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 ABSTRACT  

There has been extensive work in crime scene reconstruction of physical locations, and much is known 

in terms of digital forensics of computing devices. However, the network has remained a nebulous 

combination of entities that are largely ignored during an investigation due to the transient nature of 

the data that flows through the networks. This paper introduces an architecture for network path 

reconstruction using the network layer reachability information shared via OSPF Link State 

Advertisements and the routines and functions of OSPF::rt_sched() as applied to the construction of 

identical Link State Databases for all routers within an Area. 

1. INTRODUCTION 

The traditional approaches in digital forensics deal with reconstructing events within one, or a small 

set of digital devices, such as computers, cellular phones, etc. These devices complicate the evidence 

gathering process due to not being designed or constructed with forensically-sound retrieval of data 

being a requirement. This difficulty is further increased when these devices are attached to a network 

and send or receive data with another device or devices [13, 1]. This transmitted data flows over 

networks in a transient manner, making forensic analysis of the flow difficult unless evidence is being 

gathered in real-time [6]. Frequently, there is a push to recover the system as quickly as possible and 

place it back into production. In doing so, forensic information may be lost, and additional 

investigation of the system is likely eliminated. As such, there is a balancing act between depth and 

time dedicated to the investigation and the speedy return to production. 

A survey of discipline-centric publications and media highly suggest a continued increase in security 

incidents. As the number of incidents increase, the number of investigations will also increase 

proportionately. If current trends hold, relatively few perpetrators of cyber-incidents will be brought to 

justice. Yet, there is also a need to hold those perpetrators responsible for the actions and crimes [2], 

which has occurred with only marginal success. 

As the bad guys recognize and smile at the slim likelihood of being held accountable 

for their online misdeeds, those who aren’t guilty worry, with justification, that they 

could be wrongly accused, and those who are victims are largely without recourse. 

It is clear that additional efforts are to be made in multiple areas of the judicial chain: investigators; 

processes, policies, and procedures; tools; legislators; and lawyers and judiciary. 

While much effort in digital forensics has been given towards frameworks, policies, and end-user 

devices, the network infrastructure has not seen the same research efforts. Much of the research that 

has been accomplished in the network infrastructure arena has been centered around traceback of IP 

addresses [3, 5, 11, 12]. However, these approaches ignore the fact that networks are dynamic and 

changing, even over short periods of time, such as the flow of a nefarious payload. As with physical 

crime scene reconstruction, there is a need for a digital forensic investigator to be able to reconstruct 

and accurate cyber crime scene. The purpose of this research is to devise and develop an architecture 
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that maximizes the ability to accurately collect network path information while minimizing the 

evidence recovery and incident response costs [13, 1]. This research will focus on the Open Shortest 

Path First (OSPF) routing protocol, which is the most common open interior gateway routing protocol 

(IGP) for enterprise networks. 

2. THE OSPF ROUTING PROTOCOL 

Network paths are constructed through the use of routing protocols, which share network layer 

reachability information. As routers share this information, a topology is agreed upon by all routers 

within the network and a valid next-hop router is chosen based on the destination IP address in each 

packet. The Open Shortest Path First (OSPF) routing protocol constructs its view of a network through 

exchanges of Database Descriptions (DD) and typed Link State Advertisements (LSA) [10]. Each 

OSPF router within an area processes the DD and LSA messages it receives and parses them into its 

link state database (LSDB). A router then builds its own network topology tree by parsing the LSDB 

with it- self as the root [8]. The resulting tree gives the router the necessary information to populate 

the forwarding information base (a.k.a. routing table) for routing decisions. In order to ensure up-to-

date information across all routers within an OSPF area, synchronization of the LSDBs across all 

routers is requisite. This synchronization process results in each router within a specified area having 

an identical LSDB [9]. It is this identical LSDB that is to be examined in more detail. 

2.1 LSDB Construction 

The following sections briefly describe the processes used to construct a routing table for routers 

within an OSPF area. 

2.1.1 Peer Adjacency  

Routers in an OSPF network are able to automatically learn of other routers through the use of Hello 

messages, which indicate the capability to communicate via OSPF and also provides the router’s IP 

address for future communication. This two-way process is required to initiate the remainder of the 

process to establish a state where both routers are fully aware of the capabilities and reachability 

information of the other router, and is referred to as adjacency. Routers are not able to share Link State 

Updates until they have formed an adjacency; meaning this is a critical stage for routers to establish 

communication with other OSPF routes. 

2.1.2 Flooding 

Flooding is a critical, yet incomplete, component of the synchronization process between OSPF 

routers. Figure 1 shows a portion of this process, including the flow of data to/from other functions. 
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Figure 1 LSA Flooding Data Flow in Single Router 

Utilizing this flow of data, each router within an OSPF area will share link state information of the 

network layer reachability information. Each router that receives these updates will utilize the parsing 

and processing structures to populate the LSDB. 

2.2 Populating the Routing Table 

An OSPF router will take the information learned via the adjacency construction, Database 

Descriptions, and Link State Advertisements to construct a shortest path first tree. In practice, it uses 

Dijkstra’s Algorithm to build a tree as a weighted, directed graph with itself as the root (single source 

vertex) of the tree. The shortest path to each destination (edge) is determined via the minimum of all 

possible summations of vertices [4]. Each of these shortest paths are then parsed from the tree and 

added to the routing table with the associated metric (cost) to reach that destination network. 

2.3 Maintaining the Neighbor Adjacency 

As long as no topological changes occur within the collection of networks, then no LSAs need to be 

sent. However, instead of long periods of silence occurring within the network where the assumption 

of no LSAs means no changes, Hello messages are sent by each interface (and subinterface) that is 

enabled within the OSPF process on a router. This periodic sending/receiving of Hello messages 

maintains the neighbor relationship to indicate that the peer is still active and operational, and no 
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changes have occurred. As long as this continues to occur within the allotted time frame, then the 

adjacency remains and the routers need not prune the local instance of the LSDB, prune their routing 

table, and subsequently send LSAs indicating the loss of a neighbor and its associated links and 

networks. 

3. ARCHITECTURE FOR RT RECONSTRUCTION 

Based on each router within an area maintaining an identical LSDB, this study is examining the 

capabilities required to reconstruct the routing table of all routers within that area in order to 

reconstruct the physical network path that a packet or flow of packets would take from ingress to a 

destination device. Additionally, the reverse network path can be identified. The express purpose of 

such a tool is to provide attribution of a flow to specific devices as part of the investigation process in 

order to define the entire crime scene. Tan suggests four sources of incident data: victim machine, 

attacker machine, logged data (including intermediary systems), and physical security [13]. 

3.1 Information Acquisition Mechanism 

This acquisition mechanism can, and likely will need, multiple incarnations. As there are multiple 

architectures to which OSPF can be implemented, each effecting the information shared between 

routers within an area, this acquisition of OSPF routing information will need to account for the 

architectural differences. The acquisition of OSPF NLRI in a broadcast network (i.e., Ethernet) or non-

broadcast multiple access network can be simplified by mirroring the input to the Designated Router 

or Backup Designated Router. This could be accomplished with a packet capture tools, such as 

WireShark/TShark, TCPDump, or a variety of other tools. 

In other network architectures, such as point-to-point links, this acquisition will require more effort. A 

network tap, or splice, could be used to eavesdrop on all traffic and subsequently filter out the non-

routing protocol traffic. While not ideal, this could provide the desired information. However, as 

Ethernet continues to gain market share as a WAN and MAN interconnection, this may become a 

moot point. In the intervening time, a combination of NetFlow and SNMP may be sufficient. 

3.2 Information Storage Mechanism 

The storage component of this architecture should have the following criteria: 

 1. Sufficient storage capacity for archiving months of topology construction and maintenance 

information. A tool for backtracking intrusions via their process calls and dependencies 

required over 1 GB/day of storage to track all events on a single device [7]. This is a 

significant amount of storage required for a single host, and is untenable in an enterprise 

network which may host 100s of routers. Initial validation of storage requirements for this 

architecture suggest 50 MB/day is sufficient for a stable topology. An unstable network has 

not yet been tested where flapping events or significant AUDs may be occurring.  

 2. The storage system should not be an active network device. As an active network device, the 

storage system could become a target for attack which could undermine the reconstruction of 

its own attack and any others that occur within the effected timeframe. As such, it should be a 

passively- connected network device. It should only listen to the OSPF information that 

propagates through the network, and not participate in any other network operations.  

 3. The storage system should provide an interface to archive topology in- formation to an offline 

state. This archival could be used for historical references and baselining in the event of an 

attack, or perceived attack, to identify typical trends and potential variability within the 

updating and maintenance processes.  
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3.3 Reconstruction Mechanism 

This process is the critical component of this research. While a WireShark packet capture will provide 

a graphical interface to view individual packets and flows, it does not provide a mechanism for actual 

reconstruction of any events. NetFlow and SNMP traps and messages are incomplete in the 

information they provide about the state of the routing table as well as when and where topological 

information propagates. Based on a WireShark capture, however, replaying captured Hello messages 

into the ’SpfNbr::recv_hello()’ process and LSAs into the ’SpfNbr::recv_update()’ process, a 

reconstruction of the LSDB may be possible. 

According to the OSPF Version 2 specification, a full Database Description exchange should happen 

between all OSPF peers every 30 minutes. Based on this exchange of information, the complete LSDB 

is purged, and reconstructed using only information from the most recent DD messages. The 

reconstruction mechanism, therefore, would only have to parse backwards to the 30-minute interval 

where an attack was initiated to begin reconstructing the full network path. 

Validation of the state of the LSDB can be accomplished via MD5 hashing, which can be matched to a 

list of hashes that can be retrieved via SNMP from any router in the OSPF area [9]. This is one 

mechanism to verify database synchronization within OSPF as well. Once the LSDB has been 

constructed and validated to the proper timeframe, Dijkstra’s Algorithm can be executed against the 

LSDB, and the resulting routing table entries can be identified. By setting the source router to any 

other router within the area when running Dijkstra’s Algorithm against the LSDB, that router’s routing 

table can be constructed. Repeating this for every router within the area would result in the ability to 

identify the path that any packet or flow would take through that OSPF area at a specified instant of 

time. This information can then also provide addition investigation opportunities to verify the integrity 

of the routers involved in the attack flow. 

3.4 The Importance of Time 

Timing is of critical importance in a synchronized routed network. Reconverging upon topological 

changes is a key component of the dynamic routing protocol’s ability to quickly provide an up-to-date 

path to a destination network. Synchronized clocks between network devices allows sufficient time-

stamping to be applied to update packets as to indicate an event occurred at an exact time, as opposed 

to some general time. Additionally, OSPF maintains internal clocks and counters to specify the 

initiation of other functions and process to maintain adjacencies and the LSDB [10]. As 6per the 

standard, Hello messages are to be sent every 10 seconds. Figure 2 shows a 24 hour sample of Hello 

messages from a single subinterface on a Cisco Catalyst WS-6504-E in a small-scale production 

network with very little user data flowing during the testing window. 

While the standard calls for a 10 second interval, it is apparent that there is variability within a real-

world implementation. The exactness of timing within this environment is quite important beyond just 

the network topology maintenance. Suppose an attacker wishes to modify an existing known path 

through a network as a means of “‘covering their tracks”’. If that perpetrator were able to inject 

spoofed topology information rapidly, conduct their attack, and reverse those topology changes rapidly 

enough, a simple analysis of the network may not show this alteration. By understanding the timing 

constraints of the OSPF protocol, both in theory and in practice, a better grasp of the timing 

requirements for this architecture can be understood. Given that the run time for a single OSPF router 

is O(E log V), the longest time to reconverge the network is of the same order O(E log V) of all routers 

in the area. 

Additional testing of timing of Database Description events and specific LSA information needs to be 

performed and evaluated in order to understand the potential time window for an unacknowledged 

attack that would provide details towards the failure rate of this architecture. 
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Figure 2 Hello Message Interval Timing in Tested Network 

4. CHALLENGES MOVING FORWARD 

A short list of the known challenges are listed below. As additional challenges present themselves, this 

list will be appended. As those challenges are resolve, the resolutions will be worked into the body of 

this and subsequent papers. 

1. OSPF Message Timing in the Real-World • OSPF Adjacency Establishment 

 Ongoing OSPF Hello Messages 

 OSPF Adjacency Establishment 
 Propagation Time of LSA Flooding in different topologies 

2. Exceptions to RFC2328 and subsequent IETF documents 

 It appears that some implementations of OSPF implement functionality contrary to 

standard design (i.e., Cisco - LSDB refresh @ 30min) 

3. Multicast OSPF 

4. IPv6 and OSPFv3 operations and intricacies 
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