to hardware and 

software, then gives examples of each.  Section 6.6: Effects of Prefetching provides insight 

on the improvements which prefetching provides systems. 

 

6.1 Implementation of Data Structures 
 

This section provides an explanation of how different data structures are 

implemented in memory.  First, the concept of a stack and a heap will be explained, 

and what information is stored in each data structure will be defined based on 

common practice.  Next, the implementation of each of these data structures in 

memory will be detailed.  Finally, an explanation of why it matters what kind of 

information is stored in each the stack and the heap will be provided. 
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In order for this section to be understood, background on the definitions of a stack 

and a heap must be provided.  A stack is a data structure that follows “first in, last 

out” or FILO.  This means that the first item that is placed onto the stack, or pushed 

onto the stack, will be the last item removed, or popped, from the stack.  A heap is 

implemented as a tree in memory with either the highest or lowest priority item 

stored in the root of the tree.  As items are removed from the tree, it is reordered in 

order to keep the highest or lowest priority item at the root of the tree14. 

 

Both the stack and the heap are stored in the random access memory (RAM) of the 

computer15.  Within the code, variables which are written in to each block of code 

are stored on the stack because the stack has a limited amount of storage space 

which is determined at compile time.  Space on the stack is allocated upon code 

block entry, and deallocated on code block exit.  If there are dynamically allocated 

variables within the code, these variables are stored in the heap.  These variables 

are only deallocated when the program calls a memory deallocation function. 

 

Within memory, the stack and heap are stored in different ways, providing each 

with a different access speed.  The stack is stored in sequential memory allowing 

for faster access times15.  The heap is stored randomly throughout the available 

RAM in the system15.  Because of this, the access time for any variable stored in 

the heap is lower since it takes longer to locate than it would if the variable were on 

the stack. 

 

The location of the stack and the heap in memory is important due to its impact on 

memory access speeds.  Memory access speeds impact the entire system due to 

their inherently high latencies.  Anything that can be done to decrease the latency 

of a memory access should be done in order to increase the efficiency of the system 

overall. 

 

6.2 Protection from Single Event Upsets 
 

This section will explain how memory is able to be protected from errors such as 

single event upsets (SEUs).  First, an overview of the various sources of error in 

memory will be provided.  Next, the various techniques used to detect, and in some 

cases correct, data errors will be discussed.  Of note, the methods discussed in this 

section are not a complete listing of all possible methods to correct and detect 

errors in code.  This is just a subset of possible methods which were covered in the 

research conducted for this paper.  Finally, a discussion of where each of these 

methods is used will be provided. 

 

Errors in memory can be caused by a number of things, but are most commonly 

caused by forms of radiation or SEUs.  SEUs occur when a single energetic particle 

passes through a chip, altering a small number of bits while leaving no permanent 

damage to the chip itself16.  
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Common techniques used to detect, and in some cases correct, SEUs include parity, 

cyclic redundancy check (CRC), hamming code, Reed-Solomon error correction, 

and chipkill.  Parity detects an odd number of errors in the code by summing all the 

bits in the code in question, then appends an additional bit based on whether the 

total number of one’s counted was odd or even1.  If an even number of bits are 

altered, the count of one’s will remain the same and the error will go undetected.  

CRC acts as a non-secure hash function by appending a check value based on 

polynomial division17.  The calculation is repeated after the data is transmitted and 

if the check values do not match, corrective action is taken.  Hamming code is an 

expanded version of parity which breaks large pieces of data into chunks and 

calculates the parity of those chunks18.  A parity is also taken of the parity bits.  

This allows hamming codes to detect multiple errors, and correct a single error.  

The Reed-Solomon error correction code is one of the more complicated error 

checking codes.  By adding some number of check symbols to a set of data, a 

Reed-Solomon code may detect any number up to the total number of check 

symbols added worth of errors in the code17.  Reed-Solomon is also able to correct 

up to half of the total number of check symbols worth of bit errors.  This method is 

also able to detect erasures, or some combination of errors and erasures.  Finally, 

chipkill is able to protect the integrated circuit as a whole rather than the specific 

data stored on it by using a hamming code and spreading the data across multiple 

chips1. 

 

In general, most of these methods are used before data is stored, when data is 

transmitted, or when data is received.  CRC is generally good at detecting noise in 

transmitted data17.  Parity works best when it is used in conjunction with other 

techniques, such as its use in hamming codes.  Chipkill is effective on its own since 

it works on the integrated circuit level rather than the data level. 

 

6.3 Processing In Memory 
 

This section will define processing-in-memory (PIM) and to discuss some of the 

many advantages and disadvantages of PIM. 

 

Processing in Memory (PIM) is when a processor is placed within the random 

access memory (RAM) on a chip19.  The purpose of PIM is to reduce the latency by 

increasing the transfer rate between the processor and the memory system.  PIM 

helps reduce the transfer rate because the performance of the processor is directly 

related to the stack performance since the majority of the active data and memory 

being accessed is within the stack.  The issue of waiting for data to be fetched from 

memory is known as the Von Neumann bottleneck20.  PIM is also able to decrease 

power consumption since the processor and memory are physically closer. 

 

The advantages of PIM are the reduction in power and memory access latency 

which it provides19.  The disadvantages of PIM are limitations of the amount of 
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memory which is available, which also causes chips with PIM implemented to be 

less customizable19.  PIM requires a larger chip size than standard chips which 

causes it to have less modularity19.  The heat emitted from chips which use PIM is 

an issue as well because of the layout of the chip with the processor and memory so 

close together19. 

 

6.4 Reduction of Average Memory Access Time 
 

This section will discuss a number of ways in which the main memory access time 

may be reduced.  This section will also detail which processes are used in practice, 

not just discussed in theory. 

 

Memory interleaving is one method used by computer architects in order to reduce 

average memory access time (AMAT)21.  Memory interleaving distributes 

sequential data across multiple chips rather than in order all on one chip allowing 

multiple sections of the sequential data to be accessed simultaneously through the 

same index21.  This decreases AMAT by reducing the number of memory accesses 

and index calculations required for a memory access. 

 

Cache memory is another method of reducing AMAT.  Cache is a small amount of 

fast memory which stores data that is frequently accessed1.  Multiple levels of 

cache may exist in order to provide more potential reduction.  The access reduction 

is not achieved on the first access, rather on any later accesses once the data is in 

the cache.  Higher levels of cache, those which are accessed more frequently, are 

smaller to allow higher speeds.  Cache decreases AMAT by storing data closer to 

the processor allowing fewer memory accessed to propagate to main memory. 

 

6.5 Prefetching 
 

This section explains what prefetching is, then to provide a number of prefetching 

methods.  This section will provide examples of both software and hardware 

prefetching algorithms. 

 

Prefetching is used to reduce the average memory access time by fetching memory 

from main memory before it is needed22.  Different prefetching schemes use 

different methods, but overall, prefetching occurs as a result of a cache miss.  

Instead of only fetching the requested memory, prefetching allows the system to 

fetch additional memory in an attempt to save time later. 

 

In order for prefetching to be implemented in software, the programmer must have 

extensive knowledge of the hardware, and insert fetch instructions into the machine 

language manually, or through an educated compiler22.  Due to this, software 

prefetching is more complicated than hardware prefetching, and is used less 

frequently since the compiler generally does not have the necessary information 
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about the hardware to make prefetching decisions, and manually adding fetch 

instructions to the machine language code is tedious. 

 

Hardware prefetching is widely used as it is simpler than software prefetching as 

the hardware has all the information needed to appropriately fetch additional 

instructions.  Five different hardware prefetching methods to be addressed in this 

section can be split into two categories: sequential prefetching and data structure 

prefetching. 

 

The three sequential prefetching methods include prefetch on miss, tagged prefetch, 

and adaptive prefetch. The prefetch on miss strategy fetches the next sequential 

block of memory in addition to the requested block of memory as a result of a 

cache miss22.  This strategy has approximately a 50% effectiveness rate.  The 

tagged prefetch method assigns a tag bit to every block of memory.  This bit is used 

to detect when a block is demand-fetched, or a prefetched block is referenced for 

the first time22.  In both cases, when a block is fetched, the next sequential block in 

memory is also fetched.  This strategy is slightly more effective than the prefetch 

on miss strategy due to the principles of spatial locality.  The adaptive sequential 

prefetch method modifies the prefetch on miss strategy to not only fetch the next 

sequential block, but to also fetch as many sequential blocks as deemed appropriate 

by the degree of spatial locality of the system22. 

 

The two data structure prefetch methods are dependence based, and hardware based 

pointer data prefetch.  The dependence based prefetch method identifies pointers in 

memory, then looks at the address of the pointer, as well as the address which it 

points to in memory.  Based on this, when the pointer is loaded, the place in 

memory which it points to is prefetched.  This method is not always effective 

because not all pointer loads are address loads22.  The hardware based pointer data 

prefetch method identifies load instructions which are responsible for advancing a 

pointer through a linked list.  This method prefetches all possible addresses for this 

operation and stores the data into a prefetch buffer which has a one computational 

cycle latency, similar to that of a first level cache22. 

 

6.6 Effects of Prefetching 
 

This section will compare the performance of computers which use prefetching to 

the performance of computers which do not use prefetching.  The primary metric to 

be the focus of this section is overall number of misses.  This section will also 

discuss the circumstances in which both software and hardware prefetching are 

used. 
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In a study23 conducted by Wei-Chung Hsu and James E. Smith it was shown that 

systems which use hardware prefetching out-perform systems without hardware 

prefetching.  Systems without prefetching relied on line size to improve miss rate.  

The optimal line size varied from 64 word lines to 128 word lines depending on the 

overall size of the cache23.  For the smaller caches, 64 word lines was more 

effective, and for larger caches, 128 word lines was more effective due to cache 

pollution.  The concept of cache pollution is the ejection of potentially useful lines 

in the cache in order to insert a line which has fewer useful instructions23. 

 

In the same study23, the benefits of implementing hardware prefetching were based 

on which prefetching strategy was used.  This study observed fall-through and 

target prefetching.  Fall-through prefetching most closely matches the adaptive 

sequential method previously discussed.  Target prefetching most closely matches 

dependence based prefetch combined with prefetch on miss.  The fall-through 

prefetch method provided a reduction in misses by one third as compared to the 

system with no prefetching.  The longer line size does not provide an advantage 

with this method of prefetching.  This is because longer lines simulate the same 

spatial locality which the fall-through prefetcher implements on its own23.  

Similarly, the target prefetching method provided approximately the same results as 

the fall-through prefetch method.  Of note, the target prefetching method performed 

better with larger line sizes because it does not have as much built in spatial locality 

as the fall-through prefetching method23. 

 

7 Operating System 
 

The operating system is an important part of a system which includes processors, especially 

with regards to performance metrics such as execution time.  The operating system is 

responsible for the scheduling of processes on processors. 

 

Section 7.1: Heterogeneous System Process Selection With Affinity discusses how the 

operating system uses affinity to select which processor a process may run on when there are 

multiple different processors that the process may run on.  Section 7.2: Heterogeneous 

System Process Selection Without Affinity continues the discussion begun in Section 7.1: 

Heterogeneous System Process Selection With Affinity except ignoring process affinity to 

present other ways the operating system determines on which processor to let a process run. 

 

7.1 Heterogeneous system process selection w/affinity 
 

This section will explain how the operating system (OS) selects a specific core for 

a process to run on when there are multiple cores capable of running that process.  

This discussion will discuss the aforementioned process with regards to a 

heterogeneous system.   
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The OS uses processor affinity to determine which processor core a process should 

run on.  Processor affinity is a term used to describe the association between 

processes and processor cores24.  One instance of processor affinity is preferred 

processor24.  A preferred processor for a process is determined based on whether 

the process has executed on a processor before.  The purpose of a preferred 

processor is to attempt to maximize the probability that data from a process may 

remain in the cache memory from a previous execution.  Preferred processors may 

also relate to the performance capabilities of a particular processor.  If all of the 

processors are the same regarding performance, and the process in question has 

never executed, the processor affinity for the process is the same for all available 

processors.  The OS will try to schedule a process to run on the processor for which 

it has the highest affinity.  However, the OS will not necessarily stop another 

process from executing to allow a different process to execute on the processor for 

which its affinity is highest, especially if other processors are available.  Processor 

affinity acts as a guideline for the OS rather than a mandate. 

 

7.2 Heterogeneous system process selection w/o affinity 
 

This section expands on the previous section, Section 7.1, except to ignore the 

concept of affinity within the operating system (OS).  

 

OSs are able to use heuristic models in order to determine the power consumption 

of a particular process when it is executed on a particular processor.  Using this 

data, the OS is able to make a decision as to which process should run on which 

processor25.  This heuristic model not only is able to account for power 

consumption, but for overall throughput as well.  Once data is gathered on the 

currently running processes, calculations are performed to determine whether the 

current processes are running on processors which provide the system overall with 

the lowest power consumption with the highest throughput25.  Since a heuristic is 

being used, it is impossible to achieve a perfect balance between throughput and 

power, but an optimized balance based on predetermined system preferences will 

be achieved. 

 

Specifically, when operating on a big.LITTLE processor system with four different 

core types, this heuristic to dynamically map processes will continuously swap the 

executing processes in order to achieve optimal throughput to power balance, first 

focusing on throughput, then optimizing for power25. 

 

8 Conclusion 
 

This paper presented information discovered through research on a number of topics which 

were introduced in CEC470.  Starting at a high level, this paper gave information regarding 

high level design decisions which must be made before designing or selecting a processor.  

Next, this paper discussed branch prediction and pipelining, moving the content to a deeper 

level, with a focus on processor optimizations.  Continuing to move deeper into processor 
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design, this paper discussed registers and their role in data storage.  Related, this paper then 

explored memory and its role in a processor.  Finally, moving away from the physical 

aspects of the processor, this paper discussed how operating systems interact with 

processors. 

 

No new or unique information was presented in this paper, as it is a survey of computer 

architecture overall and meant as a learning tool in the context of an Honors Directed Study. 
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