
Annual ADFSL Conference on Digital Forensics, Security and Law 2015
Proceedings

May 20th, 2:00 PM

Invited Paper - A Profile of Prolonged, Persistent SSH Attack on a Invited Paper - A Profile of Prolonged, Persistent SSH Attack on a

Kippo Based Honeynet Kippo Based Honeynet

Craig Valli
Security Research Institute, Edith Cowan University

Priya Rabadia
Security Research Institute, Edith Cowan University, sri@ecu.edu.au

Andrew Woodard
Security Research Institute, Edith Cowan University, sri@ecu.edu.au

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Aviation Safety and Security Commons, Computer Law Commons, Defense and Security

Studies Commons, Forensic Science and Technology Commons, Information Security Commons,

National Security Law Commons, OS and Networks Commons, Other Computer Sciences Commons, and

the Social Control, Law, Crime, and Deviance Commons

Scholarly Commons Citation Scholarly Commons Citation
Valli, Craig; Rabadia, Priya; and Woodard, Andrew, "Invited Paper - A Profile of Prolonged, Persistent SSH
Attack on a Kippo Based Honeynet" (2015). Annual ADFSL Conference on Digital Forensics, Security and
Law. 7.
https://commons.erau.edu/adfsl/2015/wednesday/7

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217162206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2015
https://commons.erau.edu/adfsl/2015
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1320?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1114?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/429?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2015/wednesday/7?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Fwednesday%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

INVITED PAPER

A Profile of Prolonged, Persistent SSH Attack on a Kippo Based

Honeynet

Craig Valli, Priya Rabadia and Andrew Woodard

Security Research Institute

Edith Cowan University

sri@ecu.edu.au

ABSTRACT

This paper is an investigation focusing on activities detected by SSH honeypots that utilised kippo

honeypot software. The honeypots were located across a variety of geographical locations and

operational platforms. The honeynet has suffered prolonged, persistent and attack from a /24 network

which appears to be of Chinese geographical origin. In addition to these attacks, other attackers have

been successful in compromising real hosts in a wide range of other countries that were subsequently

involved in attacking the honeypot machines in the honeynet.

Keywords: Cyber Security, SSH, Secure Shell, Honeypots, Kippo

INTRODUCTION

This paper is an investigation focusing on activities detected by Secure Shell (SSH) honeypots that

utilise the kippo honeypot software (desaster, 2015). This paper is part of an ongoing investigation,

with initial work conducted in 2012 and 2013 (Valli, 2012; Valli, Rabadia, & Woodward, 2013). All

SSH honeypots were configured identically using kippo source code.

The focus of this particular research is primarily to identify evidence of automated attacks using

password wordlists being implemented to login and gain access to three kippo SSH honeypots. All

honeypots have the same username and password databases that contain multiple valid login password

combinations. These valid combinations are part of the deception that is presented to the attacking

entity by the kippo SSH honeypot. The passwords in these lists are drawn from well-known weak

password lists. The honeypots are configured in kippo to present as different hostnames. The

machines are further differentiated by manipulating some of the files in the fake filesystem used by

kippo.

This paper examined a specific attack that has propagated since November 2014 and continues as of

the time of writing. What is unique about the attack is that all previous attempts to attack the

honeypots were detected as originating from UNIX based systems utilising SSH clients. The SSH

attacks are now appearing to be coming from machines that utilise the PUTTY SSH suite of tools on

Windows platform operating systems. Furthermore, the volume of SSH login attempts evinced on the

honeynet in the past four months has increased at a rate of growth which is approaching that of

exponential. This significant increase in attempts is likely due to Windows operating system based

computers comprising a significant share of the market, and reportedly in excess of 97% in China

(Popa, 2015).

OVERVIEW OF THE SETUP OF THE KIPPO SSH HONEYNET

A honeynet can readily be described as a controlled and centrally administered collection of

honeypots. The kippo SSH honeypot is a medium interaction honeypot, meaning that the honeypot

imitates some functions that would exhibited by a live system (Hosting, 2013; Stevens & Pohl, 2004).

The kippo honeypot is designed to effectively mimic an SSH server to an attacking entity. The SSH

protocol is designed to securely transmit data using a point to point encryption tunnel (Ciampa, 2010),

provides high grade encryption, and is a secure replacement for plaintext terminal programs such as

telnet or rsh on UNIX or UNIX-like operating systems (Linux, OpenBSD, FreeBSD). Most network

connected UNIX or UNIX-like operating systems have SSH installed as a client, and it is often

included as a server (daemon) to help protect systems by providing a platform for encrypted

communications. There are also many SSH clients available to run from Windows operating system

based computers, with Putty being a commonly used Windows client (Tatham, 2015).

kippo honeypots are designed to collect data from attacker interaction with an emulated SSH service.

The emulated SSH service is provided by an open-source, Python based event-driven program called

Twisted (TwistedMatrixLabs, 2013). Twisted provides the libraries that are utilised and deployed by

kippo to imitate a valid encrypted SSH session to an entity. Relevant SSH artefacts are also extracted,

including the SSH banner or string that the daemon or clients presents to connecting SSH entities.

Each of these banners or strings are typically unique and in many cases can reliably fingerprint the

connecting operating system and device. Fingerprinting is a term used in network security to describe

the data which is sent by a computer when it is connect to over a network, and this data is considered

to be unique to each operating system, and in some cases different versions of a given operating

system. Kippo allows the honeypot user to change the SSH banner to any known valid fingerprints for

SSH.

The honeypot also emulates a logically correct, but manufactured file system to present to the user

who successfully gains access to the honeypot. The system also presents falsified system reporting

and allows interaction with artefacts such as /proc/cpuinfo or .bash_history logfile. While the level of

deception in the default setting is limited, this functionality is able to be expanded and modified at

will. For this experiment, key elements were modified such as /proc entries and different bash entries

to create a difference in each of the kippo hosts presented in the honeypots.

The kippo SSH honeypots are written in Python, and installed using the recommended process.

Source code was obtained from https://github.com/ikoniaris/kippo which is modified kippo code. The

setup for these particular systems used in the data collection was conducted as specified by the

BruteForce Lab Guide (Labs, 2011) and further enhanced to send data to various database stores

Postgresql, Mysql and also an ElasticSearch server. This setup deviates from the original kippo SSH

documentation in that it uses the authbind daemon instead of twistd as the initial connecting daemon

for the service. This configuration lets authbind handle the binding of the twistd as a non-root user to

a low numbered TCP port and passes this to the twistd daemon. This configuration was found to be

more consistent, reliable and secure during the conduct of the research project.

During the installation process, a local MySQL database was configured and secured to record all the

interactions with the kippo honeypots. Figure 1 is a table from (Valli, 2012) which was sourced from

the kippo documentation. It shows the MySQL database structure used in the kippo honeypots that

was used to record all the interaction data.

TABLE auth

 id int(11) PK,

 session char(32) NOT NULL,

 success tinyint(1) NOT NULL,

 username varchar(100) NOT NULL,

 password varchar(100) NOT NULL,

 timestamp datetime NOT NULL,

TABLE input

 id int(11)NOT NULL PK

 session char(32) NOT NULL,

 timestamp datetime NOT NULL,

 realm varchar(50) default NULL,

 success tinyint(1) default NULL,

 input text NOT NULL,

 KEY session (session,timestamp,realm)

TABLE clients

 id int(4) PK

 version varchar(50) NOT NULL

TABLE sensors

 id int(11) NOT NULL (PK)

 ip varchar(15) NOT NULL

TABLE sessions

 id char(32) NOT NULL PK

 starttime datetime NOT NULL,

 endtime datetime default NULL,

 sensor int(4) NOT NULL,

 ip varchar(15) NOT NULL default '',

 termsize varchar(7) default NULL,

 client int(4) default NULL,

 KEY starttime (starttime,sensor)

TABLE ttylog

 id int(11) NOT NULL PK

 session char(32) NOT NULL

 ttylog mediumblob NOT NULL

Figure 1 - MySQL database structure for kippo honeypot

After recording to the local MySQL database, these data are then transmitted to a centralised

Postgresql SQL server (Valli et al., 2013). Communication is achieved using a Python extension that

uses a Postgresql driver to connect to the SURFIDS system IDS logging server (IDS, 2013). The

centralised logging server utilises the SURFIDS system for storing the data from the honeypots into

an aggregated PostgreSQL database. The database has functions and tables specifically for the kippo

honeypots data. In addition, the honeypots running kippo operate Dionaea and Glastopf, which in turn

report to the SURFIDS instance. It should be noted that these data are not used in this analysis or

reported here.

The entire honeynet had its kippo code modified to support transmission of attack data to an

Elasticsearch instance. In addition to storing the data in local MySQL databases, this code allows the

researchers to concurrently transmit it to an ElasticSearch engine ("Elasticsearch," 2015) that has a

Kibana("Kibana," 2015) frontend engine. The data in this system can subsequently be queried using

customised Kibana frontend queries. The utilisation of the Kibana frontend allows the user to create

many custom views of the data, allowing for detection of anomaly and threat. Demonstrative figures

extracted from Kibana are included later in this paper.

GAINING ACCESS

To gain access to these honeypot systems, the correct username and password must be entered at the

emulated login screen, as would be the case for a real system. While general user accounts on well

administered systems may have lockout of the account for unsuccessful attempts, it is not a feature

that is enabled on administrative and root accounts at any time. The reason being that repeated

deliberate unsuccessful login attempts can result in a denial of service, thereby locking out access of

administrative or root accounts. The lack of an account lockout for unsuccessful password attempts is

the Achilles heel of availability for administrative accounts or system accounts, and can be routinely

exploited by the use of automated attack tools. The generic tool used for this type of activity is called

colloquially a password cracker.

Passwords crackers can be deployed to identify the correct password by trying different passwords

against the particular service or system. It should be noted that the rate of password attempts is

reaching billions of passwords a second when using multi CPU- or GPU-enabled password crackers,

with the limiting factor being that of the target machine speed in terms of network or processing

power.

There is a finite number of passwords for any given system password implementation, often referred

to as a key space, and while finite, these key spaces can be computationally large. For example, the

standard Windows LM password key space for all possible passwords is 2
43

. While it is relatively

infeasible for a single conventional computer to derive these passwords in a timely fashion, this does

not hold true for advanced techniques using compute clustering or GPU technology that can factor

these passwords at the rate of billions per second. Furthermore, techniques such as pre-computed

rainbow tables (Oechslin, 2003) can greatly increase speed, as the key space is computed once and

each possible password stored as a hash within a database table or binary file structure for easy reuse.

The limiting factor then becomes the speed at which the password hash can be compared against

every entry in the rainbow table database.

Passwords are typically stored in file structures as a cryptographic hash or set length ciphered text,

and not as plaintext. Without the use of hashing and cryptography, compromise of the password is

trivial. Compromise is achieved by simply opening the file that contains the password and reading it.

To increase the security of passwords, they are usually protected by applying a cryptographic process

to the password, with the resulting output referred to as a hash.. In this format, the probability of an

attacker obtaining or guessing the password on a first guess is very low. The MD5 hash algorithm is a

common method employed to achieve password obfuscation in this manner (Marechal, 2008).

There are different techniques that can be used to break or crack passwords. A brute force attack uses

a systematic method of guessing the password by enumerating through a combination of characters,

symbols and numbers of the allowable characters. A dictionary attack creates hashes of words that

appear in a dictionary, and compares them to the stored password or feeds the hash as input to the

login mechanism of a live system. The former method is commonly referred to as an offline attack,

and the later as a live attack. Rainbow tables are databases comprised of various character

combinations that have been pre-computed and stored typically in an efficient binary structure,

allowing fast retrieval. Password techniques that utilise plaintext wordlists can also be deployed.

These types of attack tend to utilise social engineering techniques and deductive reasoning to pick

viable candidate passwords. In some cases, these are provided as defaults with the security software

distribution or attack utilities used in, for example, Kali. Evidence from the (Rabadia & Valli, 2014)

paper proves use of these password lists by attackers. Kippo facilitates the use of these default

passwords to produce a list of acceptable passwords.

 ATTACKER BEHAVIOUR POST-COMPROMISE

 After achieving login on an account, an attacker will typically want to have administrative control of

the device, also referred to as “owning” the system. The attacker then typically downloads malicious

code and executes it, compromising the machine with infected binaries or privilege escalations that

allow for remote administrative access of the machine. Achieving remote access allows provides

persistent access and allows the cyber-criminal to use the compute device for their own activities at

will.

By design, the kippo honeypot allows all of this malicious activity to occur i.e. if the attacker logs in

they are able to interact with a fake shell and download files to honeypot. The files are downloaded

using wget functionality and stored in a sandbox for later retrieval and examination by the honeypot

operator.

Apart from logging and recording the shell interactions, as attack activity occurs kippo also extracts

other relevant artefacts from the sessions with the attacker. As mentioned previously, one such

artefact is the presented SSH signature from the session that can be used to identify the attacking

entity by its digital fingerprint. This fingerprint information was instrumental in detecting a significant

change in SSH malicious activity since this research commenced in late 2011.

In addition to the kippo honeypot software, all of the honeypot systems use p0f, a passive operating

system fingerprinting tool (Zalewski, 2015). This program works by looking at the TCP transmission

and TCP/IP stack responses, and tries to determine the attacker’s operating system through

fingerprinting and signature matching. A commonly used offensive tool nmap works on similar

principles of operation. The major difference is that the p0f program does so passively, while nmap is

proactive and sends packets to the target.

The story so far

The kippo honeynet in this research had been in existence since early 2011 and has expanded with the

addition of new sensors. There are now 22 sensors in total which are spread physically around the

globe. There are VPS servers located in USA, Germany, Netherlands, Singapore, Australia and the

Philippines, and as previously mentioned these are all installed on a maintained Ubuntu LTS (Long

Term Support) platform which is currently Ubuntu 14.04 LTS. In addition to VPS assets, there are

ADSL based honeypots deployed in Australia. These utilise Raspberry Pi implementations as well as

i686 based Ubuntu servers that have identical configuration to the VPS servers.

The project detected a wide range of SSH fingerprint signatures as shown in Table 1 prior to 12
th

November 2014, totalling approximately 1.2 million interactions, increasing to 18.6 million

interactions by 5
th
 Mar 2015 (Table 2). The attackers that had connected to the honeypots prior to the

12
th
 November 2014 had predominantly been Unix/Unix-Like signatures as shown in Table 1, with a

predominance of the Kali and BackTrack Linux distributions representing 99% of all malicious login

attempts on the honeypots using the libssh2 libraries.

Table 1 – Top 10 SSH Signatures detected by honeypots

1 SSH-2.0-libssh2_1.4.2 825729
2 SSH-2.0-libssh2_1.4.3 342920
3 SSH-2.0-libssh2_1.4.1 7101
4 SSH-2.0-JSCH-0.1.51 4390
5 SSH-2.0-libssh2_1.4.0 2230

6 SSH-2.0-OpenSSH_5.2 1530
7 SSH-2.0-paramiko_1.8.1 1157
8 SSH-2.0-libssh2_1.0 843
9 SSH-2.0-OpenSSH_6.0p1 Debian-

4+deb7u2

322
10 SSH-2.0-libssh2_1.4.3 PHP 134
 Total 1186356

Table 2 - Top 10 SSH Signatures until 05/03/2015

1 SSH-2.0-PUTTY 12477973
2 SSH-2.0-libssh2_1.4.2 3536116
3 SSH-2.0-libssh2_1.4.3 1853226
4 SSH-2.0-libssh-0.1 310530
5 SSH-2.0-libssh2_1.4.1 225762
6 SSH-2.0-JSCH-0.1.51 65791
7 SSH-2.0-PuTTY_Release_0.63 51646
8 SSH-2.0-libssh-0.4.8 37160
9 SSH-2.0-libssh2_1.4.0 9131
10 SSH-2.0-JSCH-0.1.44 6472
 Total 18573807

As of March 5
th
 (Table 2) these Linux signatures only represented 30.2% of all malicious login

attempts. At that point in time, the dominate signature was that of SSH-2.0-PUTTY, which

represented 67.1% of all attempts.

It should be noted that the SSH-2.0-PUTTY signature had not been previously seen on the honeynets

prior to 27
th
 October, 2014, when there was an observation of 10 connections in a relatively short

period of time. The next significant event was on the 13
th
 November where 69 attempts were

recorded. A significant increase in the use of the tool commenced on the 22
nd

 November, where

13,788 attempts were made from a /24 network. This /24 was not initially able to be identified on IP

based geolocation databases, but it is now identified as apparently originating from China. Initial

traceroute reconnaissance by the researcher also indicated that the traffic was propagating from

Chinese mainland assets. The other interesting part to note about the traffic was that prior to 12
th

November there was less than 20 contacts in total from that /24 IP address space over the entire period

of operation of the honeynet. A histogram of all attacks with the signature SSH-2.0-PUTTY is show

in Figure 1

Figure 1 – Histogram of login attempts against all honeypot sensors where the SSH-2.0-PUTTY

client was used

All IPs within the particular /24 still have daily contact with the honeynet, with the total number of

attempts ranging from 0 ~ 50,000 on any given day from single IPs in that network address range.

Figure 1 is the histogram for that time period, and represents 14130288 logins with only 42236

successful or 0.30% success.

The attack “network” has grown significantly as the attackers have compromised machines globally.

Initial contact with the honeypots with the SSH-2.0-PUTTY client signature was restricted to the

same /24, but as they successfully compromised machines they in turn started to contact the honeynet

nodes. Contact from nodes other than the /24 numbered 210,159 and the following figure (Figure 2)

shows the geographic spread of these contacts.

Figure 2 – Geographic spread of new attackers attacking the honeypot sensor network

The top 5 countries identified as attacking the honeynet are 73341, France 25643, USA 15416,

Turkey 7509 and Brazil 6472. This is reflected pictorially in decreasing shades of green i.e largest =

darker shade. It should be noted that while these are attackers that are seen by the 22 nodes in the

honeynet, this is not an exhaustive mechanism. However, given that modus operandi of the repeated

multiple attempts from the new members of the attack network is consistent with the “original” /24, it

seems likely that it is the same. The bruteforce nature of the attempts indicate automated bruteforce

retries of logins. When login was achieved the packet captures also evince high repetitious reuse of

the same script or code signatures to attack the systems once compromised.

DISCUSSION AND CONCLUSION

These attacks are ongoing and persistent now for over four months, and appear to be increasing in

magnitude over time. The attack would appear to be relatively non-sophisticated, repetitive, verbose

and inefficient.

From analysis of the collected data it would appear that the attacking entities are not sharing attack

data, and the attacks are noisy and not as efficient and optimised. One possible explanation for this is

that the honeypots are not responding back to or potentially providing “alive” tokens to the attacking

entity, as we are not running the malcode they download. This lack of response by the honeypots

could be the causation of the retries by the attackers. This aside, the logic employed would appear to

be:”if the compromise of the box was successful i.e we were able to login and successfully download

the malfeasant code, then leave alone.” However, the observed behaviour was:”if code has not

deployed successfully because we do not have control, then, re-attempt installation”. This finding has

implications for honeypot design sophistication and deployment, and is a valuable outcome in of

itself. To prevent this behaviour, a method for sending “false positives” back to the attacking entity

mimicking command and control would need to be developed.

This pattern of reattempted compromise in this occurrence is consistent with the intention of a

honeypot, which is to exhaust or distract resources away from legitimate targets through deception.

Every retried compromise and install represents resource usage by the attackers. This usage includes,

but is not limited to, actual machine run time, consumption of network bandwidth and scanning

activities, all of which consume finite resources on the part of the attacker. In addition to resource

wastage the activity provides, with every attempt, more evidence of the actual attack and in most

cases would represent repeat criminal offences.

Of interest is the observation more recently of the initial use and subsequent significant increase of

attacks using the Putty SSH tool. Further, it was observed that a significant quantity of these attacks

apparently originated in China. There may be a number of likely reasons as to why this was observed,

but one hypothesis is that the attackers leveraged compromised Windows operating system computers

in China as the initial attack platform. Data suggests that the majority of computers in China are

running Windows, with most of these copies are pirated and largely unpatched and thus are insecure

and susceptible to compromise themselves (Popa, 2015). Use of compromised computers as a third

party attack platform is not uncommon, as it makes it harder to identify the true origin of a cyber-

attack(Livadas, Walsh, Lapsley, & Strayer, 2006). This does call into question whether these attacks

are truly originating in China, as has been suggested in previous honeypot research (Pouget & Dacier,

2004).

Further research is being conducted now on the downloaded payloads from the attacking entities. One

of the features of the honeynet is that it will download, check the md5 sum of the file, and if it already

exists will discard the download. This is advantageous in these cases as otherwise there would be

significant storage implications for this research alone.

There is also data with respect to detected OS fingerprints for attacking entities which will be

presented in further research papers.

Finally, the honeynet is functioning as it should, and this particular persistent attack has and continues

to yield significant data for analysis and interpretation.

REFERENCES

Ciampa, M. D. (2010). Security Awareness: applying partical security in your world (3rd ed.).

Boston: Course Technology.

desaster. (2015). kippo. Retrieved from https://github.com/desaster/kippo

. Elasticsearch. (2015). https://www.elastic.co/products/elasticsearch: ElasticSearch BV.

Hosting, G. P. (2013). Kippo. Kippo SSH Honeypot Retrieved 09.10.2013, from

http://code.google.com/p/kippo/

IDS, S. (2013). SURFcert IDS Retrieved 20/10/2013, from http://ids.surfnet.nl/wiki/doku.php

. Kibana (Version 3.1.2). (2015). https://www.elastic.co/products/kibana: Elasticsearch BV.

Labs, B. (2011). Installing Kippo SSH Honeypot on Ubuntu Retrieved 27.09.2013, from

http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html

Livadas, C., Walsh, R., Lapsley, D., & Strayer, W. T. (2006). Usilng machine learning technliques to

identify botnet traffic. Paper presented at the Local Computer Networks, Proceedings 2006

31st IEEE Conference on.

Marechal, S. (2008). Advances in password cracking. Journal in computer virology, 4(1), 73-81.

Oechslin, P. (2003). Making a Faster Cryptanalytic Time-Memory Trade-Of. Paper presented at the

The 23rd Annual International Cryptology Conference, CRYPTO '03, Santa Barbara,

California, USA.

Popa, B. (2015). More than 97 Percent of Computers in China Now Running Windows, Mostly

Pirated Retrieved March 2015, 2015, from http://news.softpedia.com/news/97-Percent-of-

Computers-in-China-Now-Running-Windows-Mostly-Pirated-472110.shtml

Pouget, F., & Dacier, M. (2004). Honeypot-based forensics. Paper presented at the AusCERT Asia

Pacific Information Technology Security Conference.

Stevens, R., & Pohl, H. (2004). Honeypots und Honeynets. Informatik-Spektrum, 27(3), 260-264. doi:

10.1007/s00287-004-0404-y

Tatham, S. (2015). PuTTY: A Free Telnet/SSH Client, from

http://www.chiark.greenend.org.uk/~sgtatham/putty/

TwistedMatrixLabs. (2013). What is Twisted? Retrieved 23.09.2013, from

http://twistedmatrix.com/trac/

Valli, C. (2012). SSH: Somewhat Secure Host. Paper presented at the Cycberspace Safety and

Security, Melbourne Australia.

Valli, C., Rabadia, P., & Woodward, A. (2013). Patterns and Patter - An Investigation into SSH

Activity Using Kippo Honeypots. Paper presented at the Australian Digital Forensics

Conference, Edith Cowan University.

Zalewski, M. (2015). p0f v3 Retrieved March, 2015, from http://lcamtuf.coredump.cx/p0f3/

http://www.elastic.co/products/elasticsearch:
http://code.google.com/p/kippo/
http://ids.surfnet.nl/wiki/doku.php
http://www.elastic.co/products/kibana:
http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://news.softpedia.com/news/97-Percent-of-Computers-in-China-Now-Running-Windows-Mostly-Pirated-472110.shtml
http://news.softpedia.com/news/97-Percent-of-Computers-in-China-Now-Running-Windows-Mostly-Pirated-472110.shtml
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://twistedmatrix.com/trac/
http://lcamtuf.coredump.cx/p0f3/

	Invited Paper - A Profile of Prolonged, Persistent SSH Attack on a Kippo Based Honeynet
	Scholarly Commons Citation

	Invited Paper - A Profile of Prolonged, Persistent SSH Attack on a Kippo Based Honeynet

