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Customer needs must be translated through identifiable activities into a 

useful and practical product, to attain high quality and reliability. The collection of 

activities employed goes by several names, to include the discipline of Systems 

Engineering, or more commonly the Quality Function in a Quality Engineering 

environment (Gryna, Chua, & DeFeo, 2007).   Customer utilization of a system or 

product must also be sustained throughout the life-cycle. Failure management 

strategies must be developed to ensure systems are available and safe for customer 

use. These activities are crucial to ensure reliable, cost-effective and sustainable 

products both in the commercial and government sector. 

 

The U.S. Department of Defense (DoD) has recognized alarming trends in 

the acquisition of new products or systems. First, the percentage of new acquisitions 

failing to meet reliability requirements is increasing. Second, the percentage of 

fielded systems that have decreasing durability and reliability performance is also 

increasing (McLeish, 2010). These trends were expressed in a memorandum to the 

DoD community from the Director of Systems Engineering in the Office of the 

Secretary of Defense in 2010. The memo stated that over a 25-year period a 

staggering 25 percent of defense systems were not found suitable for operational 

testing. The memo further stated that “there is no question the systems emerging 

from our design and development efforts are often not reliable” (Gilmore, 2010). 

More recently, a panel as part of the Committee on National Statistics released a 

report echoing that problems within DoD acquisition remain since the 2010 

Gilmore memo (Panel on Reliability Growth Methods for Defense Systems, 2015). 

The report states that progress has been made in solving DoD reliability and 

suitability issues, however, sustained focus on earlier recommendations must 

continue to reverse the trend. 

 

Resultant poor performance has been illustrated with several examples, 

including the Early-Infantry Brigade Combat Team (E-IBCT) unmanned aerial 

system which only achieved 1/10th of its mean time between system aborts 

requirement (Gilmore, 2010), and more recently the F-35 aircraft (Gilmore, 

Michael, 2015). As a result, the DoD has instituted several initiatives aimed at 

reversing the trend. These initiatives include strengthening of oversight and 

accountability through the Weapon Systems Acquisition Reform Act of 2008, 

reduction of risk through revitalized Systems and Reliability Engineering 

processes, standardization of reliability best practices in new programs through a 

reliability scorecard, and a shift to Physics of Failure (PoF) based reliability 

prediction (McLeish, 2010). 

 

Additionally, a report from the Defense Science Board (DSB) Task Force 

on Developmental Test and Evaluation concluded that: “The single most important 
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step necessary to correct high suitability failure rates is to ensure programs are 

formulated to execute a viable systems engineering strategy from the beginning, 

including a robust RAM program, as an integral part of design and development. 

No amount of testing will compensate for deficiencies in RAM program 

foundation” (McLeish, 2010). 

 

As stated in the DSB Task Force report (McLeish, 2010), development of a 

robust RAM program must be accomplished early in design resulting in reduced 

life-cycle cost while achieving performance objectives. For a product or system to 

achieve RAM goals the following activities must be performed adapted from 

(Pulido, 2013) as part of a RAM program: 

• Identification of reliability, availability and maintainability goals or 

requirements, 

• Iteratively forecast, measure and verify that these requirements are met, 

and 

• Ensuring quality problems are not induced by manufacturing and 

assembly procedures. 

 

One significant aspect of a RAM program measures progress towards 

requirements, which is intrinsically coupled with risk assessment. The risk 

assessment must identify both technical and programmatic risks to successfully 

meeting or exceeding these requirements. These must then be further decomposed 

into high, medium and low risks – and addressed early in design. Identification of 

these technical risks is not a trivial task and requires both pro-active thinking and 

rigorous analysis tools or processes. Risk assessment continues after fielding of 

systems. Field data within structured processes such as Reliability Centered 

Maintenance (RCM) is typically utilized to assess and refine failure management 

strategies to include preventative maintenance. Critical to the assessment process 

is identification and rating of failure modes anticipated during the design or 

emerging during sustainment. 

 

This paper investigates the role of human subjectivity in rating of failure 

modes, specifically within the FMECA process, which is one of the most widely 

utilized risk management and design improvement tool. We explicitly consider 

severity selection as part of a more extensive Reliability Centered Maintenance 

(RCM) analysis, which is widely utilized within the DoD community. Severity 

selection is investigated by varying the amount of input information specific to a 

failure mode while assessing severity levels as selected by participants. The 

quantity and relevance of the input information were varied to replicate typical 

scenarios encountered during FMECA analysis. Additionally, the amount and 

relevance of the input information may be a contributing factor in inadequate risk 
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analysis. For example, in new acquisition very little (or no information) is available 

to analysts, while large amounts of work order (field data) information are available 

once the system enters sustainment. However, within sustainment environments, 

there may raise significant quality concerns with the data as discussed by Banghart, 

Solomon, and Comstock (Banghart, Comstock, & Solomon, 2017). 

 

The paper is organized as follows. The first section provides pertinent 

background information regarding risk assessment in a reliability engineering 

context. This is followed by a literature review of identified problems and proposed 

solutions within the FMECA process to provide the necessary context to the reader. 

Next, the method of this study is presented followed by results and discussion. 

Finally, we present areas for future work. 

 

FMEA and FMECA as a Risk Management Tool 

 

Application of risk assessment during the product concept phase, when little 

or no data is available, is problematic. At this stage in the design, testing has not 

been performed nor does a physical design exist; however, this is a crucial time to 

incorporate RAM. In this phase, FMEA or FMECA are frequently utilized, mainly 

since data is not available to develop failure modes based on the proposed design. 

The resulting analysis can then be utilized to evaluate weak areas of the design and 

compare other design alternatives. FMECA is typically considered as an extension 

to FMEA, with the addition of Criticality Analysis. The reader is referred to Carlson 

for a complete description of each analysis (Carlson, 2012). Regardless of the 

analysis process, the variables within FMEA/FMECA are largely quantified by 

individuals and teams in a qualitative manner.  

 

Risk management consists of several elements, to include assessment, 

management and risk communication (Pulido, 2013). FMEA/FMECA cradle all 

parts of this risk management framework. For example, failure modes are 

identified, along with probability and severity classifications, all of which forms 

part of risk assessment. However, mitigation strategies for failure modes form part 

of risk management, while the process itself facilitates risk communication. At the 

heart of FMEA/FMEC, A are failure modes that are scored. For example, an 

analysis team may identify 25 different failure modes for a hydraulic system. 

Failure modes may include items such as internal pump failure, pump cavitation or 

worn/torn seals. Each failure mode includes a description of the effects. For 

example, the effects may include reduced pressure or fluid leaks. Failure modes are 

also traceable to systems and overall functions (such as maintaining system 

pressure). Each failure mode is scored, with several scales available. 
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FMEA/FMECA is widely considered as a proactive method to establish a 

risk management policy (Tay & Lim, 2006; Segismundo & Miguel, 2008; Claxton 

& Campbell-Allen, 2017). FMEA/FMECA is one of the most widely utilized tools 

since it is a well-defined process and can be tailored to domain-specific processes 

or systems. Furthermore, expert opinion can be incorporated, and the analysis can 

be performed with little or no data.  

 

FMEA has shown success across many industries (Arabian-Hoseynabadi, 

Oraee, & Tavner, 2010; Welborn, 2010; Chang, Liu, & Wei, 2001; Chang, Wei, & 

Lee, 1999; Chen, 2007). One benefit of FMEA/FMECA as an analysis tool is that 

it is structured and usually includes a diverse group of people from different 

background and experiences. This potentially allows different viewpoints to be 

incorporated leading to a more robust analysis. The analysis is accomplished by 

analyzing failure modes, or technical risks that are reasonably likely to occur, along 

with their associated consequences (or severity). In methodologies such as 

Reliability Centered Maintenance (RCM), it is further extended to develop 

mitigation strategies (Bozdag, Asan, Soyer, & Serdarasan, 2015).  

 

FMEA/FMECA also has problems. These problems have received 

extensive attention in the literature, with several changes proposed to address 

possible identified shortfalls within the methodology. The research community has 

firmly established that humans make subjective decisions (Fox & Rottenstreich, 

2003). However, this subjectivity has not been extensively studied within RCM. 

Thus, the reliability or the “extent to which … any measuring procedure yields the 

same results on repeated trials” (Carmines & Zeller, 1979) is mostly unknown for 

RCM. This subjectivity is driven by internal biases and has been shown to occur 

during probability estimation in tools such as fault trees (Fox & Rottenstreich, 

2003). Additionally, the subjectivity occurs in most (if not all people) to include 

experts and novice users (Fox & Rottenstreich, 2003).    

 

FMEA/FMECA requires several variables to be quantified by either 

individuals, teams or experts and be a complex task. The task complexity is rooted 

in many related variables (for example, failure mode one influencing the probability 

of failure mode two), undefined variables (data not available) and that several 

possible solutions exist (Pohl, 2006). Human bias within tasks has been recognized 

and a plethora of techniques adapted from evidence theory, grey theory and fuzzy 

logic have emerged (Song, Ming, Wu, & Zhu, 2014; Yang, Huang, He, Zhu, & 

Wen, 2010; Chang, Liu, & Wei, 2001; Chang & Cheng, 2010; Chang, Wei, & Lee, 

1999). Recent research has also indicated that our biases and behavior is closely 

tied to our genetic make-up and the underlying cognitive processes (Forgas, 

Haselton, & Hippel, 2007). Decision making in a clinical setting was explored by 
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Smith et al. (Smith, Higgs, & Ellis, 2008). In their research, they highlighted that 

understanding of the problem at hand, and contextual factors are both important in 

determining outcomes. Thus, they recommend that both the individual’s attributes, 

as well as context, must be considered. 

 

However, as noted by Bozdag et al. (2015) very little research has been 

focused on understanding uncertainty and variations ratings amongst experts 

(Bozdag, Asan, Soyer, & Serdarasan, 2015). Bozdag et al. (2015) further develop 

a failure mode assessment and prioritization model based on fuzzy logic that both 

incorporates individual and consensus judgment into a risk rating (Bozdag, Asan, 

Soyer, & Serdarasan, 2015). As innovative as this model is, there is almost no 

literature available that illustrates wherein FMEA/FMECA human variability is 

most prevalent. The healthcare community has performed a few small studies to 

probe this question, which are detailed in the next section (Franklin, & Barber, 

2012, Shebl, Franklin, & Barber, 2009; Shebl). Understanding where variation is 

most prevalent will aid in developing models that can be validated and ultimately 

improve the process. 

 

Literature Review 

 

The efforts to strengthen RAM activities early in design emphasize various 

Design for Reliability (DfR) tools such as FMEA/FMECA. DfR embraces the 

customer needs and is a process through which customer satisfaction is maximized. 

The process utilizes numerous integrated tools to support a product (and design) 

from the cradle to the grave while ensuring the highest reliability at the lowest life-

cycle cost. FMEA is used extensively throughout the industry to improve system 

reliability and aid in risk assessment and is a well-recognized DfR tool. It was 

utilized as early as the 1960s by the U.S. National Aeronautics and Space 

Administration (NASA) on programs such as the Apollo, Viking, Voyager and 

Skylab explorations. The process was also adopted early on by the Society for 

Automotive Engineers (SAE) in 1967. The use of FMEA spread rapidly to other 

industries during the 1970s and subsequent years and is now utilized in a variety of 

industries including military, semiconductors, and the foodservice industry. More 

recently FMEA has been adopted within the healthcare industry to assess the high-

risk process of care (Franklin, Shebl, & Barber, 2012). FMEA is useful in 

understanding the failure modes of systems or products, qualifying the effects of 

failure, and aiding in the development of mitigation strategies. It is a useful tool in 

improving quality, reliability, and the maintainability of designs, and is a critical 

analysis component in risk management. FMEA can be applied to almost any 

system or process and thus universally valuable. 
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 The literature is structured as follows. First, we discuss relevant research 

regarding the validity of FMEA as a risk assessment process (to include 

comparisons to other tools), followed by a review of scales both in industry and 

academia. Next, various issues with the Risk Priority Number is discussed, 

followed by an overview of how FMEA/FMECA is utilized within Reliability 

Centered Maintenance and military applications. 

 

FMEA Outputs, Rating Scales, and Validity 

 

There are two critical outputs from an FMEA. The first is the associated risk 

ranking, which aids in the identification of high priority failure modes. The second 

is the associated mitigation strategy. Methodologies such as RCM have utilized 

FMEAs along with criticality assessment to develop cost-effective maintenance 

programs. RCM compares the associated risk and cost of failure with the cost of 

preventive maintenance or redesign. This comparison is then utilized to determine 

cost-effective mitigation strategies. In cases where safety is a concern, failure 

modes should always include some form of mitigation.    

 

While some of the available literature does evaluate the FMEA process and 

explore possible sources of error, research-based validation of FMEA value and 

effectiveness severely lacks, as are specific recommendations for improvement of 

the process, regarding the human factor. Some work has been done within the 

healthcare community, which previously relied largely upon retroactive risk 

management, with the goal of quantifying the reliability and validity of FMEA as 

a technique of risk analysis. Specifically, results from recent studies demonstrated 

little reliability and validity within the healthcare setting of FMEA. The researchers 

did not disregard the potential value or conclude that the FMEA process offered no 

benefit whatsoever, but did apparently reveal flaws which necessitate process 

refinement (Shebl, Franklin, & Barber, 2009; Phipps, Meakin, Beatty, Nsoedo, & 

Parker, 2008; Konstandinidou, Nivolianitou, Kiranoudis, & Markatos, 2006; 

Apkon, Probst, Leonard, DeLizio, & Vitale, 2004; Lyons, Adams, 

Woloshynowych, & Vincent, 2004). These studies highlighted the discrepancies 

between the severity ratings selected by different groups as well as the lack of 

correlation of risks identified. Shebl et al. found that the two different participant 

groups not only identified different risks, but also rated overlapping risks 

differently (Shebl, Franklin, & Barber, 2009). Differences were also found between 

conditions which used consensuses to determine an overall severity rating and those 

that merely averaged individual ratings (Ashley & Armitage, 2010).   

 

Potts et al. (2014) investigated the validity of structured risk analysis 

methods. They were specifically interested in comparing the resultant outcomes of 
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two conditions: analysis using different techniques, and if different groups can 

replicate risk analysis results using the same technique. They investigated the 

Structured What If Technique (SWIFT) and HFMEA (FMEA tailored to the 

healthcare industry) in a workshop setting (Potts et al., 2014). Teams of five 

participants per group worked together to make decisions using each of the two 

techniques. Additionally, all the participants were new to risk and task analysis with 

no experience in either technique. The participants were also provided with a 

hierarchical task analysis diagram previously developed. First, the risks identified 

in each technique were compared for overlap (both regarding the actual risk and the 

associated severity rating) as well as overlap with current risk management 

processes.   The participants identified 61 total risks, with three deemed critical 

when utilizing the SWIFT approach. The HFMEA resulted in a total of 72 risks, 

with 12 deemed high risk. The researchers compared the identified risks and 

concluded that 33 (54.1 percent) risks identified by SWIFT were not identified by 

HFMEA. In turn, HFMEA had 42 (58.3 percent) risks that were not identified by 

SWIFT. Additionally, the researchers concluded that there was little overlap of high 

risks items between the two analyses techniques (Potts et al., 2014).  

 

Various scales have been proposed for both the occurrence, detection, and 

severity measures. Scales of 1 to 10 are prevalent in the literature. However, five-

point scales have also been presented. RCM processes frequently utilize four-point 

scales within the military community (NAVAIR, 2005; Department of Defense, 

2012). The reader is referred to Aguilar and Salomon for a comparison of different 

scales (Aguiar, de Souza, & Salomon, 2010). 

 

Risk Priority Number (RPN) Calculation 

 

The Risk Priority Number (RPN) that is utilized within FMEA is a method 

aimed at ranking and prioritizing failure modes – to develop mitigation strategies 

and reduce the overall consequences of the failure mode occurring. The higher the 

RPN, the higher the possible risk. The goal of the analysis is threefold. First, it 

provides a way to measure which failure modes pose a significant risk and should 

be removed or mitigated from the system. Second, it provides insight into which 

failure modes can be corrected or mitigated. Finally, it provides a basis to determine 

which failure modes can be ignored (and allowed to occur) with no adverse safety 

or cost implications (Bowles, 2003). 

 

Depending on the approach followed, there are slight deviations in how the 

RPN is calculated. If the RCM methodology is followed, criticality is calculated by 

only including the severity rating and probability of occurrence. Detectability 

calculations, though not utilized in the RCM methodology, are included in other 
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methods. Bowles (Bowles, 2003) points out in his mathematical analysis of the 

RPN that there are significant flaws in that approach. In the case where the RPN is 

calculated by multiplying Severity (S) with a probability of occurrence (O) and 

detectability (D), and assuming a range of 1 to 10 for each factor a resulting RPN 

range from 1 to 1000 is obtained. As explained by Bowles, three factors within the 

RPN are ordinal scales where items are ranked in series; however, the interval size 

between measurements are not specified (Bowles, 2003). Siegel (1956) further 

states that the intervals are determined subjectively and not identical to each other 

(Siegel, 1956). Thus, conducting multiplication utilizing these factors violates basic 

mathematical principles (Bowles, 2003; Siegel, 1956). Bowles further highlights 

four additional concerns with utilizing the RPN in its current form. These include: 

 

• Holes in the scale. The RPN scale is not continuous, and various numbers 

between 1 and 1000 cannot be formed by the product of S, O, and D. This is 

explicitly evident in higher numbers (600+). Only 120 unique numbers can 

be formed with 88 percent of the range empty. 

• Duplication of RPNs. RPNs can be formed with many combinations of S, O, 

and D thus making the inaccurate assumption that each factor is equally 

important. 

• Sensitivity to small changes. The RPN can be affected significantly by a 

small change in one factor, especially if the other factors are large numbers. 

• Utilizing a single dimension RP to quantify and rank a design encourages 

management to set arbitrary thresholds- which may not be realistic.  

 

Several researchers have proposed alternatives to the Risk Priority Number, 

and more specifically the severity measure. These measures focus on the 

incorporation of cost as the primary measure of severity. Carmignani (Carmignani, 

2009) replaces severity with an impact factor focused on economic loss. 

Occurrence and detection are also replaced with a frequency and control factor 

respectively. Carmignani proposes that the method would be used for non-safety 

related failure modes. Severity derived from internal failure cost (thus cost not 

observed by a customer) is also considered by von Ahsen (von Ahsen, 2008). Dong 

utilizes fuzzy logic and utility theory to derive a cost-based severity (Dong, 2007). 

Rhee and Ishii extend cost-based measures to include delay times, such as logistics 

and administrative delay (Rhee & Ishii, 2003). Finally, Kmenta and Ishii focus on 

probability and cost as failure ranking strategies, with a strong focus on the 

establishment of a failure chain of events and consideration of life-cycle cost 

(Kmenta & Ishii, 2000).  
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Military Applications of FMEA 

 

Reliability Centered Maintenance (RCM) utilizes the FMEA process to 

proactively manage assets or equipment and their associated risk mitigation 

strategies. In the RCM method, failure modes are identified based on the function 

and functional failure of the equipment or system under analysis. The method has 

been widely adopted in the military community and is mandated by the U.S. Navy 

for application on all major acquisitions or modifications. The military application 

considers several factors within the analysis to include the probability of 

occurrence, severity, possible preventive maintenance strategies and the cost of 

performing maintenance versus a run-to-failure management strategy (NAVAIR, 

2005). The reader is referred to the NAVAIR 00-25-403 standard for a discussion 

and derivation of the various cost equations applicable to different failure 

management strategies. The RCM process is provided in Figure 1. 

 

 

Establishment of Ground Rules and Assumptions 

and Project Plan

Partitioning of End Item into various levels of 

hardware/software indenture down to the level of 

intended analysis

Development of the Failure Mode Effects and 

Criticality Analysis (FMECA)

Identification of significant functions in order to 

determine potential adverse effects of function loss

Evaluation and Selection of Potential RCM tasks 

(based on cost and safety)

Implementation and Field Feedback

 
Figure 1. RCM Process. 

The RCM process utilizes a hazard/risk assessment matrix to visualize the derived 

criticality of a potential failure mode. The matrix includes the severity and 

frequency measures, plotted on color-coded X-Y axis. Detection is not considered. 

9

Banghart et al.: Subjectivity within Failure Mode Severity Selection during Risk Assessment

Published by Scholarly Commons, 2018



 

The severity rating is typically selected based on domain expertise and any 

previously observed failures. The frequency of occurrence is also considered based 

on available data. The frequency is typically considered by considering both 

potential and functional failures – which is typically obtained from field data. An 

excellent discussion of the underlying theory (Potential-to-Functional Failure 

Curves) can be found in several references to include (Moubrey, 1997; NAVAIR, 

2005). The NAVAIR 00-25-403 standard provides an example of such a matrix 

along with definitions of a four-point severity scale. An example adapted from the 

standard is provided in Figure 2. 

 

 
Frequency 

 

S
ev

er
it

y
 

 

Frequen

t 

> 1 per 

1,000 

hours 

Probabl

e 

0.1 to 1 

per 

10,000 

hours 

Occasiona

l 

0.1 to 1 per 

100,000 

hours 

Remote 

0.1 to 1 

per 

1,000,00

0 hours 

Improbabl

e 

< 1 in 

1,000,000 

hours 

Catastrophic 

(I) 

Death/aircraf

t loss/damage 

> $1 million 

     

Critical (II) 

Major injury, 

primary 

mission loss, 

major cost > 

$100,000 

     

Marginal 

(III) 

Minor injury, 

cost > 

$10,000 

     

Negligible 

(IV) 

Unscheduled 

maintenance, 

damage 

below 

$10,000 

     

Figure 2. Hazard Risk Index utilized in RCM process (NAVAIR, 2005) 

Subjectivity in FMEA 

 

The healthcare industry has also questioned both the reliability and validity 

of FMEA. Reliability has been explored in several studies, with little research 

performed on FMEA validity (Shebl, Franklin, Barber, Burnett, & Parand, 2011; 

Ashley & Armitage, 2010; Shebl, Franklin, & Barber, 2009). Validity is essential 

since, without it analysis techniques such as FMEA are prone to skepticism 
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regarding their value, and it is difficult to provide feedback to improve the tool. 

Furthermore, as stated by Kirwan (1996) techniques that depend on significant 

amounts of judgment may not adequately and accurately quantify risk (Kirwan, 

1996). Despite the concerns with the FMEA methodology, the approach has been 

shown to improve quality and safety in the healthcare field (Battles, Dixon, 

Borotkanics, Robin-Fastmen, & Kaplan, 2006).    

 

Validity is defined as a measure to assess whether an instrument measure 

what it was designed to measure (Bowling, 2002; Smith, 2002). Thus, in the context 

of FMEA, validity aims to measure whether or not risks are proactively and 

thoroughly identified, parameter estimates line up with observed data and identify 

if the tool is indeed appropriate. Shebl et al. (2012) investigated FMEA validity 

utilizing several measures. These included face validity, which refers to how 

relevant experts view the tool. Context validity was defined as a measure of how 

well the FMEA results in mirror information available in the application domain. 

Criterion validity refers to the level of correlation of the FMEA outputs to other 

measurement systems of the same variables. Moreover, finally, construct validity 

was used to “determine the extent to which a particular measure relates to other 

measures consistent with theoretically derived hypotheses concerning the concepts 

that are being measured” (Shebl, Franklin, & Barber, 2012). 

 

Their study, conducted during 2012, utilized two groups from a hospital 

setting that were tasked to complete an FMEA on prescribing, administering and 

monitoring of two prescription drugs (Shebl, Franklin, & Barber, 2012). Both 

groups were familiar with the process and provided the same input information. 

The researchers observed how these drugs were administered in a clinical setting 

and mapped the subsequent process to a flowchart. This was then compared to the 

mapped processes as determined by the FMEA teams to address face validity. 

Although there were differences between the FMEA flowcharts and the observation 

flowchart, the major steps in the process correlated well. Thus, the team concluded 

that face validity appeared adequate for FMEA. Criterion validity was deemed low 

by Shebl et al. due to several reasons. First, 59 percent of failures observed in 

clinical data were identified by the FMEA team. Additionally, the probability of 

failure and the actual observed frequency in the clinical data showed little 

correlation. In general, the FMEA team appeared to estimate the probabilities 

higher than actual observed data indicated. The team also scored failure modes 

higher regarding severity than the data indicated (Shebl, Franklin, & Barber, 2012). 

The research team concluded that FMEA should not be solely utilized to understand 

and quantify risk in a healthcare setting.  

Several research gaps remain in the literature. The impact of data quality 

and quantity on the severity selection within FMEA/FMECA has not been studied 
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within the aerospace domain. Limited research has been conducted on rating 

selection and probability estimation within the healthcare community. However, 

much of research focused on identification/improvement of severity and occurrence 

scales. The research findings are essential to identify factors that impact the severity 

score, and thus substantially influence the overall risk reduction strategies both in 

the new acquisition and fielded systems. 

 

Method 

 

As discussed in the literature review, numerous concerns with 

FMEA/FMECA exist. However, FMEA/FMECA is most likely going to continue 

to be used as an analysis and risk management tool as evidenced by recent 

healthcare applications. Additionally, FMEA/FMECA is extensively utilized 

within the military community as part of the RCM process. Thus, to reduce the 

human subjectivity, it is vital first to quantify and demonstrate this uncertainty. The 

researchers formulated a study to investigate human subjectivity, which is detailed 

in this section. The study utilizes an in-between subjects design with three levels of 

trial and two levels of experience. An in-between design was chosen since domain 

expertise is often deemed as important and as a mitigating factor regarding 

judgmental bias. Thus, a key focus of the study was to assess if any association 

could be identified between experience level and severity selection. Each trial was 

expected to take approximately 15 minutes and included a cool-down period of 

several days before the next trial was conducted. The design was selected to ensure 

that participants were not overburdened with analysis tasks and since the analysis 

was not focused on the comparison of individuals. Rather, the objective of the study 

was to determine if any association existed between experience levels and 

information quantity on severity selection. 

 

All study materials and protocols were reviewed and approved by an 

Institutional Review Board (IRB). Informed consent was obtained from all 

participants. 

 

Participants 

 

Participants were recruited from a large aerospace corporation and 

consisted of engineers and analysts with varying degrees of education. All 

participants that had experience (at least one year) performing FMEA/FMECA 

analysis were accepted into the study. All participants were actively involved in 

real-world RCM analyses utilizing FMEA/FMECA and well versed in failure mode 

analysis at the time of the research. 
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Sixty percent of the participants had 15 or more years of general work 

experience, while fifty-three percent had greater than six years specifically 

performing FMEAs. The participant pool included a significant number of former 

military personnel (73 percent) with extensive experience troubleshooting, 

repairing and analyzing military aircraft. Many of the participants had a college 

education (93 percent). The participants had extensive experience with the systems 

utilized within the study, thus were considered domain experts. Participants were 

classified as experienced or inexperienced regarding FMEA/FMECA. For this 

study, an experienced FMEA user was considered to have 10 or more years of 

experience.  

   

Materials 

 

Participants were provided a worksheet to complete nine failure modes. 

Materials were developed utilizing NAVAIR 00-25-403 guidelines (NAVAIR, 

2005). The NAVAIR 00-25-403 standard was utilized since the participants were 

very familiar with the standard and associated processes. Additionally, the 

researchers did not want to introduce an unfamiliar scale or additional training 

requirements and thus potentially impact the results. The severity scale was selected 

within this study since it was assumed that frequency would be determined based 

on numeric methods (as discussed in the NAVAIR 00-25-403) within an RCM 

analysis.   The standard utilizes a severity scale that consists of four levels (I through 

IV). Category definitions were based on the levels as identified in MIL-STD-882E, 

which included consideration of both failure cost and safety consequences 

(Department of Defense, 2012).  

 

Three systems were analyzed by the participants. The systems included an 

aircraft flight control system (trial one), landing gear system (trial two) and a 

hydraulic system (trial three). The three systems were selected since they could be 

described in a general sense (without reference to a specific aircraft), were all 

important aircraft systems and were well understood by all participants. 

 

Participants were not provided any information during the first trial, except 

a system description and the failure modes. The participants were provided 

irrelevant failure and mishap data during the second trial, along with a system 

description. Irrelevant data consisted of failure information that was not directly 

tied to any failure mode under analysis. For example, during trial two the 

participants were informed that the aircraft experienced ten mishaps related to the 

landing gear during the past five years. Participants were informed that fifty percent 

of these mishaps led to serious injury and thirty percent of the mishaps had 

unknown causes. The remaining mishaps had been attributed the wheel and tire 
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assemblies.  Relevant data (thus data that could be connected to the failure modes 

under analysis) was provided in trial 3. In contrast to trial two, participants were 

informed that a significant proportion of mishaps had been attributed to hydraulic 

pumps (which did have a corresponding failure mode). Failure data consisted of 80 

data points for trial two and three respectively and included which component 

failed, failure symptom(s) and flight hours at failure. Failure data was modeled on 

typical data collected in field environments and provided in Figure 3 for reference. 

All data was provided to several subject matter experts before the study for a 

review, to ensure the information was representative of typical data available during 

RCM analyses. 

 

 
Figure 3.  Typical Field Data utilized within FMEA/FMECA Studies 

A sample system description is provided for reference: “The analysis 

utilized a generic fighter jet horizontal stabilator system. The pilot utilizes a control 

stick in the cockpit (with a hydraulic assist) to transmit inputs to the horizontal 

stabilator actuator mechanically. The actuator receives inputs through mechanical 

linkage and adjusts the horizontal stabilator appropriately utilizing hydraulic 

power. The hydraulic actuator includes a cylinder which contains a piston. The 

hydraulic actuator has several seals to prevent fluid leakage from the piston rod.  

The stabilator is critical to maintaining control of the aircraft during all phases of 

flight.”  Failure modes for the flight control system included hydraulic actuator 

Discrepancy/Symptoms Component Replaced Flight Hours

ANTI SKID LIGHT CAME OUT UPON TOUCHDOWN FOR LANDING. SECURED ANTI-

SKID SWITCH AND BRAKES WORKED WITHOUT ANTI-SKID.          
ANTISKID CONTROL BOX ASSEMBLY 2267

STARBOARD MAIN LANDING GEAR WHEEL BRAKE ASSEMBLY WORN BEYOND 

ALLOWABLE LIMITS.          
BRAKE ASSEMBLY 2839

PORT WHEEL BRAKE ASSEMBLY CEASED AFTER LANDING.          BRAKE ASSEMBLY 3919

LEFT MAIN LANDING GEAR WAS SLOW TO INDICATE DOWN AND LOCKED.  

APPROXIMATELY 20 SECONDS FROM TIME THE GEAR HANDLE WAS PLACED 

DOWN TO GOOD 3 DOWN AND LOCKED.  WHEELS WARNING LIGHT WAS 

FLASHING WITH NEGATIVE AOA INDEXERS.  AIRCRAFT WAS AT 150 KNOTS AND 

600 F

DASHPOT ASSY LH 1964

PORT FORWARD LANDING GEAR DOOR LOWER HALF ATTACHMENT FITTING 

BROKEN OFF.          
DOOR ASSY, MAIN GEAR FWD LOWER LH 1826

PORT MAIN LANDING GEAR FOWARD DOOR OVERRIDE VALVE BAD.          FWD DOOR CONTROL OVERRIDE VALVE 705

RAISED LANDING GEAR HANDLE AFTER CAT SHOT AND ALL INDICATIONS 

REMAINED DOWN AND LOCKED.  TRANSITION LIGHT WAS ON AND AOA 

INDEXERS WERE ON.  AFTER APPROXIMATELY 5 MINUTES WE LOWERED THE 

GEAR HANDLE AND ALL INDICATIONS WERE NORMAL FOR DOWN AND LOCKED.  

NEVE

LDG GEAR CONTROL SELECTOR VALVE 2011

STARBOARD MAIN LANDING GEAR STRUT DOES NOT HOLD PRESSURE. NEEDS TO 

BE REPLACED.          
MLG STRUT ASSEMBLY LH 3254

NOSE LANDING GEAR LINK OUT OF TOLERANCE.          NLG DRAG BRACE LINK ASSY 1699

NOSE LANDING GEAR LINK ASSY MESURES OUT OF LIMITS          NLG DRAG BRACE LINK ASSY 3503

ON INITIAL DIRTY UP, ALL THREE LANDING GEAR INDICATED UP. FLAPS 

EXTENDED NORMALLY TO 30 DEGREES. GEAR TRANSITION LIGHT AND WHEELS 

WARNING LIGHT  WERE BOTH ON WITH NO AOA INDEXER LIGHTS. 

TROUBLESHOOTING  CHECKED GEAR/HOOK, AOA INDICATOR AND AOA HEATER 

CI R

PANEL ASSEMBLY,LAND 570
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seals worn, cockpit control stick cracked beyond limits and cable from cockpit 

control stick to actuator frayed. The additional failure modes in the study were 

utility hydraulic pump shaft sheared, hydraulic reservoir seals are worn, hydraulic 

thermal-bypass valve fails closed, main landing gear seals worn, strut hydraulic 

service valve fails open and finally the nose landing gear strut assembly cracked.  

 

Procedure and Data Analysis 

 

     The primary goal of data analysis was to determine how the proportion of 

participants that selected a specific severity rating changed across failure modes 

(organized by trials). Additionally, failure mode selection was also organized by 

experience level to determine if an association could be established between 

experience level and severity selection. Binary Logistic Regression was applied to 

the data to identify any correlation between severity selection, trials and experience 

level.  

 

Each participant was required to complete nine failure modes across three 

trials. Trials were randomly assigned to each participant. Each participant did 

complete all trials. Although each participant completed trials in a random order, 

the systems and associated failure modes remained unchanged across all trials. The 

participants were tasked to select a severity rating ranging from I to IV for each 

failure mode, given a different amount of input information. Different input data 

sets were provided in each trial to ascertain if an association exists between severity 

class selection and the amount of input information regarding the system. The 

procedure is provided in Figure 4 for reference. 

 

Next, the data was analyzed by comparing proportions between each trial 

by the group. For example, the proportion of participants that selected a severity 

classification for each failure mode during each trial was calculated by group (A 

and B) and compared. Data were compared with all failure modes combined (thus 

overall proportion of all participants by the group for a trial).   Since the failure 

mode severity data were categorical with a discrete outcome, a Fisher’s exact test 

was utilized. Contingency tables utilized in this study are provided for reference 

(tables 1 to 5). 
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Figure 4.  Study Procedure. 

 

 

Table 1 

Severity selection across all trials (counts n=117, all participants) 

 
No Information 

Provided (Trial 1) 

Irrelevant 

Information 

Provided (Trial 2) 

Relevant 

Information 

Provided (Trial 3) 

Severity 

Rating 

I 20 15 10 

II 9 6 9 

III 5 12 11 

IV 2 9 9 

 

Table 2 

Contingency table for trial 1 and 2 to test association between trial and severity 

selection 

 
Number of Participants that Selected 

Severity Class I 

Number of Participants that 

Selected Severity Class II-IV 

Trial 1 20 16 

Trial 2 15 27 
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Table 3 

Contingency table for trial 1 and 3 to test association between trial and severity 

selection 

 
Number of Participants that Selected 

Severity Class I 

Number of Participants that 

Selected Severity Class II-IV 

Trial 1 20 16 

Trial 3 10 29 

 

Table 4 

Contingency table for trial 2 and 3 to test association between trial and severity 

selection 

 
Number of Participants that Selected 

Severity Class I 

Number of Participants that 

Selected Severity Class II-IV 

Trial 2 15 27 

Trial 3 10 29 

 

Table 5 

Contingency table for to test association between experience level and severity 

selection 

 

Number of Participants 

that Selected Severity 

Class I 

Number of Participants 

that Selected Severity 

Class II-IV 

Experienced Users 12 15 

Non-Experienced 

Users 
33 57 

 

Results and Discussion 

Binary logistic regression was performed to assess if any correlation could 

be identified when considering severity selection versus FMEA/FMECA 

experience level, general work experience as well as the three trials. To utilize 

Binary Logistic Regression, the response (severity selection) was mapped to a high 

and low level. Specifically, a severity selection of I or II was coded as HIGH, while 

selections of III and IV were coded as low. These groupings were based on the 

definition of the severity levels and were deemed logical. The model was deemed 

statistically significant (p = 0.013). Thus an association between the severity 

selection and the terms in the model was identified. Several Goodness-of-fit tests 

(Deviance, Hosmer-Lemeshow) were also conducted to test the adequacy of the 

model. The model passed all the tests conducted (Deviance p = 0.017, Hosmer-

Lemeshow p = 0.998). Additionally, the categorical predictor for trial was 

significant (p = 0.003), thus it was concluded that the mean number of severity 
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category selections across the trials were not equal. Odd ratios for categorical 

predictors were also calculated. The odds ratio indicated how likely an event is to 

occur with the level selected. Based on the odd ratios it was concluded that 

participants were 4.53 times more likely to select a severity of I/II during trial one 

when compared to other trials. 

The first two hypotheses investigated in this study were related to both the 

amount of input information (included/not included) and the type (mishap data, 

failure data) available to the participants. It was hypothesized that inter-rater 

reliability within the FMEA/FMECA process will decrease based on the amount of 

input information (failure and mishap data) provided within the analysis.   Thus, if 

more information were provided there would be less consensus amongst 

participants regarding severity rating selection. It was also hypothesized that the 

type of information influences inter-rater reliability in varying degrees, and that 

experienced users are less affected by the availability of superfluous information. 

Inter-rater reliability was investigated by first analyzing severity rating selections 

across the trials regardless of experience level. This study considered a severity 

class I the most severe (death, asset loss) and a class IV the least severe (nuisance). 

As illustrated in Figure 5, trial one had the most consensus (56 percent of 

failure modes classified as severity class I), with the consensus apparently 

decreasing in trials two and three. In trial two most failure modes were still 

classified as severity class I (36 percent). However, in trial three there appeared to 

be the least amount of consensus, with failure modes being evenly divided across 

all severity classifications. Thus, not only did it appear that inter-rater reliability 

does decrease as the amount of information is increased, but that the type of 

information may influence selection in varying degrees. 

 

Each case study was compared to the other case studies to determine if there 

was any statistically significant association between the case study and how many 

participants selected a severity class of I or severity class of II-IV, regardless of 

experience level.  

 

The null hypothesis was that there is there is no significant difference 

between the proportion of participants that selected severity class I or II through IV 

in case study 1 when compared trials two and three respectively. Utilizing a two-

tailed Fisher’s Exact yielded the following results: 

• trials one versus two were not statistically significant (p = 0.1102), 

• trials one versus three were statistically significant at a significance level of

 0.05 (p = 0102), and 

• trials two versus three were not statistically significant (p = 0.3479). 
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Figure 5.  Severity Selection across all trials (percentages, all participants). 

 

Thus, there appeared to be no statistically significant difference between 

severity class selection when no information (trial one) versus irrelevant 

information (trial two) is provided. However, there did appear to a statistically 

significant difference between the severity class selection when no information 

(trial one) versus relevant information (trial three) is provided. There was no 

statistically significant association when trials two and three were compared. The 

inter-rater reliability was further analyzed by grouping the participant selections in 

different configurations to ascertain whether participant demographics impacted 

the results previously presented.  The data were grouped in the following ways: 

• participants with ≥ ten years of work experience, 

• participants with ≥ ten years of FMEA experience, and 

• participants with < 10 years FMEA and work experience. 

 

Grouping the data in this manner yielded similar results, with an apparent 

repeating trend that additional information (trials two and three) and the variability 
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of severity class selections were associated.   Specifically, regardless of how the 

data was grouped, 50 percent or more participants selected the same severity class 

in trial one (no information provided). This was contrasted to trials two and three, 

where it was not typical for more than 50 percent of participants to select the same 

severity class. The only exception was trial two for participants with ≥ ten years of 

FMEA experience. 

 

The apparent trend between decreasing consensus and the amount of 

available information could have several reasons. Firstly, it was well known in the 

cognitive psychology field that too much information can overwhelm our available 

processing when complex tasks are performed. The nature and mechanisms of 

information overload and cognitive biases have been explored by several authors 

and likely related to limited biological hardware, noise within our memory channels 

as well as natural selection biasing our development to utilize heuristics (Hilbert, 

2012; Johnson, Blumstein, Fowler, & Haselton, 2013; Tversky & Kahneman, 

1974). This may result in information cues being missed by some participants 

resulting in less consensus. It is also important to consider how the information is 

organized and presented. In this study, the information was presented in a raw 

format to the analysis – since this is likely how they will perform the analysis in a 

real-world setting. However, participants were not restricted and could have 

organized the data into other formats if they desired. Interestingly it did not appear 

that any of the participants reorganized the data. Future work should investigate the 

role of how information is presented and organized within the FMEA/FMECA 

process. 

 

Cognitive biases such as anchoring or confirmation biases likely also play 

a role in the risk assessment process (Tversky & Kahneman, 1974). For example, 

decision makers may bias their severity rating around a certain risk level (for 

example severity rating of I). An additional bias that may also play a role in risk 

analysis is the confirmation bias, where information is interpreted in such a way 

that validates the analyst’s priori. These biases were investigated by grouping the 

proportion of failure modes assigned to each severity level by trial. It is important 

to remember that each participant completed trials in a random order. For example, 

the first participant may have performed the trials in the order 1-2-3, while another 

participant may have performed them in order 2-3-1 and so forth. As illustrated in 

Figure 6, the proportion of failure modes assigned a severity of I in trial one 

appeared higher, when compared to trials two and three. However, when trials two 

and three were compared a similar proportion of failure modes was assigned to each 

severity class. Siefer and Smith analyzed a large data set captured as part of a risk 

management process over several years to identify if theoretical implications from 

prospect theory (which includes cognitive biases) were present (Siefert & Smith, 
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2011). The data set include consequence and likelihood of risks, and how they 

evolved as the program matured. Siefer and Smith confirmed the presence of 

cognitive biases and further indicated that subjective estimates (probability and 

consequence) could be objective if historical data is utilized within the analysis 

process. The research findings of this study suggest that this may not be the case 

and that the quality of the data may not assess during the analysis process.  

  

 
Figure 6. Severity classification by trial (regardless of experience level). 

 

There appeared to be a clear distinction between trial one when compared 

to trials two and three (supported by the statistical analysis presented earlier). In 

trial one where no data was provided participants clearly aired on the side of caution 

and thus attributing a larger portion of failure modes as high risk. However, 

interestingly this pattern did not hold in trials two and three where the proportions 

were approximately evenly distributed across all severity levels. In these trials, each 

severity category was assigned approximately 25 percent of the failure modes. 

Similar effects were observed by researchers such as (Fox & Clemen, 2005) who 

investigated an ignorance prior. The ignorance prior is a cognitive phenomenon 

where the assessor assigns probabilities based on the number of categories 

available. They concluded and illustrated through five studies that it appears the 

number of available categories sets the initial probability assessment. For example, 

in the case of severity classification, a failure mode can fit into four categories. 

Thus, an ignorance prior could be computed as 1/4 or 25 percent. 
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In this study, it appeared that participants were not able to sift through the 

provided information and identify the appropriate cues relating to failure relevance 

to the failure mode under analysis. Thus, it appeared that larger amounts of 

information might generally reduce conservatism. However, this is concerning 

since even information not related to the failure mode will influence the decision 

maker in a similar manner. The researchers further hypothesized that more 

experienced users would more effectively vet through irrelevant information and 

be less distracted by it – thus expecting to see higher consistency among 

experienced users.  

 

The null hypothesis was that there is there is no significant difference 

between the proportion of participants that selected severity class I or II through IV 

based on user experience. Based on a two-tailed Fisher’s Exact test there wasn’t a 

statistically significant association between the experience level and the number of 

severity class selection (p = 0.5038). 

 

Thus, the null hypothesis was not rejected, and it was concluded that 

experience level did not play a role in severity class selection within this study. This 

result should be further investigated due to the small number of experienced users 

that participated in this study (n = 4). This result may also be explained by 

considering the background of most participants. Almost 70 percent of participants 

came from an aviation background, thus equipped with a large amount of aerospace 

domain knowledge. The failure modes in this study were all aerospace-related. 

 

 

Conclusions, Recommendations and Future Work 

 

This study highlighted through empirical evidence that risk assessment 

participants are subjective during severity rating selection. Notably, it appears that 

users who are provided with irrelevant failure and mishap data will tend to select 

similar severity levels; however, when no information is provided to users, the data 

collected demonstrates with statistical significance that user selections will be 

dramatically more conservative. Additionally, participants appear to select similar 

severity ratings regardless of the relevancy of the provided data. 

 

Several recommendations are provided based on the study results. First, a 

greater emphasis must be placed on the overall data quality at the onset of any RCM 

(or FMEA/FMECA) analysis. Specifically, the relevance, fidelity, and accuracy of 

the data must be established. Additionally, it is recommended that the analysis team 

consider the severity rating independent of the input data (at least initially). This 

will allow the team to consider the possible chain of events leading to a high-risk 
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event without being potentially biased by input information. There may also be 

value in assuming a high severity rating for each potential failure mode, followed 

by the justification of reducing the rating. This will incorporate additional rigor 

with the selection process and may reduce subjectivity. The team may also wish to 

consider plotting different team member ratings on the Hazard Risk Matrix, along 

with the consensus rating. This may allow additional important discussion and 

refinement. Finally, although domain and process experience is important, experts 

should always be questioned. 

 

These findings are significant since they speak to the underlying validity of 

this very commonly used risk management tool. They further illustrate that 

significant focus must be placed on assessment of data quality since analysts appear 

not to be able to distinguish data quality cues during severity selection. 

Additionally, future work must be focused on understanding the impact of how 

information is presented to the analyst during FMEA and extend these results to a 

larger and more diverse participant base.  
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