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explore the feasibility of a glow corona on other planetary bodies such as Mars. We calculate the 8 « E(R)) =E(c) =E. =30 WO kV/cm (Earth) _ _ . . — )
breakdown criterion both numerically and analytically to present simplified formulae per each Pitchford, 2005). « VE= p =0 Figure 5: Fit of the exponential approximation for aefr(E) for coefficients obtained
geometry and gas mixture. ¢ ' Po from: Morrow and Lowke (1997), Hagelaar and Pitchford (2005).
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. . . * A and B coefficients derived from the exponential fit accurately predict the
Corona DISCha rge Ca rteslla: n S.OfI.UItIOndS —Bp minimum voltages (Table 2);
e Electrical discharge around a Critical electric field: E(d) = ln(ln(Q)) » Numerical, analytical, and experimental data are all in excellent agreement
conductor due to electric field; e in the recreated Cartesian solution;
* Weakly ionized gas responsible for o Minimum breakdown voltage: ,  CO, dominated atmospheres have a higher critical electric field than air at
glow at visible wavelengths; 10°[ comparable densities;
* Hypothesized to promote the _Bpd ' * Mars minimum breakdown voltages are lower than Earth due to low
formation of upward connecting V(d) = ln(ln(Q)) £ =~ \ Stoletov's/ Martian atmospheric pressure (0.6% Pg_..;,)-
leaders in lightning discharges. Apd 2 - o 10°[ ; — : : :
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igure 1: Glow Coronas form on the edges of a , , eB | m % -
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|  CO, and air solutions taken at STP i B A (1/cm/Torr) 15 7.7 9.29 33.44
The process of electron avalanching L TTeeT -
is similar between various types of ; + * Boltzmann equation solver (Bolsig) ' Meek and Cragg's (1978) Stumbo (2013) B (V/cm/Torr) 365 274.7 295.18 430.07
discharges: Flectric Py . : : S Vv =Pt Table 2: al imation coefficients (A and B) from Figure 5 found from fitti
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. Secondary electrons with enough Figure 6 - : Critical electric field and breakdown voltage to meet Distance (m) od or pr (m*Torr)
i "R the initiation criteria. The critical voltage curves are plotted at STP
KE to repeat the process; Sl to be consistent with the conditions of the experimental data. Cartesian (Air) 348.2 350.9
e Avalanche criteria: (Raiser, 1991)
’ : . Cartesian (CO 517.6 603
fRz Qs dr=In(Q) =~ 18-20; Q = 10* Figure 2: Visual representation of the process of an Spherlcal SOIUt'OnS 10— (CO,)
Ry electron avalanche in Townsend’s breakdown model. This 2 Spherical (Earth) 1414 1709
- can also be referred to as a Cartesian case (Gewartowski et e (Critical electric field: E(r) _ 4B(In(Q)+4pr)
Types of DISCharges 21, 1965). ' - TpA2r2 Spherical (Mars) 475.4 603.1
.. Cylindrical (Earth 1426 1132
Parameter Glow Corona Streamer Leader « Minimum breakdown voltage: y ( )
Temperature ~300 K ~300 K <5000 K Cylindrical (Mars) 584.3 469.8
Electron energy 1-2 eV 5-15 eV 1-2 eV V(T) _ 4B(In(Q)+Apr)* Table 3: The minimum breakdown voltages for each geometry and atmosphere; also known as
R TPA2T . Stoletov’s points.
Electric field 0.2-2.7 kV/cm 5-7.5 kV/cm 1-5 kV/cm £
. e Stoletov’s point: Vi, = @ln(Q) <
Electron density | 2.6x10°cm3 | 5x10%-10%cm® |  4x10%cm? +Ymin = T ' e IVV. CONCLUSIONS
[ ]
';'?bzlgolg)Characteristics for types of discharge at sea level in Earth’s atmosphere, adapted from (Gibson et * La rgest error due to Taylor expa nsion of The results and conclusions obtained in this work can be summarized as
: ' : follows:
Gauss error function A new model for calculations of the critical radius and minimum breakdown voltage
e Boltzmann equation solver (Bolsig) | | Lorres(f:treodn'a discharge in Cartesian, spherical, and cylindrical geometries is
: - 4B(In(Q) + Apr)® 4B(In(Q) + Apr)? + The model is validated using classic Paschen th d imental data in ai
o E(r) — _ _ P _ is validated using classic Paschen theory and experimental data in air
Highest minimum breakdown voltage ] (") TpAZ2r2 v(r) TA2pr from Meek and Craggs (1978) and CO, from Stumbo (2013);
Figure 7 = : Critical electric field and breakdown voltage to meet 1%0'6 104 103 102 10° . We: ex!oand classic Paschen theory into an analytical solution for spherical and
the initiation criteria. The critical voltage curves are plotted at STP , . cylindrical geometry;
for each planetary body (Mars and Earth). Radius (m) pd or pr (m*Torr) *  Our numerical model and the analytical solution show excellent agreement with
experimental data;
e R  The significantly lower pressure on Mars compared to Earth lowers the minimum
Figure 3: (A) A Wartenberg wheel with glow coronas forming at the tip of each spindle (Berkoff, 2005); (B) Cyl N d iCd I SOI Uth NS | : breakdown voltage required to create corona discharge.

Streamers forming a sprite phenomenon (courtesy of H. H. C. Stenbaek-Nielsen); (C) Lightning channels as _ _
an example of leader discharge (Whetmore, 2016). - . B(In(0)+Apr _ q Acknowledgements:
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