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A description is given of the methodology based on a single, aircraft-mounted spectroscopic imager to
tomographically reconstruct airglow perturbations induced by atmospheric gravity waves. In this con-
figuration, the imager passes under the airglow structure to gather multiple-angle views of the wave
structure in a relatively short amount of time. Under the assumption that the airglow structure does
not change significantly during the acquisition interval, the data can be tomographically inverted to es-
timate the 2D (horizontal–vertical) airglow structure. We develop an inversion strategy for this image
formation task and illustrate its applicability by inverting time-sequential imaging data taken from dif-
ferent vantage points during the ALOHA-93 campaign to reconstruct atmospheric gravity wave struc-
tures. © 2008 Optical Society of America

OCIS codes: 010.0280, 100.3010, 280.4991, 010.7350.

1. Introduction

As a continuous and dynamic fluid, the Earth’s atmo-
sphere is able to support propagating waves called
atmospheric gravity waves (AGWs), which have been
shown to play an important role in the momentum
and thermal balance of the upper atmosphere [1–
3]. AGWs, also called buoyancy waves, are able to
propagate both horizontally and vertically, as illu-
strated by the diagram of a simple, monochromatic
plane gravity wave in Fig. 1. As the figure suggests,
AGWs have an intrinsic phase speed, ci, which is re-
lated to the horizontal and vertical wavelength of the
wave. As AGWs propagate, they transport energy
and momentum from one part of the atmosphere
to another. Eventually this momentum is deposited
into the atmosphere through viscous processes, or
the waves become so large in amplitude that they
break and generate turbulence. As a result, there
is great interest in characterizing AGWs in the meso-
sphere to determine their specific impact in contri-
buting to the atmospheric dynamics.

The mesosphere is a region in the atmosphere that
is home to several chemiluminescent processes
called airglow emissions. These emissions are strati-
fied by height and confined to an altitude layer. As
gravity waves pass through this layer, they displace
key emission constituents along the phase fronts
such that the intensity of the airglow is spatially
modulated by the wave (in both the horizontal and
the vertical directions). In Fig. 2, the vertical profile
of a standard, unperturbed hydroxyl (OH) airglow
process (as modeled in [4]) is shown by the thick solid
curve [4,5]. The thin solid curves in the figure repre-
sent several instances of the profile as it is perturbed
5% by an AGW with a vertical wavelength of 25km.

Relatively recently, scientific-grade CCD sensors
have been used to directly measure AGWparameters
by imaging airglow perturbations from the ground
(e.g., [6,7]). Typically for this method, different tem-
poral instances of these airglow images are sub-
tracted to remove the ambient emission brightness
and to highlight the propagating wave structure.
This time-differencing effectively reduces the per-
turbed profiles represented as the thin solid curves
in Figure 2 to the time-differenced profiles repre-
sented by the thin dashed curves. Note that the
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time-differencedprofiles canberepresentedasamono-
chromatic wave enveloped by the time-difference en-
velope shown as the thick dashed curve.
Ultimately, the observations of AGW-induced air-

glow perturbations can be used to estimate the ver-
tical flux of the wave momentum (e.g., [4,7–9]). The
intrinsic wave parameters required for estimating
the momentum flux are the horizontal wavelength
(λx), vertical wavelength (λz), intrinsic phase speed
(ci), and the wave amplitude. An atmospheric wave
dispersion relation exists [1] that relates λx, λz, and
ci such that any two of these can be used to find
the third. Because the raw data from airglow ima-
gers (which typically have a hemispherical field of
view) represent a projection of the three-dimensional
field onto the two-dimensional image plane, the only
intrinsic wave parameter that can be directly mea-
sured from imagery with a single-layer observation
is λx. The vertical wavelength is traditionally found
in one of two ways. First, some measure of the meso-
spheric winds, u, can be used with the observed

phase speed, co, to calculate ci (ci ¼ co − u). The dis-
persion relation can then be used to find λz. Alterna-
tively, λz can be inferred from simultaneous
observations of two different airglow layers sepa-
rated in altitude. Assuming that the wave has planar
phase fronts and that the vertical separation of the
layers is known, λz can be found by correlating the
phase of the wave in each layer [9]. Deducing the am-
plitude of the wave requires the use of a cancellation
factor, introduced in [8]. The cancellation factor re-
lates the actual wave amplitude to the observable
airglow perturbation amplitude and is a function
of the specific airglow chemistry.

In general, the typical methods used to measure λz
may not always be feasible. To use the dispersion re-
lation, expensive laboratory equipment (along with
the infrastructure required to operate it) is needed
to measure mesospheric winds. Also, observing a
wave in two layers may be challenging because of
the 2π ambiguity of its phase or because it may only
be visible in one layer owing to rapid, vertical wave
dissipation or simply because it is ducted (i.e., the
wave has no vertical propagation component).

An alternative method for determining the vertical
wavelength is to use tomographic methods to recon-
struct the vertical perturbation structure. This ap-
proach uses multiple-angle observations of an
airglow perturbation from the ground to achieve a
multidimensional view of the structure, allowing es-
timation of the vertical content.

The use of tomography in upper-atmospheric re-
mote sensing has been widespread over the past
few decades. One of the earliest and most applicable
examples of ground-based atmospheric tomography
is the use of ground-based radio receivers in the
mid 1980s to measure ionospheric total electron
count via orbiting satellites, using Faraday rotation
and differential Doppler principles [10,11]. The ima-
ging technique, called radio tomography, models the
observation as a set of linear equations that are
solved with the algebraic reconstruction technique.
As the field of radio tomography grew, other recon-
struction techniques were introduced. For example,
Tikhonov regularization was used in [12,13], but in-
stead of using an a priori model, the authors applied
ionosonde and low-orbiting satellite measurements
as inputs. In [14], the use of natural pixels (as op-
posed to square pixels) was used to represent the re-
construction object to set up a more sparse inverse
problem. A stochastic framework for radio tomogra-
phy inversion was reported in [15].

Recent advances in photometric and imaging tech-
nologyhas fueledmanyefforts to apply tomography to
atmospheric emissions from both space-borne and
ground-based observations. In [16], a concept was in-
troduced that uses imaging spectroscopy to tomogra-
phically invert thespatial andspectral characteristics
of auroral arcs. In [17,18], a stochastic-based regular-
ization was applied to satellite data of extreme ultra-
violet oxygen emissions in the ionosphere. Also, the
algebraic reconstruction technique was applied in

Fig. 1. Diagram of the phase fronts of a plane AGW. The propa-
gation speed of the wave relative to the ground is dependent on the
mesospheric wind and the intrinsic phase speed of the wave.

Fig. 2. Typical vertical profiles of a perturbed OH airglow layer.
The thin solid lines represent a time-sequential series of a typical
vertical emission profile perturbed 5% by a wave with a vertical
wavelength of 25km. The thick solid curve represents the average
emission profile. The thin dashed curves represent the time-
differenced perturbation profiles, while the thick dashed curve
shows their envelope.
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optical tomography of satellite-limbmeasurements of
the ionospheric 6300Å emission as well as the three-
dimensional reconstruction of an auroral arc from the
5577Å oxygen emission observed by two cameras in
Norway [19,20]. A nonlinear, general reconstruction
method that parameterizes the reconstruction object
first to a vertical profile function and then uses the re-
sult to initialize the multiplicative algebraic recon-
struction technique was developed in [21]. This
method was later applied in [22] to reconstruct the
emission structure of a polar cap arc using data from
two imagers in the Canadian arctic.
Despite the amount of research pertaining to at-

mospheric tomography, the works that deal with non-
auroral mesospheric emission tomography remain
relatively scarce. In [23,24], stochastic regularization
principles were applied to a tomographic model and
later to real data from two cameras. The result was a
two-dimensional reconstruction from which the
authors make the case that more imagers are needed
to produce more accurate reconstructions. Later, a
deterministic formulation to the problem was ap-
plied to show the potential for reconstruction using,
again, a two-dimensional model [5].
The purpose of this paper is to develop the first to-

mographic model for data collected from an aircraft
passing under the airglow structure. Using the as-
sumption that the airglow structure does not change
significantly over the course of the measurement, we
may achieve a sufficient number (∼13) of images to
tomographically reconstruct it. This allows for a
more complete projection set than what is feasibly
provided by an array of ground-based imagers. We
then apply this method to observations made during
the airborne ALOHA-93 campaign.
The paper is organized by first describing the ob-

servation geometry and the associated assumptions.
Next, the forward model is described followed by the
inversion methodology. Then, a dataset is introduced
and the described method is used to reconstruct the
observed wave perturbations. We then substantiate
our findings with the conclusions of another study
of the same event [25]. Finally, we conclude the paper
with a summary and closing remarks.

2. Observation Geometry

Our method applies tomographic techniques to air-
glow imagery that is gathered from an airborne plat-
form. Over time, the aircraft can achieve multiple
views of the airglow structure, providing the oppor-
tunity to tomographically estimate its vertical struc-
ture. In this section, we describe the specifics of the
observation geometry and the associated as-
sumptions.
The observation sensor is a spectroscopic imager

that is mounted on an airborne platform, illustrated
in Fig. 3. In this geometry, the collected data repre-
sent a series of fan-shaped projections from the im-
ager. In this initial work, we consider only one row of
pixels in each image such that we obtain a two-
dimensional tomographic reconstruction represent-

ing a vertical slice of the airglow perturbation in
the direction of the aircraft velocity.

To support this geometry, we list four primary as-
sumptions about the airglow structure and the air-
borne platform. First, we assume that within the
time frame of the acquisition interval, the airglow
structure does not change significantly. This is a rea-
sonable assumption for perturbations of single waves
or packets of waves with the same horizontal velocity
because, within the typical acquisition intervals of
∼20min, the perturbation structure appears to
change only in horizontal position and not shape.
Second, we assume that the platform is at a high en-
ough altitude (>5km) that we can neglect extinction
of the airglow due to atmosphere. This assumption is
reasonable considering that the aircraft flies above
most of the tropospheric constituents that are the
dominant components in the extinction of ground-
based atmospheric measurements. Third, we assume
that the aircraft orientation is held steady over the
course of the acquisition such that there are no
changes to aircraft roll, pitch, or yaw.

Our last assumption is the altitude of airglow per-
turbations. The height of the OH perturbation layer
has been extensively studied through modeling and
satellite measurements [4,8,26], where the variabil-
ity due to gravity waves and atmospheric tides has
been shown to be consistent with the thick dashed
curve in Fig. 2. As such, we assume that the vertical
perturbation envelope is centered at 87km. This as-
sumption is important because mesospheric winds
and AGW propagation are expected to significantly
shift the horizontal position of the structure over
the course of the observation, introducing ambiguity
in the estimated height of the layer. By assuming the
altitude, we avoid this ambiguity and are able to
measure the observed horizontal phase speed from
the dataset.

3. Preprocessing of Airglow Data

In practice, ground-based airglow imagery contains
other artifacts of the nighttime sky that we count
as image clutter, such as light contamination from
stars and the Milky Way. However, we can use this
clutter to make angle-to-pixel characterizations of

Fig. 3. Diagram of observation geometry. As the airplane
travels under the airglow, it achieves multiple angle looks of
a slow-moving airglow structure, allowing the possibility of
tomographic reconstruction.
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the imager to better understand how the data relate
to the perturbation structure. Here, we describe the
preprocessing steps taken before the tomographic re-
construction.

A. Pixel-to-Angle Map

Because the accuracy of the pixel-to-angle mapping
is critical for tomography, we analyze the star field
in one image to measure the sensor pixel-to-angle
conversion. We first use sensor location (either from
the GPS or a map) and acquisition time information
to determine the appropriate star map for a given im-
age. Next, we identify several stars in the image that
span the entire field of view of the sensor. We then
use nonlinear regression to fit the pixel locations
of the stars to their respective angular locations in
the sky, using the following constraining equations:

�
xp
yp

�
¼ 1

A

�
cosðRÞ sinðRÞ
− sinðRÞ cosðRÞ

��
e sinðaÞ
e cosðaÞ

�
þ
�
xo
yo

�
;

ð1Þ
where xp and yp are the pixel coordinates of the stars,
A is the instantaneous field of view of the sensor, a
and e are, respectively, the star’s azimuth and 90°
complement of elevation, R is the angular rotation
of the imager, and xo and yo are the coordinates of
the zenith pixel.

B. Median Filtering and Time Differencing

The presence of clutter contamination in an image
without proper treatment makes tomographic inver-
sion extremely difficult if not impossible. To remove
some of this contamination (along with some sensor
noise), we apply a 3 × 3 median filter to the imagery
to remove some of the stars in the image. To highlight
the propagating airglow structure in the imagery, we
use a two-point, temporal high-pass filter on the
data. This filter effectively removes background fea-
tures in the imagery, such as the unperturbed air-
glow emission and stellar contamination, and
preserves the fast-moving wave perturbation struc-
ture. The simple time-filtering scheme amounts to
nothing more than a frame-to-frame subtraction of
the imagery, creating a series of time-differenced
images.
Because the wave structure is strongly monochro-

matic, the choice of time interval (Δt) for the inter-
frame subtraction makes a difference. Depending
on the phase speed relative to the imager, Δt can
either highlight the wave a lot, a little, or none at
all because of the 2π redundancy of the wave. Since
the imager is mounted to an aircraft, the velocity of
the aircraft is added to the phase velocity such that
the effective Δt on an aircraft can be much longer (or
shorter) than it would be from the ground (with zero
imager velocity).

4. Forward Model

The OH menial band results from the combination of
hydrogen with ozone to produce OH in an excited en-

ergy state and diatomic oxygen. The OHmolecule re-
laxes to a lower energy state by emitting a photon,
whose spectrum is well studied [27]. Within the cho-
sen spectral regions of the mesospheric airglow emis-
sions, the optical transmission in the mesosphere is
high, such that the airglow photons propagate freely
with negligible absorption or scatter within the layer.
For this reason, we consider the layer to be optically
thin, so that the contribution of the airglow to a pix-
el’s value on the ground can be considered a line in-
tegral along the observed slant path. Amathematical
representation of this contribution can most simply
be expressed as a line integral of the perturbation
along the line of sight:

gðx; θÞ ¼ A
Z

∞

0
γðθÞf ðl; x; θÞdl; ð2Þ

where gðx; θÞ is the value of the pixel brightness due
to the airglow, A is a constant photometric conversion
factor, γðθÞ is the atmospheric transmittance along
the line of site, l is a coordinate on the line coinciding
with the pixel’s line of site, and f ðl; x; θÞ is the emis-
sion line that lies along the pixel’s line of site. The
pixel value, gðx; θÞ, is a function of x and θ to signify
the staring angle of the pixel (elevation angle of θ)
and the horizontal coordinate x of the imager at
the time of observation. Because the aircraft flew
at an altitude of about 6450m above sea level, well
above the most significant tropospheric constituents
contributing to atmospheric extinction, we assume
that the transmittance function γðθÞ ≈ 1 for all angles
and can therefore be ignored.

As a photometric conversion factor, A converts
radiometric units to a pixel value. Since we are only
interested in the structure of the airglow perturba-
tions, we do not care about its absolute brightness
and leave the reconstruction in arbitrary units.
We, therefore, also discard A, so that Eq. (2) becomes

gðx; θÞ ≈
Z

∞

0
f ðl; x; θÞdl: ð3Þ

In practice, we discretize the problem and expand
f ðl; x; θÞ into a set of orthonormal basis functions,
ϕjðl; x; θÞ, corresponding to the perturbation object’s
discretization:

f Jðl; x; θÞ ¼
XJ
j¼1

f jϕjðl; x; θÞ; ð4Þ

where f j are the discrete values of the object. For
our application, we discretize the object based on our
a priori knowledge of the perturbation feature size
and the resolution supported by the data. At the very
least, we would like to resolve the wave structure
seen in the imagery. Typical horizontal wavelengths
of AGWs are >20km, and we desire an image resolu-
tion that supports their observation. Further, there is
a limitation to the physical resolution of the airglow
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structure brought about by the finite integration
time of the sensor. Because the sensor is mounted
to a fast-moving aircraft, the finite integration time
(typically ∼60) effectively blurs the airglow struc-
ture. Ultimately, how we discretize the object is
based on these considerations.
Substituting Eq. (4) into Eq. (3),

gðx; θÞ ≈
XJ
j¼1

f j

Z
∞

0
ϕjðl; x; θÞdl: ð5Þ

The integral in Eq. (5) amounts to the length of the
line segment passing through the area subtended by
f j. Therefore, gðx; θÞ can be represented as a summa-
tion of each discretized emission value times its re-
spective overlaying line segment. Thus, we achieve
the overall system equation

g ¼ Af; ð6Þ

where A is called the projection matrix and con-
tains the lengths of the line segments.

5. Problem Inversion

A. Formulation

The solution to Eq. (6) can be formulated as a least-
squares minimization of a weighted vector norm. Un-
fortunately, because A is generally ill conditioned
and because our data are noisy, the problem requires
further constraint. We therefore regularize the inver-
sion in order to penalize undesirable solutions.
Our classification of undesirable solutions rests on

two assumptions. First, we expect the wave structure
to be smooth, possessing no discontinuities. Second,
we expect the perturbation structure to be confined
to an altitude layer such that the perturbations are
subject to some vertical envelope (as shown by the
thick dashed curve in Fig. 2). Both of these assump-
tions are enforced with Tikhonov regularization.
Many papers assume either a Gaussian or similar

shape to characterize the vertical envelope. In this
work, we do not assume a specific envelope function
but estimate it from the data. We propose a two-step
process in which the first step is used to heuristically
estimate the vertical envelope of the airglow pertur-
bations and the second step is used to apply that es-
timate as another constraint on the solution.
Step 1: The solution to Eq. (6) can be formulated as

a least-squares minimization of the error function,
Jðf̂Þ, defined as

Jðf̂Þ ¼ ∥g − A f̂ ∥2 þ α2∥D f̂ ∥2 þ β2∥f̂ −Hf̂∥2
W1

; ð7Þ
where f̂ is a vector containing the quantized elements
of the reconstruction, α and β are regularization
parameters, ∥ · ∥2 denotes L2 norm, D is a matrix
that computes the gradient, H is a matrix that com-
putes the average of all object values with the same
altitude coordinate, and W1 is the weighting:

W1 ¼
�
1 on the vertical bounds
0 else: ð8Þ

The minimization of Eq. (7) produces a least-
squares solution subject to two constraints. The first
constraint penalizes large gradients in the solution,
effectively dictating the smoothness of the recon-
struction. The second constraint imposes extra hor-
izontal smoothness along the highest and lowest
altitude cells of the object. Because W1 weights only
the upper and lower altitude bins of the object, the
second constraint penalizes only the deviations of
upper and lower altitude object values from their
horizontal averages. These are boundary conditions
that specify that there should be no perturbations at
those altitude bins and that the entire structure is
confined within those boundaries.

The minimization of Eq. (7) is accomplished with
the following estimate:

f̂ ¼ ðATAþ α2DTDþ β2ðI −HÞTW1ðI −HÞÞ−1ATg:

ð9Þ
Step 2. The result of Eq. (9) is used to heuristically

estimate the vertical envelope pðzÞ of the airglow per-
turbations. This is done by analyzing the vertical
weights imposed onto a single, prominent phase
front, offering a direct measure of the vertical envel-
ope. Our estimation of this quantity can then be ap-
plied to the rest of the object by adding a third side
constraint to the error function:

Jðf̂Þ ¼ ‖g − Af̂‖2 þ α2‖Df̂‖2 þ β2‖ f̂ −Hf̂‖2
W1

þ μ2‖ f̂ −Hf̂‖2
W2

; ð10Þ

W2 ¼ 1
pðzÞ þ 0:01

ð11Þ

for every altitude coordinate z in f̂. In this weighting
function, pðzÞ is the estimated vertical envelope and
is normalized such that its maximum value is one.
We choose the value of 0.01 in the denominator as an
arbitrarily small number to avoid instability in W2.

The two steps outlined in this section are used to
constrain the solution to a vertical profile that is ex-
actly known from only the data. In reality, there have
been numerical reconstruction methods developed
that may be applied to this problem in only one step.
However, the application of these methods would
likely require the use of an iterative optimization
procedure to obtain a solution. The advantage of
using the two-step process outlined in this section
is that the inversion remains linear. Because of this,
the reconstruction is not reached iteratively, and no
stop or start criteria for the iteration is needed.

B. Choice of Regularization Parameters

The regularization parameters control the influence of
their associated side constraints on the reconstruction.

2514 APPLIED OPTICS / Vol. 47, No. 13 / 1 May 2008



If the parameter values are too low, the reconstruction
depends toomuch on the data andmay exhibit charac-
teristics that are unphysical or go against a priori
knowledge of the object. If the parameters are too high,
the reconstruction is overregularized and is insuffi-
cientlyinfluencedbythedata.Fourof themostcommon
deterministic methods for choosing the regularization
parameters include generalized cross validation, the
discrepancy principle, the L-curve, and visual inspec-
tion [28]. With generalized cross validation, a para-
meter is chosen that minimizes the set of prediction
errors. Unfortunately, this only works with decorre-
lated prediction errors, which does not apply to our
case. The discrepancy principle requires that we know
the bound of our prediction error, which, to an accurate
extent, we do not. This leaves the L-curve and visual
inspection as possibilities for our parameter choice.
While the goal of the L-curve method is to objectively
balance the influence that the data and the regulariza-
tionhave on the solution, visual inspectionallows us to
incorporate subjective prior knowledge of the object.
For our application, we use both visual inspection
and the L-curve to choose our parameters, depending
on each step.
In the first step, our side constraints are chosen to

determine the vertical envelope of the perturbation
structure. We have two side constraints for this
[see Eq. (7)]: one that imposes boundary conditions
in the altitude, controlled by β, and one that imposes
smoothness on the object, controlled by α. We set β to
be a high value (∼1000) to impose strict boundary
conditions on the vertical envelope. We also expect
the vertical envelope to be smooth, as supported
by modeling and satellite observations [4,26]. In or-
der to achieve a smooth estimate of the vertical en-
velope, the intermediate reconstruction must be
smooth. With this in mind, we choose a value of α
that extends beyond the elbow of the L-curve in favor
of regularization. In our simulations, the elbow oc-
curs for α ≈ 15; we choose to set α ¼ 200 for Step 1.
In Step 2, we apply the vertical envelope estimated

from Step 1 to the reconstruction by means of a third
side constraint. Here, we use visual inspection to
choose values for α and μ. It just so happens that
these values also fall very close to the elbow on
the L-curve, validating our confidence in the choices.
We still use a high value for β to enforce boundary
conditions. In our simulations, we set α ¼ 15,
β ¼ 1000, and μ ¼ 10 for Step 2.

6. Experimental Results

In this section,wedescribe theapplicationof our recon-
structionmethod to an experimental dataset. We then
show the resulting reconstructions and validations.

A. The Dataset

In the Fall of 1993, the National Center for Atmo-
spheric Research Electra aircraft was used to ob-
serve mesospheric gravity wave activity by means
of a Na–Rayleigh–Raman lidar, airglow imager, grat-
ing spectrometer, and Michelson interferometer. The

flights were part of the ALOHA (Airborne Lidar and
Observations of the Hawaiian Airglow) campaign
and focused on studies of middle atmospheric dy-
namics and sporadic layer phenomena. During the
experiment, more than 125h of airborne observa-
tions were made of the mesospheric airglow layers,
including those from an airglow imager outfitted
with an optical filter to enhance contrast from either
the hydroxyl (OH), sodium (Na), or molecular oxygen
(O2) emissions [29].

The optics, as shown by the diagram in Fig. 4, cap-
tured a hemispherical field of view. The optical design,
introduced in [30],makesuse of telecentric optics toen-
sure that the spectral response of the system is inde-
pendent of field angle. As such, all the rays that
passed through the filter were confined to a minimum
incidence angle, making the system able to spectrosco-
pically image a wide field in very narrow spectral re-
gions. The imager was a 1024 × 1024 Loral array
cooled to −50°C and was run in several binning config-
urations, which included a 3 × 3, 4 × 4, and 5 × 5 bin
size, equating to an instantaneous field of view of
0.51, 0.68, or 0:86°=pixel, respectively.

We identified twodatasets fromtheALOHA-93cam-
paign for which the OH airglow structure remained
fairly constant. In these datasets, the aircraft was fly-
ing in a direction opposite to the direction of wave pro-
pagation. The packet of AGWs in the imagery had the
same apparent phase velocity such that the structure
did not change shape with respect to the aircraft. The
dataset numbers (designatedby the authors) andmea-
suredeventdetailsareshowninTable1.Relativetothe
Mount Haleakala observatory on Maui, run 15 oc-
curred about 1600km NE and run 38 occurred about

Fig. 4. Diagram of optics. The all-sky image is passed through the
optical interference filter via telecentric optics, which minimize
the incident angle of the oblique rays on the filter [30].

Table 1. Run Parameters

Parameter Run 15 Run 38

Acquisition times 25 September,
∼1330UT

9 October,∼823UT

No. of difference
images 7 13

Look angle range ∼110° ∼125°
Observed phase speed 125m=s 70m=s
Propagation direction 60° E of N 30° E of S

1 May 2008 / Vol. 47, No. 13 / APPLIED OPTICS 2515



960kmNNW. The data from runs 15 and 38 show evi-
dence of two differentmassivewall waves, the latter of
which has been the subject of several papers [25,31].
The choice of object resolution is made based on a

priori knowledge of the perturbation feature size and
the resolution supported by the data. The resolution
supported by the data is twofold. First, the imagers
need a finite integration time interval to collect an
image, during which the aircraft is moving at
∼8km=min. The integration time used for the ima-
gery in run 15 is 1 min, implying a physical limita-
tion in resolution of 8km for a stationary wave with
zero wind. Run 38 imagery was integrated for 20 s,
implying a resolution limitation of 2:7km. Second,
we must consider the instantaneous field of view
of the imagers. The resolution of the imagers in
run 15 correspond to a 0:76km horizontal sampling
period of the airglow at zenith angles, while run 38
corresponds to a 1:2km sampling period at zenith.
Since the waves we are interested in reconstructing,
which are ultimately observed and verified in the
imagery, contain wavelengths >20km, we discretize
the object such that those features are accurately re-
presented in the reconstruction.
Because of the 2π redundancy, some of the wave

structure may not be completely preserved in the
time differencing of the imagery. In fact, the choice
of Δt for the time differencing will provide high con-
trast for some waves and low contrast for others. For
this dataset, we set Δt at its minimum, correspond-
ing to the time lapse between each frame. Given the
observed phase speed of the waves and the aircraft
velocity, in Table 2 we show which horizontal wave-
lengths will be highlighted the most and the least be-
cause of the time differencing.

B. Simulations

To promote a better understanding of the results, we
present reconstructions of two simulated waves
using the same projection matrix as used for the
run 38 reconstruction. These waves have the same
intrinsic properties (amplitude, λx, λz, and phase)
as two waves observed in the run 38 results. Further,
we add noise to the simulated data comparable with
that on the real data.

The first simulated wave perturbation is shown in
the top panel of Fig. 5, where a monochromatic wave
with λx ¼ 40km and λz ¼ 25km is enveloped by a
Gaussian vertical profile. The reconstruction of this
simulated perturbation is shown in the bottom panel
of Fig. 5. The second simulated wave perturbation is
shown in Fig. 6. This wave has λx ¼ 175km and λz ¼
22km and the same vertical profile. Note the degra-
dations on the right-hand sides of both reconstruc-
tions indicating limited support from the projection
geometry at those regions. Also, the black pixels
on the lower corners of the reconstructions indicate
regions of no support from the geometry.

Simulations using the run 15 projection matrix
yield similar results. This is expected given the simi-
larity of the projection matrices for runs 15 and 38.

C. Results

Figure 7 shows a subset of the time difference images
used for both reconstructions. Figures 9 and 10 show
the reconstructed slices of the perturbation func-
tions. Again, the black pixels in the object are pixels
that have no representation from the data. The plot
in Fig. 8 shows a comparison of the projected recon-
struction with the data. Even though the two curves
are similar, there is a clear deviation of the projected
reconstruction from the data. This is actually the
function of our choice in regularization: to deviate
from the data in favor of our prior knowledge of
the object.

D. Substantiation of Results

The primary benefit to performing tomography on
mesospheric airglow is to determine the vertical wa-
velength of the waves passing through. Our recon-
structions show clear evidence of wave activity. In

Table 2. Highlighted Wavelengths Due to Time Differencing

Parameter Run 15 Run 38

Δt 2:7 min 1:8 min
Distance wave traveled with

respect to aircraft in Δt ∼40km ∼22km
λx with highest contrast 80 and 27km 44 and 15km
λx with lowest contrast 40 and 20km 22 and 11km

Fig. 5. Reconstruction of a simulated wave perturbation with λx ¼ 40km and λz ¼ 25km. Top panel, original simulated perturbation;
bottom panel, reconstruction.
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this section, we substantiate the observed wave char-
acteristics by checking their consistency with known
AGW parameters.
We first make the important observation that the

wave structure in both runs does not change shape
over the course of acquisition. This implies that
the waves that make up the structure are moving to-
gether and have the same intrinsic phase speed. This
is important because if the reconstructions show evi-
dence of multiple waves, then they have the same
phase velocity, and thus their vertical and horizontal
wavelengths are linked by the dispersion relation.
With this understanding, we are able to test whether
the observed waves are at least consistent with
each other.
The reconstruction of run 38 in Fig. 10 shows two

distinct waves. In comparison with the simulated
waves in Figs. 5 and 6, the phase fronts identified
in Fig. 10 are in regions of the reconstruction that

appear to be well supported by the projection geome-
try such that λz can be estimated. One wave has an
apparent horizontal wavelength of ∼175km and a
vertical wavelength of ∼22km, as shown in the re-
scaled reconstruction image in the middle panel of
Fig. 10. In the image, the two lines lie along an ap-
parent phase front and highlight one half of a cycle.
The dashed line lies in a trough of the wave, and the
solid line lies along a peak. According to the disper-
sion relation, this wave has an intrinsic phase speed
of ∼67m=s. The second wave is highlighted in the
bottom panel of Fig. 10. In this figure, two solid lines
lie along the phase front to show a full oscillation.
Our observations of this wave indicate that this wave
has a horizontal wavelength of∼40km and a vertical
wavelength of ∼25km. The intrinsic phase speed re-
lated to this wave is also ∼67m=s.

Further, because the event in run 38, called the Oc-
tober 9 wall wave, was extensively studied in [25] via
data from the Na lidar, we are provided with another
check for the tomographic observations. In the study,
it was found that the fundamental wave associated
with this event had a horizontal wavelength of

Fig. 6. Reconstruction of a simulated wave perturbation with λx ¼ 175km and λz ¼ 22km. The top panel shows its original simulated
perturbation; the bottom shows its reconstruction.

Fig. 7. Time difference images for the two datasets: The top two
are from run 15; the bottom two are from run 38.

Fig. 8. Comparison of one projection of the run 38 reconstruction
to the data. The reconstruction is mostly consistent with the data,
but small deviations do exist due to our choices in regularization.
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∼350km and a vertical wavelength of 20km (invisi-
ble to the airglow imager). Further, it is reported that
the intrinsic phase speed of the lidar-observed wave
is 66m=s, approximately what we observe from the
wave packet in the reconstruction of the same event.
This comparison gives context to the two waves ob-
served in the reconstruction and shows their consis-
tency with lidar observations.
In run 15, one wave clearly stands out as shown by

the lines in the bottom panel of Fig. 9. Unfortunately,
we have no supporting data on the characteristics of
this wave. However, we note that the phase fronts ap-
pear in a region of the solution space that is well sup-
ported by the projection geometry and that the wave
parameters observed in the reconstruction (both hori-
zontal and vertical wavelengths ∼25km) are those
most commonly observed in mesospheric airglow [32].

7. Conclusion

In this paper, using a single, aircraft-mounted spec-
troscopic imager, we develop a method for tomogra-
phically reconstructing the perturbations imparted
tomesospheric airglow layers by atmospheric gravity
waves. As the aircraft passes under the airglow, it
collects multiple-angle views of the perturbation
structure. Under the assumption that the airglow
structure does not change significantly over time,
the resulting data can be tomographically recon-
structed to estimate vertical wave information. After
developing the methodology, we use it to compute to-
mographic reconstructions for two data sets from the
ALOHA-93 campaign. The resulting reconstructions
show clear vertical structure in the airglow layers
that is well supported by the data. Also, the waves
seen in our reconstruction in run 38 have been found

Fig. 9. Run 15 perturbation preconstruction. The lines in the bottom panel show two phase fronts of a wave with ∼25km for both hor-
izontal and vertical wavelengths. These particular wavelengths are some of the most commonly observed in airglow [32].

Fig. 10. Run 38 perturbation reconstruction. The bottom two are contrast-enhanced and highlight two phase fronts that have the same
observed phase speed. The dispersion relation supports that these waves intrinsically propagate at the same speed, indicating the internal
consistency of the reconstruction.
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to be consistent with lidar studies of that event.
Further, the parameters of the waves observed in
run 15 are typical for waves observed in previous stu-
dies. The method described here has been developed
for data acquired from an airborne platform. How-
ever, this method is directly applicable to nadir
and slant path viewing of the airglow perturbations
from spacecraft. From this perspective, the global
mapping of gravity wave effects can be investigated.

This work was supported by the National Science
Foundation under grants ATM 01-35073 and ATM
05-45704 to the University of Illinois.
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