View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Embry-Riddle Aeronautical University

2018

Annual ADFSL Conference on Digital Forensics, Security and Law Proceedings

May 17th, 3:20 PM - 3:55 PM

Precognition: Automated Digital Forensic Readiness System for
Mobile Computing Devices in Enterprises

Jayaprakash Govindaraj
Indraprastha Institute of Information Technology, New Delhi, India, jayaprakashg@iiitd.ac.in

Robin Verma
Indraprastha Institute of Information Technology Delhi, robinv@iiitd.ac.in

Gaurav Gupta
Ministry of Electronics and Information Technology(DeitY), Government of India,
gupta.gaurav@deity.gov.in

Follow this and additional works at: https://commons.erau.edu/adfsl|

b Part of the Computer and Systems Architecture Commons, Forensic Science and Technology
Commons, and the Information Security Commons

Scholarly Commons Citation

Govindaraj, Jayaprakash; Verma, Robin; and Gupta, Gaurav, "Precognition: Automated Digital Forensic
Readiness System for Mobile Computing Devices in Enterprises” (2018). Annual ADFSL Conference on
Digital Forensics, Security and Law. 11.

Digital Forensic Readiness, Machine Learning, APK analysis, IPA analysis, Mobile Application security
analysis

EMBRY-RIDDLE

Aeronautical University.
This Peer Reviewed Paper is brought to you for free and SCHOLARLY COMMONS
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an (c)ADFSL

@080

authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu. Ev MG HD

https://core.ac.uk/display/217172632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2018
https://commons.erau.edu/adfsl/2018
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2018%2Fpresentations%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=commons.erau.edu%2Fadfsl%2F2018%2Fpresentations%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2018%2Fpresentations%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2018%2Fpresentations%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2018%2Fpresentations%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
Digital%20Forensic%20Readiness,%20Machine%20Learning,%20APK%20analysis,%20IPA%20analysis,%20Mobile%20Application%20security%20analysis
Digital%20Forensic%20Readiness,%20Machine%20Learning,%20APK%20analysis,%20IPA%20analysis,%20Mobile%20Application%20security%20analysis
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Precognition: Automated Digital Forensic Readiness ... CDFSL Proceedings 2018

PRECOGNITION: AUTOMATED DIGITAL
FORENSIC READINESS SYSTEM FOR
MOBILE COMPUTING DEVICES IN
ENTERPRISES

Jayaprakash Govindaraj!, Robin Verma?, and Gaurav Gupta®

{1 2Hndraprastha Institute of Information Technology Delhi, New Delhi, India
$Ministry of Communication and Information Technology, New Delhi, India
{jayaprakashg, robinv}@iiitd.ac.in, gupta.gaurav@meity.gov.in

ABSTRACT

Enterprises are facing an unprecedented risk of security incidents due to the influx of emerg-
ing technologies, like smartphones and wearables. Most of the current mobile security sys-
tems are not maturing in pace with technological advances; they lack the ability to learn
and adapt from the past knowledge base. In the case of a security incident, enterprises find
themselves under-prepared for the lack of evidence and data. The systems are not designed
to be forensic ready. There is a need for automated security analysis and forensically ready
solution, which can learn and continuously adapt to new challenges, improve efficiency and
productivity of the system. In this research, the authors have designed a security analysis
and digital forensic readiness system targeted at smartphones and wearables in an enterprise
environment. The proposed system detects applications violating security policies, analyzes
Android and iOS applications to identify possible vulnerabilities on the server, and applies
machine learning algorithms to improve the efficiency and accuracy of vulnerability predic-
tion. The system continuously learns from past incidents, and proactively collects required
information from the devices which can help in digital forensics. Machine learning tech-
niques are applied to the set of features extracted from the decompiled mobile applications
and applications classified based on consisting of one or more vulnerabilities. The system
was evaluated in a real-world enterprise environment with 14151 mobile applications and vul-
nerabilities was predicted with an accuracy of 94.2%. The system can also work on virtual
instances of the mobile devices.

Keywords: Digital Forensic Readiness, Machine Learning, APK analysis, IPA analysis,
Mobile Application security analysis

1. INTRODUCTION social networks (OSN) take the biggest

share of Internet users, where about 2.3

Around 50% of the world population is using ~ billion users were active on social networks
the Internet as per the Internet World Stats 1o 2'016 (Statista, 2016b). Out of the digital
report 2016 (Miniwatts, 2016). On-line equipment that people use to connect,

© 2018 ADFSL Page 107

CDFSL Proceedings 2018

Precognition: Automated Digital Forensic Readiness ...

mobile devices have the largest user base
worldwide. The global population uses
mobile applications for a variety of activities
like social networking, online shopping,
mobile banking, and for storing personal as
well as official data. The Google play store
recorded about 65 billion app downloads
whereas over 140 billion downloads from
the Apple App store in 2016 (Statista,
2016a). The numbers are expected to
further increase as indicated by one of the
Gartner’s report that has predicted the
total connected devices to touch 20.8 billion
by 2020 (Gartner, 2015).

The statistics are not different in the
enterprises around the world. As per
another Gartner’s report, by the end of
2017 around 50% of employers would adopt
BYOD (Bring Your Own Devices) mainly
constituting mobile devices (Gartner, 2013).
The increasing adoption of smartphones
and wearables within enterprises would
bring in additional attack vectors. Hackers
and Cyber-terrorists could easily target
the wvulnerabilities of mobile applications
running on such BYOD devices to gain
access into the respective organizations.
The vulnerabilities could also be exploited
for launching attacks, stealing data, bring-
ing down organizational services and to
carry out other acts of hacktivism. The
BYOD adoption in enterprises would also
elevate security risks which arise from the
Insider threats. As per Checkpoint’s survey
report in 2014, around 82% of organizations
and individuals observed a rise in mobile
security incidents (Checkpoint, 2014), which
is expected to increase every year.

There is a need for an intelligence-driven
system, which can perform proactive secu-
rity analysis and be forensic ready. The need
has led to the proposal and development of
a machine learning based system which the

Page 108

authors have named as ‘Precognition.” The
proposed system combines both a proactive
security analysis as well as forensic readiness
into one solution that protects all mobile
computing devices within respective enter-
prises. The authors would like to highlight
following contributions of the precognition
system:

1. The system can monitor mobile apps in-
stalled on a device, or an equivalent vir-
tual instance, in accordance to the en-
terprise defined security policies.

2. The system can automate the security
analysis of the Android as well as i0OS
mobile application packages to identify
potential vulnerabilities.

3. The system uses machine learning for
predicting such vulnerabilities to in-
crease the efficiency and accuracy of the
solution.

4. The system is digital forensic ready, i.e
it collects data required for digital in-
vestigations. If an attack happens that
exploits a particular vulnerability, the
forensic investigators would have quick
access to potential pieces of evidence
against the attacker.

5. The system was evaluated in a large en-
terprise in a live environment. The au-
thors have collected and analyzed 14151
mobile apps.

6. The system provides insights based on
industry verticals, app categories, and
vulnerabilities distribution. These in-
sights could be beneficial for the enter-
prises and application owners.

The rest of this paper is organized as fol-
lows: Section 2 presents the related work in
this area, Section 3 describes the Precogni-
tion solution system architecture, Section 4

© 2018 ADFSL

Precognition: Automated Digital Forensic Readiness ...

CDFSL Proceedings 2018

describes the implementation, Section 5 pro-
vides the results and inferences, Section 6
provides the conclusion, and Section 7 wraps
up the paper with future directions of the
current work.

2. RELATED WORK

Digital Forensic Readiness The idea of
digital forensic readiness (DFR) was first
proposed by Tan, J. The author defines the
objectives and measures of DFR when incor-
porated would increase the forensic readiness
(Tan, 2001). Grobler et al., propose DFR as
a best practice component for information
security (Grobler & Louwrens, 2007). Rowl-
ingson proposes a ten step process for im-
plementing digital forensic readiness by or-
ganizations (Rowlingson, 2004). Endicott-
Popovsky et al., discuss about how cyber-
attacks target networks to disrupt the ser-
vices. The authors propose Network forensic
readiness as a good measure to implement
in enterprises (Endicott-Popovsky, Frincke,
& Taylor, 2007). Mouton et al., have pro-
posed DFR for the wireless network and im-
plemented it as an additional layer of protec-
tion (Mouton & Venter, 2011). Valjarevic et
al., proposed and experimented with a DFR
for PKI system. They took into account
DFR should enhance the security and at the
same time not altering the processes of PKI
system (Valjarevic & Venter, 2011). Reddy
et al., have proposed DFR for large enter-
prises (Reddy & Venter, 2013). In (Ruan,
Carthy, Kechadi, & Baggili, 2013) DFR was
analyzed for cloud computing and few proto-
types implemented. Dykstra et al. evaluated
some of the existing tools like EnCase in the
context of Cloud forensic readiness (CFR).
The results showed that existing tools were
not reliable for CFR (Dykstra & Sherman,
2012) .

Mobile Digital Forensic Readiness
Mylonas et al., have focused on ad hoc

© 2018 ADFSL

acquisition of smartphone evidence. The
proactive smartphone forensic investigation
scheme consists of three parties, Investiga-
tor, Independent authority, and the sus-
pect. Here independent authority is the
important entity, one who controls the en-
tire process of evidence collection, stor-
age, and transmission (Mylonas, Meletiadis,
Tsoumas, Mitrou, & Gritzalis, 2012).

Mobile Application security analy-
sis ComDroid tool analyzes the control
flow of procedures and identifies inter-app
communication vulnerabilities (Chin, Felt,
Greenwood, & Wagner, 2011). Geneiatakis
et al., 2015 combines the outcome of static
and dynamic analysis & compare with man-
ifest’s permission list identifying whether
the Android application has overprivileged
permissions or not (Geneiatakis, Fovino,
Kounelis, & Stirparo, 2015). Li et al., pro-
poses creating call flow graph and thereby
observing the data flow from source to sink
to detect data leakage (Li, Bartel, Klein, &
Le Traon, 2014). SCANDROID, performs
data flow, pointer, and control flow analysis
to validate if it complies with the security
specifications and certifies whether the
application is secure (Fuchs, Chaudhuri, &
Foster, 2009). Suzanna analyzes various
static analysis techniques for Android appli-
cations based on Confidentiality, Integrity
and Availability (Suzanna Schmeelk, 2014).
Enck et al., decompile the Android apps to
recover Java source, performs static code
analysis using Fortify SCA tool to identify
security issues (Enck, Octeau, McDaniel,
& Chaudhuri, 2011). Stowaway, a tool
to determine API calls and map them to
the permissions for finding overprivileged
permissions in Android applications (Felt,
Chin, Hanna, Song, & Wagner, 2011). Droid
test, a server side black box test tool which
examines the inputs and output by running
set of test cases and correlated test cases

Page 109

CDFSL Proceedings 2018

Precognition: Automated Digital Forensic Readiness ...

and identifying if there any data leakage
(Rumee & Liu, 2015). Droid watch, a
prototype enterprise monitoring system for
the Android apps for continuously collecting
data of interest and perform analytics using
tools like Splunk (Grover, 2013). Guido et
al., proposes identifying mobile malware on
enterprise devices, based on the changes oc-
curring to device partitions, extracting only
changed blocks of data and reconstructing
images from them (Guido et al., 2013).
Shabtai et al., propose applying machine
learning techniques to set of features for
Android applications to classify whether
the application is malware or not (Shabtai,
Fledel, & Elovici, 2010).

Following are the gaps we identified in the
current literature survey: There is no well-
defined enterprise ready practical DFR sys-
tem for Mobile computing devices, current
systems have not leveraged machine learn-
ing techniques to improve the accuracy of
vulnerability prediction. Most of the cur-
rent literature is focused on Android and not
much work on automating iOS application
analysis. Most of the current work on An-
droid require access to source code. In our
research work, we have tried to address these
gaps and also improve on existing Android
security analysis techniques.

3. PRECOGNITION
SYSTEM SOLUTION
ARCHITECTURE

Precognition system has been designed to
work on Android smartphones, Android
wear, 10S smartphones, and iWatch. The
Precog Client App is installed and run on
the devices. The Precog Server processing
components and databases are hosted on the
enterprise application server or on-premise
Cloud. Precog client App monitors the apps

Page 110

installed on the mobile devices and wear-
ables as per security policies defined by an
enterprise. The app-package-files and other
forensically relevant logs are transferred to
the local server, for the apps that violate se-
curity policies. In the next step precogni-
tion server component running on the server
identifies all potential security threats by
running both offline-analysis as well as the
online-analysis. The offline-analysis is per-
formed by reverse engineering of the appli-
cation package, whereas the online-analysis
is performed by analyzing the app running
on the device or an emulator. After the com-
pletion of offline-analysis / online-analysis, a
list of issues that help in identifying the vul-
nerabilities is obtained. The authors have
trained a machine learning model to pre-
dict vulnerabilities based on the list of is-
sues identified in the prior step. The trained
model helps in identifying the unforeseen
malicious apps running on mobile devices
and wearables. The identification of such
malicious apps helps in ensuring the foren-
sic readiness of the system. In the case of
any security incident, the investigator can
use the collected information for conducting
a forensic investigation. Figure 1, shows the
proposed architecture. The solution archi-
tecture consists of six main components:

1. Mobile computing devices (BYOD envi-
ronment) - All the devices are config-
ured to run two instances: a personal
and a corporate. The instance could be
a virtual image or a sandboxed profile
as supported by host operating system.
The current solution focuses on the cor-
porate instance on which the Precog
Client app is installed. In case of Enter-
prises that do not enforce the division
of profiles, the Precog Client app can
be directly installed on the device. The
app monitors the device as per the en-
terprise defined security policies as fol-

© 2018 ADFSL

Precognition: Automated Digital Forensic Readiness ...

CDFSL Proceedings 2018

©)

Mobile
computing
devices
(BYOD
Environment)

\ 4

©)

Precog Client App installed on a device/

virtual instance

Samsung
Knox

Precognition
Client App
(client side
processing)

Detect Apps as per

security polic!
transfer

Collect
User’s data and
transfer

y and

®

Data Server
(On-premise
local server
or cloud)

O

Precognition
Server
component
(server side
processing)

®

Machine
learning
component
(server side
processing)

©

Reporting
system

For security and forensic analysis

A 4

Enterprise Server

| User’s data |

Enterprise
Private Cloud

\ 4

Offline and on device/ on
emulator app analysis;
Analysis of user’s data

4

Training
dataset

N
O,

Machine
learning
algorithm(s)

KM DB
A

4

Analysis
report

L

Feedback

Figure 1. Precognition system solution ar-

chitecture.

lows:

i All Apps.

ii. Apps downloaded from the un-

trusted marketplaces (Any app not
downloaded from the whitelisted
app stores. Currently, the solution
checks for the Apple App Store,
the Google Play Store, the Ama-
zon App store, and the Samsung

© 2018 ADFSL

app store).
iii Apps which need access to special
privileges. Currently, the solution
checks for apps which require ac-
cess to SMS, camera, photo gallery,

and emails.
iv Virtual instance backups.

v The backup of selected apps user’s

data.

The first option of monitoring all apps
may not be practical for large enter-
prises, considering the amount of pro-
cessing required for analysis. However,
this security policy can be enforced for
a selected group of high-risk individu-
als (like CEO, COO, and other Senior
Management personnel) within the en-
terprises. The second option of moni-
toring apps downloaded from untrusted
sources is a more practical approach.
However, there is a risk of overlooking
malicious apps from whitelisted sources.
In the real world scenario, the enter-
prises can setup security policies by
adding new, modifying or deleting the
existing policies. After the setup, they
can configure a combination of various
security policies based on the require-
ments. In the current prototype, the au-
thors have implemented the second op-
tion checking for apps from untrusted
sources.

. Precognition client App (Client side

processing) - All devices have the Pre-
cog client app preinstalled, which filters
apps according to the enterprise’s se-
curity policy, collects app-specific data,
collect user’s data and transferred to the
server for further processing.

. Data Server - Stores app and user data

for further processing. The app data
consists of app-package files (.apk and

Page 111

CDFSL Proceedings 2018

Precognition: Automated Digital Forensic Readiness ...

ipa), whereas, the user data includes
data generated by the user like call
records, SMS, camera photos/videos,
audio files, browsing history and con-
tacts.

4. Precognition Server Component (Server
side processing) - Includes Offline and
On Device/Emulator Security Analysis
of untrusted apps to identify security
vulnerabilities. The selected user’s data
is utilized for security and forensic in-
vestigation.

5. Machine Learning Component (Server
side processing) Includes a trained
learning model, a knowledge database
and continuous feedback to the model.
The Machine learning algorithms aid to
predict vulnerabilities and improve the
accuracy and efficiency of the system.

6. Reporting system - produces security
and forensic analysis reports, that rec-
ognize the threat before it can happen,
so that the security incident can be pre-
vented.

3.1 Precognition System
work-flow

The following section explains the Precogni-
tion System Client server workflow.

Client side workflow - the Precognition
client app detects apps as per security policy
and transfer them to the Server for further
analysis. The client app takes the backup of
the user app data in case a virtual instance
needs to be checked. This backup is stored
in the enterprise cloud.

Server side workflow - the Server com-
ponent runs on the enterprise server, where
it is responsible for:

o App Analysis - it picks up the uploaded
apps and performs the security analysis.

Page 112

Afterwards, it uses machine learning to
identify all possible security vulnerabil-
ities and threats.

e Virtual instance analysis - In case the
check needs to be done for a virtual
instance running on a device (like the
work-instance on Samsung Knox), the
server analyses the app data and the
corresponding user’s data of the re-
ported app. The analysis happens as
per the security policy and follows the
same process as done for a standalone
device.

e User’s data analysis - As part of the pre-
vious point, a forensic analysis of user
data (SMS, Voice, Mail history, Call his-

tory) is carried out in the cloud.

e [ncident handling - If an attack happens
to exploit a particular vulnerability, the
security analysis information will help
in understanding how the attack was
carried out. With the collected foren-
sic information, the forensic investiga-
tors would be able to link the attack
with the evidence against the attacker
responsible for it.

4. PRECOGNITION
PROTOTYPE
IMPLEMENTATION

In this research work, the authors have im-
plemented a working prototype of the pro-
posed solution on Android and iOS devices
(phones and wearables). The solution works
on the security policy rule of scrutinizing all
‘Apps downloaded from the untrusted mar-
ketplaces.” The table 1 enlists the devices
that the authors have used in the implemen-
tation process.

© 2018 ADFSL

Precognition: Automated Digital Forensic Readiness ...

CDFSL Proceedings 2018

Table 1. List of Devices utilized

iOS and watchOS apps (.ipa) the Pre-
cog client app gets the list of all installed

Oerating System Device

apps using the GetInstalledappbundles[]

Android Samsung Galaxy S3
Android
Android Wear Asus ZenWatch
iOS iPhone 4, iPhone 5s
watchOS Apple Watch Series 1

Samsung Galaxy S7 with Knox

command, and scans through the bundles to
check if the file embedded .mobileprovision
exists in the app resource path or not. If the
file is present, then the authors consider that

4.1 Precognition Client App

The Precog Client app for Android and
Android Wear was created in Java; whereas,
the authors have wused Objective-C to
write the app for i0S and watchOS. The
Precog Client app is installed either on the
device or the virtual instance. The authors
also created a virtual instance test case
using Samsung Knox, which is a feature
available only on specific Samsung devices.
When activated, Samsung Knox allows
users to run two virtual instances on the
phone; one for personal work and the other
with a workspace environment dedicated to
office work.

4.1.1 Detecting the untrusted
.apk/.ipa

Android and Android Watch apps
(.apk) - the Precog Client app gets
the list of all installed and newly down-
loaded apps on the device through the
GetInstalledPackages|[] command.
The authors then validate if the packages
belong to any of the following trusted
sources based on the app-package name;

namely, com.android.vending (for the
Google Play), com.amazon.venezia
(for the Amazon Appstore), and

com.sec.android.app.samsungapps (for
the Samsung Galaxy Apps - store).

If the PackageName does not belong to the
Google Play store, the Amazon Appstore or
the Samsung Galaxy Apps store, then the
package is marked as suspected.

© 2018 ADFSL

app as untrusted and mark it suspected.

In the current prototype implementation,
the authors have executed all their tests on a
jailbroken iPhone; because of the iOS’s sand-
boxing feature that does not allow one app
to access another app’s information on any
of its devices unless they are jailbroken.

4.1.2 Transferring the suspected
apps to external storage

system

The Precog Client App process through all
suspected apps identified in the previous
step 4.1.1. For the Android devices, it
copies the suspected apps to a folder created
on the memory card/ the external storage.
Whereas, for the 1OS devices, it copies all
the suspected apps to a predefined private
folder on the device, which is easily accessi-
ble on a jailbroken device. The copied apps
are then compressed into a zip file.

4.1.3 Uploading the
suspected/untrusted apps

All the suspected/untrusted apps are avail-
able in their respective folders after the pre-
vious step 4.1.2 concludes. The authors in-
stalled an Apache Server, which is managed
by XAMPP app, on the Precog Server where
all the suspected/untrusted apps from the
Android devices are uploaded.

In case of the i0OS devices, all sus-
pected /untrusted .ipas are uploaded to the
Precog Server which the authors installed us-
ing an Apache Server managed by XAMPP
app on a separate Mac machine. The PHP
web service is launched on the server to re-
ceive all these uploads.

Page 113

CDFSL Proceedings 2018

Precognition: Automated Digital Forensic Readiness ...

4.1.4 Uploading user’s data to the
server

Android virtual instance - the Precog
Client app uses tools like Ultimate Backup
Lite, Syncios, and Wondershare MobileGo
to take the backup of user’s data (refer
to the table 2 for user data categories).
The un-rooted device backup contains
app/data/<package name> which consist
of only apk files, whereas, the rooted device
backup contains app/data/data/<package
name>.

A typical Android app contains the
following data - Database/ : contains
app’s database, Lib/: holds libraries
and help files, Files/: other related files,
Shared _prefs/: all preferences and settings,
and Cache/: keeps all caches. In case
the device is rooted, SQLite files can be
found wunder app/data/data/<package
name>/database/filename.db,
and the cache files can be found
under app/data/data/<package
name>/cache/binary format. The
images can be found for both rooted
as well as the un-rooted device under
photo/storage/sdcard0/.

The data is be stored in XML format; for
example, the Contacts/callhistory.xml looks
like
<contact>
<displayname/>
<givenname/>
<number>8105946466 <number/>
<address>Address<address/>
<photo/>data will be in byte
text<photo />
<email/>aaa@gmail.com<email/>

Page 114

Table 2. User data backup

User

Data Files

Video Storage/sdcard0/ all the video
file

Audio Storage/sdcard/ all the audio
file

Photo Storage/sdcard/all the photos

DCIMPhoto Storage/ Sdca.rd/ All images
taken by device camera

App data/app/all apk files

Call His- callhistory.xml

tory Call details and duration of the call
sms.xml

SMS Sms in plain text

Contacts contacts.xml

contact numbers, names & address

4.2 Precognition Server
component

The server-side application provides the
following two functionalities: carrying out
the security analysis of app binary packages,
using machine learning for identifying
vulnerabilities; and arranging the security
incident handling.

Android and Android Wear - the
server-side application is created using Java,
with the following pre-requisite require-
ments: Java Runtime Environment (1.8
or above); Environment Variable “JAVA
HOME” set to the location of Java executa-
bles; Android SDK installed; Environment
Variable “ANDROIDHOME” set to the
location of Android Platform-tools; Win-
dows Operating System (7 or above); R
installed; Rooted Android devices with USB
Debugging enabled in Developer Options;
and Device driver from manufacturer for
the concerned device installed on the system.

© 2018 ADFSL

Precognition: Automated Digital Forensic Readiness ...

CDFSL Proceedings 2018

Figure 2. Server Component

iOS and watchOS the server-side ap-
plication is implemented using Objective-
C/Java, with the following pre-requisite re-
quirements: Java Runtime Environment (1.8
or above); Xcode and its command line tools
installed; Eclipse IDE installed; a MAC Sys-
tem; and a jailbroken iOS devices with SSH,
and SFTP protocols installed on it.

4.3 Server component - Offline
and On-device/Emulator
security analysis

The server component has following four
main modules: 1. Inbox; 2. Polling service;
3. Precog offline module; and 4. Precog
online module (refer to figure 2.)

Inboz - receives the untrusted .apk/ipa
from the Client-slide component.

© 2018 ADFSL

4.3.1 Polling Service Module
Android and Android Wear - This

module is created as the windows service,
which aims to poll the Inbox folder for
the incoming untrusted .apk packages and
then to hand them over to the Precog
Parallel processing component. The Pre-
cog Parallel processing component is cre-
ated using the ThreadPool class in C-Sharp
to manage multiple threads. The num-
bers of threads are controlled by two pa-
rameters Threadpool.setMaxThreads and
ThreadPool.setMinthreads. In the cur-
rent work, three apps can be processed si-
multaneously, and the 4th app will be in
the queue until any of the threads become
available. However, the maximum number
of threads can be set based on available pro-
cessing power. The untrusted app is then
handed over to Precog Offline and Online
processing components separately.

iOS and watchOS - the module, which
has been created as an Objective-C console
application, polls the Inbox folder for in-
coming .zip files, and subsequently invokes
a Java component (jar file) with the current
.zip files’ paths for offline and online security
analysis. The polling service is implemented
with NSOperation and NSOperationQueue
of Objective-C for parallel processing and
queuing. The polling service will invoke
maximum three Java components, i.e.,
analysis of 3 files can be run parallel and
the next zip files uploaded are maintained
in a queue

4.3.2 Precog offline processing
component (.apk)

Precog offline processing component is a
Java application packaged as Precog.jar file
which takes the following parameters as in-
puts and performs .apk permission analysis
and Reverse-engineering.

Page 115

CDFSL Proceedings 2018

Precognition: Automated Digital Forensic Readiness ...

e .apk file’s location.

e (ClassKeywords.xml - contains a list of
sensitive APl names and the corre-
sponding threat(s) due to usage of those
APIs.

e PPIInfo.xml - contains a list of PII key-
words. i.e., password, email, API, li-
cense.

Android permission analysis The au-
thors have analyzed 3,622 top rated apps,
and created a database of permissions versus
apps category for the same. For the selected
app, the authors executed batch adb com-
mands to get respective apk-information.
The list of obtained permissions was com-
pared against the database to identify all
possible overprivileged permissions.

Reverse Engineering The untrusted app
is reverse engineered to its respective .smali
files, java classes, and manifest files. The au-
thors then run a batch execute the APKTool
command to decompile the given .apk file to
its corresponding .xml file and .smali file.
Afterwards, the authors decomiled the
.apk to its java classes using Dex2jar and
jad decompilers. All the source files are
then parsed against the previously discussed
classkeywords.xml and PPIInfo.xml files.
The identified security analysis information
is stored in the database. The output is
shown in the figure 3; includes the file-path,
line number, sensitive information, function
name, possible threat based on usage of that
function, and the description of the threat.

4.3.3 Precog offline processing
component .ipa

Precog offline analysis consists of a Java
component that invokes the Java services to
perform the reverse engineering of the un-
trusted app.

Unlike the .apk files which can be decom-
piled to the get the corresponding source

Page 116

Figure 3. Lack of binary protection.

code in one go, the .ipa files need a two-
step process. The .ipa package is first fed
to a set of tools to obtain the correspond-
ing header files; which are checked for flaws
that result from insecure programming prac-
tices, like hard-coded values and use of in-
herently insecure APIs. The second step in-
volves treatment of the .ipa package through
a different set of tools that produce the cor-
responding assembly code; which should
be checked for human programming errors
and malicious code bytes. Both the steps as
mentioned above are required to get a com-
plete analysis of given untrusted .ipa pack-
age; hence the authors have performed both
whose details are presented in the following
paragraphs.

Reverse Engineering .ipa to header
files The selected zipped app bundle is un-
zipped using a shell script to get its resource
files and corresponding app binary. Then the
app binary is reverse engineered by decom-
piling the app binary file to its corresponding
header files (by using the ClassDump com-
mand). These header files are then scanned
for sensitive keywords, like PII information,
hard-coded values, and insecure APIs. The
PList and resource files, from the app bun-
dle, are also scanned for such sensitive key-
words.

The program then parses through all these

© 2018 ADFSL

Precognition: Automated Digital Forensic Readiness ...

CDFSL Proceedings 2018

files to find out all potential security flaws
related to the sensitive info, PII, or the in-
secure APIs. The information (file-path,
sensitive information) is then stored in the
database.

Reverse engineering .ipa to assembly
The selected app is reverse engineered by
calling a shell script to execute oTool com-
mand to decompile the binary file to its cor-
responding assembly code. The parsing is
performed throughout the complete assem-
bly code to find out any security flaws re-
lated to sensitive info or PII, or any insecure
APIs. The respective flaws are then flagged
and displayed to the user. The identified in-
formation (file-path and sensitive informa-
tion) is stored in the database.

4.3.4 Precog online processing
component .apk

The untrusted .apk package is installed on
Genymotion Android instance using adb
commands to perform the dynamic analysis.
In the current prototype, three Genymotion
instances were set up, to run three threads
in parallel. The program takes two inputs -
firstly the decompiled .apk folder path, and
secondly the XML file containing the PII
information to perform the following three
types of analysis:

Logcat analysis , which captures the log-
cat information and parses it for sensitive
information disclosure, which is later stored
in the database.

Run exported activities - the program
fetches the ExportedActivityNames from
the manifest file. For each activity in
ExportedActivityNames[], a batch execu-
tion of adb shell am -n starts returning
packageName and activity (takes a snapshot
of the activity).

Insecure data storage analysis tra-
verses through the application folder to

© 2018 ADFSL

Figure 4. Insecure Data storage.

search for any sensitive information (or PII)
in the text or the cache or the database
files. The output of this step is shown in
figure 4. Example:- /filel/xyz.apk - 123
- Lastname.

4.3.5 Precog online processing
component .ipa

Since the authors designed the polling ser-
vice to run three packages in parallel at a
time, they used three jailbroken iPhones for
performing the online analysis. The jailbro-
ken iPhones were connected to a Mac ma-
chine, which was on the same network. The
untrusted app is installed and launched on
the jailbroken iPhones using SSH and SFTP
protocols, and the Xcode commands from
the Mac machine. The authors performed
the following two types of analysis on the
same:

Insecure data storage analysis - The
files like the plist and the SQLite databases
from the app data folder are transferred to
the Mac machine using SFTP commands.
Afterwards, the Java component of online
analysis is run and all these files are scanned
for sensitive keywords, and PII information.
The output is shown in the figure 5 is stored
in the database.

Page 117

CDFSL Proceedings 2018

Precognition: Automated Digital Forensic Readiness ...

Learning Model Generation - The authors

IF Address "192.168.43.100@" found in the application as a Hardcoded String. have used the Nalve Bayes algOr]thm fOI'

IP Address "127.@.@.1" found in the application as a Hardcoded String.

Figure 5. iOS Insecure Data storage

Unintended Data leakage analysis the
files like cookies, caches, and the snapshots
which are present in the app data folder are
transferred to the Mac machine using SF'TP
commands. Afterwards, the Java component
of online analysis is run, and all the files
are scanned for sensitive keywords, PII infor-
mation. The snapshots are copied and dis-
played to the user for manual analysis. The
output is stored in the database.

4.4 Machine learning
implementation

The machine learning model created to pre-
dict the vulnerabilities in the applications is
based on authors previous findings and re-
sults of the analysis of such apps. The of-
fline and the online app analysis reports are
processed to build the training data, which
is used to generate a learning model. Once
built, the model can be used to predict the
vulnerabilities for a new app. The training
data is regularly updated with the predicted
values to improve the accuracy of future pre-
dictions. The approach consists of the fol-
lowing steps:

Training data - the past security analysis
reports generated by the Precog solution
are taken as the input for the creation of
the training dataset. A set of keywords is
used as the features for the training data.
These features include any sensitive APIs
and keywords which are likely to be present
in an Android application. The training
data consist of one record per app that were
analyzed using the Precog solution.

Page 118

classifying the apps based on whether the
vulnerability is present or absent. The algo-
rithm calculates the probability for each of
the categories of the vulnerabilities, and then
assigns the vulnerability with the highest
probability. One application can have more
than one vulnerability, hence the authors
choose one ws. the rest method for multi-
label classification (Lars Shmidt Thieme,
2007).

In multi-label classification, a model is
generated for each of the vulnerabilities.
For instance, if we have a vulnerability
‘Application Misconfiguration,” we use a
binary classification approach in which we
have only two classes: 0 and 1 where 0 de-
notes ‘Vulnerability Absent” and 1 denotes
‘Vulnerability Present.” Similarly, a model
is generated for each of the vulnerabilities.
Once this process is complete, then the
training model can be used to predict the
vulnerabilities.

Feedback system - After predicting the
vulnerabilities, the record, that contains the
features and the predicted values, is updated
into the training data. The updated dataset
can be used for future predictions.

Predicting vulnerabilities - The test data
is input to each of the models for predicting
all the vulnerabilities.

The machine learning implementation
consists of three program modules. The first
one is a Java program which is used for cre-
ating the Training data set. The second Java
program is used to create Test data for the
new app; and The third is a R program that
is used for creating the learning model (refer
to the machine learning flowchart shown in
figure 6).

© 2018 ADFSL

Precognition: Automated Digital Forensic Readiness ...

CDFSL Proceedings 2018

(o]

¥ v
Java Java Program
Program — — Test data
Training data (New app)

Training Data Test Data .csv
set.csv file

R Program
Naive Bayes,
One vis rest #7

Leaming Model

v
Predicted
Vulnerabilities .csv

—

/ Identify
/ vulnerabilities

& update DB

file

h J

Figure 6. Machine learning flowchart

4.4.1 Training dataset creation (Java
method to create training
data)

Inputs: all the past analysis security reports
from the database and a configuration file
with all the keywords to be searched in the
report.

Keywords: ADB Backup, TelephonyMan-
ager.getdevicelD, setJavaScriptEnabled,
getInstallerPackageName, logging some
information or data within the code,
PRAGMA key, Runtime.getRuntime.
exec(...), getlnstallerPackageName, ad-
dJavascriptinterface(), Keystore, Email,
password, credit card, Cookies, Coun-
try, android:exported =true, Grades, Zip
Code, Full Name, screen name, Gen-
der, Telephone number, Date of birth,
Driver’s license number, Birthplace, IP
address, Login name, fingerprints, Ve-
hicle Registration plate number, Digital

© 2018 ADFSL

identity, Genetic information, Passport, FEn-
vironment.getExternalStorageDirectory,

sendDataMessage, sendMultipart-
TextMessage, send TextMessage,
set AllowFileAccess, Sqlite, get-
InstallerPackageName, System.loadLibray,

Runtime.getRuntime.exec(...), dexClass-
Loader(), debug mode is explicitly on,
debug mode is explicitly off, sqlci-
pher, Settings.Secure. ANDROID_ID,
setAllowFileAccess(false),

MODE_WORLD_READABLE, share-
dUserld, Secure. =~ ANDROID_ID, google

map.

Method: the Java program reads all the
past analysis security reports generated by
the Precog solution and generates the train-
ing data by parsing for each of the keywords
which are stored in the configuration file. It
would be run only once for creating an initial
training data. If the keyword is present, ‘1’
will be updated, else a ‘0’ is updated. This
process repeats for each application security
report. For each of the apps, the vulner-
abilities are assigned manually by analyz-
ing the app for the present vulnerabilities.
The OWASP Mobile top 10 vulnerabilities
are considered for classification (refer to the
table 4).

The output is a TraningData.csv file that
consists of a vulnerabilities list along with
the set of keywords for each app.

4.4.2 Test Dataset creation (Java
method to create test data)

Inputs: A configuration file with all the key-
words to be searched in the report file and
the string values from the database.
Method: the method reads the new app se-
curity analysis data from the database, then
checks for each keyword (P1 to Pn) from the
configuration file. If the keyword is present,
a ‘1’ otherwise a ‘0’ is updated. The out-
put is a TestData.csv file with a list of all

Page 119

CDFSL Proceedings 2018

Precognition: Automated Digital Forensic Readiness ...

Table 3. Training data set

Vulnerabilities

Keywords

AppName

M1

M2

M10 P1

P2

Pn

alLogCat
Amazon
Shopping
Angry
Birds
Asphalt
Book-
MyShow
BOX8
BusyBox
Callapp
caller ID
Calorie
Counter
Cam
Scanner
Canara
Enfobook
Candy
Crush
CirclePay
Clash of
Clans
Cloud-
Check-
Service
DB Sum-
mit
Dominos
Download
Manager
English
Grammar
eRail
ESExplorer
Facebook
Flipkart
FolderSync
Food
Ordering
app
Gmail

Zip-
Recruiter

—_

o O O

—_

_ OO o = O

—_

_ o=, O O O

—_

_ OO O = O

o

—_ O = = = O

o

— O = =

1
0

—_

o= O

o

o oo o o o

o

o oo o o o

o

Page 120

Table 4. OWASP Mobile top 10 vulnerabil-

ities
Code Vulnerability
M1 Weak Server Side Controls
M2 Insecure Data Storage
M3 Insufficient Transport Layer Protection
M4 Unintended Data Leakage
M5 Poor Authorization and Authentication
M6 Broken Cryptography
\Y g Client Side Injection
M8 Security Decisions Via Untrusted Inputs
M9 Improper Session Handling
M10 Lack of Binary Protections
Table 5. Test data set
Vulnerabilities Keywords
M1 M2 M9 M10 P1 P2 P3 Pn
0 0 0 0 0 1 1 1

the keywords for each app. It also has the
list of vulnerabilities (M1 to M10) initially
marked as 0 (refer to the table 7?7 for sam-
ple Test data set, and refer to the table 4 for

vulnerabilities list).

4.4.3 Java-R integration (Java
method for calling the R
program from Java)

The method first calls, then executes the
R program from the Java program for the

learning model generation.

The R program The program takes the
training data and test data as the input, then
applies the Naive Bayes Algorithm to gener-
ate a model. The resulting model from the
algorithm is used on the test data. The pre-
dicted values are stored in a file which is read
by the Java program.

The R program then updates the training
data using the test data and the predicted
values. The Naive Bayes algorithm uses the

Bayes theorem for finding the probabilities:

p(Cklz) =

p(Ck)P(z|Ck)

P(z)

© 2018 ADFSL

(1)

Precognition: Automated Digital Forensic Readiness ...

CDFSL Proceedings 2018

Where, p(Ck) is the probability of a vul-
nerability being present in the complete
dataset. P(x|Ck) is the probability of a par-
ticular instance given its vulnerability. P(x)
is the probability of an instance given com-
plete dataset. P(Ck|x)is the probability that
a particular vulnerability for a given app is
present.

We find P(Ck|x) for each of the vulner-
abilities. The predicted vulnerability will
be the one which has the highest probabil-
ity. A simple implementation of Naive Bayes
can do only multiclass classification; how-
ever, an app can have more than one vul-
nerability, so the authors employ one vs. the
rest method for multi-category classification,
where a model is generated for each of the
vulnerabilities. For example: If we have a
vulnerability ‘Application Misconfiguration,’
we use a binary classification approach in
which we have only two classes: 0 and 1
where 0 denotes ‘Vulnerability Absent” and
1 denotes ‘Vulnerability Present.” Following
a similar approach, the model is generated
for each of the vulnerabilities. The output of
this would have the predicted values for each
of the vulnerabilities in a comma-separated
file. If a vulnerability has a 0 value, then it
is not present; otherwise, the vulnerabilities
with a value 1 denote their presence.

4.4.4 Predicting Vulnerabilities
(Java method to read
predicted data)

The method reads the predicted values from
the file and maps it to the vulnerabilities,
then displays the list of the predicted vul-
nerabilities.

Input: The file containing predicted val-
ues. Method: The method reads the data
from prediction file which has Os and 1s for
respective absence and presence of each vul-
nerability. If it is a 1, then the correspond-
ing vulnerability is displayed. Output: List
of predicted vulnerabilities.

© 2018 ADFSL

4.4.5 Feedback system (R program)

The R program which is used for predicting
the vulnerabilities, after updating the vul-
nerabilities to the CSV file also updates the
training data, forming a feedback system.
Hence, the predictor values from the test
data as well as the predicted values are
updated to the training dataset. Thus, the
training data is updated after the prediction
of each app. This makes the system to be
more accurate by continuously improving
the learning model.

5. RESULTS

Machine learning results: In order to mea-
sure the predictive ability of the proposed
model, the authors have tested the accuracy
on a set of data which is not used in the es-
timation process. The authors call the data
as the “Test Set” and that used in the esti-
mation as the “Training Set.” The authors
have used the Mean Squared Error (MSE)
to measure the proposed model’s predictive
accuracy. The equation is as follows:

1 n
MSE = — Yi — i)° 2
DU R
where y; - vector of i predictions, y; - vec-
tor of observed values.

In the above situation, “leave one out
cross-validation” is one of the approaches
that can be utilized. There are two modifica-
tions of this technique, namely leave-k-out
cross-validation; where k observations
are left out at each stage, and k-fold
cross-validation; where the original data
is randomly divided into k sub-datasets,
and one is left out in each iteration. In
the current implementation, the authors
have realized a k-fold cross-validation for
testing the accuracy of the proposed model.

Page 121

CDFSL Proceedings 2018

Precognition: Automated Digital Forensic Readiness ...

To obtain the accuracy measures, the au-
thors have considered n independent obser-
vations, y1, y2, y3, , yn; where k = 5. The
process is explained in the following steps:

1. Partition the dataset into k equal parts,
say (k1, k2, k3, k4, k5).

2. Let observation set ki form the test set,
and fit the model using the remaining
data. Then compute the error ei* for
the omitted observations. The result is
called predicted residual.

3. Repeat step 1 and 2 for i=1, 2, 3, ... k.

4. Compute the MSE from el*, e2*, e3*,
...,ek*. The authors call it the CV.

The authors divided the training data into
two sets, namely the training data set and
the test data set. The training data set forms
80% of the total volume of the data, while
the test data is the rest 20%. The variable
“k” specifies the number of times the cross-
validation approach is used. In each round,
the authors took a different set of test data
(20% of the total volume) such that no in-
stance of data gets repeated for the follow-
ing rounds. The no-repetition policy ensures
that the algorithm’s accuracy gets tested on
different kind of data in each iteration. The
authors got a mean accuracy of 94.2%, which
was obtained by considering the prediction-
accuracy of all the vulnerabilities followed
by taking the average of the same. The
authors have also included a feedback sys-
tem that updates the training data which
in turn increases the accuracy of the algo-
rithm’s prediction. The table (6) presents
the accuracy figures obtained while predict-
ing the OWASP Top 10 vulnerabilities.

The authors have tested the system on
14,151 apps, which includes both Android
(.apk) as well as iOS (.ipa) apps. Top Apps
belonging to various industry vertical and

Page 122

Table 6. Accuracy of vulnerabilities pre-
dicted
Vulnerability Accuracy
Weak Server Side Controls 100%
Insecure Data Storage 93%
Insufficient Transport Layer Protec-

. 86%
tion
Unintended Data Leakage 93%
Poor Authorization and Authentica-

_ 85%
tion

Broken Cryptography 100%
Client Side Injection 92%
Security Decisions Via Untrusted In- 100%
puts

Improper Session Handling 100%
Lack of Binary Protections 93%
Average 94.2%

application categories were downloaded for
the test. The figure 7 shows the vulnerabil-
ities distribution, where the word Domains
refers to Industry verticals under which a
particular app falls, and the word Category
denotes the group name assigned to the par-
ticular app by its developers/owners. The
authors observed that Shopping, Travel &
Local, Business, Finance, Lifestyle are the
top five categories which are most vulner-
able to exploits. The figure 8 shows the
distribution that depicts domain versus the
types of vulnerabilities. The authors ob-
served that the Lack of binary protec-
tion, Insufficient transport layer pro-
tection, and Unintended data leakage
are the top three vulnerabilities across all
the domains (refer to figure 10 for details.
Moreover, Retail, Media & Entertain-
ment, Eduction, and Finance are the top
four sectors which are vulnerable to exploits
(these sectors have been easy prey for the
hackers). The table 4 provides the Naming
convention for the Application Vulnerabili-
ties.

© 2018 ADFSL

Precognition: Automated Digital Forensic Readiness ...

CDFSL Proceedings 2018

14 +
12.42.6
12
10 9.9
. 9.3
Bl
k|
g st
a 7.1
: L2
@ 4.9
E Al 4.44.4
3.3
2.727
2+ 161 61616161
DDD DDIH]
ol I Y
T T T T T T T T
A%\eez&%x\‘oz%b éoro
Q\Q o@_&e’é\c &\&z«\ %00 «&\o”&ejo é\ S <<o° %@@ @,} \dq &\@‘_\«\ &
AR NSO (?Q\g@*@ <9<< SANMRNIES
PR AN b\\«k <7
4Q> ,Cz,b (o\\‘*ve \’“ Q‘\O
<8 2y e
Q*Q)OO

Figure 7. Vulnerabilities distribution by cat-
egories

100 |-

90

80

60 -

50
40

Vulnerability Percentage

30

20 -

Tl Ul s

Jw
0
[

N R @“‘

Figure 9. Vulnerabilities distribution

10F B
20 -
35| b 187
18
16.5
30 (- N 161
, 14}
251 e &
&
2 12
15
5
20| 4 £
10} :
5 9.3
i
15 b g 8y 71
g 6.6 6
E 61 5.5
4.9
ol i 44 44
s 3.8
2.2
sl] 2l 16 1.6
0.5
ol L)L |
ol i
9L
T T T T T T T T T
XN 3 Q, z 9 3 &
5L R S S S i (\\e? P ;QOQQ\\ Q’C\ &Q’Q $ @0 RS ,§;‘\,;\4 \1_\0% &
T F T EFTITITSTITSTFTIFES & EFUREFN T F @ F A
FFFFTFFTEEFFE T E 3 S S SN & FE
¥ &P T T SRS RN & 0 Q¢ S & ANy
& <P N & E SR & S & ¥? &
S W ISR & N & NP &
R RN X R
< & e o & 2 & L <€ A?fo
& s 5 N ¢ S
& & < & N
(&)

‘ O vt Bz 0 ms 04 O v B vie Bz B vs B vo B M0 ‘

Figure 8. Domains versus types of vulnera-
bilities

© 2018 ADFSL

Figure 10.
Domains

Vulnerabilities distribution by

Page 123

CDFSL Proceedings 2018

Precognition: Automated Digital Forensic Readiness ...

6. CONCLUSIONS

The authors have successfully created and
demonstrated a practical ‘Security Analysis
and DFR system for Mobile computing de-
vices in an Enterprise environment.” The
proposed system is capable of identifying
an app which is downloaded on an Android
(phone, VM, or wearable) or an iOS (iPhone
or iWatch) from an untrusted source. Af-
ter identification, the system transfers the
tainted app to a pre-deployed server for its
security analysis which aims to identify top
security threats that could have been ex-
ploited by hackers or malicious entities. The
solution then offers a process to automate
the security analysis, and suggested poten-
tial improvements to the existing app foren-
sic analysis techniques. The authors have
obtained an prediction accuracy of 94.2 %,
after applying machine learning techniques
to predict vulnerabilities. The authors found
that ‘M10-Lack of Binary Protection’
and ‘M3-Insufficient Transport Layer
Protection’ are the most frequently en-
countered security threats because the appli-
cation developers do not perform certificate
inspection and fail to incorporate preventive
measures against reverse engineering of their
apps. Moreover, the apps belonging to ‘Re-
tail’ and ‘Finance’ sectors were found to
be highly vulnerable primarily because these
apps have high exposure to customer’s PII
information in addition to finance related in-
formation like bank account and card details.
The situation gets critical with the increas-
ing volume of customers who have started
using these apps from the above-stated do-
mains, in turn attracting more number at-
tackers.

7. FUTURE WORK

The authors have identified following areas
for further research:

Page 124

1. Implement the DFR system for other se-
curity policies apart from apps down-
loaded from the wuntrusted market-
places.

2. Identify tainted virtual instances of the
corporate profile, initiate the efficient
and incremental backup of the image,
perform security and forensic analysis of
the image on the cloud server.

3. Automated detection and handling of
security incidents and respond dynami-
cally.

4. Machine learning techniques for identi-
fying malicious activities, device / user
behavior analysis and security incident
handling.

5. Implement Anti Anti-forensics tech-
niques to counter any Anti-forensic at-
tacks.

6. Integration with a privacy preserving
framework system.

REFERENCES

Checkpoint. (2014, October). The im-
pact of mobile devices on infor-
mation security: A survey of it
and security professionals. october
2014. Retrieved from https://
www . checkpoint.com/downloads/
product-related/report/
check-point-capsule-2014-mobile
-security-survey-report.pdf

Chin, E., Felt, A. P., Greenwood, K., &
Wagner, D. (2011). Analyzing inter-
application communication in android.
In Proceedings of the 9th international
conference on mobile systems, applica-
tions, and services (pp. 239-252).

Dykstra, J., & Sherman, A. T. (2012).
Acquiring forensic evidence from

© 2018 ADFSL

Precognition: Automated Digital Forensic Readiness ...

CDFSL Proceedings 2018

infrastructure-as-a-service cloud com-
puting: Exploring and evaluating
tools, trust, and techniques. Digital
Investigation, 9, S90-S98.

Enck, W., Octeau, D., McDaniel, P., &
Chaudhuri, S. (2011). A study of an-
droid application security. In Usenix
security symposium (Vol. 2, p. 2).

Endicott-Popovsky, B., Frincke, D. A., &

Taylor, C. A. (2007). A theoretical

framework for organizational network

forensic readiness. Journal of Comput-

ers, 2(3), 1-11.

A. P., Chin, E., Hanna, S., Song,

D., & Wagner, D. (2011). Android

permissions demystified. In Proceed-

ings of the 18th acm conference on
computer and communications security

(pp. 627-638).

Fuchs, A. P., Chaudhuri, A., & Foster, J. S.
(2009). Scandroid: Automated security
certification of android (Tech. Rep.).

Gartner. (2013). Predicts by 2017,
half of employers would adopt byod.
Retrieved from http://www.gartner
.com/newsroom/id/2466615

Gartner. (2015). 6.4 billion con-
nected things will be in use in 2016.
Retrieved from http://www.gartner
.com/newsroom/id/3165317

Geneiatakis, D., Fovino, I. N., Kounelis, I.,
& Stirparo, P. (2015). A permission
verification approach for android mo-
bile applications. Computers & Secu-
rity, 49, 192-205.

Grobler, C., & Louwrens, C. (2007). Dig-
ital forensic readiness as a component
of information security best practice.
In New approaches for security, pri-
vacy and trust in complex environ-
ments (pp. 13-24). Springer.

Grover, J. (2013). Android forensics: Au-
tomated data collection and reporting
from a mobile device. Digital Investi-
gation, 10, S12-S20.

Felt,

© 2018 ADFSL

Guido, M., Ondricek, J., Grover, J.,
Wilburn, D., Nguyen, T., & Hunt, A.
(2013). Automated identification of in-
stalled malicious android applications.
Digital Investigation, 10, S96-S104.
Shmidt Thieme, L. M. (2007).
Multi-label classification. Re-
trieved from https://www.ismll
.uni-hildesheim.de/lehre/
ml-06w/skript/ml-4up-04
-mlabelclassification.pdf

Li, L., Bartel, A., Klein, J., & Le Traon,
Y. (2014). Detecting privacy leaks in
android apps.

Miniwatts. (2016). Internet usage statis-
tics 2016. Retrieved from http://
www.internetworldstats.com/
stats.htm

Mouton, F., & Venter, H. (2011). A pro-
totype for achieving digital forensic
readiness on wireless sensor networks.
In Africon, 2011 (pp. 1-6).

Mylonas, A., Meletiadis, V., Tsoumas, B.,
Mitrou, L., & Gritzalis, D. (2012).
Smartphone forensics: A proactive in-
vestigation scheme for evidence acqui-
sition. In Information security and pri-
vacy research (pp. 249-260). Springer.

Reddy, K., & Venter, H. S. (2013). The
architecture of a digital forensic readi-
ness management system. Computers
& Security, 32, 73-89.

Rowlingson, R. (2004). A ten step process
for forensic readiness. International
Journal of Digital FEvidence, 2(3), 1-
28.

Ruan, K., Carthy, J., Kechadi, T., & Baggili,
I. (2013). Cloud forensics definitions
and critical criteria for cloud forensic
capability: An overview of survey re-
sults. Digital Investigation, 10(1), 34—
43.

Rumee, S. T. A, & Liu, D. (2015).
Droidtest: Testing android applica-
tions for leakage of private informa-

Lars

Page 125

CDFSL Proceedings 2018 Precognition: Automated Digital Forensic Readiness ...

tion. In Information security (pp. 341—
353). Springer.

Shabtai, A., Fledel, Y., & Elovici, Y. (2010).
Automated static code analysis for
classifying android applications using
machine learning. In Computational
intelligence and security (cis), 2010
international conference on (pp. 329
333).

Statista. (2016a). Apps downloaded
from the apple app store as of sep
2016. Retrieved from https://
www.statista.com/statistics/
263794 /number-of-downloads-from
-the-apple-app-store/

Statista. (2016b). Number of social network
users worldwide from 2010 to 2019
(in billions). Retrieved from http://
www.statista.com/statistics/
278414 /number-of-worldwide
-social-network-users/

Suzanna Schmeelk, A. A. (2014). Static
analysis techniques used in android ap-
plication security analysis.

Tan, J. (2001). Forensic readiness,@ stake.
Cambridge, MA.

Valjarevic, A., & Venter, H. S. (2011).
Towards a digital forensic readiness
framework for public key infrastruc-
ture systems. In Information security
south africa (issa), 2011 (pp. 1-10).

Page 126 © 2018 ADFSL

	Precognition: Automated Digital Forensic Readiness System for Mobile Computing Devices in Enterprises
	Scholarly Commons Citation

	Precognition: Automated Digital Forensic Readiness System for Mobile Computing Devices in Enterprises

