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Abstract

Researcher: Narendran Muraleedharan

Title: Development of an Emulated Free-Floating Environment for On-Earth
Testing of Space Robots

Institution: Embry-Riddle Aeronautical University

Degree: Master of Science in Mechanical Engineering

Year: 2017

The ability to perform experiments on space robotic systems within a laboratory setting

is crucial to development and testing of satellites and space robots prior to launch. One of

the most widely used techniques which recreates the on-orbit motion of space robots and

targets is hardware-in-the-loop simulation. This method requires extensive knowledge of

the space robot model dynamic parameters. This research proposes a method which uses

force feedback to control a robotic platform on which the space robot is mounted. The

robotic platform is driven in such a way that the gravity-compensated forces and torques

at the mounting interface is nullified. This method requires minimal knowledge of the

system model and dynamic parameters. In this thesis, simulations are performed on both

two-dimensional and three-dimensional systems and experimental validation on a two-

dimensional system is conducted for proof-of-concept.
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Chapter I

Introduction

This thesis proposes a method for emulating planar and spatial free-floating envi-

ronments on Earth using minimalist knowledge of the target system model and dynamic

parameters. The method is tested in simulation on planar and spatial systems and experi-

mentally validated on a planar system.

Significance of the Study

A significant amount of research has been conducted in the field of space robotics

over the last decade and continues to grow. The growth and interest in the subject are be-

cause the risk factor involved in launching human space-flight missions is still very high

[1, 2]. Space agencies are moving towards the use of remotely piloted or unmanned au-

tonomous systems to eliminate the human risk factor and the need for life support sys-

tems. This removal can significantly decrease the weight of the system and reduce mis-

sion costs [3]. Space Robots (SRs) can be used to perform a variety of missions on orbit

includes performing maintenance or on-orbit servicing (OOS) operations on other satel-

lites, debris removal, and assisting astronauts in various tasks. The number of on-orbit

failures of such complex space robotic systems and satellites has exceeded the number

of rocket launch failures in recent years [4, 5]. The limited ability for direct human inter-

vention and maintenance during such missions can inhibit problem solving capabilities

during failures seen in such missions. Therefore, the performance and systems on such

SRs need to be tested extensively prior to launch [6].

Statement of the Problem

To be able to perform ground testing on hardware components and systems such

as computer vision systems and berthing mechanisms on-board a space robot, a simula-
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tion may not be sufficient. The need for testing hardware components calls for the ability

to perform testing in a laboratory setting.

Furthermore, due to the complex dynamic coupling between manipulator joints of

a space robot and the body, the body cannot be fixed and needs to be allowed to move in

an emulated free-floating environment.

The methods used by space agencies and test facilities today are either limited by

emulation time, purely two-dimensional motion or require detailed knowledge of the sys-

tem model and dynamic parameters which are difficult to accurately measure or estimate.

Purpose Statement

The purpose of this thesis is to demonstrate that a hardware planar and spatial

free-floating environment can be emulated using force-feedback control.

Delimitations

For the purpose of testing in simulation, ideal conditions are assumed by ignoring

measurement noise.

For experimental validation, hardware and sensors are chosen to best meet the

needs and closely match simulated measurements. In this case, a light-weight Space Robot

(SR) with a four-link manipulator is used and the sensors’ ranges, calibrations, and the

operational work area of the Robotic Platform (RP) are chosen to meet the specific needs

of this space robot.

Limitations

Many limitations were encountered through the research which required tempo-

rary or long-term solutions. These limitations were primarily seen in the experimental

setup, and have been ignored in simulations. Some of these include measurement noise,
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misalignment of force-torque (FT) transducer, latency in data transmission, and process-

ing capabilities.

Certain limitations in hardware (e.g. power availability, discretization) have been

modeled in simulations as well.

A major limitation faced in this research is time constraint, which did not allow

for experimental validation of a complete three-dimensional testbed.

Definition of Terms

Space Robot A satellite with an attached robotic manipulator

Robotic Platform A Robotic manipulator used as the test bed plat-

form on which the FT sensor and space robot are

mounted

Free-floating A theoretically friction-less environment in which

linear and angular momentum are conserved and

not exchanged with the surroundings

Dynamic Model Equations of motion of a system that account for

static and dynamic responses to input

Mechanical Model Purely mechanical equations of motion of a system

Electro-mechanical Model Combined electrical and mechanical equations of

motion of a system

Dynamic Integration Integration of system-generalized velocities and

accelerations to generate trajectory

Zero Mass Moments Masses of rigid bodies in the system

First Mass Moments Products of masses and center of masses of rigid

bodies in the system

Second Mass Moments Inertia tensors of rigid bodies in the system

3



Generalized Coordinates Vector of variables that define the linear and angular

positions of the system

Generalized Velocities Derivative of the generalized coordinates that define

the linear and angular velocities of the system

Generalized Accelerations Derivative of the generalized velocities that define

the linear and angular accelerations of the system

Generalized Forces Vector of forces and torques in the directions of the

generalized coordinates

Hardware-in-the-Loop A hybrid simulation technique where the equations

of motion of the system are simulated and a track-

ing controller is used to drive the system through

the simulated trajectory

System Excitation Inputs provided to the system in terms of voltages to

actuators or thruster impulses

List of Acronyms

AR&D Autonomous Rendezvous and Docking

ASR Actual Space Robot

AT Actual Trajectory

CAD Computer Aided Design

DLR German Aerospace Center

DOF Degrees of Freedom

EPOS European Proximity Operation Simulator

ESA European Space Agency

FF Force-feedback

FT Force-Torque

HIL Hardware-in-the-Loop

4



MSR Modeled Space Robot

MT Modeled Trajectory

NASA National Aeronautics and Space Administration

OOS On-orbit Servicing

PCI Peripheral Component Interconnect

PCIe Express Peripheral Component Interconnect

PD Proportional, Derivative

PID Proportional, Integral, Derivative

RMS Root Mean Square

RP Robotic Platform

SR Space Robot

USB Universal Serial Bus

VES Vehicular Emulation System
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Chapter II

Literature Review

A key concern is that motion of the space robot’s robotic manipulator joints re-

sults in significant displacement and rotation of the spacecraft body due to dynamic cou-

pling [7]. This displacement means the spacecraft body cannot be fixed and needs to be

allowed to move freely. Therefore, a realistic and reliable method is needed to emulate a

free-floating environment.

Review of Current Solutions

Various solutions are already available including Hardware-in-the-loop (HIL) sim-

ulations, air-bearing tables, and parabolic flight [8] and have their own merits and lim-

itations. Below is a review of some of the common solutions used to emulate a part of

complete free-floating environment.

Air-bearing Table. An air-bearing table is a smooth, flat surface, generally made

of polished granite on which the space robot or target test satellite is placed [9] as shown

in Figure 2.1.

The spacecraft floats on a thin gas film created on air bearings mounted on the

body. Surface friction is eliminated and the spacecraft is only subject to air friction, al-

lowing it to translate and rotate in two dimensions. Air-bearing tables are used at many

testing facilities including the Stanford Aerospace Robotics Laboratory and National

Technical University of Athens to study spacecraft control, docking and collision avoid-

ance systems [10, 11].

The major hurdle with the use of air-bearing tables is that the system is limited

to purely planar motion. The design of the space robot and satellite are also limited by

placement of air bearings and pressurized gas chambers.
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Figure 2.1: Multiple Spacecraft on an Air-bearing Table at the Stanford University’s
Aerospace Robotics Laboratory (Source: Stanford University Free Flyers Project Page
[https://web.stanford.edu/group/arl/projects/free-flyers])

Figure 2.2: Extra-vehicular Activity Test at the NASA Johnson Space Center Neutral
Buoyancy Laboratory (Source: Wikimedia Commons [https://upload.wikimedia.org/wi
kipedia/commons/5/5d/Terry Virts simulates extravehicular activity in the Neutral Buoy
ancy Laboratory.jpg])
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Underwater Neutral-Buoyancy System. The NASA Johnson Space Center uses

a large pool to emulate a micro-gravity and partly free-floating condition in the Neutral

Buoyancy Lab as seen in Figure 2.2. This method is very effective for practicing Extra

Vehicular Activity (EVA) for astronauts and human missions that are generally difficult to

perform due to constrictions in space suits. However, this method is not ideal to emulate

a pure free-floating environment because the viscosity of the fluid introduces unwanted

inertial and viscous effects which prevent space robots from moving the way they would

in orbit [12].

Parabolic Flight. An aircraft performing parabolic flight has been used to em-

ulate a true spatial micro-gravity environment as well. Figure 2.3 shows scientific pas-

sengers aboard the European Space Agency’s (ESA) Zero-G aircraft performing micro-

gravity experiments during parabolic flight.

Figure 2.3: Micro-gravity Experiments Being Performed Aboard the ESA’s Zero-G Air-
craft (Source: ESA Human Spaceflight News [http://m.esa.int/Our Activities/Human Spac
eflight/ESA Parabolic Flight Campaign successfully completed in Bordeaux])
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Parabolic flight has also been used for testing of a 4 Degree-of-freedom (DOF)

space robotic arm. The testing was conducted jointly by the Tokyo Institute of Technol-

ogy and the National Space Development Agency of Japan. This solution allows for test-

ing in gravitational accelerations down to 0.02g; however, the aircraft can be in parabolic

flight for short periods of time up to 20s [13]. The limited experiment time makes the

method not viable for testing long time-consuming missions including docking and on-

orbit servicing.

Figure 2.4: On-Orbit Servicing (OOS) Simulator at the German Aerospace Center (DLR)
European Proximity Operations Simulator (EPOS) Facility (Source: DLR Institute for
Robotics and Mechatronics [http://rmc.dlr.de/rm/de/staff/roberto.lampariello/])

Hardware-in-the-Loop Simulation. HIL simulations or Hybrid Experiment

Systems as seen in Figure 2.4 is a common tool used by many space agencies and test

facilities to emulate a free-floating environment for ground testing of Autonomous Ren-

dezvous and Docking (AR&D), and OOS missions. This method utilizes a dynamic model

9



of the system and simulates the system to generate a target trajectory. This target trajec-

tory is then tracked in real-time by a RP on which the target SR is mounted. HIL simula-

tion is a very powerful tool which can be used to test hardware systems for the spacecraft

or control methods which are difficult to test purely in software. The Canadian Space

Agency has used HIL simulations to test the performance and integrate Neptec’s laser

camera system [14].

An admittance model can also be used to handle physical interactions and ex-

ternal contact forces on the spacecraft using Force-Torque (FT) sensors on the RP end-

effector. This approach has been studied and used by test facilities including the German

Aerospace Center’s (DLR’s) European Proximity Operations Simulator (EPOS) facil-

ity [15, 16, 17, 18] and the Vehicle Emulation System Model II (VES II) test bed at MIT

[19]. Studies have also shown that an FT sensor can be placed at the base of the robot

as opposed to the end-effector, which allows the admittance model to act with respect to

measured forces and torques also on the structure [20].

Another benefit is that HIL simulation systems allow testing for extended periods

of time. However, in order to simulate the SR dynamics, a precise knowledge of the SR’s

equations of motion and H-matrix parameters including inertia tensors for each body are

required [8]. Dynamic parameters such as inertia tensors for each body are difficult to

accurately measure or estimate.

Suspension System. Mechanical gantry and boom-based systems using pulleys

and counter-weights have been suggested and developed at the Carnegie Mellon Uni-

versity Robotics Institute as a testing method which would not require active control or

power for the vertical axis. The system was tested and the frictional disturbances to the

robot were shown to be typically less than 0.02g. However, the use of a counterweight

increases the translational inertia along the vertical axis by 10% [21]. The difference in

vertical inertia is significant for testing of small scale manipulators and SRs and to repli-
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cate the free-floating trajectory, the dynamic parameters such as inertia must be as close to

the actual value as possible. An error in dynamic parameters of as little as 10% can result

in significant inconsistencies in the generated trajectory [6].

Gravity Compensation. Gravity compensation is not a new topic in the field of

robotics and has been studied extensively for manipulator functions for human-assistance

robots, and compliance control. Luca and Panzieri proposed and proved mathematical

convergence of a learning gravity compensation method in which an iterative compensa-

tion scheme is used to achieve set-point regulation on a hanging robotic manipulator. In

this method, a first control iteration is performed with proportional-derivative (PD) con-

trol. The unknown gravitational effect is computed by reading the control effort at steady

state. A feed-forward term is generated and applied to the next iteration. The procedure is

repeated and the gravitational effect estimate is improved in time [22]. Research has also

been conducted on controlling the vertical axis actively. A hybrid approach using coun-

terweights and a motor to control the vertical axis has been developed by Xu and White

in which the tension in the suspension cable is measured and regulated about the counter-

weight static reaction [23].

It can be shown mathematically that any manipulator equilibrium position is glob-

ally asymptotically stable with a gravity-compensated PD control scheme if the gravity

compensation term is computed in real time [24]. To compute the gravitational effect

term, the masses, center of masses of each body the SR is composed of, and measured

joint angles are used to estimate the location of the center of gravity of the SR.
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Summary

Various methods of emulating free-floating environments to act as testbeds for

AR&D and OOS missions are used by facilities around the world, each with their own

merits and limitations. The method proposed in this thesis uses force-feedback (FF) with

gravity compensation. The goal is to provide an emulation system that is capable of run-

ning for extended periods of time with minimal knowledge of the system dynamic model

and parameters. In the future, the hardware testbed will be expanded into three dimen-

sions for a true spatial free-floating environment.
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Chapter III

Methodology

A free-floating environment is one in which there is no exchange of linear or an-

gular momentum between the free-floating body (or set of bodies) and the surroundings.

In order to maintain a free-floating environment, the total linear and angular momentum

of the bodies remains constant unless acted upon by an external force. External forces can

be in the form of contact, thrusters, solar wind, etc. For a SR moving independently as

considered in this research, thrusters induce the only external forces.

Conserving linear and angular momentum implies that no forces or torques are

applied by the SR to the surroundings or vice versa. The approach taken by the proposed

FF control solution involves measuring forces and torques at the SR mounting location

and driving the RP in such a way that the measured forced and torques are regulated about

zero for a planar system and a gravity-compensation vector for a spatial system.

The solution involves an RP with a FT transducer on the end-effector on which the

SR or target simulation body is to be mounted. The RP is a robotic manipulator capable

of moving the end-effector to at least 3 DOF for a planar system and 6 DOF for a spatial

system. The FT transducer is a 6-axis sensor capable of measuring forces and torques

along three orthogonal axes. Since the FT transducer is mounted on the RP end-effector,

the measures forces and torques are in the directions of the RP end-effector coordinate

frame.

Control inputs to the RP actuators are provided in order to satisfy the control goal

of driving the forces and torques measured at the interface between the RP and SR to zero

or a gravity-compensated vector. Under ideal circumstances, when the forces and torques

between the SR and RP are eliminated, linear and angular momentum of the SR are con-

served, hence resulting in a free-floating environment. It is important to consider that
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there are other means to exchange momentum with the surroundings (e.g. air friction).

For the purposes of this research, the SR will be moved very slowly with respect to am-

bient air minimizing drag forces. This assumption is safe since the target application for

the free-floating environment testbed is to emulate AR&D and OOS procedures that are

characterized by slow relative velocities.

In order to test and demonstrate the viability of the proposed method, simulations

and experimental validations are performed. Firstly, the viability of FF control is tested in

a planar setting where the SR is only expected to experience motion about a plane. The

planar system is modeled and tested in simulation, and compared against the current in-

dustry standard (i.e. HIL simulation). The planar system is then implemented in a labo-

ratory setting to perform experimental validation. Finally, an FF control is simulated in a

spatial setting where gravity compensation is also required in both the RP and SR joints.

Planar System Simulation

The goal of testing a planar FF control system is to study the viability of FF con-

trol without the effects of gravity. A simulation is set up and the performance of FF con-

trol is compared against HIL simulation where a 10% measurement error in knowledge of

H-matrix and G-vector parameters is introduced. Performance metrics used are errors in

trajectory and changes in linear and angular momentum.

System Dynamic Modeling. Dynamic models are implemented for both the SR

alone in free-floating environment and the SR mounted on an RP with an FT sensor. The

model of the SR alone is used to generate a reference trajectory for comparison and also

as the desired trajectory for HIL simulation. For the planar system, a 3-axis FT sensor is

used in simulation which measures forces about the horizontal plane and torque about the

normal to the plane.

The SR portion of the complete system model is identical to the separate SR model.
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Figure 3.1 depicts a top-view of the planar system used for simulation.
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Figure 3.1: Coordinate Frames and Variables Visualization of an RP with an FT Trans-
ducer and an SR Used for Planar Simulation Dynamic Modeling

The RP is capable of translation along the inertial (considered as the RP base

frame) x and y axes and rotation about the z axis. The deflections in the FT transducer

are exaggerated in the figure as the transformation between the RP end-effector e and SR

base b frames. The SR is comprised of a momentum wheel at the center of the SR body, a

4-link planar manipulator and 8 reaction control thrusters that generate forces in the direc-

tions T1 to T8.

Space Robot Model. The generalized coordinates vector of the planar SR, qqqSR2 is

defined as:

qqqSR2 =

[
xSR2 ySR2 ψSR2 θMW θ1 θ2 θ3 θ4

]T

, (III.1)
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where xSR2, ySR2 and ψSR2 define the planar position and orientation (pose) of the SR

body frame with respect to an inertial frame, θMW is the rotation angle of the momentum

wheel and θ1 through θ4 are the joint angles of the planar robotic manipulator on the SR.

The Lagrangian of the system L(qqqSR2, q̇qqSR2) is computed as the difference between

the total kinetic and potential energies in the system. The Euler-Lagrange formulation is

used to derive the closed form equations of motion in the form:

d
dt

∂L(qqqSR2, q̇qqSR2)

∂ q̇qqSR2
− ∂L(qqqSR2, q̇qqSR2)

∂qqqSR2
+ fff f = fff SR2 =

[
Fx Fy τψ τMW τ1 τ2 τ3 τ4

]T

, (III.2)

where fff f is the vector of frictional forces and fff SR2 is the vector of forces and torques

along the generalized coordinates of the planar SR.

In a free-floating environment, the frictional forces along the xSR2, ySR2 and ψSR2

directions are zero, resulting in the vector of frictional forces:

fff f = [0 0 0 f f ,MW f f ,1 f f ,2 f f ,3 f f ,4]
T . (III.3)

Friction in the momentum wheel and manipulator joints are modeled using vis-

cous and Coulombic models:

f f ,i = αiθ̇i +βisgn(θ̇i), (III.4)

where i is the momentum wheel or any joint of the manipulator, αi is the coefficient of

viscous friction, βi is the coefficient of Coulombic friction, and sgn() is the signum func-

tion that returns a 1 for a positive input argument and a −1 for a negative input argument.

In Equation (III.2), fff is the vector of the generalized forces on the SR. Fx and Fy

are the forces applied along the generalized coordinates x and y. τψ is the generalized
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force applied about the generalized coordinate ψ . These forces and the torque are the sum

of the forces and the torque applied by the force-torque sensor Fx,S, Fy,S, and τψ,S and the

resultant forces and torque applied by the thrusters Fx,T , Fy,T and τψ,T :




Fx

Fy

τψ



=




Fx,S

Fy,S

τψ,S



+




Fx,T

Fy,T

τψ,T




(III.5)

The thrusters are modeled by applying forces along the xb and yb axes and a torque

about the zb axis using the equation:




Fb
x,T

Fb
y,T

τb
ψ,T



= MMM

[
T1 T2 T3 T4 T5 T6 T7 T8,

]T

(III.6)

where the forces from the thrusters are represented by T1 through T8 and MMM is a matrix

that maps the individual thruster forces to forces and a torque in the body frame axes. MMM

is obtained from the force and moment equilibrium equations of the thrusters and reac-

tions:

Fb
x,T = T7 +T8−T2−T3 (III.7)

Fb
y,T = T5 +T6−T1−T2 (III.8)

τb
ψ,T = lT (T1 +T3 +T5 +T7−T2−T4−T6−T8), (III.9)
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MMM =




0 0 −1 −1 0 0 1 1

−1 −1 0 0 1 1 0 0

lT −lT lT −lT lT −lT lT −lT



, (III.10)

where lT is the arm of the moment induced by the thrusters about the z-axis of the body

frame.

The body frame forces and torque are transformed into the inertial frame via a

rotation about the zI (parallel to zb) axis by the angle ψ:




Fx,T

Fy,T

τψ,T



=




cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1







Fb
x,T

Fb
y,T

τb
ψ,T




(III.11)

The torque at the momentum wheel is given by τMW , and τ1 through τ4 are the

torques at each of the manipulator joint angles. Standard DC geared motors are used to

actuate the momentum wheel and each of the manipulator links. The motors are modeled

using the following equation:

CiVi

Ri
= JiNiθ̈i +bv,iNiθ̇i +bC,isgn(θ̇i)+

τi

Ni
+

CiNiθ̇i

Ri
, (III.12)

as in [25] where armature inductance is assumed to be negligible. Here, Vi is the armature

voltage for motor i, Ri is the armature resistance for motor i, Ci is both the motor torque

constant and back electromotive force constant, Ni is the gear-ratio, Ji is the armature mo-

ment of inertia, bv,i is the viscous friction of the motor, and bC,i is the Coulombic friction.

Using the geared DC motor model, the generalized forces vector fff SR2 is mapped
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to the input vector uuu as:

uuu = J̃JJmq̈qqSR2 + ñnn(q̇qqSR2)+RRRm fff SR2. (III.13)

The input vector is given by:

uuu =

[
Fx,T Fy,T τψ,T VMW V1 V2 V3 V4

]T

, (III.14)

where VMW is the armature voltage applied to the momentum wheel and V1 through V4 are

the armature voltages applied to the DC motors actuating each of the manipulator links.

J̃JJm is a diagonal matrix defined as:

J̃JJm = diag([0 0 0 J̃m,MW J̃m,1 J̃m,2 J̃m,3 J̃m,4]), (III.15)

where:

J̃m,i =
RiJiNi

Ci
. (III.16)

Additionally, ñnn is a vector defined by the equation:

ñnn = [0 0 0 ñMW ñ1 ñ2 ñ3 ñ4]
T , (III.17)

where:

ñi =
Ribv,iNiθ̇i +RibC,isgn(θ̇i)+C2

i Niθ̇i

Ci
. (III.18)

Furthermore, RRRm is also a diagonal matrix that is defined as:

RRRm = diag([1 1 1 Rm,MW Rm,1 Rm,2 Rm,3 Rm,4]) (III.19)
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where:

Rm,i =
Ri

NiCi
. (III.20)

It is well known that the equations of motion can be expressed in the following

generalized form:

HHHSR2(qqqSR2)q̈qqSR2 +nnnSR2(qqqSR2, q̇qqSR2) = fff SR2, (III.21)

where HHHSR2(qqqSR2) is the system mass matrix and nnnSR2(qqqSR2, q̇qqSR2) is a vector of general-

ized Coriolis, centripetal, and frictional forces and torques.

By substituting Equation (III.21) into Equation (III.13), the following electro-

mechanical equations of motion for the SR are obtained:

ĤHHSR2(qqqSR2)q̈qqSR2 + n̂nnSR2(qqqSR2, q̇qqSR2) = uuuSR2, (III.22)

where:

ĤHHSR2(qqqSR2) = J̃JJm +RRRmHHHSR2(qqqSR2), (III.23)

and:

n̂nnSR2(qqqSR2, q̇qqSR2) = RRRmmmnnnSR2(qqqSR2, q̇qqSR2)+ ñnnSR2. (III.24)

Equation (III.22) is the composite electro-mechanical equations of motion used

and integrated to simulate the free-floating SR.

Force-Torque Transducer Model. In order to simulate the FT sensor mounted on

the RP’s end-effector, a spring damper system model is used.

The forces and the torque measured by the sensor are described by the following
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equations:

Fe
x,S = Kxdx+bxḋx, (III.25)

Fe
y,S = Kydy+byḋy, (III.26)

and

τe
ψ,S = Kψdψ +bψ ˙dψ. (III.27)

where Kx, Ky and Kψ are the linear and torsional spring constants of the FT sensor and bx,

by and bψ are the linear and torsional damping constants. dx, dy, and dψ are the relative

translational and rotational displacements of the force and torque sensor, respectively.

This model is also used in the complete system model (below) to apply forces into

the generalized directions of the FT sensor spring-dampers.

Robotic Platform Model. The RP model consists of a planar-motion platform

with the force and torque sensor mounted onto the end-effector. The generalized coordi-

nate vector for the RP, qqqRP2, is defined as:

qqqRP2 = [xRP2 yRP2 ψRP2 dx dy dψ θMW θ1 θ2 θ3 θ4]
T , (III.28)

where xRP2 and yRP2 are the coordinates of the RP end-effector frame e along the inertial

axes xI and yI , ψRP2 is the rotation of the RP end-effector about zI , and θi are the joint

angles of the momentum wheel and the manipulator joints.

The translational joints are driven by lead screws rotated by DC geared motors.

Linear power transmission is modeled using the lead screw mechanical advantage equa-

tion:

Fx,RP =
2πη

l
τx,RP and Fy,RP =

2πη
l

τy,RP, (III.29)
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where Fx,RP and Fy,RP are the linear forces along the generalized coordinates xRP2 and

yRP2, respectively. Additionally, η is the mechanical advantage efficiency, l is the pitch

of the threaded rod and τx,RP and τy,RP are the torques applied by the actuators. The rota-

tional joint is driven by a standard DC geared motor.

The Euler-Lagrange formulation is utilized to derive the system mass matrix,

HHHRP2(qqqRP2), along with the vector of generalized Coriolis, centripetal, and frictional

forces and torques, nnnRP2(qqqRP2, q̇qqRP2), for the RP. These terms are combined with motors

modeled in the form of Equation (III.13) to obtain the following electro-mechanical equa-

tions of motion for the RP:

ĤHHRP2(qqqRP2)q̈qqRP2 + n̂nnRP2(qqqRP2, q̇qqRP2) = uuuRP2. (III.30)

The derivation of the equations of motion for the complete system given in Equa-

tion (III.30) follows the same procedure used to derive the equations of motion for the SR

previously.

Control Strategies. In the following section, the implemented control strategies

and performance evaluations are introduced.

Hardware-in-the-Loop Simulation Verification. A computed-torque trajectory

tracking controller is utilized by the RP for the HIL simulations that are presented in

the next section. For the HIL simulations, a trajectory is generated either in real-time or

off-line by numerically integrating the SR’s equations of motion. This trajectory is then

tracked by the RP’s computed-torque tracking controller.

The vector of desired generalized coordinates for the RP, obtained by numerically
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integrating the SR’s equations of motion is defined as:

qqqD(t) =
[

x y ψ 0 0 0 θMW θ1 θ2 θ3 θ4

]T

. (III.31)

Here, the displacements of the force-torque sensor, dx. dy and dψ are assumed to

be negligible as a result of high spring constants.

The trajectory-tracking controller utilizes an outer feedback loop defined as:

www = q̈qqD +KKK p(qqqD−qqqRP2)+KKKd(q̇qqD− q̇qqRP2), (III.32)

where KKK p and KKKd are constant positive-definite diagonal gain matrices. This control term

is utilized in conjunction with the following inner feedback linearizing control law:

uuuRP2 = ĤHHRP2(qqqRP2)www+ n̂nnRP2(qqqRP2, q̇qqRP2). (III.33)

Application of the above controller to Equation (III.30) results in a decoupled

closed-loop system that is stable about the zero trajectory error. Figure 3.2 shows the

block diagram for the tracking controller.
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d
dt

Kp

Kd

γRP

γD

γ̇D

γ̈D γ̇RP

w uRP
uRP = ĤRP (γRP )w + n̂RP (γRP , γ̇RP )

γRP

+
+

+

Σ
Σ Σ

          +

+ System
Dynamics

Figure 3.2: HIL Simulated-trajectory Tracking Controller Block Diagram.

Force-Feedback Control. A force-feedback control strategy is proposed as an al-

ternative method to recreating free-floating SR motion. In this approach, non-zero forces

and torque measured by the force-torque sensor are nullified by strategically actuating the

translational and rotational links of the RP. Figure 3.3 is a block diagram of the proposed

FF controller.

dt

Kp

Kd

Ki

γRP

[
F e
x,S
F e
y,S
τ eψ,S

]

∫
dt



F I
x,S

F I
y,S

τ Iψ,S


 = Rz(ψ)

[
F e
x,S
F e
y,S
τ eψ,S

]

d System
Dynamics

Sensor

+
+

+
Σ

Figure 3.3: FF Controller Block Diagram.
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The measured forces and torque, Fe
x , Fe

y , and τe
ψ are first transformed into forces

and torque along the inertial frame axes, (i.e. F I
x , F I

y and τ I
ψ ) via a rotation through the

angle ψRP2 ≈ ψRP2−dψRP2 as:




F I
x,S

F I
y,S

τ I
ψRP2,S



=




cos(ψRP2) −sin(ψRP2) 0

sin(ψRP2) cos(ψRP2) 0

0 0 1







Fe
x,S

Fe
y,S

τe
ψRP2,S



. (III.34)

A Proportional, Integral, and Derivative (PID) controller is used to drive the RP

actuators in order to nullify the forces and torque at the interface:




uRP,x

uRP,y

uRP,ψRP2



= KKK p




F I
x,S

F I
y,S

τ I
ψRP2,S



+KKKi

∫




F I
x,S

F I
y,S

τ I
ψRP2,S




dt +KKKd
d
dt




F I
x,S

F I
y,S

τ I
ψRP2,S




(III.35)

Here, KKK p, KKKi and KKKd are the constant positive-definite gain matrices for the PID

control terms.

The use of an integral term in the controller adds potential instability and drift in

the robot trajectory. This instability is observed in the simulation results.

Figure 3.3 depicts a block diagram of the force-feedback controller where RRRz(ψRP2)

is the rotation matrix about the z-axis through the angle ψRP2. It should be noted that this

method does not require any knowledge of the SR’s equations of motion or the dynami-

cal parameters which, incidently, are required to generate the target trajectory for the HIL

Simulated-Trajectory Tracking Control strategies.

Simulation Environment Development. To perform a large number of simula-

tions with various inputs, a high performance simulation tool is necessary. As a result of
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this research, a flexible and powerful dynamic model simulation tool was developed.

The simulation tool is capable of integrating the system equations of motion de-

fined earlier. Additionally, the simulation tool was developed to have real-time graphical

visualization of the system, live plotting, flexible model definition and configuration sys-

tem and a scripting language interpreter to allow for fast debugging and testing without

re-compilation.

The program is written in C++ and is operated from a command line.

Dynamics Integration Engine. The initial simulation tool used for planar FF

control development and testing integrates the closed-form electro-mechanical equations

of motion. The generalized velocities and accelerations are computed using the equa-

tions of motion and a 4th order Runga-Kutta integrator is used to generate the trajectory

as shown in the equations below:

kkk1(t) = dynamics(XXX(t),uuu(t)), (III.36)

kkk2(t) = dynamics(XXX(t)+ kkk1(t)
dt
2
,uuu(t)), (III.37)

kkk3(t) = dynamics(XXX(t)+ kkk2(t)
dt
2
,uuu(t)), (III.38)

kkk4(t) = dynamics(XXX(t)+ kkk3(t)dt,uuu(t)), (III.39)

and:

XXX(t +dt) = XXX(t)+
(

kkk1(t)
6

+
kkk2(t)

3
+

kkk3(t)
3

+
kkk4(t)

6

)
dt. (III.40)

In Equations (III.36) to (III.40), XXX(t) is a time-varying state vector comprised of
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the generalized coordinates and accelerations:

XXX(t) = [qqqi q̇qqi]
T , (III.41)

where qqqi is the generalized coordinates vector of system i —either the planar SR alone

(qqqSR2) or the complete system including the RP (qqqRP2). The function dynamics() is an

algorithm that implements the equations of motion of the system to compute ẊXX(t) given

the current state XXX(t) and inputs uuu(t). The vectors kkk1(t) through kkk4(t) are intermediate

variables used in the integration algorithm. The time step in the simulation is dt.

Equations (III.22) and (III.30) are re-arranged to solve for the generalized acceler-

ations as follows:

q̈qqi =
[
ĤHH i(qqqi)

]−1
(uuui− n̂nni(qqqi, q̇qqi)) . (III.42)

The simulation tool utilizes the C++ Armadillo library [26] due to its high perfor-

mance and ease of integration.

Real-time Visualization Engine. OpenSceneGraph [27] is used as a 3D graphics

engine to visualize the SR and RP during simulation to aid controller development and

testing. Computer Aided Design (CAD) models were made representing the SR and RP

system and were loaded using the OpenSceneGraph engine. Each of the objects represent-

ing separate bodies in the CAD model are animated independently.

Figure 3.4 is a screenshot of the simulation tool with the RP and SR mounted on

it:
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Figure 3.4: Screenshot of Robot Dynamics Simulator Developed for FF Controller Devel-
opment and Testing

The simulation tool allows for transformations of objects in the CAD model using

matrices to define 3D rotation, translation and scaling. These animations can be defined

for each body in the model definitions. Translations are used to move the SR body frame

or RP translational joints. Rotations are used for the SR orientation, RP rotational joint,

momentum wheel and SR manipulator links.

Program Model Input System. To allow for flexibility and simulation of various

robotic systems (in this case, the RP and SR), the simulation tool was developed to accept

a set of user defined text files defining the model parameters, variables and so forth.

The model definition file (*.model) holds information such as CAD model path,

paths to other definition files, paths to scripts and configuration parameters that are read

and used by the compiled program.

The variable definition file (*.vars) defines the generalized coordinates and input

variables to be used. These variables are accessed from other parts of the program. Wrap-
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ping and saturation of inputs can also be defined here.

The constant parameters definition file (*.params) holds constant parameters used

in the dynamics() function. These parameters are not hard-coded to allow for fast testing

and debugging. These parameters are also the zero, first and second mass moments to

which an error is introduced to test HIL simulation.

The forward kinematics definition file (*.fk) is used to define serial robot links.

The definition is used by the simulation tool to compute the center of mass, linear and

angular momentums of the system.

The animations definition file (*.anim) is used define 3D animations defined above

to visualize the robot in real-time during simulation. Object names from the CAD model,

animation type (i.e. translate, rotate, scale), center, axis, factor and variable or property

are defined for each object that needs to be animated.

Property Tree. A property tree system is developed and used to handle variables

that are critical to the simulation and for external variables used to test sub-systems. The

model input interpreter allows properties from the tree to be used as variables for anima-

tions. Properties can also be logged and post-processed. The property tree is most useful

in combination with the scripting system supported by the simulation tool.

Scripting Integration. Furthermore, to allow for flexibility and fast debugging

and development, the simulation tool was integrated with Lua scripting. Lua is a powerful

and efficient scripting language that supports procedural programming, object-oriented

programming, functional programming and data-driven programming and has been used

in many industrial applications [28]. Lua scripting can be used in the simulation tool to

run the core controller algorithm or additional scripts. The scripting is deeply integrated

with many of the tool’s core functions including access to graphics, robot dynamics, prop-

erties, and plotting. Lua scripts can be used to visualize and transform external models
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(e.g. center of mass identifier, ground), generate custom live plots or write to file during

simulation. Lua scripts in the tool also have access to the property tree and allows manag-

ing variables that affect animation, dynamics and so forth.

The combination of the above modules make the simulation tool a very powerful

and high performance tool not only for verification but also future development. Aside

from this research, the tool was also used to develop controllers for an omni-directional

spherical robot [29], an under-actuated aircraft, and used to demonstrate and test many

other robotic systems including 6 DOF manipulators, a four-wheel drive robot, an anthro-

pomorphic arm, and the spatial free-floating environment system emulation testbed robot

used for 3D free-floating environment emulation.

Planar System Experimental Validation

A planar free-floating environment testbed was constructed similar to the one sim-

ulated to prove viability and performance.

Apparatus and Hardware Setup. The following sections provides an overview

of the hardware setup and equipment used to construct the testbed. Figure 3.5 is a dia-

gram shows the connections and communications between components in the RP testbed.
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Figure 3.6: Complete Planar System Including RP, FT Sensor and SR

Figure 3.6 is a picture of the complete planar testbed system including the RP, FT

sensor, SR and control station.

Robotic Platform. The RP is a modified Hirata Cartesian industrial robot [30].

The actuators were replaced with Maxon RE65 DC geared motors [31] to match the simu-

lation model and a rotational axis was added to the end of the translational axes as seen in

Figure 3.6. The RP has a functional work area of approximately 400 mm about the x axis

and 320 mm about the y axis. The FT sensor cable limits the z axis rotation to approxi-

mately 720 degrees (two revolutions).

Force-Torque Transducer. An ATI mini40 [32] FT transducer was used to mea-

sure the forces and torques between the end-effector of the RP and the SR base frame.

The specific sensor was selected based on performance characteristics to match the mea-

sured forces and torques in simulation. Figure 3.7 is a figure of the ATI mini40 sensor
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mounted on the system with the SR body mounted on it:

Figure 3.7: SR Body Mounted on an ATI mini40 FT Sensor on the RP End Effector

As seen in Figure 3.7, the FT sensor is the only form of physical contact between

the SR and RP. Therefore, theoretically by regulating the forces and torques measured by

the sensor about zero, the linear and angular momentum of the SR can be conserved.

An ATI data acquisition and interface unit is used to connect the FT sensor to the

control station.

Space Robot. The SR is one similar to that used in simulation; however, the SR

has no momentum wheel nor reaction control thrusters. For experimental validation, the

linear and angular momentum are the performance metrics used and the 4-link planar

robotic manipulator on the SR is sufficient in creating required system excitation inputs

to test the performance. Additionally, thrusters are external forces applied to the system
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which would change the momentum.

Four Robotis Dynamixel MX-28AT servos [33] are used for the planar manipu-

lator on the SR. Custom SR body and links were 3D printed and assembled. A Robotis

OpenCM Cortex-M3-based embedded microcontroller [34] is used to control the MX-

28AT servos and a Digi Xbee RF Module [35] is used to communicate with the control

station. The RF module is used to physically isolate the SR from the RP except through

the FT sensor. The MX-28AT servos are operated in a velocity control mode where a goal

speed is applied to the servos instead of a target position. The goal speed inputs allow the

SR to more closely re-create the inputs used in simulation.

Control Station Interfacing. A desktop computer is used as the control station

and performs critical tasks including running the core controller, managing soft limits,

and logging data. As shown in Figure 3.5, the control station uses a DAQe-2213 analog

data acquisition [36] and a PCIe-7296 digital input and output cards [37] that communi-

cate with the computer through Express Peripheral Component Interconnect (PCIe). The

Xbee communicates using a Universal Serial Bus (USB) FTDI breakout.

In order to interface the RP with the PCIe cards, a custom printed circuit board

(PCB) was designed and fabricated. An additional circuit consisting of two Arduino Dues

was constructed to interface the digital input and output pins on the PCIe-7296 card with

the custom PCB. The function of the Arduino Due circuit is to decode quadrature signals

from the three encoders on the RP and generate an absolute position digital output signal

the PCIe-7296 card can read. The circuit reads digital motor commands and generates

PWM signals to run the RP actuators.
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Figure 3.8: Fabricated Motor Driver Carrier Board Top Side

The custom PCB is a motor driver carrier board that interfaces the motors and en-

coders on the RP side to the PCIe adapter shield on the control station side.

Figure 3.8 is a picture of the top side of the motor driver carrier board with the

ESCON motor drivers. Figure 3.9 shows the motor driver carrier board connected to the

RP actuators (yellow, green and orange cables), the encoders (gray shielded cables) and

the Arduino Due circuit through the DB-25 connector:

35



Figure 3.9: Motor Driver Carrier Board Mounted on Robotic Platform Table with Motor,
Encoders, Power and Data Lines Connected

Also seen in Figure ?? is the DAQe-2213 card above the PCIe-7296 adapter shield

used for analog data acquisition. The ATI FT sensor interface unit outputs six analog volt-

age signals that correlate to the forces and torques measured. A calibration matrix is re-

quired to obtain the individual forces and torques from these voltages. The analog volt-

ages are measured by the DAQe-2213 and used in the control software.

Control Software Development. The control station software handles reading

the forces and torques through the DAQe-2213 board, reading decoded encoder positions

through the PCIe-7296 board, applying motor control commands through the PCIe-7296

board, communicating with the SR and logging all states.

The program is written in C++ and Visual Studio 2017 is used to compile and de-

bug.
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Console. A console is used to control the functions of the RP controller, control

the SR, and monitor the controller functions. The console is a live interactive window

that allows the operator to enter commands to perform various functions on both the SR

and RP including homing, moving to position, setting motor speeds, stopping, starting

the controller, starting the SR input sequence, and moving the SR manipulator to various

configurations.

Figure 3.10 is a screenshot of the control console displaying the help output.

Figure 3.10: Control Station Console Used to Access and Perform Various Functions on
the RP and SR

Controller Implementation. The controllers discussed in the Control Strategies

section below are implemented in the program. The only matrix operation is the multipli-

cation of a 6x6 matrix with a 6x1 vector, which is performed using nested loops, eliminat-

ing the need for a linear algebra library.

The PCIe cards are accessed using ADLINK’s PCIS-DASK and D2K-DASK li-

braries. The libraries allow sampling at very high frequencies, allowing for very fast con-
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trol response.

Data Collection Scheme. Data are collected from the RP and SR for post pro-

cessing and analyzing the performance of the controller.

Robotic Platform State Logging. The states of the RP are defined by the encoder

positions, which are ready through the PCIe-7296 card using the PCIS-DASK library.

These states are written to file along with the corresponding SR states.

Space Robot State Logging. The SR communicates to the control station with a

Digi Xbee. The control station side of the Xbee is connected through a USB. A file han-

dle is used to communicate with the USB serial port to log the SR states over time.

Control Strategies. The control goal for the planar free-floating environment

testbed is to emulate motion of the SR in a true free-floating environment using force-

feedback control. Comparing against a simulation of the actual system is very difficult

since small errors in dynamic parameters can lead to significant disparities in trajectory.

Therefore, the performance metric used will be conservation of linear momentum. The

linear momentum of the SR can be expressed using the equation:

pppSR2 = mSR2
I
I ṙrrcm,SR2, (III.43)

where pppSR2 is the linear momentum of the of the planar SR, mSR2 is the total (measured)

mass of the SR, and I
I ṙrrcm,SR2 is the velocity of the center of mass of the SR with respect

to an inertial measurement frame, in this case considered to be equivalent to the RP base

frame.

Unless an external force is provided (e.g. using thrusters or contact), the linear

momentum of the system must remain constant. Given a static initial condition, the linear

momentum must remain zero throughout the emulation under ideal circumstances. The
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zero linear momentum requires the center of mass velocity to be zero, leaving the center

of mass of the SR stationary throughout the emulation.

For simplification, the center of mass of the SR is used as the performance metric

for analyzing the control methods. The center of mass of the SR is estimated using two

different methods. The first method uses torque measurements about the FT sensor’s x

and y axes, which are not used by the FF controller. The center of mass along the plane of

motion can be given by the equations:

excm,SR2 =
eτy

mSR2 gz
, (III.44)

and:

eycm,SR2 =−
eτx

mSR2 gz
, (III.45)

where excm,SR2 and eycm,SR2 are the x and y coordinates of the center of mass of the SR

with respect to the RP end-effector frame, eτy is the torque measurement about the FT

sensor’s y axis, eτx is the torque measurement about the FT sensor’s x axis and gz is the z

component of the gravitational acceleration vector.

The center of mass position in the inertial frame can be computed using the equa-

tion:

I
Irrrcm,SR2 =

I
Irrre +

ITTT e
e
errrcm,SR2

=




xRP2

yRP2

0



+

1
mSR2 gz

RRRz(ψRP2)




τe
y

−τe
x

0



. (III.46)

This approach is capable of computing an estimate purely based on torque read-

ings and does not require any information about the SR model. The approach is expected
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to be reliable only for low frequency system excitations since forces in the x and y axes

can translate into moments due to the displacement of the center of mass along the z axis

that are not accounted for in the planar system. Measuring the fixed z component of the

SR center of mass allows for compensation due to these induced moments as well.

Another approach used to estimate the center of mass of the SR takes advantage

of a static model of the SR and the joint variables. The center of mass of a multi-body

system can be computed using the equation:

I
Irrrcm,SR2 =

Σmi
I
Irrrcm,i

Σmi
, (III.47)

where mi is the mass of body i and I
Irrrcm,i is the local center of mass of the body i for each

body in the multi-body system.

This approach is expected to provide estimates of similar accuracies even for high

frequency system excitations; however, errors in static parameter identification of the SR

can lead to inaccurate CM estimates.

Figure 3.11 illustrates the center of mass estimates made using the torque mea-

surements (magenta) and the static model (blue). It is observed that the estimates are

within 5mm of each other:
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Figure 3.11: Center of Mass Estimates of the SR Made Using Measured Torques and
Static Model

Pure Force-Feedback Control. Pure FF control is tested on the planar free-floating

environment testbed using the implementation depicted by the controller block diagram in

Figure 3.12.

As used in the 2D simulation, a PID controller is used to compute the RP input

vector. The feedback loop is closed through the strain gauge voltage readings from the FT

sensor and also the computation of the transformation matrix to transform the measured

forces from the RP end-effector frame e to the inertial frame I.

Firstly, the measured voltages vvvsg are unbiased using the calibration bias voltages

vvvsg,0:

vvvsg,calib = vvvsg− vvvsg,0, (III.48)
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where vvvsg,calib is the vector of calibrated voltages. The forces and torques in the RP end-

effector frame eξξξ axes are computed by multiplying a calibration matrix Ccalib with the

calibrated strain gauge voltages vvvsg,calib:

eξξξ =
[eFx

eFy
eFz

eτφ
eτθ

eτψ
]T

=CCCcalibvvvsg,calib. (III.49)

Σ

Σ
vvvsg,calib

vvvsg

vvvsg,0
CCCcalib

eξξξeχχχ
eχχχ =




eFx
eFy
eτψ


=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1


 eξξξ

KKK p

KKKi

KKKd

KKKd

+

+
+

+

−

SR Dynamics

FT Sensor

RP Dynamics
qqqRP2∫

dt

d
dt

Iξξξ = RRRz(ψRP2)
eξξξ

I χχχ

Figure 3.12: Block diagram of pure force-feedback control for the planar free-floating
environment testbed

The calibration matrix is provided by the FT sensor manufacturer. The forces and

torques required for the pure FF controller, eFx, eFy and eτψ , are selected to the form of a
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vector eχχχ from the vector of all measured forces and torques:

eχχχ =




eFx

eFy

eτψ



=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1




eξξξ . (III.50)

The forces and torques in the inertial frame Iχχχ = RRRz(ψRP2)
eχχχ are used as inputs to

a PID controller to yield inputs for the three planar RP actuators.

Center of Mass Regulator. Due to errors in measurement noise and the integral

term in the pure FF controller, the SR drifts over time. In order to attempt to minimize

the drift, a simple center of mass regulation controller is tested for the x and y axes while

leaving control of the rotational axis to pure FF control. The center of mass regulation

controller drives the RP in a manner that maintains the center of mass of the SR.

Equations (III.48) and (III.49) are used in the same fashion as the pure FF con-

troller to attain the forces and torques measured by the FT sensor in the RP end-effector

frame eξξξ . The center of mass of the SR in the inertial frame is computed using Equation

(III.46).

A PID controller is used to drive the RP actuators in order to maintain the center

of mass of the SR.

The center of mass regulation controller output is augmented with the pure force-

feedback controller to generate the control signals to be sent to the RP.

Figure 3.13 is a block diagram of the center of mass regulator used for testing.
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

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

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+

[
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]

Figure 3.13: Block Diagram of Center of Mass Regulation Controller Used for Testing

Spatial System Simulation

The use of FF control to emulate a spatial free-floating environment testbed is

tested in simulation as part of this research.

The spatial testbed consists of a 7 DOF robotic manipulator as the RP with a 6-

axis FT sensor on the end-effector. The SR is a 6 DOF robotic manipulator mounted on

the FT sensor.
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System Dynamic Modeling. The complete spatial testbed system consists of 19

generalized coordinates. As solving closed-form dynamic model requires an excessive

amount of computational power, the Newton-Euler method is used to model the spatial

system. The equations of motion using this approach are written separately for each body

in the multi-body system and the inverse dynamics are solved for in real-time for each

body. It can be analytically proven that by substitution of reaction forces, the closed form

equations of motion using the Euler-Lagrange formulation can be attained [24].

A general framework of the Newton-Euler balance of forces and torques is fol-

lowed for each body with different defining parameters. The defining equations are the

Newton Equation for translational motion:

l fff l− l fff l+1 +ml
lggg = ml

l
I r̈rrcm,l, (III.51)

and the Euler Equation for rotational motion:

lτττ l− lτττ l+1 +
l fff l× l

l−1rrrcm,l− l fff l+1× l
lrrrcm,l =

l
lJJJ

l
l−1ω̇ωω l +

l
l−1ωωω l× l

lJJJ
l
l−1ωωω l, (III.52)

where:

• fff l is the vector of forces applied by link l−1 on link l

• fff l+1 is the vector of forces applied by link l on link l +1

• ml is the mass of link l

• lggg is the gravitational acceleration

• l
Irrrcm,l is the position of the center of mass of link l with respect to the inertial frame

• lτττ l is the torque applied by link l−1 on link l
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• lτττ l+1 is the torque applied by link l on link l +1

• l
l−1rrrcm,l is the position of the center mass of link l with respect to the joint of the

previous link l−1

• l
lrrrcm,l is the position of the center of mass of link l

• l with respect to the joint of link l

• l
lJJJ is the inertia tensor of link l

• l
l−1ωωω l is the angular velocity of link l from link l−1

all measured with respect to the link l frame.

The following equations are used to compute the linear and angular velocities and

accelerations for each link in the serial robotic system:

l
l−1ωωω l =





lTl−1
l−1
l−2ωωω l−1 prismatic joint

lTl−1

(
l−1
l−2ωωω l−1 + q̇l [0 0 1]T

)
revolute joint

, (III.53)

l
l−1ω̇ωω l =





lTl−1
l−1
l−2ω̇ωω l−1 prismatic joint

lTl−1

(
l−1
l−2ω̇ωω l−1 + q̈l [0 0 1]T +

(
q̇l

l−1
l−2ωωω l−1× [0 0 1]T

))
revolute joint

,

(III.54)

and:

l
I r̈rr

l =





lTl−1

(
l−1
I r̈rrl−1 + q̈l [0 0 1]T

)
+
(
2q̇l

l
l−1ωωω l

)
×
(

lTl−1 [0 0 1]T
)

l
l−1ω̇ωω l× l

l−1rrrl +
l
l−1ωωω l×

(l
l−1ωωω l× l

l−1rrrl
)

prismatic joint

lTl−1
l−1
I r̈rrl−1 +

l
l−1ω̇ωω l× l

l−1rrrl +
l
l−1ωωω l×

(l
l−1ωωω l× l

l−1rrrl
)

revolute joint

,

(III.55)
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where ql is the joint variable of link l - the displacement for a prismatic joint or the rota-

tion angle for a revolute joint.

The linear acceleration of the center of mass is computed for each link using the

equation:

l
I r̈rrcm,l =

l
I r̈rrl +

l
l−1ω̇ωω l× l

l r̈rrcm,l +
l
l−1ωωω l×

(
l
l−1ωωω l× l

lrrrcm,l

)
. (III.56)

The angular acceleration of the actuator rotor on link l is computed using the

equation:

l−1
l−1ω̇ωωm,l =

l−1
l−2ω̇ωω l−1 +Nm q̈l [0 0 1]T +

(
Nm q̇l

l
l−1ω̇ωω l

)
× [0 0 1]T , (III.57)

where Nm is the gear ratio of the motor.

Using the joint linear and angular velocities and accelerations, the forces and

torques used for the balance equations are computed as follows:

l fff l =
lTl+1

l+1 fff l+1 +ml
l
I r̈rrcm,l, (III.58)

and:

lτττ l =
lTl+1

l+1τττ l+1 +
(

lTl+1
l+1 fff l+1

)
× l

lrrrcm,l +
l
lJJJ

l
l−1ω̇ωω l +

l
l−1ωωω l×

(
l
lJJJ

l
l−1ωωω l

)
(III.59)

+Nmq̈lJm [0 0 1]T +
(

Nmq̇lJm
l
l−1ωωω l

)
× [0 0 1]T − l fff l×

(
l
l−1rrrl +

l
lrrrcm,l

)
,

where Jm is the rotor inertia of the actuator. It is also assumed that for all the links, the

actuator spins along the joint axis.

It is important to note that Equations (III.58) and (III.59) are re-arrangements of

Equations (III.51) and (III.52) respectively transformed into the link l frames. The grav-
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itational acceleration is removed as it is assumed that the base frame is fixed and a nega-

tive gravitational acceleration is used as the initial condition.

Finally, the generalized joint forces can be computed for a prismatic joint by:

fl =
l fff T

l
lTl−1 [0 0 1]T +Nm Jm

l−1
l−1 ω̇ωωT

m,l [0 0 1]T +αl q̇l +βi sgn(q̇l), (III.60)

and joint torques for a revolute joint by:

τl =
lτττT

l
lTl−1 [0 0 1]T +Nm Jm

l−1
l−1 ω̇ωωT

m,l [0 0 1]T +αl q̇l +βi sgn(q̇l). (III.61)

Finally, the dynamic model of a link can be obtained using Equations (III.53) to

(III.61). The same equations can also be used to model the complete system using the

Newton-Euler recursive algorithm, assuming the system is comprised of a set of links in

serial arrangement.

Space Robot Model. The SR alone in free-floating environment (used to generate

comparison reference trajectories) is modeled as closed-form equations of motion using

the Euler-Lagrange formulation as was done for the planar system. The closed form equa-

tions were used because the system only has 12 generalized coordinates and the simula-

tion tool is capable of simulating the system with the available computational resources.

The generalized coordinates of the spatial SR are given by the equation:

qqqSR3 =

[
xSR3 ySR3 zSR3 φSR3 θSR3 ψSR3 qSR3,1 qSR3,2 qSR3,3 qSR3,4 qSR3,5 qSR3,6

]T

, (III.62)

where xSR3, ySR3, and zSR3 represent the position of the SR base frame with respect to the

inertial frame as follows:

I
Irrrb = [xSR3 ySR3 zSR3]

T , (III.63)
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φSR3, θSR3 and ψSR3 represent the orientation of the SR base frame with respect to the in-

ertial frames in a XYZ Euler rotation sequence as follows:

ITb = Rz(ψSR3)Ry(θSR3)Rx(φSR3), (III.64)

where Rz(ψ) is a z-axis rotation by angle ψ , Ry(θ) is a y-axis rotation by angle θ , Rx(φ)

is an x-axis rotation by angle φ , and qSR3,1 through qSR3,2 are the joint variables of the 6

DOF spatial robotic manipulator on the SR.

Similar to the planar SR model, the electro-mechanical equations of motion are

derived to the form:

ĤHHSR3(qqqSR3)q̈qqSR3 + n̂nnSR3(qqqSR3, q̇qqSR3) = uuuSR3. (III.65)

Force-Torque Transducer Model. The FT sensor is modeled in a similar way as

that of the planar system, using separate spring-damper models for each axis. In addition

to Equations (III.25), (III.26), and (III.27), the following equations are used:

Fe
z,S = Kzdz+bzḋz, (III.66)

τe
ψ,S = Kψdψ +bψ ˙dψ, (III.67)

and:

τe
θ ,S = Kθ dθ +bθ ˙dθ . (III.68)

An XYZ Euler rotation sequence is used in the placement of the torsional spring-

damper combinations used to measure torque. Due to very large spring constants Kφ ,

Kθ and Kψ , the deflections in the rotation angles of the FT transducer dφ , dθ and dψ
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are negligible and the rotations are ignored in the controller. However, the rotations are

modeled in the dynamic model used for simulation. The transformation from the RP end-

effector frame e and the SR body frame b as a result of the FT sensor are given by:

e
errrb = [dx dy dz]T , (III.69)

and:

eTb = Rz(ψ)Ry(θ)Rx(φ). (III.70)

The FT sensor is modeled as a set of serial passive joints using the Newton-Euler

dynamic modeling approach using Equations (III.25) through (III.27) and Equations

(III.66) through (III.68). The equations are implemented by applying the forces and torques

computed using the spring-damper models as the inputs corresponding to the passive gen-

eralized coordinates defining the sensor.

Robotic Platform Model. For the complete spatial testbed including the RP, FT

sensor, and SR, the Newton-Euler dynamic modeling approach outlined by Equations

(III.53) through (III.61) are used. The generalized coordinates vector of the spatial testbed

qqqRP3 is given by:

qqqRP3 = [qRP3,1 qRP3,2 qRP3,3 qRP3,4 qRP3,5 qRP3,6 qRP3,7 dx dy dz dψ dθ dφ (III.71)

qSR3,1 qSR3,2 qSR3,3 qSR3,4 qSR3,5 qSR3,6]
T .

The base frame of the RP is assumed to be stationary and in an inertial frame.

Control Strategies. The control method utilized is a gravity-compensated-zero

force-feedback controller. The use of a zero FF controller has been shown in the planar

system. To incorporate the gravity compensation term, the resulting gravitational effect of
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the SR must be computed.

Real-time Gravity Compensation. The gravitational effect of the SR on the force-

torque sensor results in a force vector in the downward direction with magnitude equal to

the weight of the SR. This vector only has one component in the inertial coordinate frame

z-axis zI:

fff I
g =




f I
x,g

f I
y,g

f I
z,g



=




0

0

Σmβ g



, (III.72)

where F I
k,g is the resultant gravitational force in the k axis, mβ is the mass of the rigid

body connected to coordinate frame β and g is the acceleration due to gravity.

The gravitational effect also results in moments about the inertial xI and yI axes

due to the location of the center of mass of the SR not being directly over the force-torque

sensor:

τττ I
g =




τ I
x,g

τ I
y,g

τ I
z,g



=




[0 1 0]T I
brrrcm,SR

[1 0 0]T I
brrrcm,SR

0




Σmβ g, (III.73)

The forward kinematics of the SR and the G-vector parameters, including masses

and vector of first mass moments of each link, are required to be known to compute the

center of mass of the SR. These parameters are, however, easily measurable unlike, the

second mass moments which are required for HIL simulation.

The location of the center of mass of the SR with respect to the body frame mea-
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sured in the inertial frame is computed using the equation:

I
brrrcm,SR =

1
Σmβ

Σ(I
brrrβ mβ + ITTT β

β
β ΓΓΓ), (III.74)

with both summations being across all the bodies connected to coordinate frames repre-

sented by β . ITTT β is the rotation matrix from the inertial frame to frame β and β
β ΓΓΓ is the

vector of first mass moments of frame β measured with respect to frame β .

A true spatial free-floating environment emulation requires both the base of the

SR and the manipulator on the SR to respond in a similar manner to control inputs as they

would in a free-floating micro-gravity environment. This emulation requires gravity com-

pensation to also be performed on the joints of the SR manipulator.

The strategy applied to perform gravity compensation on the SR manipulator is to

compute the forces and torques due to gravity and augment the raw control inputs vector

uuu with the gravitational effect vector τττg,SR3(qqqSR3). The gravitational effect vector can be

computed using the total gravitational potential energy of the system as follows:

τττg,SR3(qqqSR3) =
∂U(qqqSR3)

∂qqqSR3
, (III.75)

where Ug(qqqSR3) is the total gravitational potential energy of the system as a function of

the generalized coordinates.

The pure mechanical equations of motion of the spatial SR can be written in the

form:

HHHSR3(qqqSR3)q̈qqSR3 +nnnSR3(qqqSR3, q̇qqSR3) = fff SR3, (III.76)

similar to that of the planar SR from Equation (III.21). In Equation (III.76), the vector of

Coriolis, centripetal, frictional and gravitational forces nnnSR3(qqqSR3, q̇qqSR3) can be separated

into the vector of Coriolis, centripetal and frictional forces and torques τττc,SR3(qqqSR3, q̇qqSR3)
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that are functions of both the generalized coordinates and the generalized velocities, and

the vector of gravitational forces and torques τττg,SR3(qqqSR3) that are only functions of the

generalized coordinates, resulting in:

HHHSR3(qqqSR3)q̈qqSR3 + τττc,SR3(qqqSR3, q̇qqSR3)+ τττg,SR3(qqqSR3) = fff SR3. (III.77)

Comparing equivalent physical systems on Earth (left) and in free-floating envi-

ronment (right), results in:

HHHSR3(qqqSR3)q̈qqSR3 + τττc,SR3(qqqSR3, q̇qqSR3)+ τττg,SR3(qqqSR3)− fff SR3 =

HHHSR3(qqqSR3)q̈qqSR3 + τττc,SR3(qqqSR3, q̇qqSR3)− fff 0,SR3

=⇒ fff SR3 = fff 0,SR3 + τττg,SR3(qqqSR3) (III.78)

Equation (III.78) yields an augmented generalized forces and torques vector fff SR3

applied to the joints with fff 0,SR3 being the generalized forces and torques that would be

applied to the joints in zero-gravity.

The electro-mechanical equations of motion for the spatial SR are also attained

using the same procedure used for the planar SR, which allows Equation (III.13) to be

re-written as:

uuu = J̃JJmq̈qqSR3 + ñnn(q̇qqSR3)+RRRm fff SR3

=⇒ fff SR3 = RRR−1
m
(
uuu− J̃JJmq̈qqSR3− ñnn(q̇qqSR3)

)
. (III.79)

The above Equation can also be similarly applied to the free-floating scenario

with the zero-gravity input vector uuu0 and the zero-gravity generalized forces and torques

53



fff 0,SR3:

uuu0 = J̃JJmq̈qqSR3 + ñnn(q̇qqSR3)+RRRm fff 0,SR3

=⇒ fff 0,SR3 = RRR−1
m
(
uuu0− J̃JJmq̈qqSR3− ñnn(q̇qqSR3)

)
. (III.80)

Substitution Equations (III.79) and (III.80) into Equation (III.78) produces a sim-

ple relationship between the augmented control inputs necessary for the system on Earth

and the raw control inputs to be applied to the system in zero-gravity:

uuu = uuu0 +RRRmτττg,SR3(qqqSR3). (III.81)

The augmented control input uuu is applied to the joints of the SR during simulation.

Compensated Force-Feedback Control. To perform gravity-compensated-zero

force-feedback control, the end-effector of the RP is moved in the respective directions

to drive the vectors of forces and torques measured by the force-torque sensor at the in-

terface to the vectors of expected gravitational forces and torques computed in real-time,

with both the control parameters and control goal measured in the same reference frame.

The vectors of forces and torques measured by the sensor in the RP end-effector

frame e is transformed into the inertial frame as follows:




fff I
S

τττ I
S


=




ITTT e(qqqRP) 0003x3

0003x3
ITTT e(qqqRP)







fff e
S

τττe
S


 , (III.82)

where ITTT e(γγγRP) is a transformation matrix from the end-effector frame to the inertial

frame, which is a function of the vector of the joint variables of the RP and represents

the forward kinematics. 0003x3 is a (3x3) zero matrix.
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The control goal is given as:




fff I
S

τττ I
S


→




fff I
g

τττ I
g




=⇒




fff I
S

τττ I
S


→




0

0

Σmβ g

[0 1 0]T Σ(I
brrrβ mβ + ITTT β

β
β ΓΓΓ)g

[1 0 0]T Σ(I
brrrβ mβ + ITTT β

β
β ΓΓΓ)g

0




. (III.83)

The outer control loop used for the simulations utilizes a PID controller to gener-

ate desired translational and rotational accelerations in the inertial frame.

The transpose Jacobian of the 7-DOF RP is used to compute the desired torques in

each of the 7-DOF joint in order to accelerate the RP end effector in the desired accelera-

tions generated by the PID controller. It can be shown using the principle of virtual work

that the transpose Jacobian of a robot can be used to map task space forces and torques

into the joint forces and torques.

The Jacobian is constructed sequentially for each link using Equations (III.84) and

(III.85).

JJJ =




JP1 JP7

...

JO1 JO7




(III.84)
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


JPi

JOi


=




ITTT i−1(:,3)×
(I

Irrr7− I
Irrri−1

)

ITTT i−1(:,3)


 (III.85)

Figure 3.14 is a block diagram of the complete spatial free-floating emulation

testbed controller:

Figure 3.14: Block Diagram of Complete Spatial Free-floating Emulation Testbed Con-
troller

Simulation Environment Improvements. Various improvements were made

to the simulation tool previously developed for planar conditions to be able to simulate

the spatial free-floating environment testbed. The major modification was the addition
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of the capability to numerically simulate a dynamic model given by the Newton-Euler

equations. Other minor modifications included improvements to the graphics engine inte-

gration and controller helper functions for controllers written using Lua scripts.

Figure 3.15 is a screenshot of the simulation tool simulating the spatial testbed.

Figure 3.15: Screenshot of robot dynamics simulator tool with spatial free-floating envi-
ronment testbed.

Newton-Euler Recursive Algorithm. The same dynamics integration module

for the planar system simulation is still used to run the dynamics simulation of the robot;

however, the Newton-Euler recursive algorithm is implemented to compute the general-

ized accelerations as opposed to solving a linear system of equations given by the closed-
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form dynamic model.

The implementation of the Newton-Euler recursive algorithm requires the linear

and angular velocities and accelerations of each link, linear acceleration of the center

of mass of each link and angular acceleration of each actuator rotor given by Equations

(III.53) through (III.57) to be computed from the base frame up to the end-effector in a

so-called forward recursion, also known as an outbound pass. On completion of the for-

ward recursion, the balance forces and torques given by Equations (III.58) and (III.59)

are computed starting from the end-effector down to the base in a so-called backward re-

cursion, also known as an inbound pass. The joint forces and torques are also computed

simultaneously with the backward recursion.

A function NE0() is created with the input arguments as the generalized coordi-

nates, generalized velocities, generalized accelerations, gravitational acceleration vector,

base angular velocity, base angular acceleration and base linear acceleration. The function

performs the steps of the Newton-Euler recursive algorithm and returns the joint forces

and torques in the form of a vector that corresponds to the vector of generalized forces

and torques.

Various calls of the NE0() function are used to solve the direct dynamics of the

system. The system mass matrix ĤHH is constructed by combining the column vector out-

puts of the NE0() function called with the current generalized coordinate values, zero

generalized velocities and vector eeei for the generalized accelerations. The gravitational

acceleration vector input argument is passed as a null column vector with three rows. eeei

is a column vector of the same size as the generalized coordinates vector with 1 in the ith

row and zeros on all other rows. The index i also corresponds to the column of the system
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mass matrix being constructed:

ĤHH =



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

, (III.86)

where 000 is a null vector of the size of the generalized coordinates vector, and 0003 is a (3x1)

zero vector.

The vector of Coriolis, centripetal, gravitational and frictional forces n̂nn is con-

structed using the NE0() function with input arguments as the generalized coordinates,

generalized velocities, a null vector as the generalized accelerations input and the gravita-

tional acceleration vector:

n̂nn = NE0(qqq, q̇qq,000,ggg) (III.87)

Using the system mass matrix and vector of Coriolis, centripetal and frictional

forces, the generalized accelerations are solved for in a similar fashion as that of solving a

closed-form system as shown in Equation (III.42).

59



Chapter IV

Results

Planar System Simulation Results

Two models of the SR are used for the simulations; the first model is considered to

be the Actual Space Robot (ASR), and the second is considered to be the Modeled Space

Robot (MSR). The MSR model incorporates a 10% increase in the mass of the spacecraft,

of the momentum wheel, and of each link.

The SR is tested with fifty-five different sets of excitation inputs comprising of

sinusoidal inputs with frequencies ranging from 0.5 to 4 (rad/s) for the robotic arm, vari-

ous sinusoidal inputs for the thrusters and position and joint tracking controller tests in re-

sponse to zeroed initial conditions. Both the ASR and MSR are simulated in free-floating

conditions under each of these test sets in order to generate the ASR trajectories (ATs)

and the MSR trajectories (MTs). The ATs are used as the reference trajectories hereafter.

The dynamical, electrical and controller parameters used for the simulations are available

online at [38].

Hardware-in-the-Loop Simulation Verification. In order to verify the proper

implementation of the HIL trajectory-tracking controller, the ASR is mounted on the RP

with the controller tracking the AT (HIL-ASR-AT). The HIL trajectory-tracking controller

is then utilized to track the MT with the ASR mounted on the RP (HIL-ASR-MT). This

scenario emulates a realistic HIL simulation set-up where the MT would have uncertain-

ties in the measured dynamic parameters. Finally, the force-feedback controller is utilized

with the ASR mounted on the RP (FF-ASR).
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Figure 4.1: Error Terms Associated with HIL Simulated-trajectory Tracking Controller
Tracking the MT and the AT for a Low Frequency Test Set
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Figure 4.1 depicts plots of the error terms versus time for the HIL-ASR-MT and

HIL-ASR-AT scenarios for one of the test sets. As seen from the plots, the errors gener-

ated with the HIL-ASR-AT scenario in reference to AT are significantly smaller than the

errors generated with the HIL-ASR-MT scenario in reference to AT. The RMS position

error of the HIL-ASR-AT scenario, ∆rRMS =
√

∆x2
RMS +∆y2

RMS, is found to be 99.1% less

than the RMS position error of the HIL-ASR-MT scenario for the first test set. The RMS

orientation error (∆ψRMS) of the HIL-ASR-AT scenario is found to be 93.3% less than

that of the HIL-ASR-MT scenario. The RMS of momentum wheel joint angle errors of

the HIL-ASR-AT scenario, ∆θRMS =
√

∑i ∆θ 2
i,RMS, are found to be 93.2% less than that of

the HIL-ASR-MT scenario.

These results show that most of the errors in the HIL simulation are not due to

controller errors. The majority of errors can be attributed to the difference in dynamic

parameters between the ASR and MSR used to generate AT and MT, respectively.

Space Robot Trajectory Error Analysis. Error metrics are defined as the differ-

ence between the AT and the trajectories generated by the three scenarios: HIL-ASR-MT,

HIL-ASR-AT and FF-ASR.

Figure 4.2 is a plot of the error terms generated by the HIL-ASR-MT scenario and

the FF-ASR scenario in reference to AT.

As seen in the plots, the force-feedback control shows significantly less trajectory

and joint angle errors as compared to the HIL-ASR-MT scenario for the first test set. The

RMS position error of the FF-ASR scenario is 94.2% less than that of the HIL-ASR-MT

scenario. Additionally, the RMS orientation error is 96.65% less and the RMS momen-

tum wheel and joint angle errors are 99.93% less than that of the HIL-ASR-MT scenario.

It can also be observed that the force-feedback controller out-performs the HIL-ASR-AT

scenario in terms of orientation and joint angle errors for the first control input set; how-
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ever, this is not the case at higher frequency control inputs as will be discussed in the next

section.
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Δ

Figure 4.2: Error Terms Associated with Both the HIL Simulated-trajectory Tracking
Controller Tracking the MT and the FF Controller for a Low Frequency Test Set
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The plot in Figure 4.3 compares the position, orientation, momentum wheel and

joint angle errors of the FF-ASR scenario with the HIL-ASR-MT scenario for a test set

with higher frequencies. It can be seen that the errors are still much larger with the HIL-

ASR-MT scenario, but there is a noticeable amount of position and orientation drift in

the FF-ASR scenario. This drift is a disadvantage of the force-feedback control method.

However, in practice, the frequencies of the system excitation inputs for an SR berthing

scenario are expected to be relatively low. Momentum wheel and manipulator joint angle

drifts are not as prominent with the highest frequency excitation input sets simulated.
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Figure 4.3: Error Terms Associated with Both the HIL Simulated-trajectory Tracking
Controller Tracking the MT and the FF Controller for a High Frequency Test Set
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Momentum Conservation Error Analysis. The linear momentums in the xI

and yI axes, and angular momentum about the zI axis are computed as additional error

metrics since a perfectly isolated system without any external forces will conserve linear

and angular momentum. The linear momentum vector is computed using the equation:

ppp(t) = ∑
k∈K

mk
I
I ṙrrk(t)+

IṪTT k(t) k
kqqq, (IV.1)

where K is a set of the six bodies comprising the SR, the spacecraft, the momentum wheel,

and the four manipulator links. A frame is defined for each body. mk is the mass of body

k, I
Irrrk is the vector from the inertial frame to the origin of the frame k measured in the in-

ertial frame, ITTT k is the transformation matrix from the inertial frame to frame k, and k
kqqq is

the vector of first mass moments of body k measured in frame k. Only the x and y compo-

nents of the linear momentum are used for comparison.

The angular momentum vector is calculated using the equation:

hhh(t) = ∑
k∈K

(
I
Irrrk(t)× pppk(t)− I

I ṙrrk(t)× ITTT k(t) k
kqqq+ ITTT k(t) k

kJJJ
k
kωωω I(t)

)
, (IV.2)

where k
kJJJ is the inertia tensor of body k measured with respect to frame k, and k

kωωω I(t) is

the angular velocity vector of body k with respect to the inertial frame measured relative

to the k frame. Only the z component of the angular momentum vector is used for com-

parison.

In order to study the ability of the system to conserve momentum over time, Equa-

tions (IV.1) and (IV.2) are used to compute linear and angular momentum.

The plots in Figure 4.4 depict the computed linear and angular momentum compo-

nents with a low-frequency test set. The FF-ASR system errors are primarily due to high

frequency transients in the control response and can be minimized by further improving
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the force-feedback controller. A 43.0% reduction of the linear momentum RMS error can

be observed when FF-ASR results are compared to HIL-ASR-MT results. However, a

5.9% increase in the angular momentum RMS error is observed.
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Figure 4.4: Computed Linear and Angular Space Robot Momentum for Both the HIL
Simulated-trajectory Tracking Controller Tracking the MT and the FF Controller for a
Low Frequency Test Set
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Performance Analysis over Multiple System Excitations. Figures 4.5 and 4.6

show the error distribution in momentum components and trajectory over the tested input

sets.

In general, the force-feedback control method is able to more accurately recreate

the free-floating trajectory. On average using this method, ∆rRMS is 90.79% less, ∆ψRMS

is 96.33% less, and ∆θRMS is 99.77% less than when using the HIL-ASR-MT scenario.
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Figure 4.5: Histograms Depicting the Relative Frequencies of Trajectory and Joint Angle
Error among Multiple System Excitation Input Sets
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Figure 4.6: Histograms Depicting the Relative Frequencies of Linear and Angular Mo-
mentum Error Among Multiple System Excitation Input Sets

Similarly, the FF-ASR scenario out-performs the HIL-ASR-MT scenario when

conserving linear and angular momentum over the set of tests. On average, the force-

feedback controller’s ∆px,RMS is 95.26% less, ∆py,RMS is 77.91% less and ∆hz,RMS is 75.16%

less than that of the HIL simulation tracking controller. Since the zeroed initial conditions

configure the SR so that the links are aligned with the xI axis, the sinusoidal system ex-
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citation inputs cause higher frequency motion along the yI axis than the xI axis. This is a

possible cause for larger errors in ∆py,RMS than ∆px,RMS for the force-feedback controller.

The complete simulation results with RMS error for multiple system excitation

input sets are also listed in Tables 4.1 and 4.2.

Table 4.1 consists of the RMS momentum and trajectory errors for the HIL simu-

lation runs and Table 4.2 consists of the RMS momentum and trajectory errors for the FF

simulation runs.
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Table 4.1: Momentum and Generalized Coordinate RMS Errors for 55 Test Sets Using the
HIL Simulated-trajectory Tracking Controller.

Set
Momentum RMS Error Generalized Coordinate RMS Error

∆px,RMS ∆py,RMS ∆hz,RMS ∆rRMS ∆ψRMS ∆θRMS
(kg m/s) (kg m/s) (kg m2 rad/s) (m) (rad) (rad)

1 6.96E-04 5.61E-04 8.67E-04 2.25E-03 8.59E-03 8.96E-02
2 6.84E-04 5.37E-04 8.73E-04 2.20E-03 8.71E-03 8.97E-02
3 6.37E-04 3.66E-04 8.83E-04 2.05E-03 1.71E-02 8.98E-02
4 6.30E-04 3.60E-04 8.86E-04 2.07E-03 1.88E-02 8.99E-02
5 5.80E-04 3.64E-04 8.54E-04 1.94E-03 1.35E-02 8.91E-02
6 5.80E-04 3.57E-04 8.61E-04 1.94E-03 1.55E-02 8.92E-02
7 5.78E-04 4.03E-04 8.71E-04 2.07E-03 2.36E-02 8.91E-02
8 5.80E-04 4.05E-04 8.68E-04 2.12E-03 2.51E-02 8.91E-02
9 7.34E-04 5.05E-04 7.52E-04 7.37E-04 5.43E-03 8.56E-02

10 7.48E-04 5.21E-04 7.64E-04 7.09E-04 5.72E-03 8.56E-02
11 7.74E-04 4.90E-04 7.49E-04 7.09E-04 8.48E-03 8.57E-02
12 7.87E-04 5.04E-04 7.54E-04 7.23E-04 8.81E-03 8.57E-02
13 1.02E-03 4.92E-04 7.26E-04 7.30E-04 1.27E-02 8.54E-02
14 1.02E-03 5.19E-04 7.38E-04 7.36E-04 1.32E-02 8.54E-02
15 1.24E-03 4.64E-04 6.94E-04 8.81E-04 1.64E-02 8.53E-02
16 1.28E-03 4.73E-04 6.94E-04 8.45E-04 1.62E-02 8.53E-02
17 4.99E-04 4.96E-04 5.62E-04 1.78E-03 8.52E-03 6.46E-02
18 4.97E-04 5.07E-04 5.61E-04 1.75E-03 8.98E-03 6.46E-02
19 4.71E-04 5.11E-04 5.65E-04 1.70E-03 1.73E-02 6.44E-02
20 4.74E-04 5.04E-04 5.64E-04 1.73E-03 1.88E-02 6.44E-02
21 4.29E-04 4.66E-04 5.61E-04 1.57E-03 1.36E-02 6.43E-02
22 4.43E-04 4.68E-04 5.59E-04 1.58E-03 1.52E-02 6.43E-02
23 4.46E-04 3.62E-04 5.69E-04 1.71E-03 2.17E-02 6.41E-02
24 4.49E-04 3.44E-04 5.66E-04 1.73E-03 2.27E-02 6.41E-02
25 6.58E-04 5.43E-04 5.85E-04 5.22E-04 4.91E-03 6.50E-02
26 6.69E-04 5.57E-04 5.98E-04 5.33E-04 5.07E-03 6.50E-02
27 6.88E-04 4.79E-04 6.25E-04 6.49E-04 6.40E-03 6.48E-02
28 7.06E-04 4.79E-04 6.28E-04 6.79E-04 6.68E-03 6.48E-02
29 9.97E-04 4.03E-04 6.12E-04 5.10E-04 8.47E-03 6.56E-02
30 1.00E-03 4.20E-04 6.28E-04 5.22E-04 8.77E-03 6.56E-02
31 1.21E-03 3.51E-04 6.31E-04 5.59E-04 1.13E-02 6.53E-02
32 1.25E-03 3.62E-04 6.29E-04 5.58E-04 1.16E-02 6.53E-02
33 6.17E-04 1.03E-03 1.13E-01 4.29E-02 2.84E-01 9.22E-03
34 2.33E-04 1.37E-03 2.55E-02 1.90E-03 9.72E-03 3.16E-03
35 3.47E-04 1.50E-03 1.05E-02 3.01E-03 2.02E-02 2.84E-03
36 3.09E-04 1.40E-03 8.92E-03 2.56E-03 1.71E-02 2.47E-03
37 2.85E-02 2.15E-02 9.31E-03 1.64E-02 1.08E-02 1.73E-03
38 2.41E-02 2.25E-02 6.42E-03 1.42E-02 7.02E-03 1.20E-03
39 2.17E-02 7.16E-04 6.17E-04 5.02E-03 2.46E-04 1.62E-03
40 5.23E-02 6.31E-02 2.02E-02 2.91E-02 1.23E-02 1.50E-03
41 5.24E-02 1.11E-02 1.55E-02 5.34E-03 9.68E-03 2.13E-03
42 2.54E-02 4.18E-02 1.52E-02 1.86E-03 1.06E-02 2.09E-03
43 7.12E-03 4.09E-03 2.13E-03 3.21E-05 3.04E-04 1.46E-03
44 7.01E-03 4.36E-03 2.42E-03 3.02E-05 3.11E-04 1.50E-03
45 1.06E-02 5.46E-03 3.35E-03 2.34E-04 7.39E-04 1.79E-03
46 3.46E-02 3.03E-02 1.03E-02 2.00E-03 9.57E-03 2.50E-03
47 7.35E-03 3.63E-03 1.49E-03 3.42E-05 4.48E-04 2.26E-03
48 7.33E-03 3.69E-03 1.61E-03 1.80E-05 1.53E-04 1.48E-03
49 5.38E-01 3.37E-01 1.81E-01 9.90E-02 2.52E+00 4.98E+01
50 7.44E-03 3.86E-03 4.44E-03 5.30E-04 2.28E-02 4.06E-01
51 9.35E-03 4.46E-03 7.14E-03 8.92E-04 4.11E-02 7.53E-01
52 3.81E-02 9.74E-03 1.49E-02 2.29E-03 1.36E-01 2.47E+00
53 7.35E-03 3.61E-03 1.47E-03 4.17E-05 4.69E-04 2.63E-02
54 2.26E-03 1.69E-03 4.19E-03 6.70E-04 2.31E-02 4.35E-01
55 1.76E-02 1.49E-02 2.14E-02 1.76E-03 8.42E-02 1.52E+00

AVG 1.68E-02 1.10E-02 9.16E-03 4.92E-03 6.60E-02 1.05E+00
STD 7.21E-02 4.57E-02 2.82E-02 1.46E-02 3.37E-01 6.65E+00
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Table 4.2: Momentum and Generalized Coordinate RMS Errors for 55 Test Sets Using the
FF Controller.

Set
Momentum RMS Error Generalized Coordinate RMS Error

∆px,RMS ∆py,RMS ∆hz,RMS ∆rRMS ∆ψRMS ∆θRMS
(kg m/s) (kg m/s) (kg m2 rad/s) (m) (rad) (rad)

1 1.25E-04 2.79E-04 3.82E-04 7.93E-05 8.12E-04 1.23E-04
2 1.22E-04 2.79E-04 3.78E-04 7.52E-05 7.49E-04 1.05E-04
3 1.03E-04 2.78E-04 3.67E-04 6.92E-05 6.39E-04 9.15E-05
4 9.30E-05 2.80E-04 3.71E-04 6.86E-05 6.45E-04 8.19E-05
5 8.14E-05 2.80E-04 3.68E-04 5.62E-05 5.10E-04 7.36E-05
6 7.98E-05 2.81E-04 3.75E-04 5.55E-05 5.15E-04 7.08E-05
7 8.61E-05 2.89E-04 4.26E-04 5.81E-05 4.95E-04 8.41E-05
8 8.59E-05 2.88E-04 4.38E-04 5.79E-05 5.03E-04 1.09E-04
9 2.74E-04 3.00E-04 6.32E-04 1.59E-04 2.42E-04 1.40E-04

10 2.69E-04 3.03E-04 6.39E-04 1.57E-04 2.58E-04 1.56E-04
11 2.74E-04 3.06E-04 7.65E-04 1.68E-04 4.31E-04 2.02E-04
12 2.67E-04 3.08E-04 7.80E-04 1.66E-04 4.62E-04 2.15E-04
13 4.01E-04 3.33E-04 9.55E-04 2.63E-04 8.37E-04 3.98E-04
14 3.80E-04 3.33E-04 9.69E-04 2.55E-04 8.66E-04 4.00E-04
15 3.91E-04 3.59E-04 1.10E-03 2.77E-04 1.07E-03 5.10E-04
16 3.73E-04 3.58E-04 1.12E-03 2.70E-04 1.18E-03 5.68E-04
17 1.04E-04 2.90E-04 6.36E-04 8.07E-05 1.05E-03 1.67E-04
18 1.04E-04 2.92E-04 6.25E-04 8.21E-05 1.05E-03 1.64E-04
19 9.61E-05 3.02E-04 5.62E-04 9.00E-05 8.93E-04 1.37E-04
20 9.26E-05 3.02E-04 5.53E-04 8.99E-05 8.89E-04 1.32E-04
21 1.02E-04 3.01E-04 4.95E-04 8.70E-05 7.93E-04 1.29E-04
22 1.09E-04 3.01E-04 4.87E-04 9.02E-05 7.86E-04 1.26E-04
23 1.15E-04 3.00E-04 4.52E-04 9.71E-05 7.04E-04 1.13E-04
24 1.18E-04 2.99E-04 4.49E-04 9.90E-05 6.98E-04 1.18E-04
25 3.22E-04 3.02E-04 4.55E-04 1.89E-04 2.45E-04 1.09E-04
26 3.29E-04 3.00E-04 4.61E-04 1.93E-04 2.49E-04 1.10E-04
27 4.87E-04 3.03E-04 5.65E-04 2.71E-04 2.33E-04 1.28E-04
28 4.94E-04 3.02E-04 5.80E-04 2.75E-04 2.44E-04 1.18E-04
29 7.01E-04 3.32E-04 7.52E-04 3.97E-04 4.47E-04 2.38E-04
30 6.96E-04 3.30E-04 7.67E-04 3.96E-04 4.71E-04 2.51E-04
31 7.37E-04 3.57E-04 9.09E-04 4.28E-04 7.18E-04 3.61E-04
32 7.23E-04 3.56E-04 9.25E-04 4.22E-04 7.53E-04 3.74E-04
33 9.50E-05 1.00E-04 3.11E-02 1.21E-02 7.80E-02 6.90E-03
34 8.31E-05 1.05E-04 7.47E-03 5.42E-04 4.60E-03 1.46E-03
35 1.13E-04 1.35E-04 3.62E-03 8.44E-04 5.68E-03 6.65E-04
36 1.10E-04 1.36E-04 3.06E-03 7.15E-04 4.86E-03 5.52E-04
37 3.13E-03 2.49E-03 1.87E-03 1.95E-03 1.71E-03 2.76E-04
38 6.98E-05 4.10E-04 3.46E-04 3.26E-05 1.47E-04 3.46E-05
39 1.28E-04 1.29E-03 1.12E-03 2.97E-04 2.04E-03 7.44E-05
40 1.86E-04 3.86E-04 4.43E-04 1.14E-04 1.41E-04 7.08E-05
41 8.80E-03 9.88E-03 5.67E-03 1.16E-03 3.37E-03 7.61E-04
42 5.69E-03 1.25E-02 5.77E-03 3.08E-04 3.67E-03 7.56E-04
43 1.13E-03 9.75E-03 4.03E-03 5.99E-05 9.69E-05 4.18E-04
44 9.65E-04 9.81E-03 4.12E-03 5.71E-05 1.02E-04 4.49E-04
45 3.33E-03 9.51E-03 4.16E-03 2.25E-04 6.60E-04 1.01E-03
46 6.05E-03 1.02E-02 4.82E-03 2.83E-04 3.43E-03 6.12E-04
47 6.37E-04 8.80E-03 3.79E-03 8.73E-05 9.88E-04 1.03E-03
48 6.86E-04 9.58E-03 3.88E-03 1.02E-04 8.82E-04 2.28E-04
49 5.67E-05 1.99E-04 4.22E-04 5.18E-05 3.05E-04 3.05E-02
50 7.25E-04 9.44E-03 3.77E-03 1.13E-04 2.00E-04 6.78E-03
51 8.62E-04 8.70E-03 3.78E-03 1.62E-04 6.00E-04 6.22E-03
52 7.55E-04 8.91E-03 3.88E-03 3.92E-05 3.44E-04 1.57E-02
53 6.40E-04 8.82E-03 3.84E-03 9.88E-05 5.10E-04 2.29E-02
54 5.01E-04 1.57E-03 2.03E-03 2.38E-05 3.53E-04 2.22E-02
55 3.60E-04 1.61E-03 2.41E-03 8.66E-05 2.97E-04 6.15E-03

AVG 7.97E-04 2.44E-03 2.28E-03 4.53E-04 2.43E-03 2.40E-03
STD 1.61E-03 3.86E-03 4.30E-03 1.61E-03 1.04E-02 6.12E-03
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Planar System Experimental Validation Results

The free-floating environment emulation testbed was tested using two control

methods. Firstly, with a pure FF controller where the RP actuators were driven solely

to drive the forces and torques measured by the sensor to zero. Additionally, a center of

mass regulation controller was augmented to the FF controller output for the second run.

The performance metrics used to compare the performances of the controllers are

forces and torques measured at the interface and the velocity of the center of mass.

Figure 4.7: Plots of Forces and Torques Measured by the FT Sensor During Experimental
Run with a Pure FF Controller
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Force-Torque Measurement Analysis. Figure 4.7 consists of plots of forces and

torques measured by the FT sensor during the experimental run when using a pure FF

controller.

The solid blue curves indicate the measured forces and torques and the dashed

red lines indicate the positive and negative bounds of the RMS values. Figure 4.8 shows

plots of forces and torques measured by the FT sensor when running the FF controller

augmented by the implemented center of mass regulator.

Figure 4.8: Plots of Forces and Torques Measured by the FT Sensor During Experimental
Run with a FF Controller Augmented By a Center of Mass Regulator
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As seen in Figures 4.7 and 4.8, the general trends of measured forces and torques

are consistent and the controllers attempt to nullify the measured forces and torques. The

RMS forces in the x and y directions and torque around the z direction for the pure FF

controller are 0.233N, 0.332N and 0.022Nm and are 0.255N, 0.404N and 0.024Nm for

the augmented controller. The RMS values of the measured forces and torques for the

augmented controller are higher since the control goal is no longer solely to minimize

those values.

Center of Mass Velocity Analysis. Figure 4.9 consists of plots of the planar cen-

ter of mass locations and velocities estimated using the x and y torque measurements dur-

ing the experimental run with the pure FF controller.

Figure 4.10 consists of plots of the estimated planar center of mass locations and

velocities during the experimental run with the FF and augmented center of mass regula-

tion controller.

As seen in Figures 4.9 and 4.10, the velocity of the center is bounded for both con-

troller implementations. However, offsets in the center of mass velocities can lead to drift

of the center of mass positions. This is clearly observed in the y coordinate of the center

of mass in Figure 4.9.

The augmented FF and center of mass regulation controller is capable of decreas-

ing the positional drift, as observed in Figure 4.10 in spite of greater RMS forces and

torques.

The RMS of center of mass velocities for the pure FF controller run for 20 sec-

onds of operation is 0.290m/s and that for the augmented FF and center of mass regula-

tion controller is 0.158m/s. This difference shows that firstly, the FF controller is capa-

ble of emulating a free-floating environment to an extent and especially when augmented

with a center of mass regulator.
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Figure 4.9: Plots of Center of Mass Locations and Velocities During Experimental Run
with a Pure FF Controller
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Figure 4.10: Plots of Center of Mass Locations and Velocities During Experimental Run
with a FF Controller Augmented By a Center of Mass Regulator
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Spatial System Simulation Results

The spatial free-floating environment emulation testbed was tested in simulation.

The proposed gravity-compensated FF control was applied to the 7 DOF RP joints.

Figure 4.11: Trajectory Plots of SR Simulated in Free-floating Environment (blue) and SR
on RP with FF Control (red)
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Figure 4.11 consists of plots of the position of the SR body frame with respect to

the initial position measured along the RP base frame, XYZ Euler angles representing

the rotation between the RP base frame and SR body frame and the joint angles of the SR

robotic manipulator.

It can be observed from Figure 4.11 that the trends of motion of the SR in free-

floating environment are reproduced by the FF controller. Drifting in position and orien-

tation, as also observed in the planar simulations and experimental validation, are also

observed in the spatial simulation results.

Over the simulation period of 5 seconds, the Euclidean norm of RMS position

error is 0.027m, the Euclidean norm of RMS Euler angle error is 0.136rad and the Eu-

clidean norm of RMS errors of all joint angles is 0.051rad. The RMS errors and plots

from Figure 4.11 show that the joint variable positions are emulated with much lower er-

rors than the Euler angles. The tendency for the joint angles to drift is also minimal com-

pared to the body position and orientation. This is achieved with a properly implemented

gravity compensation algorithm. In order to improve the performance of the FF controller

in a spatial emulation testbed, control augmentation is necessary. Control methods such

as center of mass regulation can potentially be implemented to minimize errors in space

robot body position and orientation.
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Chapter V

Discussion, Conclusions and Recommendations

Discussion

Force-Feedback Control Method Viability.

The simulations and experimental validation performed as part of this research

show that the use of Force-Feedback (FF) control for emulating a planar and spatial free-

floating environment is a viable methodology. The FF control method does not require

knowledge of second mass moments, which are difficult to measure or precisely estimate.

Finally, the proposed method is augmented with other error-correction-based control

methods (e.g. center of mass regulation), is viable for extended run times and was able

to partially overcome the observed drift pattern.

Experimental System Disparities and Considerations.

The discrete nature and relatively low resolution of sensors plays a significant role

in amplifying the measurement errors in a laboratory setting. Furthermore, the theoretical

assumption that gravity does not influence the dynamic behavior of the system in a planar

setup is not correct. Misalignments in the Robotic Platform (RP) assembly and angular

deflections in the Force-Torque (FT) sensor induces rotations about the RP x and y axes,

creating a component of gravity in those directions. These unwanted and unaccounted-for

gravitational components resulted in time-varying offsets in the force and torque measure-

ments ultimately causing a positional and orientation drift.

Conclusions

A planar free-floating environment testbed was simulated and the performance

was compared to the industry standard solution (i.e. HIL simulation). The HIL simula-
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tions were made with an induced 10% error in the masses, first mass moments and inertia

tensors of the dynamic model. It was shown on average from the 55 system excitation in-

puts that the FF controller was more accurately able to recreate a free-floating trajectory

that the HIL simulations with the 10% error. On average, the trajectory position errors

were 90.79% less, the orientation errors were 96.33% less and the joint angle errors were

99.77% less with the FF controller. The ability for the control strategy to conserve linear

and angular momentum was also studied and it was shown that the FF controller was able

to reduce the linear momentum errors by 86.5% on average and the angular momentum

errors by 75.16%. A drift was observed in position and orientation over extended simula-

tion times.

Experimental validation was also performed for the planar free-floating environ-

ment. A complete testbed was constructed and a pure FF controller was implemented.

The FF controller resulted in RMS forces of 0.233N and 0.332N in the x and y directions

and a moment of 0.022Nm about the z direction, measured at the interface. In an ideal

free-floating environment scenario, there would be zero forces and moments to ensure

conservation of linear and angular momentum. The RMS center of mass velocity for the

FF controller run was 0.290m/s. Positional and orientation drift was also observed with

the FF controller. When augmented with a center of mass regulator to address the drift,

the controller resulted in RMS forces of 0.255N, 0.404N and a moment of 0.024Nm. The

resulting RMS center of mass velocity was only 0.158m/s. These results show that in

spite of measuring larger forces and torques at the interface, the amount of drift was re-

duced.

Finally, a spatial system was tested in simulation and a gravity-compensated FF

control was implemented. Simulation with the RP, FT sensor and the SR were run and the

resulting trajectories were compared against the Space Robot (SR) simulated in a free-

floating environment. The RMS position vector magnitude seen over the simulation time
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was 0.027m, the RMS Euler angle error vector magnitude was 0.136rad and the RMS

joint angle errors vector magnitude was 0.051rad.
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Recommendations

Control Strategy Improvements.

It was shown with the planar experimental validation that improvement and aug-

mentation of the pure FF controller is effective in improving performance and minimizing

the observed drift. Furthermore, various other potential control strategies can be tested

and implemented alongside FF control to improve performance.

Building a knowledge of the system dynamic model and dynamic parameters in-

cluding zero, first and second mass moments of each link during runtime can allow for

a transition from a pure FF controller to a different controller. A regressor matrix can be

used to identify the parameters during run time.

Testbed Implementation Recommendations.

A complete calibration of the misalignment can potentially be performed to min-

imize the effect of gravity on the planar system. The calibration procedure would include

recording FT sensor readings for various static configurations of the SR. The readings

could then be used to construct an angle-dependent calibration matrix that corrects for

misalignment.

The calibration procedure could also be a form of supervised learning procedure

that could potentially be implemented either off or on-line.

84



References

[1] Jerry Haber. Safety Design for Space Operations. Butterworth-Heinemann, 2013.

[2] U.S. Congress Office of Technology Assessment. Round trip to orbit: Human space-

flight alternatives special report, August 1989.

[3] George Bekey, Robert Ambrose, Vijay Kumar, David Lavery, Arthur Sanderson,

Brian Wilcox, Junku Yuh, and Yuan Zheng. Robotics: State of the Art and Future

Challenges. Imperial College Press, 2008.

[4] Angel Flores-Abad, Ou Ma, Khanh Pham, and Steve Ulrich. A review of space

robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 68:1–

26, 2014.

[5] Alex Ellery, Joerg Kreisel, and Bernd Sommer. The case for robotic on-orbit servic-

ing of spacecraft: Spacecraft reliability is a myth. Acta Astronautica, 63(56):632–

648, 2008.

[6] N. Muraleedharan, D. R. Isenberg, and I. Gentilini. Recreating planar free-floating

environment via model-free force-feedback control. In 2016 IEEE Aerospace Con-

ference, pages 1–12, March 2016.

[7] Yangsheng Xu. The measure of dynamic coupling of space robot systems. In

Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference

on, pages 615–620, May 1993.

[8] Wenfu Xu, Bin Liang, and Yangsheng Xu. Survey of modeling, planning and ground

verification of space robotic systems. Acta Astronautica, 68:1629–1649, 2011.

[9] Jana L. Schwartz, Mason A. Peck, and Christopher D. Hall. Historical review of

air-bearing spacecraft simulators. Journal of Guidance, Control and Dynamics,

26(4):513–522, 2003.

85



[10] Evangelos Papadopoulos, Iosif S. Paraskevas, Thaleia Flessa, Kostas Nanos, Geor-

gios Rekleitis, and Ioannis Kontolatis. The ntua space robot simulator: Design &

results. In ESA Workshop on Advanced Space Technologies for Robotics and Au-

tomation (ASTRA 2008), 2008.

[11] Evangelos Papadopoulos, Iosif S. Paraskevas, Thaleia Flessa, and Georgios Rek-

leitis. The ntua space robot emulator: Design & experiments. In International Con-

ference on Intelligent Robots and Systems (IROS 2011), 2011.

[12] Michael Bloomfield George Hogan and Mark Smith. Case studies of testing at

nasa’s neutral buoyancy laboratory (nbl) for oil and gas industry risk mitigation. In

Offshore Technology Conference, May 2015.

[13] Hirokata Sawada, Kyoichi Ui, Makoto Mori, Hiroshi Yamamoto, Ryoichi Hayashi,

Saburo Matunaga, and Yoshiaki Ohkami. Micro-gravity experiment of a space

robotic arm using parabolic flight. Advanced Robotics, 18(3):247–267, 2004.

[14] Farhad Aghili. Optimal control for robotic caputring and passivation of a tumbling

satellite with unknown dynamics. In AIAA Guidance, Navigation and Control Con-

ference and Exhibit, 2008.

[15] Toralf Boge and Ou Ma. Using advanced industrial robotics for spacecraft ren-

dezvouz and docking simulation. In IEEE International Conference on Robotics

and Automation (ICRA 2011), pages 1–4, 2011.

[16] Ou Ma, Angel Flores-Abad, and Toralf Boge. Use of industrial robots for hardware-

in-the-loop simulation of satellite rendezvous and docking. Acta Astronautica,

81(1):335–347, 2012.

[17] S. Dubowsky, I. Paul, and H. West. An analytical and experimental program to de-

velop control algorithms for mobile manipulators. In Proceedings of the VIIth Sym-

posium on Theory and Practice of Robots and Manipulators, September 1988.

86



[18] Marc Garry Carmichael and Dikai Liu. Admittance control scheme for implement-

ing model-based assistance-as-needed on a robot. In Annual International Confer-

ence of the IEEE Engineering in Medicine and Biology Society, pages 870–873, July

2013.

[19] Steven Dubowsky, William Durfee, Thomas Corrigan, Andrew Kuklinski, and Uwe

Müller. A laboratory testbed for space robotics: the ves ii. In IEEE/RSJ/GI Inter-

national Conference on Intelligent Robots and Systems (ICRA 1994), pages 1562–

1569, 1994.

[20] Christian Ott and Yoshihiko Nakamura. Base force/torque sensing for position based

cartesan impedance control. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, October 2009.

[21] H.B. Brown Jr. and J.M. Dolan. A novel gravity compensation system for space

robots. In ASCE Specialty Conference on Robotics for Challenging Environments

(Space94), Albuquerque, NM, pages 250–258, 1994.

[22] Alessandro De Luca and Stefano Panzieri. Learning gravity compensation in robots:

Rigid arms, elastic joints, flexible links. International Journal of Adaptive Control

and Signal Processig, 7(5):417–433, 1993.

[23] Greg White and Yangsheng Xu. An active z gravity compensation system. Technical

Report CMU-RI-TR-92-09, Robotics Institute, Pittsburgh, PA, July 1992.

[24] L Sciavicco and B Siciliano. Moledlling and Control of Robot Manipulators.

Springer Publishing Company, 2000.

[25] F.L. Lewis, C.T. Abdallah, and D.M. Dawson. Control of robot manipulators.

Macmillan Pub. Co., 1993.

87



[26] Conrad Sanderson and Ryan Curtin. Armadillo c++ linear algebra library. http:

//arma.sourceforge.net/, 2017.

[27] OpenSceneGraph Team. Openscenegraph open source high performance 3d graphics

toolkit. http://www.openscenegraph.org/index.php/33-openscenegraph/

4-front-page, 2017.

[28] Tecgraf (formerly the Computer Graphics Technology Group of PUC-Rio) at the

Pontifical Catholic University of Rio de Janeiro. Lua the programming language.

https://www.lua.org/, 2017.

[29] N. Muraleedharan, D. S. Cohen, and D. R. Isenberg. Omnidirectional locomotion

control of a pendulum driven spherical robot. In SoutheastCon 2016, pages 1–6,

March 2016.

[30] Hirata industrial cartesian robots. http://www.hirata.co.jp/en/products/view/171.

[31] USA Maxon Motor. Maxon re65 dc motor. http://www.maxonmotor.com/maxon/

view/product/353295, 2017.

[32] ATI Industrial Automation. Ati industrial automation: F/t sensor mini40. http:

//www.ati-ia.com/Products/ft/ft_models.aspx?id=Mini40.

[33] ROBOTIS. Robotis dynamixel mx-28at servo. http://www.robotis.us/

dynamixel-mx-28at/.

[34] ROBOTIS. Robotis opencm embedded controller. http://en.robotis.com/

index/product.php?cate_code=131010.

[35] Digi International. Digi xbee rf module. https://www.digi.com/lp/xbee/

hardware.

[36] ADLINK Technology Inc. Adlink daqe-2213 data acquisition card. http://www.

adlinktech.com/PD/web/PD_detail.php?pid=665.

88

http://arma.sourceforge.net/
http://arma.sourceforge.net/
http://www.openscenegraph.org/index.php/33-openscenegraph/4-front-page
http://www.openscenegraph.org/index.php/33-openscenegraph/4-front-page
https://www.lua.org/
http://www.maxonmotor.com/maxon/view/product/353295
http://www.maxonmotor.com/maxon/view/product/353295
http://www.ati-ia.com/Products/ft/ft_models.aspx?id=Mini40
http://www.ati-ia.com/Products/ft/ft_models.aspx?id=Mini40
http://www.robotis.us/dynamixel-mx-28at/
http://www.robotis.us/dynamixel-mx-28at/
http://en.robotis.com/index/product.php?cate_code=131010
http://en.robotis.com/index/product.php?cate_code=131010
https://www.digi.com/lp/xbee/hardware
https://www.digi.com/lp/xbee/hardware
http://www.adlinktech.com/PD/web/PD_detail.php?pid=665
http://www.adlinktech.com/PD/web/PD_detail.php?pid=665


[37] ADLINK Technology Inc. Adlink pcie-7296 data acquisition and digital i/o card.

http://www.adlinktech.com/PD/web/PD_detail.php?pid=890.

[38] N. Muraleedharan. SR and RP Dynamical and Electrical Parameters, and Lua Script

to Generate Test Sets. http://robotics.pr.erau.edu/arsr/testset_params.

zip, 2015.

89

http://www.adlinktech.com/PD/web/PD_detail.php?pid=890
http://robotics.pr.erau.edu/arsr/testset_params.zip
http://robotics.pr.erau.edu/arsr/testset_params.zip

	Development of an Emulated Free-Floating Environment for On-Earth Testing of Space Robots
	Scholarly Commons Citation

	Thesis Review Committee
	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Significance of the Study
	Statement of the Problem
	Purpose Statement
	Delimitations
	Limitations
	Definition of Terms
	List of Acronyms

	Literature Review
	Review of Current Solutions
	Air-bearing Table
	Underwater Neutral-Buoyancy System
	Parabolic Flight
	Hardware-in-the-Loop Simulation
	Suspension System
	Gravity Compensation
	Summary
	Methodology
	Planar System Simulation
	System Dynamic Modeling
	Space Robot Model
	Force-Torque Transducer Model
	Robotic Platform Model

	Control Strategies
	Hardware-in-the-Loop Simulation Verification
	Force-Feedback Control

	Simulation Environment Development
	Dynamics Integration Engine
	Real-time Visualization Engine
	Program Model Input System
	Property Tree
	Scripting Integration
	Planar System Experimental Validation
	Apparatus and Hardware Setup
	Robotic Platform
	Force-Torque Transducer
	Space Robot
	Control Station Interfacing

	Control Software Development
	Console
	Controller Implementation
	Data Collection Scheme
	Robotic Platform State Logging
	Space Robot State Logging
	Control Strategies
	Pure Force-Feedback Control
	Center of Mass Regulator

	Spatial System Simulation
	System Dynamic Modeling
	Space Robot Model
	Force-Torque Transducer Model
	Robotic Platform Model
	Control Strategies
	Real-time Gravity Compensation
	Compensated Force-Feedback Control

	Simulation Environment Improvements
	Newton-Euler Recursive Algorithm



	Results
	Planar System Simulation Results
	Hardware-in-the-Loop Simulation Verification
	Space Robot Trajectory Error Analysis
	Momentum Conservation Error Analysis
	Performance Analysis over Multiple System Excitations

	Planar System Experimental Validation Results
	Force-Torque Measurement Analysis
	Center of Mass Velocity Analysis

	Spatial System Simulation Results

	Discussion, Conclusions and Recommendations
	Discussion
	Force-Feedback Control Method Viability
	Experimental System Disparities and Considerations
	Conclusions
	Recommendations
	Control Strategy Improvements
	Testbed Implementation Recommendations

	References




























