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Year: 2017 

Autonomous Surface Vehicles have the capability of replacing dull, dirty, and dangerous 

jobs in the maritime field. However, few successful ASV systems exist today, as there is 

a need for greater sensing capabilities. Furthermore, a successful ASV system requires 

object detection and recognition capabilities to enable autonomous navigation and 

situational awareness. This thesis demonstrates an application of LiDAR sensors in 

maritime environments for object detection, classification, and camera sensor fusion. 

This is accomplished through the integration of a high-fidelity GPS/INS system, 3D 

LiDAR sensors, and a pair of cameras. After rotating LiDAR returns into a global 

reference frame, they are reduced to a 3D occupancy grid. Objects are then extracted and 

classified with a Support Vector Machine (SVM) classifier. The LiDAR returns, when 

converted from a global frame to a camera frame, then allow the cameras to process a 

region of their imaging frame to assist in the classification of objects using color-based 

features. The SVM implementation results in an overall accuracy 98.7% for 6 classes. 

The transformation into pixel coordinates is shown here to be successful, with an angular 

error of 2 degrees, attributed to measurement error propagated through rotations. 
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Chapter I 

Introduction 
Many vehicles today are equipped with a sensor package that aids a driver or 

operator in completing the tasks performed by the vehicle. For instance, aircraft may be 

equipped with downward facing radar to measure precise altitude for assisted landings, 

automobiles may be equipped with rear-mounted ultrasonic or camera sensors to assist 

the driver in backing up, and boats may be equipped with sonar for surveying the seafloor 

or thermal cameras for nighttime bay security. In both manned and unmanned operation, 

this sensor data is often intuitively displayed to a human operator to interpret the data and 

complete vehicle tasks more efficiently.  

To move toward autonomous operation and away from reliance on human 

operators, advanced algorithms must be developed to interpret this sensor data and act 

upon it. For an autonomous surface vessel (ASV), base level autonomy begins with 

interpreting GPS data to guide the vessel to a desired location. This operation is sufficient 

for open water, but has issues in port operations or other crowded environments. Prime 

among these is that the ASV is not capable of detecting obstacles and avoiding them. 

Additionally, when traversing occupied waters, it is necessary to follow The International 

Regulations for Preventing Collisions at Sea (COLREGs), the United States navigation 

rules for surface vessels [1]. These navigation rules require the detection of other vessels 

and yielding to less maneuverable traffic, which cannot be completed solely through GPS 

navigation. Therefore, advanced tasks for ASVs require increased sensing capabilities 

beyond single GPS sensors. 

Many Unmanned Surface Vehicles (USVs) in operation today are used for the 

completion of dull, dirty, or dangerous tasks. A USV may be deployed for surveying 
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infrastructure, patrolling a harbor, or even destroying mines [2]. Autonomous vehicles 

have significant potential to expand the capabilities in these sectors by removing the 

human operators and improving efficiencies and safety. ASVs could more easily be 

deployed in large groups and monitored from a single location and operator, with no 

human on board [3]. Converting a manned ship to an ASV has the potential for even 

larger efficiency gains by removing several of the crewmembers. These ships could 

remain at sea longer than its manned counterpart, improving the chances of a search and 

rescue mission succeeding. In the shipping sector, much of the cost of transport goes to 

paying and accommodating the crew while at sea [4]. Furthermore, safety is inherently 

improved by removing human operators from the vehicle. The reasons listed above 

demonstrate a need for more advanced ASVs in the field.  

This thesis focuses on the integration of sensors to increase the capability of 

ASVs, by detecting and classifying objects. This is accomplished through the integration 

of a high-fidelity GPS/INS system, 3D LiDAR sensors, and a pair of cameras. Object 

detection and the initial classification is performed by the LiDAR sensors based on 

spatially distinct features. The LiDAR returns, when converted from a global frame to a 

camera frame, then allow the cameras to process a region of their imaging frame to assist 

in the classification of objects using color-based features.  

1.1 Platform and Competition 

To accomplish this thesis the Minion ASV platform is used. Minion is Embry-

Riddle Aeronautical University’s (ERAU) entry into the Association for Unmanned 
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Vehicle Systems International (AUVSI) Maritime RobotX Challenge (MRC) [5].

 

Figure 1: The Minion ASV on the competition field in Hawaii. Object in background is the detect and deliver 

target. 

The 2016 MRC consisted of 8 tasks, which require the use of multiple sensing 

modalities. The 100m by 150m course contained 7 of the tasks to be completed in nearly 

any order by the platform. Some of these tasks include traversing a buoy channel, 

locating an underwater acoustic pinger below a row of buoys, and automated docking.  

Figure 2 shows an example course layout containing all the challenges. This figure is for 

illustrative purposes as the final course layout was unknown prior to competition.  
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Figure 2: Example course layout. Final course layout is not known prior to competition. [7] 

To gain access to the course, each team was required to complete the first task 

aptly named “demonstrate navigation and control.” This task pictured below in Figure 3 

shows the layout of the task. Using the LiDAR and camera sensors, Minion must first 

recognize two Taylor Made Sur-Mark Can Buoys [6] roughly 10m apart and 1.5m tall 

drive through the start gate, and then traverse through the end gate. Upon completion, 

teams were permitted to enter the course and begin any other tasks.  
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Figure 3: Demonstrate Navigation and Control Task [7]  

 While all the tasks require object detection and classification, the three tasks most 

dependent on this ability are scan the code, find totems and avoid obstacles, and identify 

symbols and dock tasks. Each of these three tasks required Minion to identify these 

objects, map their location and correctly identify color and/or shape of the object. For the 

scan the code task, Minion must identify a light tower roughly 3m tall and accurately 

identify a 3-color code displayed on the tower face. For the find totems and avoid 

obstacles task, minion must identify buoys of varying shapes and sizes. However, some 

of these buoys are totems of varying color that Minion must circle to indicate the totem 

has been properly recognized. Lastly, the identify symbols and dock task requires minion 

to identify a 3-bay dock and the shape of color of each bay’s corresponding sign. Minion 

is required to dock in the correct bay corresponding to a known dock sign color and 

shape.   

This competition requires the successful integration of object detection techniques 

to complete all the competition challenges. Utilizing the LiDAR sensors, objects may be 
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detected and then classified with a SVM classifier. The LiDAR returns may also be used 

for extracting a camera region of interest for additional color processing capabilities. 
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Chapter II 

Review of the Relevant Literature 
 

Much maritime research has been devoted to the detection of objects, particularly 

in unmanned and autonomous operations. Object detection permits greater environmental 

awareness while also allowing for capabilities such as obstacle avoidance, threat 

detection, and scene reconstruction. In many applications, multiple sensors are used for 

object classification, often fusing a camera with GPS. Other common solutions fuse a 

combination of LiDAR, camera, RADAR, and/or SONAR together with GPS/INS state 

information. However, while many solutions involving LiDAR sensor fusion have been 

demonstrated in the ground domain [8] [9], few solutions appropriately apply this type of 

perception in maritime environments.  

In maritime environments, it is important to detect waterway markings to 

maintain compliance with COLREGs and avoid underwater hazards. COLREG 

compliance has been explored using a single-beam LiDAR and a USB webcam [10] . 

However, the object classification was performed using a background subtraction 

method. Through some tuning [10] could remove the false positives generated by the 

dynamic motion of the waves. However, [10] only considered a stationary vehicle 

scenario, and even with tuning a camera in motion is generally not capable of performing 

background subtraction and thus, is inadequate for most practical use cases. The LiDAR 

is also only used in this case for single-point range measurements and is not used for 

classification, leading to robustness concerns.  

Utilizing a multi-beam LiDAR, [11] developed maps for surveying partially-

submerged vessels. Through the fusion of LiDAR and SONAR, [11] could map the 

entirety of a partially-submerged vessel by combining a surface map from the LiDAR 
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and underwater map from a SONAR. Scan data was post-processed using an Iterative 

Closest Point (ICP) method, which can be a slow process, so that multiple scans could be 

compiled without the need for state data. This was accomplished by first simplifying raw 

point cloud locations to a 3-dimensional occupancy grid with a 30cm cell size. For this 

method to be more useful in real-time applications, the incorporation of a GPS is needed 

to remove the need for an intensive ICP algorithm, which the author acknowledges. In 

this application, the classification of the object being scanned is already known, and 

although it may be used for obstacle avoidance, may not be applied to an ASV with no 

apriori knowledge of the environment. 

One of the most practical use cases for an ASV is automated docking, allowing 

for autonomous deployment and recovery. In one application, [12] approached this 

problem using a 32-beam LiDAR. In this research, the LiDAR was not mounted on a 

vessel at all but instead on a cart to simulate the mounting location of LiDAR on a vessel. 

This research also compiled multiple LiDAR scans, but unlike [11], [12] incorporated 

preprocessing of the points using a GPS and compass to make a more accurate initial 

guess of ICP. The preprocessing method was used to reduce the false positive rate of the 

ICP method that stems from the repeating structure of a dock. However, it should be 

noted that the cart could not simulate the rocking motion typically seen in a USV. In this 

approach, dock classification was performed using image morphological operations and 

the RANSAC algorithm. Points were flattened to a 2-dimensional occupancy grid and 

treated as a binary image. This approach permits binary morphological operations to be 

performed so that the shore may be filtered out of the dataset. Then using a RANSAC 

method, the flat walkway and round pilings of the dock are extracted. This method 



 

9 

 

demonstrated an ability to accurately detect several docks, however the authors note that 

this method only applies to long straight docks, and not docks with bends or T-shapes, as 

well as partially occupied docks.  

Other research, such as [13], uses a method for flattening a 3D point cloud into a 

2D image. However, where [12] uses binary images for morphology, [13] used grayscale 

images where the color channel represents laser intensity. This research also performed 

classification on multiple objects through the implementation of a back-propagation 

neural network and Support Vector Machine (SVM) classifier. However, the neural 

network proved to be computationally intensive, and despite a 95% accuracy, may not be 

practical use for real-time applications. 

The work that preceded this thesis on the Minion platform, [14], implemented a 

Multi-Variate Gaussian (MVG) classifier for detection of multiple objects using a 32-

beam LiDAR and state information from a GPS/INS solution. Like other work, [14] 

flattened 3D returns into a 2D occupancy grid. The MVG classifier was only used to 

differentiate 2 classes of buoys from an unknown class. As a result, only three features 

were needed to efficiently classify the objects. Using distance to object, object radius and 

number of rings, [14] achieved an overall classification accuracy of 93.84%. However, 

the methods of [14] treated all objects as being circular and was completely based on the 

current LiDAR scan, electing to throw away previous scan data.  

Most prior research on autonomous surface vehicles has been primarily focused 

on the use of camera-based classification. The works that incorporate LiDAR sensors into 

a sensor fusion scheme most often use them as a distance measuring aid rather than 

detection and classification. Those applications that did perform detection and 
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classification of objects primarily with LiDAR used only a few classes. To accurately 

classify multiple maritime objects, a different approach must be used that allows fusing 

features from both vision and LiDAR sensors. A SVM classifier may be used to do this, 

so here the efficacy of a LiDAR-based SVM classifier is investigated as well as a method 

to use objects detected by a LiDAR to improve feature extraction from imagery. A 

support Vector Machine classifier works by mapping features to a higher dimension so 

that a linear separating hyperplane may be found between two classes [15]. As there may 

be many possible separating hyperplanes, SVM selects the hyperplane that maximizes the 

margin between the two data sets, effectively minimizing overtraining. This can be 

shown below in Figure 4. 

 

Figure 4: comparison of two classifiers, where SVM maximizes the margin to create (c) and (d) 
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Because SVM finds a linear hyperplane between two datasets, it is only suitable 

in its base form for solving 2-class problems. To solve multi-class problems, SVM must 

be implemented with a “1 vs. 1” or “1 vs. all” approach. In a “1 vs. 1” approach each 

class is tested against each other class and the class with the highest number of vote is 

estimated as the correct class. In “1 vs. all” one class is tested against all other classes 

simultaneously. This process is repeated for every class. For a “1 vs. all” approach, the 

classification is chosen using a decision function outlined in [17]. 
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Chapter III 

Methodology 

3.1 Sensor Suite 

The Minion platform utilizes 4 LiDAR sensors, 2 visible light cameras, and a 

GPS/INS system for sensing vehicle state and environment. The placement of the sensor 

suite can be seen in Figure 5 and Figure 6. 

 

 

Figure 5: 2016 Minion Platform 

The onboard GPS/INS system is a TORC Pinpoint which provides inertial NED 

frame outputs of the vehicle state. The cameras used are two Point Grey Blackfly 

cameras with Theia ML410M lenses to provide ~90 degree field of view (FoV), with the 

cameras rotated ~45 degrees apart. The camera housings are labeled “3” in Figure 6 

shown below. The cameras are positioned to increase the overall field-of-view (FOV) of 

the vision suite and are not capable of stereovision depth estimation.  
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Figure 6: 1: HDL-32E mounted upside down 2: Front VLP-16 HD Sensors 3: Point Grey Blackfly Cameras 

The LiDAR labeled “1” in Figure 6 is a Velodyne HDL-32E, while the LiDAR 

sensors labeled “2” are Velodyne VLP-16 HD’s. The platform also has a Velodyne VLP-

16 LiDAR mounted at the stern of the platform. The HDL-32E is a 32-beam laser 

rangefinder with an equal beam spread ranging from 10 degrees up and 30 degrees down 

while the VLP-16 is a 16-beam laser rangefinder with equal beam spread ranging from 15 

degrees up to 15 degrees down, measured from the center of the sensor. The VLP-16 HD 

is a narrow version of the regular VLP-16, reducing the angular spread from ±15 degrees 

to ±10 degrees. The HDL-32E is mounted on the bow of the platform, along the port and 

starboard centerline, upside down, and pitched 10 degrees down. The VLP-16HDs are 

mounted on the port bow and starboard bow of the platform and pitched down ~5 

degrees. The rear VLP-16 is pitched down ~2 degrees. The mounting configuration of the 

front-mounted Velodyne sensors can be seen in Figure 6. The LiDAR mounting positions 

were determined through simulation to maximize the return density on the water surface.  

For this laser configuration, a simulation of expected LiDAR returns on a flat 

water surface is seen below in Figure 7. Each color corresponds to a different LiDAR 

sensor, providing qualitative feedback on sensor position. Given the platform spends 
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most of its time driving forward, a higher forward density of returns was prioritized over 

aft returns. A configuration was deemed sufficient when a Polyform A3 buoy could not 

fit between laser returns within the black region in Figure 7. The resulting region 

provides sufficient coverage 28m in front of the vessel, 12m aft of the vessel, and 28m to 

the port and starboard sides of the vessel. 

 

.   

Figure 7: Simulated LiDAR return pattern on water surface. The black polygon represents the classification 

region, red lines represent returns from the HDL-32E, purple lines represent the aft VLP-16, and blue and 

green lines represent the starboard and port side VLP-16HD’s respectively. 

To accomplish all the tasks for the MRC, an advanced software suite was 

developed, shown below in Figure 8. The software suite is designed to interpret state and 

sensing data for completion of the competition task. This is accomplished with modules 

for each set of sensors, and a tracker for managing the boat’s actions. Figure 9 below 

shows the process steps within the perception and vision module that is covered by this 
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thesis. The perception steps utilize the robot state to transform LiDAR returns into a 

global north-east-down (NED) coordinate frame. Object segmentation is performed by 

fitting LiDAR returns to an occupancy grid and extracting objects from a flattened 2D 

grid. Extracted objects are then classified and this data is provided to vision for region of 

interest extraction. The vision module in red uses robot state and the perception objects to 

generate pixel coordinates containing objects of interest. This is accomplished by rotating 

the LiDAR points into pixel coordinates and then distorting the coordinates to conform to 

the camera lens. The region of interest is then padded to compensate for measurement 

errors and the resultant ROI may be extracted for processing. While thesis focuses 

entirely on increasing the capabilities of the perception and vision modules, other 

modules are utilized to retrieve vehicle state and the object list. 

 

 

Figure 8: Software diagram of the Minion boat platform 
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Figure 9: Above - Perception process. Below - Vision ROI extraction process 

3.1 Coordinate Transformation 

LiDAR returns, such as those on Velodyne LiDAR sensors, are natively provided 

in a local reference frame with a spherical coordinate system. The elevation angle is a 

constant, the rotational angle is provided by an encoder built into the sensor, and the 

radius is the distance measured. It should be noted that since water absorbs the laser light, 

only low intensity returns are obtained from the water’s surface. Thus, water is easily 

ignored using an intensity threshold on the 0-255 intensity output given by the LiDAR 

sensors.  

When using multiple LiDAR sensors, it is necessary to convert their returns into a 

common reference frame for processing. A global frame not only permits the use of 

multiple sensors, but makes mapping more straightforward and efficient by preventing 

the need to continuously compute point locations in a moving reference frame. To that 

end, an inertial NED frame will be used here. LiDAR returns are first converted from 

spherical coordinates to Cartesian coordinates using: 

𝒑𝑽𝑬𝑳 = [

𝑹 𝐬𝐢𝐧 𝝎 𝐜𝐨𝐬 𝜶
𝑹 𝐬𝐢𝐧 𝝎 𝐬𝐢𝐧 𝜶

𝑹 𝐜𝐨𝐬 𝝎
𝟏

],                                         (1) 

 

LiDAR Points

State
Transform 

LiDAR Returns
Object 

Segmentation
Object 

Classification

State

LiDAR Objects
Transform NED to 
Pixel Coordinates

Distort Pixel 
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Pad ROI Draw ROI
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where 𝑃𝑉𝐸𝐿 is a single LiDAR return in the Velodyne’s reference frame, R is the distance 

measurement reported by the sensor, α is the rotational azimuth angle reported by the 

sensor, and 𝜔 is the elevation angle of the laser. This transformation is illustrated below 

in Figure 10. It is important to note, however, that this general form does not account 

how the vehicle state changes between sensor updates. For example, a vehicle with 50Hz 

state updates moving at 2m/s with no angular velocity could accumulate up to 0.04m 

between updates of vehicle state. The solution used for this implementation interpolated 

vehicle state to apply a more accurate position with every transformation. 

  

 

Figure 10: Coordinate frame of the Velodyne sensors [18]. 

Then, using the known mounting location and orientation of each LiDAR, the 

points are moved into the FRD reference frame using: 
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𝑝𝐹𝑅𝐷 = 𝑇𝐹𝑅𝐷
𝑉𝐸𝐿𝑝𝑉𝐸𝐿,      (2) 

 

where 𝑇𝐹𝑅𝐷
𝑉𝐸𝐿 is the homogeneous transform from the Velodyne LiDAR’s local frame into 

the local FRD reference frame of the vessel. Similarly, the LiDAR returns are then 

moved into the NED global reference frame using the Torc PinPoint GPS/INS timestamp 

reported state of the vessel, i.e. the NED location and Euler angles. This is given by: 

𝑝𝑁𝐸𝐷 = 𝑇𝑁𝐸𝐷
𝐹𝑅𝐷𝑝𝐹𝑅𝐷,     (3) 

where 𝑇𝑁𝐸𝐷
𝐹𝑅𝐷 is the homogeneous transform from the local FRD frame to the global NED 

frame. 𝑇 represents a homogenous transform of the form shown below in equation 4, 

where 𝑅𝑧𝑦𝑥 is the 3x3 rotation matrix of order ZYX and t is the 1x3 translation vector. 

𝑇 = [
𝑅𝑧𝑦𝑥 𝑡

0 1
]     (4) 

3.1 Occupancy Grid 

When dealing with large point clouds it is necessary to use an efficient means of 

processing this data and segmenting the point cloud into objects. An occupancy grid has 

the advantage of removing redundant data points which also simplifies object 

segmentation. This is accomplished by fitting discrete points of LiDAR data to grid cells. 

Multiple points within the same cell will result in only a single filled cell. Operations are 

then performed on the grid, such as object extraction, for aiding the tracking and 

classification of objects. The process will be detailed below, with figures illustrating the 

process are shown in the results section. 

  Object extraction is performed by first compressing LiDAR returns into a 3D 

occupancy grid.  The occupancy grid is referenced to the global frame, but the grid range 

is limited to tunable area around the vessel. Here, the 𝑀𝑥𝑀𝑥𝑁 grid matrix has a size 

defined by: 
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𝑀 = 1 + (𝑑/𝛿),              (5) 

and 

𝑁 = 1 + (ℎ/𝛿),                      (6) 

where the distance 𝑑 is the maximum range covered by the occupancy grid, 𝛿 is the 

resolution of each grid cell, ℎ is the height of the grid, and the vessel is located in the 

center of the grid at all times. The occupancy grid indices, denoted 𝑝𝑖𝑑𝑥, of return 𝑝𝑁𝐸𝐷, 

are computed by: 

𝑝𝑖𝑑𝑥 = 𝑟𝑜𝑢𝑛𝑑 (
�́�𝑁𝐸𝐷−𝑞𝑁𝐸𝐷

𝛿
) +

[𝑀 𝑀 𝑁]𝑇

2
,          (7) 

where �́�𝑁𝐸𝐷 is a 3x1 vector comprised of the first three elements of the 4x1 𝑝𝑁𝐸𝐷 vector, 

𝑟𝑜𝑢𝑛𝑑(𝑥) rounds all elements of 𝑥, and 𝑞𝑁𝐸𝐷 is the current NED location of the USV. 

This equation can easily be inverted to give NED location for any indices in the grid.  

The current discussion has been limited to using LiDAR returns from the most 

recent LiDAR scan. However, a single scan is not sufficient to detect geometry of a 

waterborne object due to gaps between the sensors’ lasers. Instead, a temporal decay of 

grid cells is used to both fill in the detail of objects over time and allow the object’s 

location to change. To maintain efficiency, the temporal information is stored within each 

cell of the grid with a single data byte. A byte value of zero indicates an unoccupied cell, 

but 1-255 represents an occupied cell and its age 𝜂. The age 𝜂 of a cell is set to 𝜂𝑚𝑎𝑥, a 

tuned parameter representing the maximum number of scans iterations that the cell will 

remain filled, for any cell with a current index 𝑝𝑖𝑑𝑥, and decremented otherwise. 

Realize that while object heights are useful as classification features, the height is 

rarely needed for path planning. This is because unlike a ground environment where there 

are plentiful overhead obstacles such as foliage, signs, lights, and overpasses, a maritime 
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environment generally only has bridges that create overhead obstacles. Thus, the grid can 

be flattened to 2D for navigation purposes. To this end, the 3D occupancy grid is first 

flattened to 2D, resulting in a binary matrix. While object segmentation could then be 

performed by clustering algorithms, these algorithms can be computationally intensive 

and may require the number of objects to be pre-determined. 

3.2 Object Extraction 

Here object extraction is performed using the pixel following method. This 

method is described fully in [19]. Any object with a point inside of another object is 

ignored, so that only the outer object boundaries are retained. The coordinates of these 

contours are moved from the image frame and into the NED frame using the previously 

discussed operations in (7), resulting in a list of objects 𝐴 = {𝑎1, 𝑎2, ⋯ 𝑎𝑛}. Where 

each object 𝑎1 = {𝑥1, 𝑥2, … 𝑥𝑛, 𝑦1, 𝑦2, … 𝑦𝑛} is defined by a set of NED vertices, x is a 

northing coordinate, and y is an easting coordinate. It should be noted that any 2D or 3D 

occupancy grid cell within the bounds of 𝑎1 and 𝜂 > 0 can be used to compute spatial 

characteristics of the object such as size and surface area.   

While the list of objects 𝐴 has been created, it is beneficial to reduce the number 

of points that represent the polygon 𝑎1 to improve path planning computations. To 

accomplish this, the Ramer-Douglas-Peucker point decimation algorithm is used [20]. 

This algorithm uses an iterative method to reduce the number of points on a curve or 

polygon to find a similar polygon subject to a perpendicular distance constraint. This 

distance is treated as a tunable value, but in general should be at least as large as the grid 

resolution 𝛿. Setting the value too high will result in a loss of object resolution to the 

point of distortion.  



 

21 

 

3.3 Classification 

 

Classification is performed on every object extracted from the occupancy grid. 

This is accomplished by extracting a feature vector from the 3D and 2D occupancy grid 

cells. The feature vector 𝐹 is defined as shown below.  

 

𝐹 = [𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6, 𝐹7, 𝐹8, 𝐹9, 𝐹10] 

Where: 

𝐹1 − 𝑀𝑎𝑥 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 

𝐹2 − 𝑀𝑖𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 

𝐹3 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 

𝐹4 − 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 

𝐹5 − 𝑀𝑎𝑥 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 

𝐹6 − 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑖𝑙𝑙𝑒𝑑 𝐶𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑂𝑏𝑗𝑒𝑐𝑡 

𝐹7 − 𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 

𝐹8 − 𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝐴𝑟𝑒𝑎 

𝐹9 − 2𝐷 𝑀𝑖𝑛𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ 

𝐹10 − 2𝐷 𝑀𝑎𝑗𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ  

Training on these features was performed using the libSVM [15] library. Using 

the libSVM library allowed for use of the SVM classifier in multiple languages, including 

LabVIEW and MATLAB. This library also supports linear and non-linear applications. 

In many cases a linear SVM should be sufficient for classification, and given its quick 

application, was used as a first pass for validating the training sets. However, to provide a 

more accurate model, non-linear SVM was used for the final model. A Radial Basis 
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Function (RBF) kernel [16] was selected for training as it provides the most versatility 

when compared to a polynomial function or linear models.  

All training data was scaled using Equation 8. Where F is the resulting feature, 𝑓𝑖 

is the input data, and 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are the highest and lowest values for that feature in 

the training set. The equation maps all data points in training to a minimum value of 0 

and a maximum value of 1. When handling test data, the data must still be scaled, but 

𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 retain their values from training.  

 

𝐹𝑛 =  (𝑓𝑖 − 𝑓𝑚𝑖𝑛)/(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)      (8) 

Data sets were collected by labeling known objects in real-time by manually 

driving the vessel. This was accomplished by assigning a unique ID to each discovered 

object, labeling the class of the object manually, and storing the object’s feature vector 

for post-processing. The use of object IDs improves data collection accuracy by ensuring 

only the feature vectors of interest are saved to the correct object. The data was formatted 

as a text file in the LibSVM standard with an example shown below. The first value 

before the feature vector indicates class, and each feature was assigned a number 

corresponding to its order in the vector such that the features may be in any order and the 

training process would still be correct. 

1 1: 𝐹1 2: 𝐹2 3: 𝐹3 4: 𝐹4 5: 𝐹5 6: 𝐹6 7: 𝐹7 8: 𝐹8 9: 𝐹9 10: 𝐹10 

A C-SVC model uses tuned values C and gamma paired with an RBF kernel. C is 

a parameter describing the error margin when training. A low value for C is well suited 

for problems with high noise, as outliers are more easily rejected. A high value for C is 

used when there is low noise, and all training values may be considered for support 
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vectors. Gamma is used to define the inverse of the standard deviation of the kernel. A 

small value for gamma corresponds to a Gaussian function with high variance, while a 

large gamma value corresponds to a Gaussian function with small variance.  To quickly 

find values for C and gamma that return high model accuracies, a grid search approach 

may be used. This approach iterates through values C and Gamma, training the model 

several times. The results from this approach yield a confusion matrix from each iteration 

of C and Gamma. The grid with the highest accuracy is then used for cross-validation 

training.  

 

3.4 Region of Interest Extraction 

 

Using the location of the object detected from the LiDAR, and the known position 

of the boat, it is then possible to compute the object bounds in the pixel frame used by the 

onboard cameras. After this operation, a region of interest may be extracted from a 

camera image containing only the object for which color information may be found. This 

method reduces computation time by only processing a small portion of the image and 

provides a simple process for fusing information between LiDAR and camera objects.  

Any object expressed in an inertial NED frame may be translated into pixel 

coordinates through a known geometry of the camera and calibration procedure. This 

translation to pixel coordinates is valid for any camera represented with the pinhole 

model using the method developed by Zhang [21]. With the pinhole model, a ray can be 

drawn from the target through the pinhole and projected onto the image plane. The 

intersection point between the ray and the image plane provides the pixel coordinates for 

an undistorted image. This is shown below in Figure 11. The tree on the right side is the 
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actual object. Where the rays intersect is the pinhole, with the second tree being the 

image projected onto the camera. The tree on the far left represents a second valid 

solution, despite not being the actual object. 

 

Figure 11: Pinhole model with two possible solutions 

 

Extra steps must be taken to verify the object is in front of the imaging sensor or 

there will be erroneous results. Furthermore, the pinhole method does not compensate for 

any distortion of the lens. The undistorted points may be converted for distorted images 

by adjusting for the radial distortion of the image using the method created by Heikkila 

[22]. The calibration procedure yields a set of three distortion coefficients used to 

describe the radial distortion around the camera frame. The distortion coefficients and the 

method for distorting image points is shown in equations 12 and 13.  

The general form for converting world coordinates to pinhole pixel coordinates is 

expressed in equation 8. The general form pinhole equation may also be illustrated using 

Figure 12. 
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Figure 12: Rotation from World Coordinates to Pinhole Model [23] 

 
Figure 13: Right-Handed Z-Out Camera Frame [23] 

 

𝑤[ 𝑢 𝑣 1 ]  =  [ 𝑋 𝑌 𝑍 1] [𝑅𝑃𝑖𝑥𝑒𝑙
𝑁𝐸𝐷

𝑡
] 𝐾         (9) 

 

Where:  

𝑤 = 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑢 = ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 

𝑣 = 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 

𝑋, 𝑌, 𝑍 = 𝑊𝑜𝑟𝑙𝑑 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 

𝑅𝑃𝑖𝑥𝑒𝑙
𝑁𝐸𝐷 = 3𝑥3 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 

𝑡 = 1𝑥3 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 
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The world coordinates 𝑋, 𝑌, 𝑎𝑛𝑑 𝑍 are in the camera frame shown in Figure 13. 

Image coordinates 𝑢 𝑎𝑛𝑑 𝑣 have an origin at the top left corner of the image, and 

therefore may only be between zero and the horizontal width and height of the image 

respectively. The pinhole coordinates 𝑢 and 𝑣 must be adjusted for distortion to be valid 

for most cameras. This may be accomplished by first normalizing the image coordinates, 

applying the distortion correction, and converting back to regular image coordinates. The 

normalizing equations are shown in equations 10 and 11. Using the normalized image 

coordinates the distortion correction can be calculated with equations 12 and 13. The 

resulting values 𝑥𝑑𝑖𝑠 and 𝑦𝑑𝑖𝑠 are then converted back to image coordinates using 

equations 10 and 11. 

𝑥 =  2 
𝑢

𝑤
− 1            (10) 

𝑦  =  2 
𝑣

ℎ
− 1          (11) 

𝑥𝑑𝑖𝑠  =  𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)    (12) 

𝑦𝑑𝑖𝑠  =  𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)    (13) 

 

Where: 

𝑥, 𝑦 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 

𝑤, ℎ = 𝑐𝑎𝑚𝑒𝑟𝑎 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑑𝑡ℎ 𝑎𝑛𝑑 ℎ𝑒𝑖𝑔ℎ𝑡, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

𝑥𝑑𝑖𝑠 , 𝑦𝑑𝑖𝑠 = 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 

𝑘1,2,3 =  𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

𝑟 = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑦 
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This procedure is valid for any camera with known geometry and calibration. The 

calibration procedure can be accomplished with a printed checkerboard and with a 

software package such as OpenCV or MATLAB. The outputs from these software 

packages will be the distortion coefficients 𝑘 and the 3x3 camera intrinsic matrix 𝐾. An  

Equation 13 shows the translation and rotation to convert the target NED 

coordinates into target FRD coordinates with respect to the vehicle FRD frame. Equation 

14 expands on equation 13 by translating the resultant by the FRD position of the camera, 

𝑃𝐹𝑅𝐷, and rotating it into a Z-out camera-centered frame. The resultant, 𝑃𝑐𝑎𝑚, can then be 

used as the world coordinates in Equation 9. 

 

𝑃𝐹𝑅𝐷  =  𝑅𝐹𝑅𝐷
𝑁𝐸𝐷(𝑇𝑁𝐸𝐷 − 𝑃𝑁𝐸𝐷)        (14) 

𝑃𝐶𝐴𝑀  =  𝑅𝐶𝐴𝑀
𝐹𝑅𝐷 (𝑇𝐹𝑅𝐷 − 𝑃𝐹𝑅𝐷)        (15) 

Where: 

 𝑇 = 1𝑥3 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑟𝑎𝑚𝑒 

 𝑃 = 1𝑥3 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑟𝑎𝑚𝑒 

 

The algorithm was also developed to be robust to cropped imaging sensors. 

Cropped sensors offset the region of interest as the camera intrinsic matrix is found using 

the full frame of the camera. This requires the region of interest coordinates to be 

translated from the full frame origin to the cropped frame origin. This can be performed 

by simply adding an offset value equal to the difference between origins in pixel 

coordinates. Some cameras may be set up in a way to crop the actual sensor in the camera 

firmware before streaming the images. This method is widely used as it allows for a 
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higher framerate while still potentially providing the same areas of interest for 

processing. For cameras that do not use cropped frames, the offset values may be set to 0.  

This process shows the general form rotation from NED coordinates to camera 

pixel coordinates. To generate an ROI, this process must be repeated 4 times for each 

corner position of the ROI. The bottom two coordinates of the ROI are extracted from the 

two outermost NED points from the LiDAR returns. The top two ROI coordinates are 

generated in the NED frame by projecting the two lower points upward by the known 

height of the classified object. This requires the object to be accurately classified, and the 

object height to be known beforehand. Lastly, to retain a rectangle shape, the ROI points 

are modified so that the largest extent of each side is taken. This correction is shown 

below in Figure 14. 

 

Figure 14: Left: Distorted ROI Right: ROI with using extent coordinates 
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Chapter IV 
Results 

4.1 Simulation Results 

A simulation environment was initially used to validate the expected behavior of 

the occupancy grid implementation [5]. The simulation environment is built in MATLAB 

and uses CAD models of buoys and other waterborne objects to build an operating 

environment. Ray Tracing is then used to compute LiDAR returns from the faces of these 

objects. The simulation also allows for inserting the error characteristics of the platform’s 

GPS/INS system and LiDAR sensors. In this way, LiDAR returns are accurately 

simulated as the vehicle navigates the simulated environment. Figure 15 shows the 3D 

environment consisting of obstacles and the ASV. 

 

Figure 15: Simulation environment, showing buoys, a dock, and other large waterborne objects. 

For this discussion, an arrangement of buoys, as well as some larger and more 

complex objects have been placed in the simulation. It is important to note that the image 

above corresponds to a breakpoint in the simulation after the vehicle has already mapped 
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part of the environment. Thus, the current 2D occupancy grid, 𝐺, shown below in Figure 

16, corresponds to LiDAR returns received over the past 20 scans (4 seconds with 5Hz 

scan rate) of simulated movement with a size of 𝑑 = 80𝑚, ℎ = 8𝑚, and 𝛿 = 0.1𝑚 in the 

presence of typical sensor error from a Velodyne LiDAR and the Torc PinPoint 

GPS/INS.  

 

Figure 16: Occupancy Grid, G. This grid contains cells that have been filled over the previous 20 scans (4 secs 

with a 5Hz scan rate). 
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Figure 16 shows that part of all objects within range of the vehicle have been 

detected, but not all of the object has been filled in 𝐺. The grid 𝐺 is then used to extract a 

set of polygon objects 𝐴, using [19], and the Douglas-Peucker point reduction method is 

applied subject to a 0.25m decimation tolerance. The resulting object list 𝐴 is shown in 

Figure 17.  

 

Figure 17: Objects A, after performing point reduction. The unlabeled cyan boundary indicates the region 

where there is enough detail to classify the objects as discussed in [24]. This is the same region explained with 

Figure 7. 

These simulation results demonstrates the capability to effectively detect objects within 

the effective sensor range shown in the cyan boundary. This process was then validated 

with real world testing. Shown below in  

Figure 18 is a representation result with labeled classification using colorization. Polygon 

representation is shown, and mapping accuracy is further explained in [24]. 
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Figure 18: plot of the objects currently in the occupancy grid. The dock is shown as a gray polygon while a small 

A-3 buoy is shown as the blue polygon. 
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4.2 Classification 

 

The SVM classifier was trained on 6 object classes, where each corresponds to an 

object from the RobotX competition. The object classes are Taylor Made Sur-Mark 

green, red and white can buoys, Polyform A-3 black buoys, Polyform A-7 black buoys 

[25], a dock, the competition light tower element, and the competition detect and deliver 

element. The objects are all seen pictured below in Figure 19, Figure 20, and Figure 21. 

 

Figure 19: Left - Two Taylor Made Sur-Mark Can Buoys. Right - Polyform A-3 and A-7 Buoy [25] 

 

Figure 20: Left - Competition Light Tower. Right - Competition Detect and Deliver Target 
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Figure 21: Competition Dock 

The data was collected using the real-time supervised labeling approach described 

in Section 3.2. Utilizing the unique IDs of each object, the platform was able to perform 

complex maneuvers around the objects without losing the association between each 

object and its features. Unique IDs are created by tracking the extent of the object. 

Objects that retain their position within 0.5m retain their ID. This method permitted the 

capture of test data in as many operating conditions as possible. This includes driving 

towards and away from the objects, sitting stationary, strafing the object, or circling the 

object. The data was then sorted and saved to a text file so that it could be trained 

immediately. An example of this data is shown in Appendix A. 

Given the C-SVC method of SVM has two parameters to tune, C and Gamma, a 

grid search method was applied to optimize the values for training. Using the full data set 

and 10-fold cross validation, the grid search method determined values for C and Gamma 

to be 32768 and 2, respectively. The data was then split into a test and train set by 

randomly sampling 20% of the training data from each class. 

Prior work on this platform implemented a Multi Variate Gaussian (MVG) classifier for classifying two 

different objects, the Taylor Made Sur-Mark Can buoys and the Polyform A-3 buoys [25]. For comparison with 

SVM, a MVG classifier was also trained on the data set. Table 1 below shows the confusion matrix for a data 
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test set containing the 6 classes for the MRC competition. Table 2 below shows the confusion matrix for the 

MVG classifier on the same data set.  

 

 

 

 

Table 3 below shows a comparison in classification accuracy between both 

classifiers as well as the mean classification percentage and misclassification percentage.  

 

Table 1: Confusion matrix for SVM test set 

 

 

Actual Class 

Taylor Made 

Can Buoy 

Light 

Tower 

Dock Detect and 

Deliver Target 

Polyform 

A-3 

Polyform 

A-7 

P
re

d
ic

te
d
 C

la
ss

 

Taylor Made 

Can Buoy 

3082 0 0 0 27 0 

Light Tower 1 508 0 0 0 0 

Dock 0 0 58 0 0 0 

Detect and 

Deliver Target 

0 0 0 83 0 0 

Polyform A-3 5 0 0 1 798 7 

Polyform A-7 0 0 0 0 5 87 

 
Table 2: Confusion matrix for MVG test set 

 

 

Actual Class 

Taylor Made 

Can Buoy 

Light 

Tower 

Dock Detect and 

Deliver Target 

Polyform 

A-3 

Polyform 

A-7 

P
re

d
ic

te
d
 C

la
ss

 

Taylor Made 

Can Buoy 

2982 1 0 0 123 3 

Light Tower 2 507 0 0 0 0 

Dock 0 0 58 0 0 0 

Detect and 

Deliver Target 

0 0 0 83 0 0 

Polyform A-3 30 0 3 0 733 45 

Polyform A-7 0 0 0 0 15 77 
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Table 3: Classification accuracies by class, mean classification, and misclassification rate 

Class SVM MVG 

Taylor Made Sur-Mark Can Buoy 99.1% 95.9% 

Competition Light Tower 99.8 99.6 

Competition Dock 100 100 

Competition Detect and Deliver 100 100 

Taylor Made A3 Black Buoy 98.4 90.4 

Taylor Made A7 Black Buoy 94.6 83.7 

Mean Classification 98.7 94.9 

Misclassification Rate 1.3 5.1 

 

 

Except for the perfectly predicted classes: the dock and detect and deliver target, 

the SVM implementation has higher accuracy on each class than the MVG method. The 

largest improvement is seen with the Taylor Made A3 and A7 black buoys. This can most 

likely be attributed to the distribution of values for the intensity features, 𝐹1...4, being so 

similar between classes, but distinct from the other 4 classes. For example, the average 

intensity feature for A3 and A7 buoys are 12 and 14 respectively. However, the average 

intensity for an object such as the light tower is generally 27. Furthermore, these features 

exploit physical properties of the objects. Properties such as color and material that vary 

among other classes are identical for the A3 and A7 classes, adding to the confusion. 

Lastly, the confusion is increased for MVG because these features have a non-Gaussian 

distribution, inherently reducing the accuracy of a Gaussian classifier such as MVG. For 

example, shown below in Figure 22 is the minimum intensity attribute for all classes. 
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This distribution is biased heavily towards low intensity values and creates a non-

gaussian distribution. 

 

Figure 22: Minimum intensity for all classes. Blue - Can Buoy. Red - Light Tower. Teal - Dock. Gray - 

Raquetball Tower. Pink - A3 Black Buoy. Green - A7 Black Buoy 

 The most important value for comparison is the misclassification rate of both 

classifiers. Switching from MVG to SVM yields a 3.8% drop, or 3.9x improvement, in 

misclassifications. Since SVM have no Gaussian assumptions regarding the data, it’s 

feasible to believe the difference in misclassification between classifiers will grow with 

an increase in the number of classes tested, especially if the classes have similar feature 

values. However, the SVM implementation developed does not account for unknown 

classes. As a result, all objects detected will result in a classification, even if the predicted 

class does not belong to any of the trained classes. The SVM classifier, however, does 

allow for an unknown class to be trained. To address this issue, a simple voting scheme 

was used. The voting scheme requires a certain number of the same classification before 

considering the object classified. While the object doesn’t have enough votes, its class 
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remains unknown. Future work should also account for unknown objects such as moving 

objects or the shoreline. 

For visualization, a 2D plot was used, which displays polygons for all currently 

detected or visible objects. These polygons are then color coded according to predicted 

class. Figure 23 shows the 2D plot populated with some classified and unclassified 

objects. Polygons shown in red represent Taylor Made Sur-Mark Can buoys. The dock is 

shown as the yellow object, the light tower is shown in the image as a pink square, and 

the smaller Polyform A-3 buoys are shown in blue.  

 
Figure 23: 2D plot showing all objects detected by the vehicle. 1) Taylor Made Sur-Mark Can buoys - red 2) 

dock – yellow 3) light tower - pink 4) Polyform A-3 buoys - blue 

 

4.3 Camera Sensor Fusion 

 

The camera sensor fusion application performed sufficiently for extracting 

regions of interest. An example region of interest generated for the dock is shown below 

Figure 24 and an example ROI for a tall buoy is shown in Figure 25. This generated 
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region is padded by 100 pixels in each direction to account for measurement error. 

Unfortunately, the accuracy of this method is entirely dependent on the geometric 

measurements of the LiDAR and camera sensors.  

 

 

Figure 24: ROI of dock object from Minions port camera 

 

Figure 25: Tall Buoy classification and ROI from Minion’s starboard camera 

 

This error may be demonstrated by tracking an object in the camera at varying 

distances and angles.  In both frames there is 0 padding applied to the image. The buoy is 

measured to be 1.5m tall. When the buoy is moved to a distance 20m from the boat, the 
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ROI has drifted halfway up the buoy, resulting in 1.7 degree. This error can be attributed 

to a measurement error in the camera and LiDAR geometry. Moving the buoy to the side 

of the frame was then used to measure the left-right error of the approach. Estimating the 

frame to being 0.7m from the center of the buoy results in a 1.4 degree error. Further 

work can be done to automatically adjust the ROI padding based on the distance from the 

object. As shown in Figure 26 padding is not necessary for objects located at the center of 

the frame and minimal distance. Though as the distance increases, the <2 degree error in 

measurement begins to accrue and padding becomes more necessary.  

 

 

Figure 26: Left: Close object in center of frame. Right: Object further away 
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Chapter V 

Discussion, Conclusions, and Recommendations 
  

 The methods shown above provide a highly effective application of LiDAR 

sensors in maritime environments for object detection, classification, and camera sensor 

fusion for vision-based object extraction using regions of interest. Utilizing a GPS/INS, 

four LiDAR sensors, and a pair of cameras, the minion platform could accurately detect 

and classify objects. It is shown that LiDAR returns may successfully be fit to a 2D 

occupancy grid with 20cm cells, allowing for object extraction through image operations. 

A 3D grid is retained and stores spatial information for the extracted objects for use in 

classification. 

 Object classification with a Support Vector Machine (SVM) classifier yielded a 

98.7% mean accuracy over 6 object classes. This method improved on the 94.9% 

accuracy of Multi-variate Gaussian (MVG) as several features such as object intensity 

had non-Gaussian distributions. This is shown more strongly with objects such as the 

Polyform A-3 and A-7 buoy where SVM had a 98.4% and 94.6% accuracy while MVG 

had a 90.4 and 83.7% accuracy, respectively. Despite the high accuracy of the SVM 

classifier, an unknown class should be trained alongside the object classes to lower the 

false-positive classifications of objects not belonging to the 6 trained classes. 

Furthermore, moving objects cannot be classified at all due to the restrictions of the 

current occupancy grid application. 

 Using the geometric properties of the LiDAR and camera sensors, a region of 

interest was extracted from the camera using LiDAR returns. This method proved 

accurate with a <2 degree angular error on the 3D rotations. However, when reaching 
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distances of 20m, this error results in regions that have 0.6m uncertainty. As a result, 

region bounds were expanded by 100 pixels for all frames to correspond with 2 degrees 

of error at 20m. While successful for this application, this approach may be improved by 

dynamically adjusted the padding based on object distance. 

 This combination of methods greatly improves the perception capability of an 

ASV like Minion. By accurately detecting and classifying objects, an ASV may make 

more intelligent decisions based on its improved environmental awareness. Future work 

may further improve these capabilities by retraining the SVM classifier for an unknown 

class, as well as moving objects, dynamically adjusting the camera region of interest 

based on distance, or decreasing the measurement error of the sensor positions.  
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Appendix A 

Training Data Format 
 

1 1:0.136842 2:0.000000 3:0.193578 4:0.184768 5:0.532258 6:0.005639 7:0.018220 

8:0.008790 9:0.001596 10:0.001225 

1 1:0.252632 2:0.000000 3:0.256307 4:0.210891 5:0.500000 6:0.006031 7:0.017081 

8:0.008581 9:0.002713 10:0.000629 

1 1:0.226316 2:0.000000 3:0.248471 4:0.152998 5:0.387097 6:0.008224 7:0.014569 

8:0.007116 9:0.002138 10:0.000344 

1 1:0.594737 2:0.000000 3:0.182358 4:0.453672 5:0.209677 6:0.014098 7:0.021466 

8:0.012871 9:0.002188 10:0.001176 

1 1:0.621053 2:0.000000 3:0.305616 4:0.653677 5:0.177419 6:0.012061 7:0.018349 

8:0.009209 9:0.002118 10:0.000789 

1 1:0.231579 2:0.000000 3:0.320813 4:0.222136 5:0.225806 6:0.018484 7:0.018141 

8:0.009209 9:0.004112 10:0.000591 

1 1:0.263158 2:0.000000 3:0.187368 4:0.174438 5:0.225806 6:0.015038 7:0.030173 

8:0.016011 9:0.002112 10:0.002512 

1 1:0.052632 2:0.333333 3:0.214067 4:0.011232 5:0.064516 6:0.000705 7:0.011960 

8:0.005546 9:0.001111 10:0.000530 

1 1:0.242105 2:0.148148 3:0.327313 4:0.207630 5:0.161290 6:0.003524 7:0.009213 

8:0.004395 9:0.001172 10:0.000292 

2 1:0.500000 2:0.000000 3:0.316719 4:0.315281 5:0.451613 6:0.057566 7:0.057390 

8:0.049184 9:0.018514 10:0.004243 

2 1:0.505263 2:0.000000 3:0.275936 4:0.361927 5:0.403226 6:0.093828 7:0.068623 

8:0.061741 9:0.026145 10:0.004846 

2 1:0.221053 2:0.000000 3:0.180142 4:0.188836 5:0.467742 6:0.049185 7:0.071061 

8:0.070427 9:0.027718 10:0.005399 

2 1:0.500000 2:0.000000 3:0.294698 4:0.311716 5:0.354839 6:0.071272 7:0.066605 

8:0.064881 9:0.024655 10:0.004343 

3 1:0.978947 2:0.000000 3:0.220477 4:0.255523 5:0.580645 6:0.883929 7:0.973427 

8:0.967141 9:0.981354 10:0.939817 

3 1:0.010526 2:0.000000 3:0.022936 4:0.022812 5:0.483871 6:0.000000 7:0.016254 

8:0.006907 9:0.002025 10:0.003849 

3 1:0.031579 2:0.074074 3:0.076453 4:0.052683 5:0.387097 6:0.000000 7:0.028474 

8:0.011720 9:0.000000 10:0.011267 

4 1:0.463158 2:0.000000 3:0.387729 4:0.342916 5:0.548387 6:0.444784 7:0.159835 

8:0.218606 9:0.104441 10:0.027274 

4 1:0.500000 2:0.000000 3:0.411881 4:0.326719 5:0.596774 6:0.474232 7:0.157161 

8:0.255128 9:0.108393 10:0.028666 

4 1:0.536842 2:0.000000 3:0.587477 4:0.523042 5:0.564516 6:0.464364 7:0.162012 

8:0.225408 9:0.087787 10:0.02697 
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Appendix B 

Project Dependencies 
 

Project Dependencies: 

• Labview 2016 64-bit  

o http://www.ni.com/download/labview-development-system-2016/6055/en/ 

• Labview Vision Add-ons 2016 

o http://www.ni.com/download/vision-development-module-2016/6304/en/ 

o http://www.ni.com/download/ni-vision-acquisition-software-september-

2016/6422/en/ 

• Labview Machine Learning Toolbox (MLT) 

o https://forums.ni.com/t5/NI-Labs-Toolkits/LabVIEW-Machine-Learning-

Toolkit/ta-p/3514074 

• LibSVM for Labview v1.1 

o https://github.com/oysstu/LabVIEW-libsvm 

 


	Maritime Object Detection, Tracking, and Classification Using Lidar and Vision-Based Sensor Fusion
	Scholarly Commons Citation

	XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX

