

The Space Congress® Proceedings

2016 (44th) The Journey: Further Exploration for Universal Opportunities

May 25th, 10:45 AM

#### Modular Low Earth Orbital-Hub DLR Vision 2025

Dr. Oliver Romberg German Space Center (DLR), Bremen

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

#### **Scholarly Commons Citation**

Romberg, Dr. Oliver, "Modular Low Earth Orbital-Hub DLR Vision 2025" (2016). The Space Congress® Proceedings. 13. https://commons.erau.edu/space-congress-proceedings/proceedings-2016-44th/presentations-2016/13

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.



# Modular Low Earth Orbital-Hub DLR Vision 2025

DLR



## Low Earth Orbital-Hub DLR Vision 2025

44th Space Congress, Cape Canaveral, Florida May 24-26, 2016

Institut für Raumfahrtsysteme Systemanalyse Raumsegment



Dr. Oliver Romberg







## Low Earth Orbital-Hub DLR Vision 2025

44th Space Congress, Cape Canaveral, Florida May 24-26, 2016

### Content:

- Introduction
- Project Goal
- O-Hub Concept
- Conclusions





## Institute of Space Systems / Bremen

- Studies and analyses of launch vehicles and orbital systems to evaluate their technical performance and costs
- Design and development of spacecraft / missions (small satellites, lander vehicle)
- Development of technologies for
  - Cryogenic Propellant Management
  - Planetary Landing
  - Satellite Subsystems
  - Guidance Navigation and Control
  - High Precision Optical Measurements
  - Habitation & Life-Support-Systems









# **Project Goal Modular Orbital-Hub**

Proposals for the German/European position to continue manned spaceflight in LEO (Outpost, Observatory)

- after ISS-operation
- based on benefit of human presence in space

# **Orbital-Hub Concept Development**

- Various DLR ISS experienced scientists/experts plus NASA and ESA Astronauts, Bigelow Aerospace, Airbus-DS participated in simultaneous design studies (Concurrent Engineering Studies)
- Result: <u>Modular</u>, simple but extendible platform <u>with Free-Flyer</u>



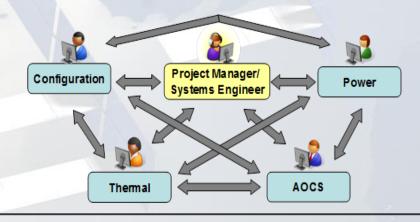
DLR

DLR's Orbital-Hub concept with Free-Flyer consisting of external science platform and pressurized laboratory

www.DLR.de • Folie 7 > Orbital-Hub > O. Romberg, May 2016

# **Orbital-Hub Concept Development**




Concurrent Engineering Facility

- Simultaneous Design Laboratory
- Based on S/W Virtual Satellite
- Simultaneous involvement of experts for 1-2 weeks
- Common understanding
- Result: Mature Phase 0/A concept
- Outputs: Proposals for next phase





Concurrent Engineering Process "everyone with everyone"



### **Concept Development with Scientists in DLR CEF**

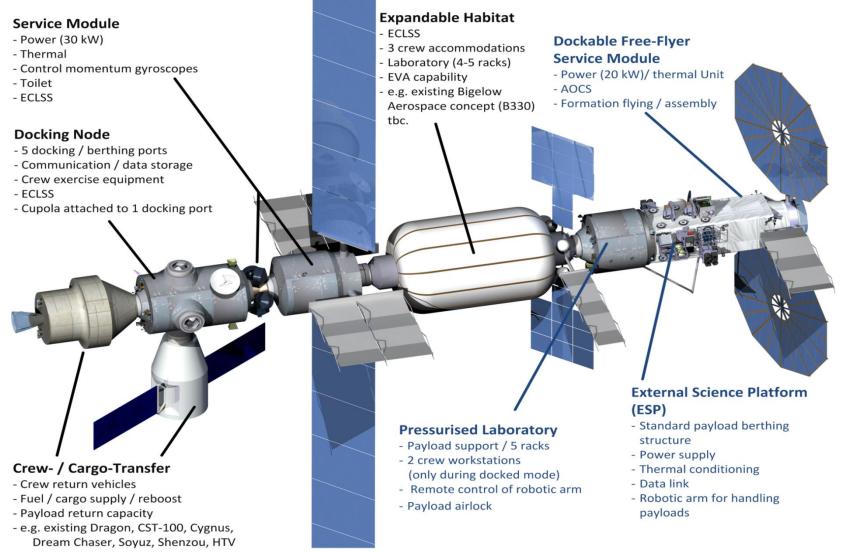
#### **Participating Disciplines**

- Science Coordination
- Architecture / Configuration
- Payload, I/Fs
- Material Physics
- Earth Observation
- Atmosphere Physics
- Human Physiology
- Gravitation Biology
- Radiation Biology
- Technology Demonstration / Expl.
- Operations
- Robotics
- Astronomy / Astrophysics
- To be added: Plasma Physics












# **Main Objectives for Development**

- Significant cost reduction (lessons learnt from ISS), small concept!
- Utilization of O-Hub as platform for
  - Earth Observation
  - Technology Demonstration
  - Commercial users (involvment of global players, private investments)
  - Science (following to ISS but with Free Flyer)
  - Exploration Preparation (crew-training for planetary missions, mission simulation)
- High flexible, modular and extendible concept ("Space Village")
- Involving worldwide roadmaps, synergy potentials with existing systems (e. g. Dream Chaser, Space Exploration, ...)
- Keeping human spaceflight alive (in EU / D)!
- More self-standing and dominant role for Europe/Germany in Space!

## **Engineering Concepts for Modular LEO Platform**



#### Modular Orbital-Hub: Dockable Module/Platform as a European Initiative



## **Orbital-Hub Free-Flyer**

#### Spacecraft:

- launch mass: 18.7 t (w/o payload)
  - propulsion: hybrid (chemical / electrical)
- diameter: 4.5 m
  - length: 15.4 m
- power: 20 kW average

#### Features:

- external decoupled Observation / Science Platform
- modular, scalable and attitude-flexible concept
- crew operation while docked at O-Hub / capsule / ISS
- transport by single A64-Launch
- low cost
- to be realised within ~8 years

(stowed configuration)

### O AIRBUS DEFENCE & SPACE

0

# **Conclusions and Next Steps**

- Further motivation and justification (beyond science) to build and operate human-tended infrastructures in LEO
- High interest of possible users in Mini-Station with free flyer
- i. e. Modular Orbital-Hub involving space industry (ADS, Bigelow)
- Involvement of German key contributions for further consideration
  - Astronautical spaceflight in LEO
  - Ongoing requirements definition with int. community
  - Automated service modules, habitation modules
  - Robotic technology options
  - Advanced low thrust propulsion
  - Operations
- Major Next Steps:
  - Detailled Design of O-Hub Free-Flyer Module in co-op with ADS
  - Detailed definition of use cases with international partners (commercial, industry, agencies, institutions)

# **Thank you for your interest!**

### April 2016

O. Romberg, D. Quantius, S. Baerwalde, H. Dittus et al.

### Institute of Space Systems



System Analysis Space Segment



