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Environmental Stimuli and Intragenerational Epigenetics 

Epigenetics is the study of any change in gene expression that is not mediated by 

DNA sequence. There are two broad categories of epigenetic inheritance: 

intragenerational inheritance and transgenerational inheritance. Intragenerational 

inheritance consists of those epigenetic changes that are inherited on a cellular level but 

not on an organismal level. Such intragenerational epigenetic changes can be caused by 

developmental cues such as hormones (known as cellular inheritance) or by 

environmental stimuli such as toxicants (known as transcriptional inheritance). The 

second broad category of epigenetic inheritance, transgenerational inheritance, describes 

those epigenetic changes which are inherited at an organismal level, and which are often 

caused by environmental stimuli in a manner similar to intragenerational transcriptional 

inheritance (D’Urso et al. 2014). 

The effects of environmental stimuli on epigenetic changes have been studied 

extensively in recent years for both transgenerational and intragenerational inheritance. 

Multiple reviews have provided comprehensive summations of the effects of 

environmental stimuli upon epigenetics within the scope of transgenerational inheritance 

(Bollati et al. 2010). However, few reviews have focused upon environment-induced 

intragenerational epigenetic changes, although many intragenerational epigenetic changes 
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have been linked to conditions such as cancer, Alzheimer’s disease, and drug addiction 

(Herceg et al. 2007, Feng et al. 2013, Mastroeni et al. 2011). 

This review will summarize current knowledge of the intragenerational epigenetic 

changes that are induced by two groups of well-studied environmental stimuli: nutritional 

deficiencies and carcinogens. This survey of intragenerational epigenetic changes will 

focus upon the mechanisms behind them, the disorders associated with them, and the 

interactions between them. 

 

MECHANISMS OF EPIGENETIC REGULATION 

Before the causes and effects of epigenetic changes are examined, a description of 

the mechanisms underlying these changes is pertinent. Only those epigenetic mechanisms 

that are relevant to the intragenerational changes discussed in this review will be 

described here (for a more extensive discussion of both transgenerational and 

intragenerational epigenetic mechanisms, see Cedar and Bergman 2009, Watson et al. 

2014, Zhang and Pradhan 2014, and Zhou et al. 2011).  

The epigenetic mechanisms that will be described here can be divided into three 

main layers: DNA methylation, histone modifications, and chromatin condensation 

(Figure 1). The first layer, DNA methylation, denotes the addition of methyl groups to 

cytosine residues within a given gene and is usually associated with decreased expression 

of the affected gene. The second layer, histone modifications, involves the addition or 

removal of functional groups such as methyl or acetyl groups on the “tails” of histone 

proteins, which can either increase or decrease gene expression. Finally, chromatin 

condensation refers to the degree to which DNA is wrapped and folded into secondary 
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structures, with a higher degree of condensation generally equating to decreased gene 

expression. These three layers are all closely interrelated in a manner that is still not fully 

understood, but it is known that changes in one of these layers typically prompts a change 

in the other layers (Cedar and Bergman 2009, Watson et al. 2014). Ultimately, the effects 

of all of these epigenetic mechanisms are invariably the same: they alter the availability 

of a given gene to transcription factors and other transcriptional proteins, thereby 

increasing or decreasing the transcription of that gene (Watson et al. 2014). 

 

Figure 1 | Interdependency of epigenetic mechanisms. The components of the epigenetic 

mechanisms discussed here. Note the highly-interrelated nature of the mechanisms, as well as the 

effects on gene expression, which can only come through modification of the binding of 

transcription factors and transcriptional machinery. 
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Cytosine methylation and effects on DNA-binding proteins. DNA methylation 

typically occurs in large “islands” of cytosine residues located in or near the gene’s 

promoter. This modification of cytosines rarely has any significant effects by itself, but 

rather acts by inhibiting or promoting the binding of specific transcription factors or other 

DNA-binding proteins to DNA sequences. For example, DNA methylation might directly 

block or recruit the binding of a transcription factor, or it might act by affecting the 

binding of histone-modifying proteins, as will be discussed later (Cedar and Bergman 

2009, Watson et al. 2014).  

Histones and histone tail modifications. Histones are protein complexes that 

interact with ~146 base pairs of DNA. In order for a DNA-binding protein such as a 

transcription factor to bind to DNA, its binding site must not already be associated with 

histone proteins. The interactions between histone proteins and DNA are transient 

interactions, so DNA continually associates and dissociates from histones (This is an 

oversimplification of DNA-histone interactions; for a full description see Watson et al. 

2014). The likelihood that a given binding sequence will be dissociated from its histone 

complex at any given time can be altered by adding or removing functional groups on the 

histones’ tails. (Watson et al. 2014). Such histone tail modifications are catalyzed by 

histone-modifying protein complexes. Whether DNA becomes more or less accessible to 

DNA-binding proteins depends upon which functional group is added, where this group 

is added, and how many molecules of this group are added. For example, the addition of 

an acetyl group generally decreases the association between DNA and histones as the 

negative charge of the acetyl group repels the negatively-charged phosphate backbone of 

DNA. Conversely, the removal of an acetyl group typically has the opposite effect of 
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decreasing the association between DNA and histones. The addition of a positively-

charged methyl group can either increase or decrease DNA-histone association, 

depending on which histone tail residue it is added to, emphasizing the complexity of 

epigenetic molecular interactions (Watson et al. 2014, Zhang and Pradhan 2014). 

Consequently, the modification of histone tails can greatly affect the transcription of a 

given gene by regulating the accessibility of that gene to DNA-binding proteins such as 

transcription factors and transcriptional machinery (Cedar and Bergman 2009, Watson et 

al. 2014, Zhang and Pradhan 2014).  

The interdependency of histone modifications and DNA methylation. While 

DNA methylation and histone modifications were initially thought of as separate methods 

of epigenetic regulation, it has increasingly been found that DNA methylation is actually 

interdependent with histone modifications. In fact, it is likely that histone modifications 

help facilitate DNA methylation in embryonic de novo methylation (Cedar and Bergman 

2009, Watson et al. 2014). Histone modifications can exert this influence over DNA 

methylation by two mechanisms: by altering the accessibility of DNA sequences to DNA 

methyltransferase proteins (as described above) or by influencing the recruitment of 

DNA methyltransferases through chaperone proteins like DNMT3L. DNMT3L is usually 

able to recruit DNA methyltransferases to regions of DNA by binding to the tail of 

histone H3, but DNMT3L is unable to bind when the fourth lysine in the tail of histone 

H3 is methylated (H3K4) (Cedar and Bergman 2009). Thus, by indirectly influencing the 

binding of DNA methyltransferases, histone tail modifications can exert significant 

control over DNA methylation.  
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Similarly, DNA methylation exhibits significant control over histone 

modifications by regulating the binding of histone-modifying protein recruiters to DNA. 

These recruiter proteins exhibit specificity to either methylated or demethylated 

cytosines, and thus cannot bind if a given cytosine is in the incorrect methylation state. 

Without the binding of these chaperones, histone-modifying proteins are not recruited, 

and the addition or removal of a particular histone modification is inhibited (Cedar and 

Bergman 2009, Watson et al. 2014, Zhang and Pradhan 2014). For example, the 

chaperone MeCP2, which recruits histone deactetylases, binds to methylcytosine but not 

cytosine. MeCP2 is therefore only able to facilitate the deacetylation of histone tails if 

DNA methylation is present (Cedar and Bergman 2009, Watson et al. 2014). Vast 

changes in histone modifications can thereby be facilitated by the influence of DNA 

methylation, and vice versa. 

The interdependency of DNA methylation and histone modifications often lends 

itself to cooperation between the two mechanisms in order to facilitate long-term 

inhibition of transcription, especially in the repression of heterochromatic regions, 

pluripotency genes, and retrotransposons. In the aforementioned case of the chaperone 

MeCP2, deacetylation of histone tails serves to augment the repressive effects of DNA 

methylation. DNA methylation reduces the accessibility of a DNA sequence to activating 

transcription factors and other DNA-binding proteins, while MeCP2 further reduces the 

DNA sequence’s accessibility by triggering the deacetylation of histone tails and thereby 

increasing the affinity between the DNA sequence and its histones. While reactivation of 

a gene can occur with DNA methylation or histone deacetylation alone, the combination 

of both mechanisms greatly reduces the probability that reactivation will occur (Cedar 
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and Bergman 2009, Watson et al. 2014). For this reason, if long-term repression is not 

needed, short-term transcription regulation can be mediated by the independent action of 

either DNA methylation or histone modifications, or by transcription factors (Cedar and 

Bergman 2009, Zhou et al. 2011). However, in many cases, the interdependency of DNA 

methylation and histone modifications greatly complicates and refines epigenetic 

mechanisms, as will be seen in several of the specific environmental stimuli and 

mechanisms explored below. 

 

NUTRITION AND METHYL DEFICIENCIES 

One-carbon metabolism and SAM. One of the most-studied environmental 

modulators of epigenetics is nutrition, especially in the context of one-carbon 

metabolism. One-carbon metabolism refers to the set of reactions by which methyl 

groups are transferred from one molecule to another in order to facilitate DNA 

methylation, pyrimidine synthesis, and other cellular pathways. Two of the most 

important pathways involved in one-carbon metabolism, the folate cycle and the 

methylation cycle, are responsible for replenishing the body’s supply of S-adenosyl 

methionine (SAM), the primary methyl donor which is essential for DNA methylation. 

(Figure 2; Anderson et al. 2012, Rush et al. 2014). One-carbon metabolism and SAM 

levels are of heightened importance during in utero development due to genome-wide 

erasure and reprogramming of DNA methylation during early development. If SAM 

levels are insufficient to allow the re-establishment of methylation during early 

development, lifelong hypomethylation can occur and have pathogenic consequences 

(Anderson et al. 2012, Ciappio et al. 2011). Thus, any nutritional deficiency or other 
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environmental factor that impedes maternal one-carbon metabolism can impede SAM 

synthesis and have a deleterious effect on DNA methylation in offspring. 

 Micronutrient deficiency and SAM-related hypomethylation. A commonly-

studied cause of SAM deficiencies is dietary deficiency of the micronutrients that are 

essential to one-carbon metabolism, such as vitamin B12 and folate. In vitro, human 

adipocytes deficient of vitamin B12 exhibit hypomethylation and associated 

overexpression of the cholesterol-regulating genes LDLR and SREBF1 

(Adaikalakoteswari et al. 2015). In addition, maternal vitamin B12 deficiency is correlated 

with IGF2 promoter hypomethylation in newborns’ cord blood (Ba et al. 2011). 

Furthermore, such IGF2 hypomethylation can be reduced by supplementing maternal diet 

with folate (Steegers-Theunissen et al. 2009). General genomic hypomethylation is also 

seen in the offspring of mice fed a folate-deficient diet. Importantly, continuation of this 

folate-deficient diet in postnatal offspring did not affect DNA methylation, emphasizing 

the heightened importance of methyl donors during fetal epigenetic reprogramming 

(McKay et al. 2011). The hypomethylation observed in these instances of micronutrient 

deficiency appears to be pathogenic in many cases: IGF2 overexpression is associated 

with various cancers; overexpression of LDLR and SREBF1 leads to excessive 

cholesterol synthesis; and the impairment of one-carbon metabolism by micronutrient 

deficiency in general is associated with increased prevalence of neural tube defects and 

other diseases and defects (Adaikalakoteswari et al. 2015, Anderson et al. 2012, Rush et 

al. 2014, Steegers-Theunissen et al. 2009). The diversity of these epigenetic changes and 

associated diseases illustrates the significance of one-carbon metabolism on epigenetic 

health: a lack of nutrients can affect not only the tissues that are traditionally associated 
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with certain nutrients, but any tissue as SAM levels become insufficient and DNA 

methylation is impaired throughout the body. 

Protein deficiency and DNA methylation. Protein deficiency can also impair 

one-carbon metabolism and lead to DNA methylation changes through two mechanisms: 

micronutrient deficiency and amino acid deficiency. Because the micronutrients required 

for one-carbon metabolism must be obtained from proteinaceous dietary sources, protein-

deficient diets can have the side effect of one-carbon micronutrient deficiency and 

resultant SAM deficiency (Rush et al. 2014). Additionally, protein deficiency can lead to 

a deficiency of amino acids required to produce cellular proteins, including those 

required for methylation reactions (Rees et al. 2000, Rush et al. 2014). Unexpectedly, 

protein deficiencies often manifest in DNA hypermethylation rather than 

hypomethylation, suggesting that one-carbon micronutrient deficiency is not the main 

determinant of methylation changes in the case of protein deficiency (Rees et al. 2000, 

Rush et al. 2014, Sandovici et al. 2011). However, as of the time of this writing no 

studies have been performed to isolate the effects of amino acid deficiency from those of 

micronutrient deficiency. Further studies should examine amino acid deficiency in the 

absence of micronutrient deficiency, i.e. in the presence of micronutrient 

supplementation. 

Nutrition-related histone modifications. Although the investigation of nutrition-

modulated histone modifications is in very early stages compared to the study of such 

changes in DNA methylation, several in murine studies have provided early evidence for 

nutritional modulation of histone modifications. For example, maternal choline 

deficiency in murine is associated with decreased H3K9me1 and H3K9me2 levels in 
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hippocampal neural progenitor cells. However, other histone methylation marks are not 

affected by such choline deficiency (Mehedint et al. 2010). Similarly, in murine maternal 

protein deficiency correlates with increased H3K27me3 and H3K9me2 levels, but 

decreased H3K4me1 and H3ac levels (Sandovici et al. 2011). Such specificity in histone 

methylation/demethylation and the inclusion of changes in histone acetylation shows 

that– unlike micronutrient-correlated changes in DNA methylation– changes in histone 

modifications are not directly caused by a lack of methyl donors. Instead, it is likely that 

the complex interactions between changes in DNA methylation, the binding of histone-

modifying protein recruiters, and altered gene expression lead to this selective histone 

demethylation. In support of this idea, choline-related H3K9me1 and H3K9me2 

deficiencies in vitro were associated with altered expression of the histone-modifying 

protein recruiter REST and reduced binding of the histone methyltransferase G9a 

(Mehedint et al. 2010). In light of the prevalence and complexity of the histone 

interactions seen in other areas of epigenetics, it is likely that much more evidence to 

support such interactions will develop as more nutritional epigenetics research is 

performed. 

Future of nutritional epigenetics. Micronutrient deficiencies impair the one-

carbon metabolism cycles and lead to DNA hypomethylation and often-pathogenic 

phenotypes. However, it is clear from nutrient-related histone modifications and protein 

deficiency-related DNA hypermethylation that many epigenetic changes are not caused 

by a simple deficiency in methyl donors, but rather involve interactions between proteins, 

genes, and epigenetic mechanisms. Therefore, further research into the relationship 

between nutrition and epigenetics will need to consider such interactions between 
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different epigenetic modifications and their effects on gene expression and protein 

binding, rather than focusing only upon methyl-donor pathways. 

 

CARCINOGENS 

Carcinogens have been widely linked to genetic mutations and changes in gene 

expression for decades. More recently, many carcinogens which were thought to be 

already well-understood by conventional molecular and genetic mechanisms have been 

shown to have additional epigenetic actions. Changes in DNA methylation and histone 

modifications have been discovered to possess major roles in both new and previously-

established carcinogenic pathways. Here, the newfound epigenetic mechanisms of 

previously-characterized carcinogens present in cigarette smoke, fossil fuel emissions, 

and alcohol will be discussed. 

Benzo(a)pyrene and retrotransposons. Benzo(a)pyrene (BaP), a carcinogen that 

is present in the smoke given off by cigarettes and fossil fuels, was already well-known to 

contribute to lung and esophageal tumorigenesis by inhibiting DNA repair and disrupting 

transcription regulation (Lu and Ramos 1998, Teneng et al. 2011). However, as focus 

upon epigenetics increased, BaP was also found to affect DNA methylation and histone 

modifications on the LINE-1 retrotransposon. In the presence of BaP, repressive DNA 

methylation is lost on the promoter of the LINE-1 retrotransposon, expression of LINE-

1’s two transcripts occurs, and LINE-1 is reinserted throughout the genome (Box 3; 

Teneng et al. 2011). This reinsertion potentially disrupts both coding sequences and 

regulatory regions throughout the genome, leading to mass disruptions in gene expression 

and/or mutations (Alves et al. 1996). Associated with the loss of methylation along 
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LINE-1 is the BaP-induced degradation of the maintenance methyltransferase DNMT1 by 

proteasomes. It is therefore likely that the targeting of DNMT1 for destruction by BaP is 

responsible for the observed hypomethylation and reactivation of LINE-1 (Teneng et al. 

2011). Thus, unlike the methyl shortage that is seen in some nutritional deficiencies, it is 

a shortage of DNA methyltransferase that is responsible for hypomethylation in the case 

of BaP. 

NNK metabolism and cancer. Another tobacco-associated carcinogen, 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), was previously known to cause 

cancer by forming mutation-causing DNA adducts as well as by activating cell surface 

receptors that lead to inhibited apoptosis and increased proliferation (Jalas et al. 2005, 

Hecht 2003). However, with the advancement of epigenetics, NNK has more recently 

been linked to DNA hypermethylation and resultant miRNA dysregulation, as well as 

DNA repair-disabling histone modifications (Shen et al. 2014, Watanabe et al. 2012). In 

the lungs, NNK is metabolized into its active, carcinogenic form (NNAL) by 

hydroxylation reactions catalyzed by CYPA3; after this conversion NNAL proceeds to 

form DNA adducts and cause lung cancer (Jalas et al. 2005). CYAP3 is down-regulated 

by miR-126, and in lung cancer, miR-126’s host gene, EGFL7, is hypermethylated and 

resultantly silenced (Kalscheuer et al. 2008, Watanabe et al. 2012). Thus, a positive 

feedback loop is established in which NNK increases the expression of its own catalyst 

via epigenetic changes, potentially compounding the effects of NNK and accelerating 

carcinogenesis (Kalscheuer et al. 2008).  

Alcohol-mediated carcinogenesis. As with BaP and NNK, much of what is 

known of alcohol’s carcinogenesis was non-epigenetic in nature until recent years (Seitz 
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and Stickel 2007). Ethanol and its derivative, acetaldehyde, were previously shown to 

have a variety of carcinogenic effects through such mechanisms as inhibiting DNA 

repair, causing chromosomal instability, inducing DNA point mutations, and allowing the 

exchange of genetic material between sister chromatids. (Kayani and Parry 2010, Seitz 

and Stickel 2007). A comprehensive review of these pathways can be found elsewhere 

(Seitz and Stickel 2007). 

More recently, new mechanisms of ethanol’s action were discovered with the 

increased study of epigenetics. Chronic alcohol consumption in rats has been linked to 

increased H3K9 acetylation in the liver, lungs, spleen, and testes (Kim et al. 2006, Oliva 

et al. 2009). In the liver, alcohol-mediated H3K9 hyperacetylation has further been linked 

to decreased nuclear proteasome activity and increased p300 activity (Oliva et al. 2009). 

p300 is a histone acetyltransferase coactivator and has been strongly implicated in liver, 

breast, prostate, and colorectal cancers (Li et al. 2011). These changes in p300 activity 

and acetylation were concomitant with the divergent expression of 1,300 genes, including 

genes in such well-established tumor suppressor and oncogenic pathways as the Wnt, 

TGFβ, Notch, insulin signaling, and apoptosis pathways (Oliva et al. 2009). Thus, 

alcohol consumption has been linked to multiple carcinogenic pathways via induced 

changes in histone acetylation. Ethanol and acetaldehyde have been linked to many other 

epigenetic pathways in both cancer and liver disease, including histone phosphorylation. 

For a full review of ethanol-induced epigenetic changes, see Shukla et al. 2013. 

Implications of environment-induced epigenetic carcinogenesis. From such 

examples as these, it becomes apparent that epigenetics holds great potential for 

increasing understanding of carcinogens—even carcinogens that have already been 
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extensively studied in non-epigenetic contexts. Herceg et al. proposed that this re-

understanding of conventional carcinogens is due to the dependence of genetic and 

molecular mechanisms upon epigenetic mechanisms– the genetic and molecular 

mechanisms that were previously known are the products of development, which is 

largely regulated by epigenetics (Herceg et al. 2007). As methods for studying 

epigenetics continue to improve, the understanding of these and other carcinogens will 

continue to improve and lead to novel treatment and prevention techniques. 

 

THE FUTURE OF ENVIRONMENTAL EPIGENETICS 

Notably, there is often substantial interplay between the nutrition- and 

carcinogen-related epigenetic pathways discussed above. For example, carcinogens in 

cigarette smoke such as NNK not only cause the hypomethylation of genes like EGFL7, 

but also disrupt one-carbon metabolism and induce generalized global DNA 

hypomethylation via SAM shortage (Drake et al. 2015, Kalscheuer et al. 2008, Watanabe 

et al. 2012). This concurrence implies a number of potential explanations, including the 

possibility that the disruption of one-carbon metabolism by NNK may contribute to the 

observed EGFL7 hypomethylation and associated carcinogenesis. The causation could 

also be reversed: EGFL7 hypomethylation may contribute to the disruption of one-carbon 

metabolism by any number of pathways that are regulated by EGFL7/miR-126. Finally, 

the two effects of NNK may be entirely separate phenomena, amongst many other 

explanations. The discernment of the exact relationship between the carcinogenic and 

one-carbon metabolic effects of NNK will require extensive research and perfectly 

illustrates the added complexity that arises from environmental epigenetics. Interactions 
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between multiple different environmental stimuli and epigenetic pathways further 

complicate the already-complex web of interactions that exists between protein binding, 

genotypes, and other genomic factors. This complexity necessitates that further study into 

environmental epigenetics will be a momentous undertaking that will likely require the 

development of new molecular and computational techniques. However, as is shown in 

the examples described above, the study of intragenerational environmental epigenetics 

will also allow for new understanding of molecular mechanisms for a variety of 

pathways– many of which were already thought to be understood– and thereby the 

potential prevention of and treatment for a variety of diseases. 
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BOX 1: CpG islands are regions of DNA that are at least 200 bp in length and 

contain a higher prevalence of cytosines/guanines than would be typically expected 

(usually >50%) (Zhang and Pradhan 2014). While most transcriptionally-significant 

DNA methylation occurs in CpG islands, another commonly methylated motif has 

recently been identified: the CpG desert (Skinner and Guerrero-Bosagna 2014). CpG 

deserts possess greatly decreased prevalence of CpGs in a region of 500-2000 bp 

(<15% CpG prevalence, as compared to CpG islands’ >50% CpG prevalence) 

(Skinner and Guerrero-Bosagna 2014, Watson et al. 2014). However, the CpGs that 

are present appear in small, concentrated clusters in gene promoters. Skinner and 

Guerrero-Bosagna found that >97% of the differentially-methylated regions (DMRs) 

associated with a variety of environmental toxicants were located within CpG deserts 

rather than islands and were heritable (Skinner and Guerrero-Bosagna 2014). 

However, causative connections to transcription have not yet been found, and the 

biological significance of these CpG deserts remains unknown, but promising. 

BOX 2: Retrotransposons code for DNA-binding proteins and reverse 

transcriptases that allow them to self-proliferate by reinserting themselves into the 

genome after transcription. Early research into epigenetics revealed that prevention of 

such reinsertion, which can cause severe mutations if the retrotransposon is inserted 

into a coding or regulatory sequence, is typically achieved by extensive DNA 

methylation along the retrotransposon’s promoter. However, if the hypermethylation 

of the retrotransposon’s promoter is lost, expression of protein products and the 

reinsertion of the retrotransposon can occur (Alves et al. 1996, Teneng et al. 2011). 
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