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ABSTRACT 
 

Myhre, Nicodemus MSAE, Embry-Riddle Aeronautical University, May 2018. Vision-

Aided Navigation Using Tracked Landmarks.   

 
This thesis presents vision-based state estimation algorithms for autonomous 

vehicles to navigate within GPS-denied environments. To accomplish this objective, an 

approach is developed that utilizes a priori information about the environment.  In 

particular, the algorithm leverages recognizable ‘landmarks’ in the environment, the 

positions of which are known in advance, to stabilize the state estimate.  Measurements of 

the position of one or more landmarks in the image plane of a monocular camera are then 

filtered using an extended Kalman filter (EKF) with data from a traditional inertial 

measurement unit (IMU) consisting of accelerometers and rate gyros to produce the state 

estimate.  Additionally, the EKF algorithm is adapted to accommodate a stereo camera 

configuration to measure the distance to a landmark using parallax.  The performances of 

the state estimation algorithms for both the monocular and stereo camera configurations 

are tested and compared using simulation studies with a quadcopter UAV model.  State 

estimation results are then presented using flight data from a quadcopter UAV 

instrumented with an IMU and a GoPro camera.  It is shown that the proposed landmark 

navigation method is capable of preventing IMU drift errors by providing a GPS-like 

measurement when landmarks can be identified.  Additionally, the landmark method pairs 

well with non a priori measurements for interims when landmarks are not available.   



1  

 Introduction 

1.1. Motivation 

Interest in unmanned autonomous systems (UAS) has grown rapidly in recent years, 

and the ability of a vehicle (e.g. a quadcopter) to reliably estimate its state (position, 

velocity, orientation) is a critical enabling task for UAS missions.  A myriad of methods to 

estimate the state of a UAS have been developed with, by far, the most common being the 

filtered combination of IMU and GPS data.  The IMU-GPS solution has become the widely 

accepted 'gold standard' for vehicle state estimation; however, it has its limitations.  In 

particular, there are many proposed UAS missions in which GPS signals are unreliable or 

non-existent (Chavez, et al., 2017).  For example, the GPS signal is known to be 

unavailable or unreliable in urban environments due to interference from large and closely 

spaced buildings (Prazenica, Hielsberg, Sharpley, & Kurdila, 2013).  GPS is also 

completely unavailable in deep space environments such as asteroid exploration and 

sampling missions, necessitating some non-GPS state estimation algorithm for these 

missions (Prazenica, et al., 2016) (Perez, et al., 2016).  As a final example, for some 

missions that do have access to the GPS signal, it may nonetheless be desirable to have 

alternative measurements available as a backup in the event of signal degradation or loss, 

for example during landing (Mondragón, Campoy, Martínez, & Olivares-Méndez, 2010).  

Thus, the development of non-GPS navigation methods has been strongly motivated.  In 

particular, as the size, weight, and price of high-resolution and high-speed cameras are all 

dropping rapidly, vision-based navigation systems are becoming both the most natural and 

the most economic attempt at an alternate method of state estimation to replace a GPS 

measurement when necessary.  As a result, vision-based state estimation has received a 
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great deal of attention in recent years (Kanade, Amidi, & Ke, 2004) (Prazenica , et al., 

2006).   

Vision-based navigation methods can be partitioned into two categories: a priori 

and non a priori (Zhao, et al.).  An a priori algorithm is one in which information about the 

mission environment is known prior to the mission.  Conversely, a non a priori algorithm 

does not take advantage of any previously available information about the navigation 

environment.  As a result, non a priori algorithms have an immediately apparent advantage 

in terms of their applicability in nearly any conceivable environment, which a priori 

algorithms do not share.  Thus, it is no surprise that much research into vision-based 

navigation has been directed toward non a priori methods (Kehoe, Causey, Arvai, & Lind, 

2006) (Caballero, Merino, Ferruz, & Ollero, 2009) (Zhao, et al., 2016).  The classic 

example of non a priori algorithms is the broad category of Simultaneous Localization and 

Mapping (SLAM) algorithms (Smith, Self, & Cheeseman, 1987) (Caballero, Merino, 

Ferruz, & Ollero, 2009) (Bailey, Nieto, Guivant, Stevens, & Nebot, 2006).  However, as 

the name implies, SLAM algorithms not only estimate the state of the vehicle, but also the 

layout of the environment, which often increases the computational cost.  An unfortunate 

conclusion implied by SLAM is that any non a priori algorithm that does not 

simultaneously ‘map’ some feature(s) in the environment will be subject to an inevitable 

drift in the state estimate over time following the pattern of a random walk (Bonin-Font, 

Ortiz, & Oliver, 2008).  Indeed, in a very loose sense of the definition, SLAM algorithms 

are nearly a priori, since, in many case, some ‘information’ about the environment is known 

(or rather assumed) beforehand; namely, that the layout of the environment is a constant, 

that it has identifiable features which will persist throughout the duration of the mission, 
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and that these features can be returned to and re-identified as many times as needed or 

desired.  Zhao et al. (2016) refer to this as ‘loop closure’.  In short, the SLAM algorithm 

has a memory, or as in (Bonin-Font, Ortiz, & Oliver, 2008), it is a map-building-based 

navigation method.   

Other non a priori algorithms, such as feature tracking, homography-based, etc., 

make no such assumptions (Zhao, Liny, Pengy, Chenz, & Leez, 2012).  These algorithms 

only assume that the environment layout does not change quickly; i.e., the scene does not 

change significantly between frames.  These algorithms have no memory, or equivalently, 

no map (Bonin-Font, Ortiz, & Oliver, 2008).  For example, a feature tracking algorithm 

tracks random feature points between a pair of frames and generates an estimate of the 

displacement between those two frames.  Once this is complete, the algorithm forgets the 

first frame and the estimated displacement and eventually will forget even the feature 

points it was tracking.  Thus, any error in a calculated displacement vector from forgotten 

features will persist in the estimate forever.  This error could, in theory, be corrected later 

on if there were some form of persistent knowledge about the environment, but this is not 

the case.  All the sensor information available in a non a priori algorithm gives information 

about change in position, change in velocity, or change in attitude. Thus, there is still an 

integration of a noisy signal occurring.  Hopefully the signal will have significantly reduced 

noise due to integrated sensor measurements, but it will still be noisy, and a random walk 

in state estimation error will result.    

Thus, we can at last see that a priori algorithms have a significant advantage in that 

they have a ‘memory’ of fixed points in the environment stored away from the outset, which 

can stabilize them against the drift of a random walk over time.  Additionally, a priori 
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algorithms in the proper sense of the definition do not need to produce this information in 

real time, as in the non a priori SLAM approach, potentially reducing computational cost.  

Bonin-Font, Ortiz, & Oliver (2008) refer to this as a ‘map-based’ algorithm.  By providing 

a ‘GPS-like’ measurement at each frame, as opposed to the between-frame comparison 

given by many non a priori measurements, a map-based approach, or a landmark-based 

approach as in this thesis, can give state estimation results comparable to those of the GPS-

IMU solution.  In many scenarios, the benefits of the drift-free estimates produced at 

relatively low cost may outweigh the loss of the versatility that non a priori algorithms 

provide.  Additionally, as we shall see later on, the landmark method in particular can be 

paired with a non a priori algorithm to maintain this versatility while simultaneously 

reaping the benefits of GPS-like information.   

This thesis details the development of an a priori vision-based navigation algorithm 

for autonomous missions.  While the a priori nature of this method limits some of its 

applicability, it has the potential to be more computationally efficient than non a priori 

SLAM algorithms -- a critical feature in many applications.  Additionally, most real-world 

missions have some a priori information available, and even if none is available it can 

sometimes be built-in (Lange, Sunderhauf, & Protzel, 2009).  For example, in urban 

environments, there is a plethora of information available in advance.  Targets ranging from 

the features of a unique building to memorial statues can be recognized, roads can be 

followed, and buildings can be avoided.  As a second example, in asteroid exploration 

missions, certain reference features may be known in advance, or as in (Chavez, Myhre, & 

Prazenica, 2017) such features can be built into the mission by planting a landing target at 

the starting point for the mission.   
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The estimation filter presented in this paper is far from the first attempt to use a 

priori information for navigation.  Others have attempted various methods including 

reference terrain navigation using a digital terrain elevation database as in (Lee, Kim, & 

Bang, 2013) (Lee, Kim, & Bang , 2014) or geo-referencing as in (DeAngelo & Horn, 2016) 

(DeAngelo & Horn, 2017).  Additionally, the known size of a feature in view of the camera 

can be used to determine the range to that feature (Lange, Sunderhauf, & Protzel, 2009).  

As a second example, reference terrain navigation takes advantage of a complete terrain 

elevation map along with, usually, a radar altimeter to keep track of the vehicle’s location.  

The approach developed in this thesis is unique in its simplicity and applicability in a 

variety of situations.  In particular, all that is needed is an identification of at least one 

unique feature in the environment with known or definable position.  Indeed, the ID does 

not even have to be visual in nature; however, vision-based identifications are likely to be 

the most common and are the only methods considered in this work.   

The filter presented here uses the availability of identifiable 'landmarks' in the 

environment with known (a priori) position.  The algorithm filters the information about 

the identification with IMU data to generate the pose estimation.  This filtering process 

takes the form of a basic first-order Extended Kalman Filter (EKF).  The algorithm has 

been adapted to use either monocular vision, or a stereo setup in which two cameras work 

in tandem to provide additional information about the distance to a tracked ‘landmark’ 

using parallax.  Both cases are developed and tested in this work. 

1.2. Thesis Outline 

The thesis is organized as follows. In Chapter 2, an overview of the relevant 

literature on UAV state estimation is presented.  This Chapter provides the background for 
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the landmark-based state estimation approach outlined in this work.  The distinction 

between a priori and non a priori algorithms is discussed and the significance of a general 

ID-based state estimation algorithm is underlined.   

Next, Chapter 3 gives an expository of the landmark filter for both the monocular 

and stereo variants.  The mathematics, geometry, and kinematics forming the process and 

measurement models used in the prediction and update steps of the EKF are presented.  

The practical organization and implementation of the filter are outlined, the use of 

‘underweighting’ to deal with the nonlinear instabilities associated with landmarks leaving 

and entering view is detailed, and an observability analysis of the algorithm(s) is given.  

These analyses demonstrate the theoretical capabilities and limitations of the state 

estimation filter in providing a substitute for GPS measurements as in traditional state 

estimation schemes.   

Chapter 4 gives an overview of the quadcopter simulation testing of the landmark 

filter.  The data collection and simulated sensor data generation are outlined.  The 

simulation gives an excellent opportunity to test the filter in several situations and support 

the theoretical results from the previous chapter.  These multiple test situations give insight 

into the filter’s capabilities and performance, and are also enumerated here.  Among these 

are evaluations of sensor noise tolerance, performance on different flight paths, and the 

number of landmarks required for certain tasks.   

Chapter 5 presents an off-line implementation of the landmark filter on actual sensor 

data from UAV flight tests.  A description of the sensor array layout and its elements in 

each of the various flight tests is given here for documentation purposes.  Results are 

presented from off-line filter testing using the data from these flight tests.  These results 
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demonstrate the potential for the algorithm to be applied on-line in practical situations, as 

the filter is not computationally costly.   

Lastly, Chapter 6 outlines a key application of landmark navigation in a hybrid 

navigation scheme.  While the landmark filter has unique advantages in terms of its GPS-

like measurement, it also possesses limitations that traditional navigation schemes such as 

optical flow, visual odometry, etc. do not.  Thus, it makes sense to pair the landmark filter 

with a robust non a priori frame-to-frame type algorithm to get all the best features of each 

navigation method: GPS-like measurement from the landmarks and robustness in the 

absence of landmarks from the non a priori method.  The non a priori method used here is 

a homography-based approach that uses tracked feature points (Chavez, et al., 2017) 

(Chavez, Myhre, & Prazenica, 2017). 
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 Literature Review 

 This review is broken into two sections discussing a priori and non a priori 

algorithms in greater depth.  It is intended that this chapter will clarify how the methods 

developed in this thesis fit into the larger picture of vision-based state estimation and vision 

aided navigation.   

2.1. Non a Priori Methods 

 A non a priori algorithm is one in which no information about the environment is 

given beforehand to the algorithm (Zhao, et al.).  The algorithm expects no mission-specific 

features or attributes in the vehicle’s surroundings.  It may assume that features will exist, 

but it has no hard-coded knowledge of what features may or may not exist in the scene.  

The algorithm simply uses whatever features are found in the scene.  For example, most 

algorithms based on feature point tracking are non a priori.  They do not consider any 

information about the points they are tracking other than an assumption of fixed location, 

their prominence, which makes them easy to detect, and their relative motion between 

frames.   

 Non-Mapping Algorithms  

A typical non a priori algorithm may use the relative motion of individual feature 

points between frames to give an estimation of the relative motion of the vehicle in the 

time period between those frames, for example (Webb & Prazenica, 2007).  Feature points 

can be extracted in a number of different ways such as the well-known Lucas-Kanade 

algorithm, which is a popular method (Lucas & Kanade, 1981).  If there are sufficiently 

many points available, the relative pose can be reconstructed completely up to an unknown 
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scale factor as in the eight-point algorithm for example, which is based on epipolar 

geometry (Ma, Kosecka, Soatto, & Sastry, 2001).  Integrating the estimated motion 

between frames beginning at a known initial state can then give an estimate of the current 

state.  This technique is the basis of visual odometry, and homography estimation (Strydom, 

Denuelle, & Srinivasan, 2016) (Zhao, Liny, Pengy, Chenz, & Leez, 2012).  A separate 

category of non a priori algorithms is the group of optical flow algorithms which uses 

intensity gradients in an image to extract the same relative information as a point matching 

algorithm (Aggarwal & Nandhakumar, 1988).  All such relative-motion algorithms, 

however, suffer from the drift in time of a random walk resulting from the integration of a 

noisy (random) signal as observed in (Bonin-Font, Ortiz, & Oliver, 2008).  Unfortunately, 

this is typical for non a priori algorithms, since only the relative motion between frames is 

measured.  Thus, a non a priori algorithm is akin to a more accurate IMU that does not drift 

as quickly.   

 Simultaneous Localization and Mapping (SLAM) 

In order to solve the problem of random walk drift in time that is inevitable in a 

priori algorithms, a map of some sort must be introduced.  Ideally, this map would be 

completely specified across the entire domain of the mission prior to the mission taking 

place.  Such methods are briefly outlined in Chapter 2.2.1 on map-based navigation 

approaches.  However, in many cases any available map is incomplete or even non-

existent, such as in planetary or asteroid exploration missions (Chavez, Myhre, & 

Prazenica, 2017).  In cases like these, a frequent idea is to have the vehicle build its own 

map as the mission progresses.  Such approaches are known broadly as Simultaneous 

Localization and Mapping (SLAM) algorithms.  Smith, Self, and Cheeseman (1987) 
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provided a solution to the simultaneous estimation of vehicle location and relative location 

of features in the environment through stochastic methods, and numerous other SLAM 

approaches and applications have been developed since (Lemaire, Lacroix, & Sola, 2005) 

(Ivey & Johnson, 2006) (Caballero, Merino, Ferruz, & Ollero, 2009).  Experience has 

shown that such a map-building approach can stabilize the vehicle state estimate in time 

against the random walk errors that plague non-mapping algorithms, while still making no 

initial assumptions, and thus remaining non a priori.  Thus, the non a priori time-drift 

problem is solved without resorting to a priori knowledge.  However, the drift actually does 

still occur in the spatial domain as observed by Bailey et al. (2006).  That is, while the 

uncertainty buildup in the state does not occur the farther the vehicle travels from the initial 

time, the vehicle state does become more uncertain the farther it travels from the initial 

position.  This is nonetheless a significant improvement, and one which has enabled SLAM 

methods to be used in applications such as the Spirit and Opportunity Mars rovers 

(Maimone, Cheng, & Matthies, 2007). 

2.2. A Priori Methods 

While the SLAM approach in its numerous variants provides a viable solution to 

the visual navigation problem, it still has its shortcomings.  First, as already noted, SLAM 

algorithms do not prevent long-distance drift.  Additionally, SLAM algorithms can be 

computationally intensive, which has the potential to limit applicability.  To solve these 

problems while maintaining the benefit of preventing time-drift, we must resort to a priori 

methods.   

 



11  

 Map-based approaches 

The map-based approach to navigation is an obvious approach to navigation with a 

priori information.  The algorithm has access to a map with known (a priori) information 

about the environment that it compares to its measurements to ascertain the vehicle’s 

position in the environment and to plan its route accordingly.  Johnson and Montgomery 

(2008) give an excellent summary of map-based approaches to autonomous spot-landings 

on the Moon using available lunar maps; however, the principles at play are applicable in 

numerous other applications where maps are available.  For example, Conte and Doherty 

(2009) used correlation between camera frames and stored aerial photographs of the flight 

area to localize the vehicle within the map.  Additionally, maps may come in the form of a 

terrain elevation database, within which a vehicle can locate itself using LIDAR or radar-

altimeter measurements (Bingol, Akin, & Koc, 2012).   

 Landing Target 

In a map-based approach, the map may have considerable size, and require a large 

database for the mission to be viable.  The database size can be mitigated by reducing the 

‘map’ to contain knowledge of only a select few key features of interest.  This knowledge 

often does not even come in the form of an image, like in a proper map-based approach.  A 

recognizable landing target is a special case of this ‘map reduction’ idea in which the 

landing site has prominent features to enable a precise landing using visual observation of 

the ‘target’.  For example, Brockers et al. (2011) used a homography approach to detect 

and land on an elevated platform. Lange, Sunderhauf, and Protzel (2009) used a designed 

landing target with distinctive markings and a known size for detection and ranging during 

a landing.  Other studies have followed in the same vein using recognizable landing pads 
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for stability during the landing (Wenzel, Rosset, & Zell, 2010) (Yang, Scherer, & Zell, 

2013) (Li, Garratt, & Lambert, 2014).   

 Landmark Navigation 

In this thesis, we delve into the use of generic landmarks for navigation.  As 

mentioned previously, landmarks can come in a variety of forms.  For example, a 

‘landmark’ may simply be a feature point or edge in a known map (Atiya & Hager, 1993).  

Landmarks can also come in the form of known features in a map such as buildings and 

roads, or even trees and fields (DeAngelo & Horn, 2017).  Recently, DeAngelo & Horn 

(2016) used a relatively sparse map with roads and houses to estimate the horizontal 

position of a vehicle, but not the velocity or attitude.  However, if there are enough 

landmarks, the position and attitude can be completely recovered even without sensor 

filtering as, for example, in (Masselli & Zell, 2012) or (Huang & Netravali, 1994).  

Nevertheless, the method of Masselli & Zell used four landmarks, and Huang & Netravali 

indicate a minimum of three.  As we will show, however, we can use fewer if we 

incorporate sensor filtering.  In particular, the proposed method is capable of completely 

observing the vehicle position, velocity, and attitude with only two landmarks.  The 

landmark navigation proposed in this thesis considers generic landmarks of unspecified 

type, to allow generalization to any type of landmarks, as long as they can be uniquely 

identified.   
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 EKF Filtering 

As shown in Figure 1, the proposed Extended Kalman Filter (EKF) receives data 

from two separate sources:  first, the IMU serves as the input in the dynamic model, and 

second the landmark based measurement enters the EKF as a state update. The 

measurement can come in the form of a projection onto a monocular vision system, or as a 

full relative position vector to the detected target with both direction and distance 

information, as might be derived from stereo camera measurements, LIDAR, or other 

methods. Two EKF methods are developed—one for each case.  The vision measurement 

is assumed to be corrupted by zero-mean Gaussian noise in the pixel frame. This 

measurement updates the state estimate obtained in the state propagation model from an 

integration of inertial measurements from the IMU (accelerometers, and gyroscope), which 

are also assumed to have zero-mean Gaussian noise. 

 

Figure 1: Navigation Algorithm Information Flow Diagram 

 

As an initial note, we define the three separate reference frames considered by the 

filter.  First, the Navigation Frame (N) is defined to represent the fixed world-coordinates 



14  

of the environment in which the vehicle operates.  Second, the Body Frame (B) is defined, 

which has the X-axis pointed forward, the Y-axis out the right hand side, and the Z-axis 

downward with respect to the vehicle, with the origin fixed at the vehicle’s center of 

gravity. Third, we consider the Camera Frame (C).  The Camera Frame’s orientation is 

defined by a rotation ܴ஻஼ relative to the Body Frame, and its origin is located at a 

displacement ࢊ from the center of gravity.   

3.1. Overview 

The filtering method takes the form of an Extended Kalman Filter, which is an 

extension of the classic linear Kalman filter (Kalman, 1960) to nonlinear problems via a 

first order linearization about the current estimate.   

The discrete EKF algorithm, as outlined in (Ribeiro, 2004) as well as in numerous 

other sources, is performed in two steps: prediction and update.  The prediction step is 

given in Equations (1) - (2), and the update step is given in Equations (3) - (5).   

 ෠ܺ
௞
ି = ݂൫ ෠ܺ௞ିଵ,  ௞ିଵ൯ (1)ݑ

 ௞ܲ
ି = ௞ିଵܣ ௞ܲିଵܣ௞ିଵ

் + ௞ିଵܩ௞ିଵܳ௞ିଵܩ
்  (2) 

௞ܭ  = ௞ܲ
௞ܥି

௞ܥ)் ௞ܲ
௞ܥି

் + ܴ௞)ିଵ (3) 

 ෠ܺ௞ = ෠ܺ
௞
ି + ௞ܭ ቀY୩ − ℎ൫ ෠ܺ

௞
ି൯ቁ (4) 

 ௞ܲ = ௡ܫ) − (௞ܥ௞ܭ ௞ܲ
ି (5) 

In the EKF equations given above, ෠ܺ௞ is the state estimate with autocovariance ௞ܲ, ௞ܻ is 

the measurement, and the subscript ݇ designates the current time step.  The function ݂ is 

the (generally nonlinear) discretized state-dynamics equation with forcing ݑ௞, and the (also 

nonlinear) function ℎ is the measurement model equation.  ܳ௞ and ܴ௞ are the covariance 
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matrices representing process noise, ݓ௞, (associated with the dynamics ݂) and 

measurement noise (associated with ℎ).  The matrices ܣ௞ିଵ, ,௞ିଵܩ  ௞ are the Jacobiansܥ

representing the partial derivatives given by Equations (6) - (8): 

௞ିଵܣ =
߲݂

߲ܺ௞ିଵ
ฬ

௑෠ೖషభ

 
(6) 

௞ିଵܩ =
߲݂

௞ିଵݓ߲
ฬ

௑෠ೖషభ

 
(7) 

௞ܥ =
߲ℎ

߲ܺ௞
ฬ

௑෠ೖ
ష

 
(8) 

Lastly, the matrix ܭ௞ as defined in Equation (3) is the well-known Kalman gain, which is 

optimal in the least-squares sense if both ݂ and ℎ are linear functions.  Even if nonlinearities 

are present, however, the extended Kalman filter is often still effective in practice.   

 We note for clarity that in some conventions ܣ௞ିଵ, ,௞ିଵܨ ௞ are denoted asܥ  ௞ܪ

respectively as in the Kalman review given by Hartikainen et al. (2011) for example.  The 

notation ܣ௞ିଵ,    .௞ is used throughout this thesisܥ

 Because the algorithm is separated into two steps, we have the option of performing 

a prediction step without an update if there is no measurement available. This is usually 

the case in practice, since IMUs are considerably faster in terms of sampling rate than 

vision measurements.  Additionally, in our landmark method it is possible that 

measurements may be unavailable for extended periods of time.  Chapter 3.4 deals with 

the instabilities associated with this possibility.   
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3.2. Process Model 

The process model state vector ܺ is defined as a column vector containing the 

vehicle’s position and velocity in the navigation frame, ேܲ and ேܸ, the three Euler angles 

representing the vehicle’s orientation, ߩ = ሼ߶, ,ߠ ߰ሽ, and the estimated biases on the 

accelerometers and gyros comprising the IMU, ܾ௔௖௖ and ܾ௚௬௥.  The resulting state vector 

ܺ is given in Equation (9) below. 

 ܺ = ൣ ேܲ , ேܸ , ,ߩ ܾ௔௖௖ , ܾ௚௬௥ ൧
்
 (9) 

 This simultaneous usage of the EKF as both a state estimator and a parameter ID 

scheme, in our case for the bias, is a well-known one outlined and analyzed for stability by 

Ljung (1979) which appears to have been utilized in some form as early as 1964 by Cox 

(Cox, 1964).   

The process dynamic model is a basic first-order forward-difference Euler 

integration.  The process model takes the form of Equation (10):  

 ܺ௞ = ݂(ܺ௞ିଵ, ,௞ିଵݑ  ௞ିଵ) (10)ݓ

where ݇ represents the current time step, the forcing ݑ is the IMU measurement which 

includes the accelerometers and gyros, and ݓ represents the process noise associated with 

these (assumed Gaussian with zero mean).  We recall that Equation (10) is the general form 

for any dynamic model mapping the state at the previous time step into the current time 

step.  For our Euler integration model, Equation (10) takes on the form given in Equation 

(11): 
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ۏ
ێ
ێ
ێ
ۍ ேܲ,௞

ேܸ,௞
௞ߩ

ܾ௔௖௖,௞

ܾ௚௬௥,௞ ے
ۑ
ۑ
ۑ
ې

=

ۏ
ێ
ێ
ێ
ێ
ۍ ேܲ,௞ିଵ + ேܸ,௞ିଵ∆ݐ௦

ேܸ,௞ିଵ + ൫ܴ஻,௞ିଵ
ே ܽ௞ିଵ

஻ − ௦ݐ∆൯ࢍ

௞ିଵߩ +  ൫ܮ஻,௞ିଵ
ே ߱௞ିଵ

஻ ൯∆ݐ௦

ܾ௔௖௖,௞ିଵ

ܾ௚௬௥,௞ିଵ ے
ۑ
ۑ
ۑ
ۑ
ې

 (11) 

Here, ܴ஻
ே is the rotation matrix derived from the Euler angles ߩ, which is given by the well-

known direction cosine matrix: 

ܴ஻
ே = ൥

߰ܿߠܿ ߰ݏߠܿ ߰ݏ−
߰ܿߠݏ߶ݏ − ߰ݏ߶ܿ ߰ݏߠݏ߶ݏ + ܿ߶ܿ߰ ߠܿ߶ݏ
߰ܿߠݏ߶ܿ + ߰ݏ߶ݏ ߰ݏߠݏ߶ܿ − ߰ܿ߶ݏ ߠܿ߶ܿ

൩

்

 (12) 

where the shorthand notation ݏ, ܿ denotes ݊݅ݏ,  In Equation (11), ܽ஻ and ߱஻ are the   .ݏ݋ܿ

accelerometer and gyro measurements respectively, ࢍ is the gravitation vector, and ∆ݐ௦ is 

the time step.  We note that the time step ∆ݐ௦ is set equal to the sampling period of the IMU 

for practical purposes.  Lastly, ܮ஻
ே is the well-known Euler angle dynamic matrix relating 

the gyro measurements in the body frame of roll rate ݌, pitch rate ݍ, and yaw rate ݎ, to the 

derivatives of the Euler angles ߶, ,ߠ ߰ representing roll, pitch, and yaw respectively in the 

navigation frame:  

஻ܮ 
ே = ቎

1 sin(߶) tan (ߠ) cos(߶) tan (ߠ)
0 cos(߶) − sin(߶)
0 sin(߶) sec (ߠ) cos(߶) sec (ߠ)

቏ (13) 

so that:  

 ቎
߶ሶ

ሶߠ
ሶ߰
቏ = ቎

1 sin(߶) tan (ߠ) cos(߶) tan (ߠ)
0 cos(߶) − sin(߶)
0 sin(߶) sec (ߠ) cos(߶) sec (ߠ)

቏ ቈ
݌
ݍ
ݎ

቉ (14) 

or  
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ሶߩ  = ஻ܮ
ே߱஻ (15) 

Lastly, the IMU measurements are known to be corrupted by both random noise ݓ௔௖௖ and 

௚௬௥ (assumed Gaussian) and biases ܾ௔௖ݓ  and ܾ௚௬௥ (assumed constant).  Thus, the 

measured acceleration and rotational velocity differ from the true values ܽ஻ and ߱ ஻ as seen 

in Equation (16):  

 
ܽ஻

௔௖௖ = ܽ஻ − ܾ௔௖௖ − ௔௖௖ݓ

߱஻
௚௬௥ = ߱஻ − ܾ௚௬௥ − ௚௬௥ݓ

 (16) 

As in (Zhao, Lin, Peng, Chen , & Lee, 2012), a correction of the IMU measurements can 

be made using the estimated values of ܾ௔௖௖ and ܾ௚௬௥ from the state vector estimate ෠ܺ. 

 The EFK process Jacobian A is thus given by: 

 
 
 
  

௞ିଵܣ  =
߲݂

߲ܺ௞ିଵ
ฬ
௑෠ೖషభ

=

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

ଷܫ ௦ݐଷΔܫ [0] [0] [0]

[0] ଷܫ
߲ ாܸ௞

௞ିଵߩ߲
−ܴ஻

ேΔݐ௦ [0]

[0]
[0]
[0]

[0]
[0]
[0]

௞ߩ߲

௞ିଵߩ߲
[0] ஻ܮ−

ேΔݐ௦

[0] ଷܫ [0]
[0] [0] ଷܫ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (17) 

where [0] is the 3x3 zero matrix, and ܫଷ is the 3x3 identity matrix.  We note that there are 

ways to deal with the bias separately, for example as in (Friedland, 1969), in order to reduce 

the size of the matrix ܣ; however, a 15 × 15 matrix is not particularly unwieldy for modern 

computers, and such methods are unnecessary.   

3.3. Landmark-Based Measurement Models 
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The measurement ௜ܻ for the ݅௧௛ landmark can be obtained via an algorithm such as 

the color-detection methods used in this thesis, or a more sophisticated learning algorithm 

like the Viola-Jones object detection algorithm (Viola & Jones, 2001) (Prazenica, et al., 

2016).  In any case, measurements are first obtained in terms of the pixel location of an 

identified landmark in an image and must be converted into calibrated coordinates (Ma, 

Kosecka, Soatto, & Sastry, 2001).  Then, if stereo measurements are available, a full vector 

representing the position of the landmark in the camera frame can be generated.  If not, 

then only the raw image-calibrated coordinates will be passed to the filter, which 

effectively provides the unit vector from the camera frame to the landmark.  We first 

consider the case of monocular vision with no stereo capability.   

 Monocular Measurement 

The raw measurement of the landmark from the camera comes in the form:  

 തܻ௣௜௫௘௟௦ = ൥
௣ݔ
௣ݕ

1
൩ (18) 

Here, ݔ௣ and ݕ௣ are the x and y coordinates of the detected landmark in pixels measured 

from the top-left corner of the image.  The bar notation simply indicates homogeneous 

form.  To convert this into calibrated coordinates, we use the camera intrinsic matrix:  

 തܻ = ቈ
ݔ
ݕ
1

቉ = ܯ തܻ௣௜௫௘௟௦ =  

ۏ
ێ
ێ
ێ
ۍ

1

௫݂
0 −

ܿ௫

௫݂

0
1

௬݂
−

ܿ௬

௬݂

0 0 1 ے
ۑ
ۑ
ۑ
ې

൥
௣ݔ
௣ݕ

1
൩ (19) 

In Eq. (19), ܯ is the camera intrinsic matrix, ൣ ௫݂ , ௬݂൧ are the x and y focal lengths of the 

camera in pixels (usually the same), and ൣܿ௫ , ܿ௬൧ are the x and y coordinates of the camera’s 
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principal point in pixels.  Also, while Eq. (19) is applied to every detected landmark 

individually, the ݅ subscripting has been omitted for simplicity.  Once each measurement 

has been calibrated, the total measurement ܻ, corresponding to n landmarks, can be passed 

to the filter as a stacked vector:   

 ܻ = ൥
ଵܻ
⋮
௡ܻ

൩ (20)  

We note that the measurement must be accompanied by a list vector indicating which 

landmarks were detected, and the order that they appear in ܻ.  This is critical for the EKF 

to generate an appropriate ෠ܻ  for the update step. As a result, the length of the vectors ܻ and 

෠ܻ  changes over time as landmarks move in and out of view.  For example, at a given time 

step, the measurement may take the form:  

 ܻ = ൥
ଵܻ

ଷܻ

଻ܻ

൩ (21)  

where only the first, third, and seventh landmarks on the map are observed.  In this case, 

the list vector would be:  

 ݈ = ൥
1
3
7

൩ (22)  

From this list, the measurement estimation vector ෠ܻ  can be constructed to match the form 

of the actual measurement ܻ.   

The estimated measurement ෠ܻ  is modeled by:  

 ෠ܻ = ቎
෠ܻଵ
⋮
෠ܻ௡

቏ (23)  

where the individual elements ෠ܻ௜ are given by the anticipated locations of the identified 
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landmarks based on the current state estimate:  

 ෠ܻ௜ =
1
௜ݖ

Π଴࢏࢞ =
1
௜ݖ

ቂ1 0 0
0 1 0

ቃ ൥
௜ݔ
௜ݕ
௜ݖ

൩ =  ൥
௜ݔ ௜ൗݖ
௜ݕ ௜ൗݖ

൩ (24)  

Here, the vector ࢏࢞ = ௜ݔ]  ௜ݕ  ௜]் is the position of the ݅௧௛ landmark in the camera’sݖ

reference frame and Π଴ is the projection matrix. Thus, the measurement element ෠ܻ௜ is the 

landmark’s position projected into the image plane of an ideal pinhole camera, and so 

carries information only about the direction to the landmark, but not the distance to the 

landmark.  

As noted, ࢏࢞ is the position of a landmark in the camera frame.  Thus, 

࢏ഥ࢞  = ቎

௜ݔ
௜ݕ
௜ݖ
1

቏ = ࢏ഥࢄܩ = ቂܴ −ܶ
0 1

ቃ ൦

ܺ௜

௜ܻ
ܼ௜
1

൪ (25) 

 

where ࢏ࢄ =  [ܺ௜ ௜ܻ ܼ௜]் is the known a priori position of the i-th landmark in the 

navigation frame and ܩ represents the relative pose of the vehicle in the navigation frame 

comprised of the rotation matrix  ܴ and translation vector ܶ.  The rotation matrix ܴ is 

formed from the Euler angles representing the vehicle’s attitude: ܴ = (ߩ)ܴ = ܴே
஻, and ܶ 

is simply the vehicle position: ܶ = ேܲ.  Therefore, the total model for the measurement ෠ܻ௜ 

is given by Eq. (26), which represents the ideal pinhole camera model.  

 ෠ܻ௜ =
1
௜ݖ

Π଴ܩ෠ࢄഥ࢏ 

      

(26) 

Finally, the measurement Jacobian, ܥ, is given by: 
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ܥ  = ൥
ଵܥ
⋮

௡ܥ

൩ (27)  

where: 

௜ܥ  =
߲ℎ௜

߲ܺ௞
ฬ

௑෠ೖ
ష

= ቎
− 1 ௜ݖ

ൗ 0 ௜ݔ
௜ݖ

ଶൗ

0 − 1 ௜ݖ
ൗ ௜ݕ

௜ݖ
ଶൗ

቏ ቈܴே
஼ [0] −ܴ஻

஼ ቈ
߲ܴே

஻

߲߶
࢏࢞

ࡺ ߲ܴே
஻

ߠ߲
࢏࢞

ࡺ ߲ܴே
஻

߲߰
࢏࢞

቉ࡺ [0] [0]቉ (28)  

 

Here, ܴே
஼ = ܴ஻

஼ܴே
஻ is the rotation matrix from the navigation frame to the camera frame, 

and ࢏࢞
 is a vector pointing from the vehicle CG to the i-th landmark in the inertial reference ࡺ

frame.   

 Stereo Measurement 

To adapt the filter to make use of depth perception, if it is available, the state estimation 

vector and process are defined as before in Eqs. (9)-(16). The measurement model is all 

that requires modification. First we redefine the measurement:  

 ௜ܻ = ൥
௜ݔ
௜ݕ
௜ݖ

൩ 

      

(29) 

 

Thus, the full relative position vector (in the camera frame) from the camera to the 

landmark is measured, instead of only a unit directional vector to the target. This is easily 

accomplished using basic parallax and the known relative pose between the two cameras, 

or alternately through knowledge of a landmark’s size.  The change of measurement vector 

consequently changes, and indeed greatly simplifies, the Jacobian matrix ܥ௜: 
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௜ܥ  =
߲ℎ௜

߲ܺ௞
ฬ

௑෠ೖ
ష

= ቈ−ܴே
஼ [0] ܴ஻

஼ ቈ
߲ܴே

஻

߲߶
࢏࢞

ࡺ ߲ܴே
஻

ߠ߲
࢏࢞

ࡺ ߲ܴே
஻

߲߰
࢏࢞

቉ࡺ [0] [0]቉    (30) 

 
The total Jacobian matrix ܥ is then constructed as in Eq. (27). 
 
 

3.4. Underweighting for Nonlinear Instability 

A known shortcoming of the EFK is the fact that it represents a linearization about 

the current state estimate of an otherwise nonlinear system.  Thus, there is no guarantee of 

stability for the EKF algorithm like there is for the linear Kalman Filter.   In the context of 

our landmark filter, the problems associated with the linearization manifest themselves in 

a tendency for the filter to over/under-correct and generally become unstable as landmarks 

pass in and out of view.  More specifically, when no measurements (i.e. no landmarks) are 

detected for an extended period of time, the EKF resorts to a simple integration of the IMU 

to propagate the state estimate forward in time.  This leads to the inevitable ‘drift’ problem 

described previously in Chapter 2.  Upon reacquisition of a landmark measurement, the 

state must converge back toward the ground truth after having strayed.  The stability of this 

re-convergence is often unsatisfactory, as illustrated in Figure 2, which gives the X-

position estimate from a simulation in which a cluster of four landmarks was repeatedly 

lost and then reacquired.  
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Figure 2: Nonlinear Re-convergence Instability 

There are two approaches to solving this stability problem.  The first is, quite 

simply, to acknowledge the nonlinear nature of the problem by using a nonlinear filter.  A 

second-order-EKF, or an Unscented Kalman Filter (UKF) (Julier & Uhlmann, 1997) would 

likely serve the purpose.  However, while the linear nature of the traditional EKF presents 

an unfortunate weakness, it is also the source of the EKF’s great simplicity, efficiency, and 

near ubiquity as compared with the nonlinear filters mentioned above; therefore we would 

like to continue using the EKF algorithm.  This leads us to the idea of ‘underweighting’ as 

developed by Lear (1973) for the Space Shuttle program, which simultaneously resolves 

the particular instability problem of re-convergence following a long period of drift, while 

retaining the linear nature (and corresponding efficiency) of the EKF.   

The source of the unstable convergence in question is illustrated in Figure 3, which 

shows the X-position estimation error and its covariance immediately after reacquisition 

of a cluster of landmarks in the simulation from Figure 2. The problem is that the error 

covariance converges toward zero faster than the actual error.  In fact, once the covariance 

is sufficiently close to zero, the actual error stops decreasing, since measurement updates 

X
[m

]
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are now being ignored due to the EKF’s incorrect perception that the estimation is accurate.  

The reason for this mis-match of convergence rates is that the covariance update assumes 

the convergence that would be expected from a linear system, while the actual estimation 

does not converge this quickly due to nonlinearity.  To mitigate this issue, Lear’s 

underweighting approach reduces the rate of convergence of the covariance, preventing it 

from ‘outrunning’ the actual estimation.   

 

Figure 3: Overly Optimistic Covariance Convergence 

 Mathematically, the source of the overly optimistic covariance is in the 

denominator of the well-known Kalman gain: 

௞ܭ  = ௞ܲ
௞ܥ)௞ܥି ௞ܲ

௞ܥି
் + ܴ௞)ିଵ    (31) 

As mentioned before, the Kalman gain is only optimal for the linear case.  As in (Zanetti, 

DeMars, & Bishop, 2010), which gives an excellent overview of the underweighting topic, 

a second-order EKF formulation indicates that the denominator of the gain should be given 

by:  

௞ܥ  ௞ܲ
௞ܥି

் + ܴ௞ +  ௞    (32)ܤ

where ܤ௞ represents the second-order effects on the error covariance.   As an extension, 
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we can think of all the higher-order nonlinear effects as being represented by the matrix 

 ௞.  We also note that all the matrices in Equation (32) are positive definite; thus, theܤ

denominator of the Kalman gain is too small, and we augment it with a positive definite 

matrix ܷ௞, intended as a substitute for ܤ௞.   

௞ܭ  = ௞ܲ
௞ܥି

௞ܥ)் ௞ܲ
௞ܥି

் + ܴ௞ + ܷ௞)ିଵ     (33) 

As noted in (Zanetti, DeMars, & Bishop, 2010), there are multiple ways to choose the 

underweighting matrix ܷ௞; however, we will restrict ourselves to a discussion of the 

method used by Lear, as it is the method used in this thesis.  Namely, we choose ܷ௞ as a 

constant fraction of the state covariance term in the Kalman denominator: ܷ௞ ≡

௞ܥ)ߚ ௞ܲ
௞ܥି

்), with ߚ = 0.2.  As a result of this choice, ܷ௞ will be large when the estimation 

covariance, ௞ܲ
ି, is large (i.e. after long periods of drift), and will be less consequential 

during cases when estimation error is small.  Additionally, to maintain standard EKF 

behavior under normal (small error) conditions, we can specify a cutoff value, ߪ, on the 

trace of ௞ܲ
ି such that the underweighting factor, ߚ, is set identically to zero when the 

estimation error is small.    

ߚ = ൝0.2  if  3ටݎݐ( ௞ܲ
ି) ≥ ߪ

0   otherwise
 

In our case, ߪ = 5 meters, an arbitrarily chosen value. A substitution of our choice of 

ܷ௞ into the Kalman gain denominator gives us the underweighted gain:  

௞ܭ  = ௞ܲ
௞ܥି

்ቀ(1 + ௞ܥ(ߚ ௞ܲ
௞ܥି

் + ܴ௞ቁ
ିଵ

     (34) 

Figure 4 gives the same scenario as in Figure 2 and Figure 3 with underweighting applied, 

illustrating the improved stability during convergence.   
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Figure 4: Underweighted Re-convergence 

 

3.5. Observability Analysis 

Observability is a key feature in any state estimation endeavor.  We thus give an 

analysis of the observability of our system with consideration for the stereo vs monocular 

distinction, and the effects of varying the number of landmarks.   

X
[m

]
X

[m
]
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For a linear system to be completely observable, we have the well-known result 

that the observability matrix given by: 

 ௢ܲ =

ۏ
ێ
ێ
ێ
ۍ

ܥ
ܣܥ

ଶܣܥ

⋮
ے௡ିଵܣܥ

ۑ
ۑ
ۑ
ې
     (35) 

must be full rank; that is we must have ݇݊ܽݎ( ௢ܲ) = ݊ where ݊ = 15 is the size of the state 

vector.  We recall that the Jacobians ܣ,  are given by Equations (17) and (28).  We note ܥ

that Equation (35) holds for both the discrete and continuous time cases.  In our case, we 

have a discrete time system.  Nevertheless, to simplify the analysis, it will help 

considerably to perform our derivations using a continuous-time model, eliminating the 

discrete nature of the problem.  This requires us to redefine ܣ.  In a discrete-time system, 

the dynamics take on the following form: 

 ܺ௞ାଵ = ௗ௜௦௖௥௘௧௘ܺ௞ܣ = ܫ) +  ௞     (36)ܺ(ݐΔܣ

we can rearrange Equation (36) to obtain:  

 ሶܺ௞ ≅
ܺ௞ାଵ − ܺ௞

Δݐ
=  ௞     (37)ܺܣ

Thus, we have redefined ܣ such that ܣ =
஺೏೔ೞ೎ೝ೐೟೐ିூ

୼௧
 where ܣௗ௜௦௖௥௘௧௘ is the Jacobian given 

in Equation (17).  This redefinition results in an A matrix of the form:  

ܣ  =

ۏ
ێ
ێ
ێ
ێ
ۍ
[0] ଷܫ [0] [0] [0]
[0] [0] ఘܸ −ܴ஻

ே [0]

[0]
[0]
[0]

[0]
[0]
[0]

ఘߩ [0] ஻ܮ−
ே

[0] [0] [0]
[0] [0] [0] ے

ۑ
ۑ
ۑ
ۑ
ې

    (38) 

Additionally, we will simplify our representation of ܥ to the more compact notation: 
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ܥ  = [ ௉ܻ [0] ఘܻ [0] [0]]    (39) 

where ௉ܻ and ఘܻ are defined as in Equations (28) and (30).   

 Monocular Single-Landmark Unobservability 

 We begin by constructing the observability matrix for the case of a single landmark 

via a substitution of Equations (38) and (39) into Equation (35): 

 ௢ܲ =

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ௉ܻ

[0]
[0]
[0]
[0]

[0]
௉ܻ

[0]
[0]
[0]

ఘܻ

ఘܻߩఘ

௉ܻ ఘܸ + ఘܻߩఘ
ଶ

௉ܻ ఘܸߩఘ + ఘܻߩఘ
ଷ

௉ܻ ఘܸߩఘ
ଶ + ఘܻߩఘ

ସ

[0]
[0]

− ௉ܻܴ஻
ே

[0]
[0]

[0]
− ఘܻܮ஻

ே

− ఘܻߩఘܮ஻
ே

−൫ ௉ܻ ఘܸ + ఘܻߩఘ
ଶ൯ܮ஻

ே

−൫ ௉ܻ ఘܸߩఘ + ఘܻߩఘ
ଷ൯ܮ஻

ே

⋮ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

    (40) 

In principle, we would now search for right-singular vectors of ௢ܲ, which give the 

unobservable directions in the state space.  That is, in general we seek some unobservable 

vector ࢛ ≠ 0 such that ௢࢛ܲ = 0.  However, Equation (40) is a rather unwieldy matrix to 

examine in this way.  Therefore, we make the simplifying assumptions that the vehicle is 

facing ‘North’, and in a hover.  That is, we assume ேܸ, ,ߩ ߱஻, ܽ஻ → 0. This results in the 

following simplifications: 

ఘߩ  → 0    (41) 

 
ఘܸ → −݃Γ  ;   Γ ≡ ൥

0 1 0
−1 0 0
0 0 0

൩ 
   (42) 

஻ܮ 
ே , ܴ஻

ே →  ଷ    (43)ܫ

where ݃ is the gravitation constant.  This results in Equation (40) simplifying to: 
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 ௢ܲ =

ۏ
ێ
ێ
ێ
ێ
ۍ ௉ܻ

[0]
[0]
[0]
[0]

[0]
௉ܻ

[0]
[0]
[0]

ఘܻ

[0]
−݃ ௉ܻΓ

[0]
[0]

[0]
[0]

− ௉ܻ
[0]
[0]

[0]
− ఘܻ

[0]
݃ ௉ܻΓ
[0]

⋮ ے
ۑ
ۑ
ۑ
ۑ
ې

    (44) 

In this case, we can see that there will be unobservable state space directions, since each 

block in ௢ܲ has dimensions 2 × 3, implying that the maximum possible rank of ௢ܲ is 8, 

since there are only 8 non-zero rows.  We note that even if the vehicle is not in a hover or 

constant translation, the reductions in Equations (41)-(43) are still approximately true since 

݃ tends to dominate in the body accelerations (݃ ≫ ‖ܽ஻ −  and ,ߩ ,and both attitude ,(‖ࢍ

rotation rates, ߱஻ tend to be small.  Thus, even if the rank of ௢ܲ as given in Equation (40) 

is greater than 8, it is likely to be only marginally so.  That is, the non-zero singular values 

associated with the additional ‘observable’ right-singular vectors will be significantly 

small.   

Now that ௢ܲ has been considerably simplified, we can turn our attention to deriving 

some of the unobservable state space directions.  While there are at least ݊ − 8 = 7 

unobservable directions, we give the derivations for just two of these that are of particular 

interest. The remaining directions have to do with the biases and their couplings with the 

other states.   

First, we turn our attention to the upper-left block in Equation (44).  We recall from 

Equation (28) that: 

 ௉ܻ = ൥
− 1 ൗݖ 0 ݔ

ଶൗݖ

0 − 1 ൗݖ ݕ
ଶൗݖ

൩ ܴே
஼     (45) 

Even this block alone must have at least one unobservable 3D position direction associated 

with it since it is 2 × 3.  Thus, we seek a vector ࢛ ≠ 0 such that ௉ܻ࢛ = 0: 
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 ௉ܻ࢛ = ൥
− 1 ൗݖ 0 ݔ

ଶൗݖ

0 − 1 ൗݖ ݕ
ଶൗݖ

൩ ܴே
஼ ࢛ = ൥

− 1 ൗݖ 0 ݔ
ଶൗݖ

0 − 1 ൗݖ ݕ
ଶൗݖ

൩ ࡯࢛ = 0    (46) 

where ࡯࢛ is our vector expressed in the camera frame.  Thus, we have a system of two 

equations for ࡯࢛:  

 
−

1
ݖ

ଵݑ
஼ +

ݔ
ଶݖ ଷݑ

஼ = 0

−
1
ݖ

ଶݑ
஼ +

ݕ
ଶݖ ଷݑ

஼ = 0
    (47) 

Simplifying gives:  

 
ଵݑ

஼ =
ݔ
ݖ

ଷݑ
஼

ଶݑ
஼ =

ݕ
ݖ

ଷݑ
஼

ൢ ⇒ ࡯࢛ = ቎

ݔ ⁄ݖ
ݕ

ൗݖ
1

቏ ଷݑ
஼      (48) 

where ݑଷ
஼ is an arbitrary scaling parameter.  The result in Equation (48) is readily 

recognizable as giving the direction to the landmark, which has position ࢞ = ݔ] ݕ  ்[ݖ

as noted in Chapter 3.3.1.  Thus, the direction in 3D space toward/from the landmark is 

unobservable, which is unsurprising given that we are considering a monocular 

measurement.  We also note that the (2,2) block in ௢ܲ is identical to the block just 

considered.  This implies that velocity in the 3D spatial direction toward/from the landmark 

is also unobservable.   

 We now turn our attention to the observability of attitude by first examining the 

(1,3) block in ௢ܲ.  We recall again from Equation (28) that:  

 ఘܻ = − ൥
− 1 ൗݖ 0 ݔ

ଶൗݖ

0 − 1 ൗݖ ݕ
ଶൗݖ

൩ ܴ஻
஼ ቈ

߲ܴே
஻

߲߶
ࡺ࢞ ߲ܴே

஻

ߠ߲
ࡺ࢞ ߲ܴே

஻

߲߰
 ቉    (49)ࡺ࢞

which simplifies to:  
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 ఘܻ = − ൥
− 1 ൗݖ 0 ݔ

ଶൗݖ

0 − 1 ൗݖ ݕ
ଶൗݖ

൩ ܴ஻
஼ ࡮߲࢞

ߩ߲
    (50) 

recalling our result for the previous unobservable direction, we conclude that we are 

seeking a vector Δߩ ≠ 0 such that: 

 
࡮߲࢞

ߩ߲
Δߩ =  (51)    ࡮࢞ߣ

where ߣ is an arbitrary scale factor.  If this is so, then we will have ܴ஻
஼ డ࡮࢞

డఘ
Δߩ in the direction 

of the landmark in the camera frame, and as before, we will have ఘܻΔߩ = 0 as desired.  

However, 
డ࡮࢞

డఘ
 expresses the ability of small changes in attitude, ߩ, to produce small changes 

in the direction to the landmark in the body frame, ࡮࢞.  This, of course, is why we chose 

to name our unobservable attitude-direction vector Δߩ.  Thus, Equation (51) indicates a 

small change in attitude producing a change in  ࡮࢞ along its own axis; however, this is not 

geometrically possible since attitude changes represent a unitary transformation.  

Therefore, we must have ߣ = 0, which implies that 
డ࡮࢞

డఘ
 is itself a singular matrix, and we 

must find an attitude change Δߩ such that ࡮࢞ is unaltered.  This, of course, indicates that 

Δߩ represents a rotation about the axis defined by ࡮࢞—the direction to the landmark, which 

is unsurprising given the nature of vision-based perception and the symmetric nature of a 

point-defined landmark.  Thus, rotation about the 3D axis that points in the direction to the 

landmark would be expected to be unobservable.   

 However, such a judgement would be premature, because the (1,3) block of ௢ܲ is 

not the only non-zero block in its column.  The block: −݃ ௉ܻΓ sits at the (3,3) position as 

seen in Equation (44).  Thus, the gravitation provides some help in the observability of the 
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attitude.  A complete analysis of attitude unobservability must consider the block matrix 

given by:  

 ௉ܻఘ = ൤ ௉ܻ ఘܻ

0 −݃ ௉ܻΓ
൨    (52) 

That is, we seek a vector ࢛ = ൤
ࡼ࢛
࢛࣋

൨ ≠ 0 such that ௉ܻఘ࢛ = 0, or 

 ൜
௉ܻࡼ࢛ + ఘܻ࢛࣋ = 0
−݃ ௉ܻΓ࢛࣋ = 0     (53) 

We consider first the second equation in (53), which expands after canceling a factor of 

−݃ to become: 

 ൥
− 1 ൗݖ 0 ݔ

ଶൗݖ

0 − 1 ൗݖ ݕ
ଶൗݖ

൩ ܴே
஼ Γ࢛࣋ = 0    (54) 

Thus, as before we need ܴே
஼ Γ࢛࣋ in the direction of the landmark in the camera frame as 

given by: ܴே
஼ Γ࢛࣋ = ࢛࣋is an arbitrary scale factor.  Therefore, Γ ߣ where ࡯࢞ߣ =  In  .ࡺ࢞ߣ

general, the Z-coordinate of ࡺ࢞ is not zero; however, the Z-coordinate of Γ࢛࣋ is always 

zero, since the bottom row of Γ contains only zeros.  Thus, we must have ߣ = 0. This 

implies that: Γ࢛࣋ = 0 ⇒ ࢛࣋ = [0 0 Δ߰]் since the last row of Γ is also all zeros.   

 We now substitute our result for ࢛࣋ into the first equation in (53) and expand: 

 ൥
− 1 ൗݖ 0 ݔ

ଶൗݖ

0 − 1 ൗݖ ݕ
ଶൗݖ

൩ ܴே
஼ ࡼ࢛ − ൥

− 1 ൗݖ 0 ݔ
ଶൗݖ

0 − 1 ൗݖ ݕ
ଶൗݖ

൩ ܴ஻
஼ ቈ

߲ܴே
஻

߲߶
ࡺ࢞ ߲ܴே

஻

ߠ߲
ࡺ࢞ ߲ܴே

஻

߲߰
቉ࡺ࢞ ൥

0
0

Δ߰
൩ = 0 

   (55) 

Simplifying, we get:  

 ൥
− 1 ൗݖ 0 ݔ

ଶൗݖ

0 − 1 ൗݖ ݕ
ଶൗݖ

൩ ܴ஻
஼ ቆܴே

஻ࡼ࢛ −
࡮߲࢞

߲߰
Δ߰ቇ = 0    (56) 

Thus, we must have, as before: 
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 ቆܴே
஻ࡼ࢛ −

࡮߲࢞

߲߰
Δ߰ቇ =  (57)    ࡮࢞ߣ

Solving for ࡼ࢛ gives the final result: 

ࡼ࢛  = ࡺ࢞ߣ + Δ߰
ࡺ߲࢞

߲߰
    (58) 

where ߣ and Δ߰ are arbitrary scaling factors with ࡺ࢞ and 
డࡺ࢞

డట
 providing the unobservable 

position directions.  The ࡺ࢞ߣ term is just our first unobservable mode toward/from the 

target all over again; however, the second term, Δ߰
డࡺ࢞

డట
, tells us that the position is 

unobservable in a direction defined by the change in ࡺ࢞ induced by a change in heading.  

This direction will necessarily be both perpendicular to ࡺ࢞, since attitude changes are 

unitary, and in the X-Y plane of the navigation frame, since we are restricted to yawing 

motion.  Additionally, our ‘arbitrary’ scaling factor, Δ߰, represents an actual yaw motion, 

so that the position unobservability in this direction is coupled with the yaw.  Physically, 

this represents the unobservability of the azimuthal location of the vehicle relative to the 

landmark, which manifests itself in a tendency of the state estimate to drift in a circular 

pattern in the X-Y plane around the landmark, while always facing the landmark.   

 We remark that both unobservability ‘directions’ in state space derived here are 

corroborated by results from simulation testing, as shown in Chapter 4.2.   

 Additional Landmarks 

 Next, we consider the case of two landmarks.  When two landmarks are present, 

the observability matrix in Equation (44) is augmented to account for the new landmark: 
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 ௢ܲ = ൤ ௢ܲ,ଵ

௢ܲ,ଶ
൨ =

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ௉ܻ,ଵ

[0]
[0]
[0]
[0]

[0]
௉ܻ,ଵ

[0]
[0]
[0]

ఘܻ,ଵ

[0]
−݃ ௉ܻ,ଵΓ

[0]
[0]

[0]
[0]

− ௉ܻ,ଵ

[0]
[0]

[0]
− ఘܻ,ଵ

[0]
݃ ௉ܻ,ଵΓ

[0]
⋮

௉ܻ,ଶ

[0]
[0]
[0]
[0]

[0]
௉ܻ,ଶ

[0]
[0]
[0]

ఘܻ,ଶ

[0]
−݃ ௉ܻ,ଶΓ

[0]
[0]

[0]
[0]

− ௉ܻ,ଶ

[0]
[0]

[0]
− ఘܻ,ଶ

[0]
݃ ௉ܻ,ଶΓ

[0]
⋮ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

    (59) 

We now have 16 non-zero rows which is already more than the 15 required for potential 

full observability.  Thus, two or more landmarks give the possibility for a completely 

observable system, even with the restrictions of monocular vision.  As for our previously 

derived unobservable directions, they may remain unobservable if the landmark positions 

are in certain degenerate configurations.  First, if the landmark positions and the position 

of the vehicle are all co-linear, in which case, ௉ܻ,ଵ and ௉ܻ,ଶ differ only by a constant scalar 

and are thus linearly dependent, the first unobservable direction toward/from the targets 

will persist.  Also, if the second landmark is positioned directly above/below the first in 

the navigation frame, the second derived unobservable direction will remain since 
డ࢞૚

ࡺ

డట
 and 

డ࢞૛
ࡺ

డట
 are identical.   

 Stereo 

 We now briefly consider the effect that a stereo measurement can have on the 

observability of our system, and of the two derived unobservability modes from the 

previous section.  We return to our assumption of a single landmark.   

When a stereo measurement of a single landmark is present, the observability matrix 
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in Equation (44) does not change its form; however, ௉ܻ and ఘܻ now have dimension 3 × 3.  

Thus, there are now 12 non-zero rows.  This is not enough to provide complete 

observability, but it is a significant improvement on the 8 rows in the monocular case.   

In particular, the previously unobservable direction toward/from the landmark is 

eliminated since we now have ௉ܻ = −ܴே
஼  from Equation (30), which has full rank since ܴே

஼  

is unitary.  This is unsurprising given that the distance to the landmark is now being directly 

measured.   

The azimuthal position, however, remains unobservable since the stereo measurement 

provides no new information in this regard.  Mathematically, this is because Γ remains 

unchanged when the stereo measurement is introduced, allowing for the unobservable Δ߰ 

to remain.  Thus, we obtain: 

 −ܴே
஼ ࡼ࢛ + ܴ஻

஼ ቈ
߲ܴே

஻

߲߶
ࡺ࢞ ߲ܴே

஻

ߠ߲
ࡺ࢞ ߲ܴே

஻

߲߰
቉ࡺ࢞ ൥

0
0

Δ߰
൩ = 0    (60) 

from the first equation in (53), which reduces to an equivalent result:  

 ܴே
஼ ࡼ࢛ = ܴ஻

஼ ߲ܴே
஻

߲߰
⇒   Δ߰ࡺ࢞ ࡼ࢛    = Δ߰

ࡺ߲࢞

߲߰
    (61) 

Note that, when stereo measurements of more than one landmark are available in a general 

configuration, the system is fully observable.   

 Nonlinear Effects 

To this point, we have ignored the possible effects of nonlinearities in the 

measurement model.  Returning to the monocular case with one landmark, we recall that 

two unobservable directions in the state space were derived.  One toward the landmark, 

and one in an azimuthal circle around it.  However, this picture does not tell the whole 
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story, since it ignores nonlinearity.  In particular, the position in the direction toward the 

landmark (i.e. distance from the landmark) can, surprisingly, be observed provided that the 

vehicle is in motion.  Conceptually, this is because of the parallax between frames at 

adjacent time steps as we shall see.   

To show this result, we must consider a discrete-time analysis of observability, 

which requires use of the original process Jacobian ܣ as given below in Equation (62): 

ܣ  ≡
߲݂
߲ܺ

=

ۏ
ێ
ێ
ێ
ێ
ۍ

ଷܫ ௦ݐଷΔܫ [0] [0] [0]
[0] ଷܫ ఘܸ −ܴ஻

ேΔݐ௦ [0]

[0]
[0]
[0]

[0]
[0]
[0]

ఘߩ [0] ஻ܮ−
ேΔݐ௦

[0] ଷܫ [0]
[0] [0] ଷܫ ے

ۑ
ۑ
ۑ
ۑ
ې

    (62) 

where ݂ is defined by the discretized dynamics as before: 

 ܺ௞ = ݂(ܺ௞ିଵ)    (63) 

With the Jacobian ܣ redefined, we can now re-evaluate the observability matrix: 

 ௢ܲ =

ۏ
ێ
ێ
ێ
ۍ

ܥ
ܣܥ

ଶܣܥ

⋮
ے௡ିଵܣܥ

ۑ
ۑ
ۑ
ې

=

ۏ
ێ
ێ
ێ
ێ
ۍ ௉ܻ

௉ܻ

௉ܻ

௉ܻ

௉ܻ

[0]
௉ܻݐ߂௦

2 ௉ܻݐ߂௦
3 ௉ܻݐ߂௦
4 ௉ܻݐ߂௦

ఘܻ

ఘܻߩఘ

௉ܻ ఘܸݐ߂௦ + ఘܻߩఘ
ଶ

⋯
⋯

[0]
[0]

− ௉ܻܴ஻
ேݐ߂௦

−3 ௉ܻܴ஻
ேݐ߂௦

−6 ௉ܻܴ஻
ேݐ߂௦

[0]
− ఘܻܮ஻

ேݐ߂௦
⋯
⋯
⋯

⋮ ے
ۑ
ۑ
ۑ
ۑ
ې

    (64) 

We recall from Chapter 3.5.1 that landmark-directed unobservability comes from the 

2 × 3 block matrix ௉ܻ in the measurement Jacobian, ܥ, which appeared in the upper right-

hand entry in the continuous-time observability matrix and had max rank of 2.  Here, we 

see it repeated throughout the first column.  We see a similar situation for the second 

column, which gave us the unobservability of velocity.   

At first glance, this repetition of ௉ܻ seems irrelevant, since ௉ܻ is certainly linearly 

dependent with itself, and successive multiples in the second column for the velocity do 
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not change the verdict either.  However, since we are dealing with a discrete-time analysis, 

the rows of the observability matrix represent measurements at a series of ݊ time steps.  

Thus, since there is a linearization performed by the EKF at each time step, it is important 

that the Jacobians be evaluated appropriately, such that the observability matrix should be 

more precisely defined as:  

 ௢ܲ =

ۏ
ێ
ێ
ێ
ۍ

௞ܥ
௞ାଵܣ௞ାଵܥ

௞ାଶܣ௞ାଵܣ௞ାଶܥ
⋮
⋮ ے

ۑ
ۑ
ۑ
ې

=

ۏ
ێ
ێ
ێ
ێ
ۍ ௉ܻ|௞ 

௉ܻ|௞ାଵ

௉ܻ|௞ାଶ

௉ܻ|௞ାଷ

௉ܻ|௞ାସ

[0]

௉ܻ|௞ାଵݐ߂௦

2 ௉ܻ|௞ାଶݐ߂௦

3 ௉ܻ|௞ାଷݐ߂௦

4 ௉ܻ|௞ାସݐ߂௦

⋯ ⋯ ⋯

⋮ ے
ۑ
ۑ
ۑ
ۑ
ې

    (65) 

Equation (65) thus makes clear that the first and second block-columns can be full rank, 

due to the EKF’s linearizations about the current state estimate at each time step.  It is 

entirely possible that the successive re-evaluations of ௉ܻ may introduce the final linearly 

independent vector to the columns.  However, in order for this to occur, we must have a 

component of motion perpendicular to the landmark direction (previously unobservable), 

since any other motion simply yields a scaling of the matrix ௉ܻ between time steps.  We 

thus conclude that distance to the single landmark can be observable provided that parallax 

from motion is present.  In certain applications, judicious path-planning could be 

implemented to take advantage of this result.  We leave such considerations to future work.   

At its heart, this added observability comes from the fact that the system is nonlinear, 

requiring the re-evaluation of ௉ܻ at each time step.  Thus, the nonlinearities present in the 

model do enter into the equations and affect the EKF in spite of its linear nature, which 

makes no explicit attempt to account for them.  Lastly, we note that the nonlinear effects 

described here are corroborated by the simulation results as can be seen in Chapter 4.2.   
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 Simulation 

The proposed landmark-based navigation method was first tested with a Simulink 

quadcopter simulation, which allowed testing in a wide variety of circumstances which are 

explored in this chapter.  

4.1. Sensor Simulation 

In the simulation, sensors were modeled as having additive, Gaussian, non zero-

mean noise, represented by a standard deviation, ߪ, and a bias term, ܾ.  Snippets of the 

simulated IMU signals are given in Figure 5.   

Table 1: IMU and Camera, Noise and Bias 
 IMU Camera 

Sample 
Rate 25Hz 5Hz 

Unit m sଶ⁄  rad s⁄  degrees 

Std. Dev. 
࢞ࢇ࣌

࢟ࢇ࣌ 
ࢠࢇ࣌ 

 ࢓ࢇࢉ,࢟࣌ ࢓ࢇࢉ,࢞࣌ ࢘࣌ ࢗ࣌ ࢖࣌ 

0.356  0.6498 0.3846 0.022 0.0208 0.029 0.4 0.4 

Bias 
࢞ࢇ࢈

࢟ࢇ࢈ 
ࢠࢇ࢈ 

 ࢓ࢇࢉ,࢟࢈ ࢓ࢇࢉ,࢞࢈ ࢘࢈ ࢗ࢈ ࢖࢈ 

0.044 −0.0022 0.071 −0.0028 0.005 0.00154 0 0 
 

  

Figure 5: Simulated IMU Data 

The IMU noise levels indicated in Table 1 were chosen to match those obtained 

from flight test data as described in Chapter 5.2, as were the sampling rates for both the 
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IMU and camera.  The camera error is also discussed in Chapter 5.2, though it had to be 

estimated based on the size of the landmarks rather than simply computed as a standard 

deviation.   

4.2. Test Cases 

The simulation allowed for a wide variety of test cases, which differed in four 

primary aspects: flight path, number of landmarks in the scene, IMU and camera noise 

levels, and monocular vs stereo setup.  Each aspect has the ability to affect the performance 

of the navigation filter significantly via increases in state uncertainty or even loss of 

observability.  Indeed, the results from our analysis in Chapter 3.5 are entirely confirmed 

here in the behavior exhibited by the simulation.   

 Process and Measurement Noise 

We begin with an analysis of the overall noise levels on both the IMU and camera, 

which drive the process and update steps of the EKF respectively.  We give, as a first 

example, Figure 6, which shows the true and estimated flight path of the simulated 

quadcopter in a circling pattern with two landmarks available in the camera field of view, 

to ensure full observability.  The camera is oriented facing in the forward direction in the 

quadcopter body frame and angled downward at 60°.  The quadcopter maintains a heading 

of 0°, which corresponds to the positive X-axis.   
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Figure 6: Simulation flight overview with flight test noise levels 

In Figure 6, the noise levels on both the IMU and camera are tuned to match those 

observed in the flight data as given in Table 1.  Figure 6 indicates good estimation 

performance of the landmark filter in a case where the IMU and measurement error are at 

typical levels.  Nevertheless, idealizing assumptions have been made in the course of 

simulation, and actual flight test performance was often found to be slightly degraded 

compared to simulation results.  Flight test performance will be further discussed in 

Chapter 5.2, which details how the parameters in Table 1 were obtained, as well as the 

results from post-processing of flight test data.  

To test the capabilities of the algorithm under less amenable conditions, noise 

parameters were increased in simulation to examine the resulting behavior.  Several 

examples are given in Figure 7, which shows position estimation under increasing levels 

of noise and bias.  In the upper-left, we see the position estimation for the same flight 

shown in Figure 6.  The upper-right gives the result when noise levels are increased by a 

factor of 5; the lower-left has noise increased by a factor of 10; and the lower-right by a 

Z
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factor of 25. We observe good stability in our simulation even at some of the higher noise-

levels, indicating a certain robustness in the presence of poor IMU data and camera 

measurements.  Upon reaching 25 times the noise levels in the flight test, however, it is 

safe to say that the algorithm’s limits have been surpassed for this flight scenario.  Indeed 

the only reason such a level of noise was attempted at all was to break the limit.   

We observe also that the dead-reckoning solution, which uses only the prediction 

step of the EKF, drifts rapidly even in the case with the lowest noise since it amounts to an 

integration of the noisy IMU.  Moreover, to get a position estimate, the accelerometers 

must be integrated twice, which produces a quadratic divergence from ground truth.   

  

  

Figure 7: Position estimation with increasing noise level.  Upper left: flight test noise 
levels; upper right: 5x flight test noise levels; lower left: 10x flight test noise level; lower 
right: 25x flight test noise level.  
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The results in Figure 7 provide a good illustration; however, to quantify the 

estimation performance in a more concrete way, we consider the 3ߪ estimation bound(s) 

taken from the diagonal terms in the state autocovariance matrix ܲ, which represent a 

99.7% confidence interval.  These bounds are shown in Figure 8, which displays filter 

performance in terms of the absolute estimation error and the ±3ߪ bounds.  The estimation 

error plots more clearly show the steadily increasing estimation uncertainty with increasing 

noise and bias, as expected.  The X-position bounds were then averaged across time and 

plotted vs noise level in Figure 9, which shows a surprisingly linear behavior.  Thus, 

estimation error scales linearly with overall noise and bias levels.   

  

  

Figure 8: Estimation error and covariance bounds with increasing noise.  Upper left: flight 
test noise levels; upper right: 5x flight test noise levels; lower left: 10x flight test noise 
level; lower right: 25x flight test noise level. 
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Figure 9: X-position error noise dependence 

So far, we have considered only position estimation; however, the developed 

algorithm estimates velocity and attitude in addition to position.  The estimation and error 

results for these state variables in the same simulated flight scenario are now given.   

First, the velocity estimation is given in Figure 10. The velocity estimates are 

comparable in behavior to the position estimates; however, we observe that the dead 

reckoning solution does not drift as quickly as in the position estimates.  This is due to the 

fact that velocity estimates come from only a single integration of the IMU accelerometers, 

which produces a more linear-like growth in dead reckoning error over time.  There is also 

a tendency to underestimate the z-component of velocity at higher noise levels.  It is unclear 

why this occurs.   
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Figure 10: Velocity estimation with increasing noise level.  Upper left: flight test noise 
levels; upper right: 5x flight test noise levels; lower left: 10x flight test noise level; lower 
right: 25x flight test noise level.   
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Figure 11: Velocity estimation error with increasing noise level.  Upper left: flight test 
noise levels; upper right: 5x flight test noise levels; lower left: 10x flight test noise level; 
lower right: 25x flight test noise level.   
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Figure 12: Attitude estimation with increasing noise level.  Upper left: flight test noise 
levels; upper right: 5x flight test noise levels; lower left: 10x flight test noise level; lower 
right: 25x flight test noise level.   

 

Figure 13 gives the error and covariance plots for the estimations in Figure 12.  
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Figure 13: Attitude estimation error with increasing noise level.  Upper left: flight test noise 
levels; upper right: 5x flight test noise levels; lower left: 10x flight test noise level; lower 
right: 25x flight test noise level.   
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 Number of Landmarks 

We now turn our attention to the estimator’s dependence on the number of 

landmarks visible in the scene.  In the simulations shown so far, there have always been 

four landmarks available; however, it is of great interest to know how the algorithm 

performs when few landmarks are in view, and observability issues creep in.  

Figure 14 shows estimation and error for the same flight path scenario as in 

previous examples, but with only two landmarks available in the scene.  Surprisingly, there 

is no noticeable difference from the case with four landmarks given in Figure 6.  This is 

due in part to the scale of noise levels relative to the distances being covered; however, it 

is clear nonetheless that two landmarks are enough to provide the GPS-like measurement 

that landmark navigation is intended to produce, which makes sense given that two 

landmarks in a general configuration are enough to provide complete observability.  In 

cases with higher noise, more than two landmarks may be desirable, but two landmarks is 

the minimum for system observability as shown in Chapter 3.5.    
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Figure 14: Estimation with two landmarks 
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Next, Figure 16 shows the estimation and error with just one landmark available in 

the scene.  With one landmark, the state is no longer fully observable and results begin to 

differ in some interesting ways.  First, the estimated flight path exhibits an overall shift in 

the negative Y-direction.  Second, the yaw estimate drifts slowly away from the ground 

truth with no sign of correction, and even exceeds the 3ߪ bounds by the end of the 

simulation.  Additionally, there is a large estimation uncertainty prior to approximately 

60s, particularly in the X and Z position estimates, which is greatly reduced after this time.   

Of course, all of these results are explainable in terms of the observability analysis 

from Chapter 3.5.  First, the shift in Y and the drift in yaw are the coupled attitude-position 

unobservable state manifesting as an azimuthal rotation about the landmark.  Second, the 

large uncertainty and error prior to 60s comes from the unobservable direction toward the 

landmark, and it disappears after roughly 60s since this is when the vehicle begins its 

continuous circling motion and the nonlinear parallax corrections come into play.  

The nonlinear effects are particularly visible during the brief period of hover at 

10m altitude which occurs between 10 − 20s.  A side view of this period in the flight path 

is given in Figure 15, which shows the estimation drift toward/away from the landmark 

during this hover, and the subsequent stabilization once the vehicle begins moving.   

 

Figure 15: Side view of hover   
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Figure 16: Estimation with a single landmark 
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 Flight Path 

We next consider the effect that our choice of flight path has on the estimation 

performance.  As we saw in the previous Chapter (4.2.1) as well as in Chapter 3.5, the 

flight path does matter due to nonlinearities.  In particular, hovering flight gives poorer 

results than does translating flight.  Thus, the algorithm was tested with a flight path on 

which it would undergo extended periods of hovering flight.   

An example flight along a hovering flight plan is shown in Figure 17, in which there 

are two landmarks available.  The vehicle hovers at each corner of the ‘box’ pattern for 

approximately 40 sec before moving quickly to the next corner.  For the moment, we do 

not see the problems of estimation drift during hover as we did before.  This is due to the 

fact that we have two landmarks so that the system is completely observable.   

We do, however, notice some attitude error in Figure 17 during the maneuvers to 

transition between hover locations.  This is due predominantly to integration error since 

the simulation’s maneuvers were so abrupt as to be comparable in duration to the sampling 

time step Δݐ௦, leading to high estimation error at an individual time step for which the 

simulation has not properly registered the change.   The error then persists for a brief time 

afterward for the same reasons discussed in Chapter 3.4 on underweighting.  Unfortunately, 

the underweighting solution is not applicable here; however, in reality the maneuvers of a 

typical flight platform will not be nearly as aggressive, so a solution to the problem is not 

necessary.    
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Figure 17: Hovering and abrupt maneuvers 
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While Figure 17 illustrated the observability of a two-landmark scenario even 

during hover, the one-landmark case is of interest to us as well.  Estimation with a single 

landmark during hover is given in Figure 19.  Here we see all the observability problems 

outlined previously in Chapter 3.5.  In particular, the estimate drifts downwards along the 

unobservable direction towards the landmark just like before, and then is corrected 

momentarily when the hover is broken and the vehicle translates to the next hover location 

as shown in Figure 18, which gives the side-view of the scenario in Figure 19.  However, 

the translation period is not long enough in duration to truly re-stabilize the estimate, and 

consequently it drifts even faster following the correction.  By the finish, position 

estimation errors are both enormous and completely unaccounted for by the covariance 

bounds.  Recovery is likely impossible.   

 

Figure 18: Side view; extended hover flightpath   
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Figure 19: Hovering and abrupt maneuvers with one landmark 
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 Monocular vs. Stereo 

Lastly, we consider the estimation performance benefits provided by the additional 

information entailed in a stereo measurement, or any other measurement such as LIDAR, 

or bearing capable of measuring the distance to the target.  In particular, the measurement 

of distance to the target increases the rank of the observability matrix, fixing some of the 

previous observability problems.  Most notably, the tendency for the state estimate to drift 

directly toward or away from the target is removed, since this parameter is now, in fact, 

being directly measured.  We note that the depth-measurement noise is modeled as having 

a standard deviation error of: ߪ௭,௖௔௠ =
ଵ଴గ

ଵ଼଴
⋅  is the distance to the landmark, or ݖ where ݖ

ten ‘degrees’ depth error.  This number could not be directly calculated, and the value given 

above was pessimistically chosen as 5 times more uncertain than the directional error.   

We observe this performance enhancement in Figure 20, which shows a behavior 

similar to that of the monocular measurement in Figure 19, but without the instability 

caused by unobservability in the direction of the landmark.  The dominant direction of drift 

seen here is the circular drift pattern around the landmark, since it is not dealt with in any 

manner by the stereo measurement.  The azimuthal around the landmark can only be 

remedied by the addition of at least one other landmark, or the introduction of additional 

measurement information such as, for example, a magnetometer to measure the heading.   

The circular drift pattern, as usual, manifests itself predominantly in Y-coordinate 

and yaw (heading) error, since these two directions are coupled in this unobservability 

mode.  We do note, however, that there is a large jump in error at ݐ ≅ 20 sec during the 

first abrupt maneuver, which suggests that a significant portion of the drift in this 

unobservability mode has been generated by the sharp maneuver itself.    
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Figure 20: Stereo setup, hovering flightpath, and one landmark 
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Lastly, we give the performance of the stereo measurement under the original 

spiraling flight path in Figure 22.  The results here differ only slightly from those in the 

monocular case given in Figure 16.  Again, the notable difference is the lack of drift toward 

the landmark during hover that was observed before.  We can see from the side view in 

Figure 21 that distance from the landmark is, unsurprisingly, accurately gauged even 

during the brief period of hovering flight at the 10 m altitude location.   

We also note that while the nonlinear effects provided an implicit measurement of 

distance while the vehicle was in motion, the direct measurement of the stereo setup does 

an overall better job, even during motion, since the distance is measured directly.   

Lastly, we reiterate that the circling drift pattern from all the previous cases is still 

present as observed in the Y-shift and yaw drift in Figure 22 since the stereo measurement 

of distance does not enable observation of this phenomenon.   

 

Figure 21: Side View; Stereo Measurement   
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Figure 22: Stereo setup, original spiraling flightpath, and one landmark 
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 Quadcopter Flight Testing 

The landmark navigation algorithm was used to post-process data from flight tests 

of a quadcopter capable of carrying the required sensors.  The results are compared and 

contrasted to those from the simulation.   

5.1. Flight Test Setup 

The Iris quadcopter shown in Figure 23 carries the sensor package, which consists 

of a GoPro Hero 3+ camera (1080 x 1920 resolution, 60 frames/sec), a Pixhawk flight 

computer which provides an IMU, and a U-Blox GPS unit. The GPS data are not used in 

the filter, but are used to validate the filter results.  In the flight tests, as shown in Figure 

24, a landing target was placed on the ground with 7 colored balls providing the predefined 

landmarks, where each arm of the white cross is 0.6 m long.  Figure 25 gives a 

representative GPS track from a flight test, and Figure 26 presents sample rate gyro and 

accelerometer data collected from the onboard IMU.   

 

Figure 23: Iris Quadcopter fitted with GoPro 
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Figure 24: Aerial View of Landmark Cluster 

  

Figure 25: Sample GPS Track 

Figure 26: Sample IMU Data 
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5.2. IMU and Camera Parameters 

As mentioned previously, the flight test sensor package consisted of a Pixhawk PX4 

flight computer with an onboard IMU, a U-Blox GPS unit, and a GoPro Hero 3+ camera.   

First, the Pixhawk flight computer provided accelerometers, rate gyros, a 

magnetometer, and a barometer.  While the magnetometer and barometer were not used by 

the developed landmark navigation method during the simulation or post-processing, it is 

easy to incorporate these sensors into the algorithm if available.  In particular, a 

magnetometer could help resolve the azimuthal unobservability problem associated with a 

single landmark.  While the Pixhawk IMU runs at a minimum of 100 Hz (Dronecode), it 

only logs IMU data at 25 Hz.  While the Pixhawk can be made to log at a faster rate, the 

default rate of 25 Hz was a convenient number for post-processing.  Thus, the IMU for the 

simulation and post-processing effectively runs at 25 Hz.   

To estimate the noise and bias levels, we performed a test flight sitting on a level 

surface with the Iris motors running at takeoff power.  The mean and standard deviation of 

the relevant portion of this ‘flight data’ then provided the bias and noise levels respectively.  

A snippet of the noise test flight data is shown below in Figure 27.   

  

Figure 27: Flight test snippet for IMU uncertainty estimation 
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landmark algorithm for the reason stated above.  However, it does provide the ability to 

compare our landmark results to the IMU-GPS navigation standard, which is taken to 

represent the ‘ground truth’ estimate.  The U-Blox GPS has a published accuracy of 2.5 m, 

and a sampling rate of 5Hz (LEA-6 Series).   

For the monocular tests, a single GoPro Hero 3+ was used.  The GoPro(s) had a 

resolution of 1960 × 1080 pix and ran at 60 fps (GoPro).  However, it is unreasonable to 

expect that any vision-detection algorithm could run at a frame-rate as high as 60 fps.  

Thus, the frame-rate from the GoPros(s) was reduced to the more pragmatic rate of 
଺଴୤୮ୱ

ଵଶ
=

5 fps by only processing every twelfth frame.  

Lastly, the camera error was calculated based on the size of the landmarks.  

Centroid detection errors were the dominant source of camera measurement error and were 

at most approximately 1 5ൗ  of a diameter of the detected ball.  Given that the largest ball 

was 10 cm in diameter, and that the quadcopter was, at the closest, ~3 m from the target, 

the small angle approximation gives an error of: ߪ௖௔௠ ≅
ଵ

ହ
ቀ

ௗ

௭
ቁ =

ଵ଴ୡ୫

ହ(ଷ୫)
= 0.00667 rad =

0.38 deg.  This number was then rounded up to 0.4 deg to ensure a pessimistic estimate of 

the camera accuracy.  We note also that the landmarks were on the order of 20 pixels in 

diameter, which indicates that sub-pixel accuracy may be marginally relevant.  In 

particular, aliasing may have subtle effects on the distribution of centroid errors.  Such 

error-biasing can be corrected, but was not deemed necessary in this thesis.   

5.3. Camera Calibration 

The GoPro cameras used had a considerable amount of image distortion primarily 

in the form of radial distortion or ‘fish-eye’.  Most of this effect was eliminated by the 
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GoPro image processing software; however, some residual distortion remained.  To correct 

the remaining distortion, and also to obtain the intrinsic calibration matrix for the camera, 

multiple camera images of a checkerboard from different angles were processed using the 

MATLAB Camera-Calibrator application.  A few example images of the checkerboard, 

which had squares 22 cm on a side, are given in Figure 28.   

  

  

Figure 28: Checkerboard pattern for Calibration 

5.4. Color Detection 

For the flight tests, landmarks were identified using color recognition.  The color-

detection filter was obtained using the MATLAB color thresholder application to tune for 

the desired color(s) in the Hue-Saturation-Value (HSV) color coordinates.  The resulting 

filter(s) produces a sequence of masked images when applied to the flight video frames.  

When the filter is properly tuned, the landmarks are easily detectable and distinguishable 

between frames.  The detection process using the MATLAB color thresholder is illustrated 

in Figure 29, which shows, as an example, the tuning for the light green ball toward the 

lower-right of the landmark cluster, which is intended to simulate a landing target.  Not all 

colors were equally amenable to the tuning process.  In particular, the darker-colored balls 
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were difficult to tune such that the ball was reliably observed while simultaneously 

minimizing false-positives.  The presence of false positives required an additional filter 

with both area and aspect-ratio thresholds to eliminate colored regions passing thought the 

HSV filter that were too small and/or insufficiently spherical.  These cutoffs helped to 

distinguish between actual detections of the colored landmarks and detections of similarly-

colored spots in the grass/rocks.  In the example shown in Figure 29, all seven landmarks 

were detected successfully.   

 

 

 

 

Figure 29: Color Detection Process Overview 

5.5. Post-Processing Results 

We now give the results from the post-processing of the flight data, starting with 

the monocular case.  Figure 30 gives the monocular measurement position estimation from 

a portion of the flight data for which the landmark cluster shown in Figure 24 is in view.  

The landmark cluster enters view at approximately ݐ ≅ 87 s and leaves view at ݐ ≅ 125 s.   
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Figure 30: Post-processing position estimation 

 Prior to the landmarks entering view, there are notable errors in the position 

estimation.  These errors are corrected upon acquisition of the landmarks, with the 

exception of the Z-estimate which appears to have overcorrected.  However, it is not 

completely correct to interpret the position discrepancy as representing the actual 

estimation error since the ‘ground truth’ is in fact an IMU-GPS estimate which is prone to 

errors of its own.  Thus, it is possible that the so-called ‘ground truth’ path has error, since 

the U-Blox GPS has errors on the order of 2.5 m (U-Blox).  Though the filtered estimate 

will be somewhat more accurate, it is difficult to say how much.  Finally, upon loss of the 

landmarks at ݐ ≅ 125 s, the position estimates begin to drift as expected.   

Next, Figure 31 and Figure 32 show the velocity and attitude estimation for the 

same portion of the flight data as in Figure 30.  The velocity estimates show nominal 

behavior throughout, and drift at the finish as before.  There is, however, a brief period 

immediately following the initial correction phase at ݐ ≅ 87 s during which the velocity 

estimates are unstable.  This is a possible area for future investigation, as it is unclear why 

this occurs.  Unsurprisingly, the attitude estimates are accurate since the IMU gyros are 

considerably more precise than the accelerometers.   
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Figure 31: Post-processing velocity estimation 

 

Figure 32: Post-processing attitude estimation 
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a variety of ways.  Known size of landmarks may be incorporated as a form of depth 
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 Hybrid Navigation 

A key application of the landmark navigation method is to employ it in conjunction 

with a more traditional non a priori method such as an optical flow or odometry.  In this 

thesis we consider the landmark filter in conjunction with the homography-based method 

developed in (Chavez, et al., 2017).   

6.1. Homography Measurement 

The homography algorithm has some unique advantages for attitude estimation to 

ensure critical vehicle performance during periods in which no landmarks are visible, and 

complements our landmark method excellently (Chavez, Myhre, & Prazenica, 2017).  The 

basic idea of the mission layout is given in Figure 33.  The vehicle starts at a known location 

with landmarks available, flies a route over unknown terrain in which it relies on the non a 

priori homography method, and then corrects any drift which has occurred upon return.    

 

Figure 33: Hybrid filter mission overview 

The homography method relies on the tracking of feature points in a planar 

arrangement.  As shown in Figure 34, the projections of the co-planar feature points ܲ are 

denoted ܺ ଵ and ܺ ଶ in the two consecutive frames from adjacent time steps.  The two frames 
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are separated by ܴ and ܶ which are the frame-to-frame rotation and translation of the 

vehicle respectively.  Since the points ܲ are co-planar, the so-called ‘homography matrix’, 

can then be derived such that ܺଶ ,ܪ =  ଵ.  It can be shown that for the homographyܺܪ

matrix to be determined uniquely, a minimum of four points are required; however, random 

feature points can be used, ensuring that the minimum is always amply met.  The 

assumption that these points come from features on the ground ensures their approximately 

co-planar arrangement.  The rows of the 3 × 3 homography matrix can be computed at 

each time step and ‘stacked’ into a 9 × 1 column vector to be used as a measurement in an 

EKF.   

 

 

Figure 34: Homography Relationship  
(Ma, Kosecka, Soatto, & Sastry, 2001) 

We note that the homography matrix contains only information about the relative 

pose, ܴ and ܶ, between the two frames, and no absolute GPS-like information about the 

location in the environment.  This is typical of non a priori algorithms, but is the price to 

pay for their versatility and robustness.  However, with a hybrid navigation method, we 

can get the best of both a priori and non a priori algorithms.   

On its own, the homography algorithm drifts in both position and heading over time 
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as shown in Figure 35, which gives the simulation results from the homography 

measurement used on its own.  This is expected since the homography measurement does 

not provide absolute position or heading information.  Nonetheless, the position drift is 

considerably slower than the dead-reckoning integration of the IMU, and so it represents a 

significant contribution to the estimation even in terms of position.  Additionally, the 

homography gives reliable estimation of the velocity and attitude (roll and pitch), since 

these states are observed by the information in the homography matrix.  This is a desirable 

feature since velocity and attitude are important for the stability of a controller.  There are 

noticeable velocity errors due to the abruptness of the simulation maneuvers.  However, as 

mentioned previously, such dramatic maneuvering is not realistic and can be disregarded.   

  

  

Figure 35: Homography measurement simulation 
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We note that the four landmarks shown in Figure 35 are not the only feature points 

observed by the homography, which uses many other randomly distributed points on the 

ground (ݖ = 0) that are not shown, so that the homography matrix can always be computed.  

Thus, the homography measurement does not suffer from the absence of landmarks since 

the feature points only need to be detected between frames and no a priori information 

about them or their locations is needed.  As a result, the homography estimation shows no 

indications of altered behavior when the four landmarks shown are out of view during the 

box-shaped flight pattern.   

6.2. Hybrid Results 

From Chapter 3.4, we recall that the landmark navigation method showed 

potentially unstable behavior for this box-route since that the landmarks upon which it 

relies are repeatedly popping in and out of view.  See Figure 4, for example, which exhibits 

the more stable underweighted behavior, but still makes repeated corrections each time the 

landmarks re-enter the field of view.  If we use the homography measurement in tandem 

with the landmark measurement so that the position estimation drifts only slightly while 

the landmarks are out of view, these corrections will not need to be as dramatic.   

The marriage of the landmark and homography methods can be performed in two 

ways.  First, since both algorithms take the form of the EKF, a simple matrix concatenation 

of the measurements and measurement Jacobians will suffice.  This is the method 

employed here; however, the coincidence of both methods as EKFs is not universal to all 

algorithms.  In such cases, the algorithms can be run separately, and then fused by an 

additional ‘integration EKF’ as described in (Groves, 2008), for example.   

Figure 36 shows a simulation of the hybrid landmark-homography navigation 
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algorithm, which exhibits better performance than either the landmark or homography 

alone.  The landmark method prevents the position and heading drift by providing the GPS-

like measurement during the portions of the flight when the landmarks are visible, while 

the homography stabilizes the estimation during periods when landmarks are not visible.  

The overall behavior of the state estimation is both accurate and stable.   

  

  

Figure 36: Hybrid navigation method simulation 
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is in fact an IMU-GPS measurement with errors of its own.  The key observation here is 

that the hybrid estimation performance is comparable to that of the GPS-IMU solution from 

the onboard Pixhawk flight computer, and is thus viable for online use in future research.   

  

  

Figure 37: Hybrid post-processing estimation 
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 Conclusion 

We have developed, analyzed, and tested a landmark-based navigation algorithm 

for generic landmarks based on the well-known EKF framework.  The algorithm utilizes a 

priori information about a select few ‘landmarks’ in the environment.  These landmarks 

must have known or definable (as in the case of a landing, target for example) position, 

and be uniquely identifiable.  We note again that the detection of the ‘landmarks’ does not 

need to be visual in nature, though vision measurements are considered exclusively here 

due to their practicality.  The landmark measurement provides a GPS-like estimation 

correction due to the absolute information it provides through the a priori information.   

Loss and reacquisition of landmarks can lead to instability due to measurement 

nonlinearities, particularly during re-convergence.  These instabilities can be dealt with by 

a nonlinear filter such as a second order EKF, or the UKF algorithm.  Underweighting, 

however, provides a simpler solution to this particular problem, and is used here.  If other 

nonlinear stability issues are present in a particular case, more significant changes to the 

filter framework may be required.   

An analysis of the state observability provided by a landmark measurement shows 

promise even with a single landmark in view, and improves to full observability with just 

two landmarks.  Stereo vision provides some improvement in terms of removing landmark-

directed unobservability, but azimuthal unobservability remains.  Likewise, there are some 

curious nonlinear effects that enable potential landmark-directed observability even with a 

single landmark and a monocular measurement, provided that the vehicle has a motion 

component perpendicular to the target direction by effectively using the frame-to-frame 

parallax.  Such effects may be worthy of investigation in future research.   
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Simulation testing confirms the conclusions from the observability analysis, and 

demonstrates the GPS-like state correction that the landmark algorithm provides.  Flight 

test post-processing estimation performs similarly, such that further testing with a more 

stable test setup and more accurate sensors is warranted.   

Lastly, the landmark measurement complements the non a priori homography 

measurement in a hybrid algorithm that is both drift free due to the GPS-like landmark 

information and stable during periods with no landmarks due to the non a priori 

homography.  Research into applications of the hybrid algorithm is ongoing.   
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 Recommendations 

There is ample of room for future work on landmark navigation.  First, a proof of 

the stabilizing ‘observability’ provided by the nonlinear nature of the measurement during 

translation could prove valuable.  In Chapter 3.5.4, we showed that the nonlinear correction 

was driven by the component of translation perpendicular to the direction to the landmark, 

but we did not formally show that the ‘correction’ is necessarily a stabilizing one as 

observed in the simulation.  This will be investigated in future work.   

Additionally, the simple color detection centroiding algorithm used here is 

inefficient and introduces unnecessary errors to the flight data.  A more refined approach 

to the detection process could enable testing of some of the more interesting simulation 

scenarios such as single landmark or stereo.  The detector can even potentially be trained 

to recognize certain, more complex objects in the scene using approaches such as the Viola-

Jones learning algorithm (Viola & Jones, 2001).   

While both the Monocular and Stereo measurements were analyzed for 

observability, and tested in simulation, flight tests thus far have included only monocular 

measurements.  Such tests are left to future work since they will require more precise 

equipment and detection algorithms.   

Lastly, landmark navigation has promising applications alongside a non a priori 

algorithm in a hybrid setup.  Examples include performing a landing at a predefined 

location, path following by using landmarks as waypoints, or even exploration missions 

with post-route mapping corrections upon return to a starting location.   
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